]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - include/net/bluetooth/hci_core.h
Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/linville/wirel...
[mirror_ubuntu-bionic-kernel.git] / include / net / bluetooth / hci_core.h
1 /*
2 BlueZ - Bluetooth protocol stack for Linux
3 Copyright (c) 2000-2001, 2010, Code Aurora Forum. All rights reserved.
4
5 Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License version 2 as
9 published by the Free Software Foundation;
10
11 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
12 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
13 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
14 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
15 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
16 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19
20 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
21 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
22 SOFTWARE IS DISCLAIMED.
23 */
24
25 #ifndef __HCI_CORE_H
26 #define __HCI_CORE_H
27
28 #include <net/bluetooth/hci.h>
29
30 /* HCI priority */
31 #define HCI_PRIO_MAX 7
32
33 /* HCI Core structures */
34 struct inquiry_data {
35 bdaddr_t bdaddr;
36 __u8 pscan_rep_mode;
37 __u8 pscan_period_mode;
38 __u8 pscan_mode;
39 __u8 dev_class[3];
40 __le16 clock_offset;
41 __s8 rssi;
42 __u8 ssp_mode;
43 };
44
45 struct inquiry_entry {
46 struct list_head all; /* inq_cache.all */
47 struct list_head list; /* unknown or resolve */
48 enum {
49 NAME_NOT_KNOWN,
50 NAME_NEEDED,
51 NAME_PENDING,
52 NAME_KNOWN,
53 } name_state;
54 __u32 timestamp;
55 struct inquiry_data data;
56 };
57
58 struct discovery_state {
59 int type;
60 enum {
61 DISCOVERY_STOPPED,
62 DISCOVERY_STARTING,
63 DISCOVERY_FINDING,
64 DISCOVERY_RESOLVING,
65 DISCOVERY_STOPPING,
66 } state;
67 struct list_head all; /* All devices found during inquiry */
68 struct list_head unknown; /* Name state not known */
69 struct list_head resolve; /* Name needs to be resolved */
70 __u32 timestamp;
71 };
72
73 struct hci_conn_hash {
74 struct list_head list;
75 unsigned int acl_num;
76 unsigned int amp_num;
77 unsigned int sco_num;
78 unsigned int le_num;
79 };
80
81 struct bdaddr_list {
82 struct list_head list;
83 bdaddr_t bdaddr;
84 };
85
86 struct bt_uuid {
87 struct list_head list;
88 u8 uuid[16];
89 u8 size;
90 u8 svc_hint;
91 };
92
93 struct smp_ltk {
94 struct list_head list;
95 bdaddr_t bdaddr;
96 u8 bdaddr_type;
97 u8 authenticated;
98 u8 type;
99 u8 enc_size;
100 __le16 ediv;
101 u8 rand[8];
102 u8 val[16];
103 } __packed;
104
105 struct link_key {
106 struct list_head list;
107 bdaddr_t bdaddr;
108 u8 type;
109 u8 val[HCI_LINK_KEY_SIZE];
110 u8 pin_len;
111 };
112
113 struct oob_data {
114 struct list_head list;
115 bdaddr_t bdaddr;
116 u8 hash[16];
117 u8 randomizer[16];
118 };
119
120 #define HCI_MAX_SHORT_NAME_LENGTH 10
121
122 struct amp_assoc {
123 __u16 len;
124 __u16 offset;
125 __u16 rem_len;
126 __u16 len_so_far;
127 __u8 data[HCI_MAX_AMP_ASSOC_SIZE];
128 };
129
130 #define HCI_MAX_PAGES 3
131
132 #define NUM_REASSEMBLY 4
133 struct hci_dev {
134 struct list_head list;
135 struct mutex lock;
136
137 char name[8];
138 unsigned long flags;
139 __u16 id;
140 __u8 bus;
141 __u8 dev_type;
142 bdaddr_t bdaddr;
143 bdaddr_t static_addr;
144 __u8 dev_name[HCI_MAX_NAME_LENGTH];
145 __u8 short_name[HCI_MAX_SHORT_NAME_LENGTH];
146 __u8 eir[HCI_MAX_EIR_LENGTH];
147 __u8 dev_class[3];
148 __u8 major_class;
149 __u8 minor_class;
150 __u8 max_page;
151 __u8 features[HCI_MAX_PAGES][8];
152 __u8 le_features[8];
153 __u8 le_white_list_size;
154 __u8 le_states[8];
155 __u8 commands[64];
156 __u8 hci_ver;
157 __u16 hci_rev;
158 __u8 lmp_ver;
159 __u16 manufacturer;
160 __u16 lmp_subver;
161 __u16 voice_setting;
162 __u8 num_iac;
163 __u8 io_capability;
164 __s8 inq_tx_power;
165 __u16 page_scan_interval;
166 __u16 page_scan_window;
167 __u8 page_scan_type;
168 __u16 le_scan_interval;
169 __u16 le_scan_window;
170
171 __u16 devid_source;
172 __u16 devid_vendor;
173 __u16 devid_product;
174 __u16 devid_version;
175
176 __u16 pkt_type;
177 __u16 esco_type;
178 __u16 link_policy;
179 __u16 link_mode;
180
181 __u32 idle_timeout;
182 __u16 sniff_min_interval;
183 __u16 sniff_max_interval;
184
185 __u8 amp_status;
186 __u32 amp_total_bw;
187 __u32 amp_max_bw;
188 __u32 amp_min_latency;
189 __u32 amp_max_pdu;
190 __u8 amp_type;
191 __u16 amp_pal_cap;
192 __u16 amp_assoc_size;
193 __u32 amp_max_flush_to;
194 __u32 amp_be_flush_to;
195
196 struct amp_assoc loc_assoc;
197
198 __u8 flow_ctl_mode;
199
200 unsigned int auto_accept_delay;
201
202 unsigned long quirks;
203
204 atomic_t cmd_cnt;
205 unsigned int acl_cnt;
206 unsigned int sco_cnt;
207 unsigned int le_cnt;
208
209 unsigned int acl_mtu;
210 unsigned int sco_mtu;
211 unsigned int le_mtu;
212 unsigned int acl_pkts;
213 unsigned int sco_pkts;
214 unsigned int le_pkts;
215
216 __u16 block_len;
217 __u16 block_mtu;
218 __u16 num_blocks;
219 __u16 block_cnt;
220
221 unsigned long acl_last_tx;
222 unsigned long sco_last_tx;
223 unsigned long le_last_tx;
224
225 struct workqueue_struct *workqueue;
226 struct workqueue_struct *req_workqueue;
227
228 struct work_struct power_on;
229 struct delayed_work power_off;
230
231 __u16 discov_timeout;
232 struct delayed_work discov_off;
233
234 struct delayed_work service_cache;
235
236 struct timer_list cmd_timer;
237
238 struct work_struct rx_work;
239 struct work_struct cmd_work;
240 struct work_struct tx_work;
241
242 struct sk_buff_head rx_q;
243 struct sk_buff_head raw_q;
244 struct sk_buff_head cmd_q;
245
246 struct sk_buff *recv_evt;
247 struct sk_buff *sent_cmd;
248 struct sk_buff *reassembly[NUM_REASSEMBLY];
249
250 struct mutex req_lock;
251 wait_queue_head_t req_wait_q;
252 __u32 req_status;
253 __u32 req_result;
254
255 struct list_head mgmt_pending;
256
257 struct discovery_state discovery;
258 struct hci_conn_hash conn_hash;
259 struct list_head blacklist;
260
261 struct list_head uuids;
262
263 struct list_head link_keys;
264
265 struct list_head long_term_keys;
266
267 struct list_head remote_oob_data;
268
269 struct hci_dev_stats stat;
270
271 atomic_t promisc;
272
273 struct dentry *debugfs;
274
275 struct device dev;
276
277 struct rfkill *rfkill;
278
279 unsigned long dev_flags;
280
281 struct delayed_work le_scan_disable;
282
283 __s8 adv_tx_power;
284 __u8 adv_data[HCI_MAX_AD_LENGTH];
285 __u8 adv_data_len;
286
287 int (*open)(struct hci_dev *hdev);
288 int (*close)(struct hci_dev *hdev);
289 int (*flush)(struct hci_dev *hdev);
290 int (*setup)(struct hci_dev *hdev);
291 int (*send)(struct hci_dev *hdev, struct sk_buff *skb);
292 void (*notify)(struct hci_dev *hdev, unsigned int evt);
293 };
294
295 #define HCI_PHY_HANDLE(handle) (handle & 0xff)
296
297 struct hci_conn {
298 struct list_head list;
299
300 atomic_t refcnt;
301
302 bdaddr_t dst;
303 __u8 dst_type;
304 bdaddr_t src;
305 __u8 src_type;
306 __u16 handle;
307 __u16 state;
308 __u8 mode;
309 __u8 type;
310 bool out;
311 __u8 attempt;
312 __u8 dev_class[3];
313 __u8 features[HCI_MAX_PAGES][8];
314 __u16 interval;
315 __u16 pkt_type;
316 __u16 link_policy;
317 __u32 link_mode;
318 __u8 key_type;
319 __u8 auth_type;
320 __u8 sec_level;
321 __u8 pending_sec_level;
322 __u8 pin_length;
323 __u8 enc_key_size;
324 __u8 io_capability;
325 __u32 passkey_notify;
326 __u8 passkey_entered;
327 __u16 disc_timeout;
328 __u16 setting;
329 unsigned long flags;
330
331 __u8 remote_cap;
332 __u8 remote_auth;
333 __u8 remote_id;
334 bool flush_key;
335
336 unsigned int sent;
337
338 struct sk_buff_head data_q;
339 struct list_head chan_list;
340
341 struct delayed_work disc_work;
342 struct timer_list idle_timer;
343 struct timer_list auto_accept_timer;
344
345 struct device dev;
346
347 struct hci_dev *hdev;
348 void *l2cap_data;
349 void *sco_data;
350 void *smp_conn;
351 struct amp_mgr *amp_mgr;
352
353 struct hci_conn *link;
354
355 void (*connect_cfm_cb) (struct hci_conn *conn, u8 status);
356 void (*security_cfm_cb) (struct hci_conn *conn, u8 status);
357 void (*disconn_cfm_cb) (struct hci_conn *conn, u8 reason);
358 };
359
360 struct hci_chan {
361 struct list_head list;
362 __u16 handle;
363 struct hci_conn *conn;
364 struct sk_buff_head data_q;
365 unsigned int sent;
366 __u8 state;
367 };
368
369 extern struct list_head hci_dev_list;
370 extern struct list_head hci_cb_list;
371 extern rwlock_t hci_dev_list_lock;
372 extern rwlock_t hci_cb_list_lock;
373
374 /* ----- HCI interface to upper protocols ----- */
375 int l2cap_connect_ind(struct hci_dev *hdev, bdaddr_t *bdaddr);
376 void l2cap_connect_cfm(struct hci_conn *hcon, u8 status);
377 int l2cap_disconn_ind(struct hci_conn *hcon);
378 void l2cap_disconn_cfm(struct hci_conn *hcon, u8 reason);
379 int l2cap_security_cfm(struct hci_conn *hcon, u8 status, u8 encrypt);
380 int l2cap_recv_acldata(struct hci_conn *hcon, struct sk_buff *skb, u16 flags);
381
382 int sco_connect_ind(struct hci_dev *hdev, bdaddr_t *bdaddr, __u8 *flags);
383 void sco_connect_cfm(struct hci_conn *hcon, __u8 status);
384 void sco_disconn_cfm(struct hci_conn *hcon, __u8 reason);
385 int sco_recv_scodata(struct hci_conn *hcon, struct sk_buff *skb);
386
387 /* ----- Inquiry cache ----- */
388 #define INQUIRY_CACHE_AGE_MAX (HZ*30) /* 30 seconds */
389 #define INQUIRY_ENTRY_AGE_MAX (HZ*60) /* 60 seconds */
390
391 static inline void discovery_init(struct hci_dev *hdev)
392 {
393 hdev->discovery.state = DISCOVERY_STOPPED;
394 INIT_LIST_HEAD(&hdev->discovery.all);
395 INIT_LIST_HEAD(&hdev->discovery.unknown);
396 INIT_LIST_HEAD(&hdev->discovery.resolve);
397 }
398
399 bool hci_discovery_active(struct hci_dev *hdev);
400
401 void hci_discovery_set_state(struct hci_dev *hdev, int state);
402
403 static inline int inquiry_cache_empty(struct hci_dev *hdev)
404 {
405 return list_empty(&hdev->discovery.all);
406 }
407
408 static inline long inquiry_cache_age(struct hci_dev *hdev)
409 {
410 struct discovery_state *c = &hdev->discovery;
411 return jiffies - c->timestamp;
412 }
413
414 static inline long inquiry_entry_age(struct inquiry_entry *e)
415 {
416 return jiffies - e->timestamp;
417 }
418
419 struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev,
420 bdaddr_t *bdaddr);
421 struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev,
422 bdaddr_t *bdaddr);
423 struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev,
424 bdaddr_t *bdaddr,
425 int state);
426 void hci_inquiry_cache_update_resolve(struct hci_dev *hdev,
427 struct inquiry_entry *ie);
428 bool hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data,
429 bool name_known, bool *ssp);
430 void hci_inquiry_cache_flush(struct hci_dev *hdev);
431
432 /* ----- HCI Connections ----- */
433 enum {
434 HCI_CONN_AUTH_PEND,
435 HCI_CONN_REAUTH_PEND,
436 HCI_CONN_ENCRYPT_PEND,
437 HCI_CONN_RSWITCH_PEND,
438 HCI_CONN_MODE_CHANGE_PEND,
439 HCI_CONN_SCO_SETUP_PEND,
440 HCI_CONN_LE_SMP_PEND,
441 HCI_CONN_MGMT_CONNECTED,
442 HCI_CONN_SSP_ENABLED,
443 HCI_CONN_POWER_SAVE,
444 HCI_CONN_REMOTE_OOB,
445 };
446
447 static inline bool hci_conn_ssp_enabled(struct hci_conn *conn)
448 {
449 struct hci_dev *hdev = conn->hdev;
450 return test_bit(HCI_SSP_ENABLED, &hdev->dev_flags) &&
451 test_bit(HCI_CONN_SSP_ENABLED, &conn->flags);
452 }
453
454 static inline void hci_conn_hash_add(struct hci_dev *hdev, struct hci_conn *c)
455 {
456 struct hci_conn_hash *h = &hdev->conn_hash;
457 list_add_rcu(&c->list, &h->list);
458 switch (c->type) {
459 case ACL_LINK:
460 h->acl_num++;
461 break;
462 case AMP_LINK:
463 h->amp_num++;
464 break;
465 case LE_LINK:
466 h->le_num++;
467 break;
468 case SCO_LINK:
469 case ESCO_LINK:
470 h->sco_num++;
471 break;
472 }
473 }
474
475 static inline void hci_conn_hash_del(struct hci_dev *hdev, struct hci_conn *c)
476 {
477 struct hci_conn_hash *h = &hdev->conn_hash;
478
479 list_del_rcu(&c->list);
480 synchronize_rcu();
481
482 switch (c->type) {
483 case ACL_LINK:
484 h->acl_num--;
485 break;
486 case AMP_LINK:
487 h->amp_num--;
488 break;
489 case LE_LINK:
490 h->le_num--;
491 break;
492 case SCO_LINK:
493 case ESCO_LINK:
494 h->sco_num--;
495 break;
496 }
497 }
498
499 static inline unsigned int hci_conn_num(struct hci_dev *hdev, __u8 type)
500 {
501 struct hci_conn_hash *h = &hdev->conn_hash;
502 switch (type) {
503 case ACL_LINK:
504 return h->acl_num;
505 case AMP_LINK:
506 return h->amp_num;
507 case LE_LINK:
508 return h->le_num;
509 case SCO_LINK:
510 case ESCO_LINK:
511 return h->sco_num;
512 default:
513 return 0;
514 }
515 }
516
517 static inline struct hci_conn *hci_conn_hash_lookup_handle(struct hci_dev *hdev,
518 __u16 handle)
519 {
520 struct hci_conn_hash *h = &hdev->conn_hash;
521 struct hci_conn *c;
522
523 rcu_read_lock();
524
525 list_for_each_entry_rcu(c, &h->list, list) {
526 if (c->handle == handle) {
527 rcu_read_unlock();
528 return c;
529 }
530 }
531 rcu_read_unlock();
532
533 return NULL;
534 }
535
536 static inline struct hci_conn *hci_conn_hash_lookup_ba(struct hci_dev *hdev,
537 __u8 type, bdaddr_t *ba)
538 {
539 struct hci_conn_hash *h = &hdev->conn_hash;
540 struct hci_conn *c;
541
542 rcu_read_lock();
543
544 list_for_each_entry_rcu(c, &h->list, list) {
545 if (c->type == type && !bacmp(&c->dst, ba)) {
546 rcu_read_unlock();
547 return c;
548 }
549 }
550
551 rcu_read_unlock();
552
553 return NULL;
554 }
555
556 static inline struct hci_conn *hci_conn_hash_lookup_state(struct hci_dev *hdev,
557 __u8 type, __u16 state)
558 {
559 struct hci_conn_hash *h = &hdev->conn_hash;
560 struct hci_conn *c;
561
562 rcu_read_lock();
563
564 list_for_each_entry_rcu(c, &h->list, list) {
565 if (c->type == type && c->state == state) {
566 rcu_read_unlock();
567 return c;
568 }
569 }
570
571 rcu_read_unlock();
572
573 return NULL;
574 }
575
576 void hci_disconnect(struct hci_conn *conn, __u8 reason);
577 bool hci_setup_sync(struct hci_conn *conn, __u16 handle);
578 void hci_sco_setup(struct hci_conn *conn, __u8 status);
579
580 struct hci_conn *hci_conn_add(struct hci_dev *hdev, int type, bdaddr_t *dst);
581 int hci_conn_del(struct hci_conn *conn);
582 void hci_conn_hash_flush(struct hci_dev *hdev);
583 void hci_conn_check_pending(struct hci_dev *hdev);
584
585 struct hci_chan *hci_chan_create(struct hci_conn *conn);
586 void hci_chan_del(struct hci_chan *chan);
587 void hci_chan_list_flush(struct hci_conn *conn);
588 struct hci_chan *hci_chan_lookup_handle(struct hci_dev *hdev, __u16 handle);
589
590 struct hci_conn *hci_connect(struct hci_dev *hdev, int type, bdaddr_t *dst,
591 __u8 dst_type, __u8 sec_level, __u8 auth_type);
592 struct hci_conn *hci_connect_sco(struct hci_dev *hdev, int type, bdaddr_t *dst,
593 __u16 setting);
594 int hci_conn_check_link_mode(struct hci_conn *conn);
595 int hci_conn_check_secure(struct hci_conn *conn, __u8 sec_level);
596 int hci_conn_security(struct hci_conn *conn, __u8 sec_level, __u8 auth_type);
597 int hci_conn_change_link_key(struct hci_conn *conn);
598 int hci_conn_switch_role(struct hci_conn *conn, __u8 role);
599
600 void hci_conn_enter_active_mode(struct hci_conn *conn, __u8 force_active);
601
602 /*
603 * hci_conn_get() and hci_conn_put() are used to control the life-time of an
604 * "hci_conn" object. They do not guarantee that the hci_conn object is running,
605 * working or anything else. They just guarantee that the object is available
606 * and can be dereferenced. So you can use its locks, local variables and any
607 * other constant data.
608 * Before accessing runtime data, you _must_ lock the object and then check that
609 * it is still running. As soon as you release the locks, the connection might
610 * get dropped, though.
611 *
612 * On the other hand, hci_conn_hold() and hci_conn_drop() are used to control
613 * how long the underlying connection is held. So every channel that runs on the
614 * hci_conn object calls this to prevent the connection from disappearing. As
615 * long as you hold a device, you must also guarantee that you have a valid
616 * reference to the device via hci_conn_get() (or the initial reference from
617 * hci_conn_add()).
618 * The hold()/drop() ref-count is known to drop below 0 sometimes, which doesn't
619 * break because nobody cares for that. But this means, we cannot use
620 * _get()/_drop() in it, but require the caller to have a valid ref (FIXME).
621 */
622
623 static inline void hci_conn_get(struct hci_conn *conn)
624 {
625 get_device(&conn->dev);
626 }
627
628 static inline void hci_conn_put(struct hci_conn *conn)
629 {
630 put_device(&conn->dev);
631 }
632
633 static inline void hci_conn_hold(struct hci_conn *conn)
634 {
635 BT_DBG("hcon %p orig refcnt %d", conn, atomic_read(&conn->refcnt));
636
637 atomic_inc(&conn->refcnt);
638 cancel_delayed_work(&conn->disc_work);
639 }
640
641 static inline void hci_conn_drop(struct hci_conn *conn)
642 {
643 BT_DBG("hcon %p orig refcnt %d", conn, atomic_read(&conn->refcnt));
644
645 if (atomic_dec_and_test(&conn->refcnt)) {
646 unsigned long timeo;
647
648 switch (conn->type) {
649 case ACL_LINK:
650 case LE_LINK:
651 del_timer(&conn->idle_timer);
652 if (conn->state == BT_CONNECTED) {
653 timeo = conn->disc_timeout;
654 if (!conn->out)
655 timeo *= 2;
656 } else {
657 timeo = msecs_to_jiffies(10);
658 }
659 break;
660
661 case AMP_LINK:
662 timeo = conn->disc_timeout;
663 break;
664
665 default:
666 timeo = msecs_to_jiffies(10);
667 break;
668 }
669
670 cancel_delayed_work(&conn->disc_work);
671 queue_delayed_work(conn->hdev->workqueue,
672 &conn->disc_work, timeo);
673 }
674 }
675
676 /* ----- HCI Devices ----- */
677 static inline void hci_dev_put(struct hci_dev *d)
678 {
679 BT_DBG("%s orig refcnt %d", d->name,
680 atomic_read(&d->dev.kobj.kref.refcount));
681
682 put_device(&d->dev);
683 }
684
685 static inline struct hci_dev *hci_dev_hold(struct hci_dev *d)
686 {
687 BT_DBG("%s orig refcnt %d", d->name,
688 atomic_read(&d->dev.kobj.kref.refcount));
689
690 get_device(&d->dev);
691 return d;
692 }
693
694 #define hci_dev_lock(d) mutex_lock(&d->lock)
695 #define hci_dev_unlock(d) mutex_unlock(&d->lock)
696
697 #define to_hci_dev(d) container_of(d, struct hci_dev, dev)
698 #define to_hci_conn(c) container_of(c, struct hci_conn, dev)
699
700 static inline void *hci_get_drvdata(struct hci_dev *hdev)
701 {
702 return dev_get_drvdata(&hdev->dev);
703 }
704
705 static inline void hci_set_drvdata(struct hci_dev *hdev, void *data)
706 {
707 dev_set_drvdata(&hdev->dev, data);
708 }
709
710 struct hci_dev *hci_dev_get(int index);
711 struct hci_dev *hci_get_route(bdaddr_t *dst, bdaddr_t *src);
712
713 struct hci_dev *hci_alloc_dev(void);
714 void hci_free_dev(struct hci_dev *hdev);
715 int hci_register_dev(struct hci_dev *hdev);
716 void hci_unregister_dev(struct hci_dev *hdev);
717 int hci_suspend_dev(struct hci_dev *hdev);
718 int hci_resume_dev(struct hci_dev *hdev);
719 int hci_dev_open(__u16 dev);
720 int hci_dev_close(__u16 dev);
721 int hci_dev_reset(__u16 dev);
722 int hci_dev_reset_stat(__u16 dev);
723 int hci_dev_cmd(unsigned int cmd, void __user *arg);
724 int hci_get_dev_list(void __user *arg);
725 int hci_get_dev_info(void __user *arg);
726 int hci_get_conn_list(void __user *arg);
727 int hci_get_conn_info(struct hci_dev *hdev, void __user *arg);
728 int hci_get_auth_info(struct hci_dev *hdev, void __user *arg);
729 int hci_inquiry(void __user *arg);
730
731 struct bdaddr_list *hci_blacklist_lookup(struct hci_dev *hdev,
732 bdaddr_t *bdaddr);
733 int hci_blacklist_clear(struct hci_dev *hdev);
734 int hci_blacklist_add(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type);
735 int hci_blacklist_del(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type);
736
737 int hci_uuids_clear(struct hci_dev *hdev);
738
739 int hci_link_keys_clear(struct hci_dev *hdev);
740 struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr);
741 int hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn, int new_key,
742 bdaddr_t *bdaddr, u8 *val, u8 type, u8 pin_len);
743 struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, __le16 ediv, u8 rand[8]);
744 int hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type, u8 type,
745 int new_key, u8 authenticated, u8 tk[16], u8 enc_size,
746 __le16 ediv, u8 rand[8]);
747 struct smp_ltk *hci_find_ltk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr,
748 u8 addr_type);
749 int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr);
750 int hci_smp_ltks_clear(struct hci_dev *hdev);
751 int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr);
752
753 int hci_remote_oob_data_clear(struct hci_dev *hdev);
754 struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev,
755 bdaddr_t *bdaddr);
756 int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 *hash,
757 u8 *randomizer);
758 int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr);
759
760 void hci_event_packet(struct hci_dev *hdev, struct sk_buff *skb);
761
762 int hci_recv_frame(struct hci_dev *hdev, struct sk_buff *skb);
763 int hci_recv_fragment(struct hci_dev *hdev, int type, void *data, int count);
764 int hci_recv_stream_fragment(struct hci_dev *hdev, void *data, int count);
765
766 void hci_init_sysfs(struct hci_dev *hdev);
767 int hci_add_sysfs(struct hci_dev *hdev);
768 void hci_del_sysfs(struct hci_dev *hdev);
769 void hci_conn_init_sysfs(struct hci_conn *conn);
770 void hci_conn_add_sysfs(struct hci_conn *conn);
771 void hci_conn_del_sysfs(struct hci_conn *conn);
772
773 #define SET_HCIDEV_DEV(hdev, pdev) ((hdev)->dev.parent = (pdev))
774
775 /* ----- LMP capabilities ----- */
776 #define lmp_encrypt_capable(dev) ((dev)->features[0][0] & LMP_ENCRYPT)
777 #define lmp_rswitch_capable(dev) ((dev)->features[0][0] & LMP_RSWITCH)
778 #define lmp_hold_capable(dev) ((dev)->features[0][0] & LMP_HOLD)
779 #define lmp_sniff_capable(dev) ((dev)->features[0][0] & LMP_SNIFF)
780 #define lmp_park_capable(dev) ((dev)->features[0][1] & LMP_PARK)
781 #define lmp_inq_rssi_capable(dev) ((dev)->features[0][3] & LMP_RSSI_INQ)
782 #define lmp_esco_capable(dev) ((dev)->features[0][3] & LMP_ESCO)
783 #define lmp_bredr_capable(dev) (!((dev)->features[0][4] & LMP_NO_BREDR))
784 #define lmp_le_capable(dev) ((dev)->features[0][4] & LMP_LE)
785 #define lmp_sniffsubr_capable(dev) ((dev)->features[0][5] & LMP_SNIFF_SUBR)
786 #define lmp_pause_enc_capable(dev) ((dev)->features[0][5] & LMP_PAUSE_ENC)
787 #define lmp_ext_inq_capable(dev) ((dev)->features[0][6] & LMP_EXT_INQ)
788 #define lmp_le_br_capable(dev) (!!((dev)->features[0][6] & LMP_SIMUL_LE_BR))
789 #define lmp_ssp_capable(dev) ((dev)->features[0][6] & LMP_SIMPLE_PAIR)
790 #define lmp_no_flush_capable(dev) ((dev)->features[0][6] & LMP_NO_FLUSH)
791 #define lmp_lsto_capable(dev) ((dev)->features[0][7] & LMP_LSTO)
792 #define lmp_inq_tx_pwr_capable(dev) ((dev)->features[0][7] & LMP_INQ_TX_PWR)
793 #define lmp_ext_feat_capable(dev) ((dev)->features[0][7] & LMP_EXTFEATURES)
794 #define lmp_transp_capable(dev) ((dev)->features[0][2] & LMP_TRANSPARENT)
795
796 /* ----- Extended LMP capabilities ----- */
797 #define lmp_host_ssp_capable(dev) ((dev)->features[1][0] & LMP_HOST_SSP)
798 #define lmp_host_le_capable(dev) (!!((dev)->features[1][0] & LMP_HOST_LE))
799 #define lmp_host_le_br_capable(dev) (!!((dev)->features[1][0] & LMP_HOST_LE_BREDR))
800
801 /* ----- HCI protocols ----- */
802 #define HCI_PROTO_DEFER 0x01
803
804 static inline int hci_proto_connect_ind(struct hci_dev *hdev, bdaddr_t *bdaddr,
805 __u8 type, __u8 *flags)
806 {
807 switch (type) {
808 case ACL_LINK:
809 return l2cap_connect_ind(hdev, bdaddr);
810
811 case SCO_LINK:
812 case ESCO_LINK:
813 return sco_connect_ind(hdev, bdaddr, flags);
814
815 default:
816 BT_ERR("unknown link type %d", type);
817 return -EINVAL;
818 }
819 }
820
821 static inline void hci_proto_connect_cfm(struct hci_conn *conn, __u8 status)
822 {
823 switch (conn->type) {
824 case ACL_LINK:
825 case LE_LINK:
826 l2cap_connect_cfm(conn, status);
827 break;
828
829 case SCO_LINK:
830 case ESCO_LINK:
831 sco_connect_cfm(conn, status);
832 break;
833
834 default:
835 BT_ERR("unknown link type %d", conn->type);
836 break;
837 }
838
839 if (conn->connect_cfm_cb)
840 conn->connect_cfm_cb(conn, status);
841 }
842
843 static inline int hci_proto_disconn_ind(struct hci_conn *conn)
844 {
845 if (conn->type != ACL_LINK && conn->type != LE_LINK)
846 return HCI_ERROR_REMOTE_USER_TERM;
847
848 return l2cap_disconn_ind(conn);
849 }
850
851 static inline void hci_proto_disconn_cfm(struct hci_conn *conn, __u8 reason)
852 {
853 switch (conn->type) {
854 case ACL_LINK:
855 case LE_LINK:
856 l2cap_disconn_cfm(conn, reason);
857 break;
858
859 case SCO_LINK:
860 case ESCO_LINK:
861 sco_disconn_cfm(conn, reason);
862 break;
863
864 /* L2CAP would be handled for BREDR chan */
865 case AMP_LINK:
866 break;
867
868 default:
869 BT_ERR("unknown link type %d", conn->type);
870 break;
871 }
872
873 if (conn->disconn_cfm_cb)
874 conn->disconn_cfm_cb(conn, reason);
875 }
876
877 static inline void hci_proto_auth_cfm(struct hci_conn *conn, __u8 status)
878 {
879 __u8 encrypt;
880
881 if (conn->type != ACL_LINK && conn->type != LE_LINK)
882 return;
883
884 if (test_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags))
885 return;
886
887 encrypt = (conn->link_mode & HCI_LM_ENCRYPT) ? 0x01 : 0x00;
888 l2cap_security_cfm(conn, status, encrypt);
889
890 if (conn->security_cfm_cb)
891 conn->security_cfm_cb(conn, status);
892 }
893
894 static inline void hci_proto_encrypt_cfm(struct hci_conn *conn, __u8 status,
895 __u8 encrypt)
896 {
897 if (conn->type != ACL_LINK && conn->type != LE_LINK)
898 return;
899
900 l2cap_security_cfm(conn, status, encrypt);
901
902 if (conn->security_cfm_cb)
903 conn->security_cfm_cb(conn, status);
904 }
905
906 /* ----- HCI callbacks ----- */
907 struct hci_cb {
908 struct list_head list;
909
910 char *name;
911
912 void (*security_cfm) (struct hci_conn *conn, __u8 status,
913 __u8 encrypt);
914 void (*key_change_cfm) (struct hci_conn *conn, __u8 status);
915 void (*role_switch_cfm) (struct hci_conn *conn, __u8 status, __u8 role);
916 };
917
918 static inline void hci_auth_cfm(struct hci_conn *conn, __u8 status)
919 {
920 struct hci_cb *cb;
921 __u8 encrypt;
922
923 hci_proto_auth_cfm(conn, status);
924
925 if (test_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags))
926 return;
927
928 encrypt = (conn->link_mode & HCI_LM_ENCRYPT) ? 0x01 : 0x00;
929
930 read_lock(&hci_cb_list_lock);
931 list_for_each_entry(cb, &hci_cb_list, list) {
932 if (cb->security_cfm)
933 cb->security_cfm(conn, status, encrypt);
934 }
935 read_unlock(&hci_cb_list_lock);
936 }
937
938 static inline void hci_encrypt_cfm(struct hci_conn *conn, __u8 status,
939 __u8 encrypt)
940 {
941 struct hci_cb *cb;
942
943 if (conn->sec_level == BT_SECURITY_SDP)
944 conn->sec_level = BT_SECURITY_LOW;
945
946 if (conn->pending_sec_level > conn->sec_level)
947 conn->sec_level = conn->pending_sec_level;
948
949 hci_proto_encrypt_cfm(conn, status, encrypt);
950
951 read_lock(&hci_cb_list_lock);
952 list_for_each_entry(cb, &hci_cb_list, list) {
953 if (cb->security_cfm)
954 cb->security_cfm(conn, status, encrypt);
955 }
956 read_unlock(&hci_cb_list_lock);
957 }
958
959 static inline void hci_key_change_cfm(struct hci_conn *conn, __u8 status)
960 {
961 struct hci_cb *cb;
962
963 read_lock(&hci_cb_list_lock);
964 list_for_each_entry(cb, &hci_cb_list, list) {
965 if (cb->key_change_cfm)
966 cb->key_change_cfm(conn, status);
967 }
968 read_unlock(&hci_cb_list_lock);
969 }
970
971 static inline void hci_role_switch_cfm(struct hci_conn *conn, __u8 status,
972 __u8 role)
973 {
974 struct hci_cb *cb;
975
976 read_lock(&hci_cb_list_lock);
977 list_for_each_entry(cb, &hci_cb_list, list) {
978 if (cb->role_switch_cfm)
979 cb->role_switch_cfm(conn, status, role);
980 }
981 read_unlock(&hci_cb_list_lock);
982 }
983
984 static inline bool eir_has_data_type(u8 *data, size_t data_len, u8 type)
985 {
986 size_t parsed = 0;
987
988 if (data_len < 2)
989 return false;
990
991 while (parsed < data_len - 1) {
992 u8 field_len = data[0];
993
994 if (field_len == 0)
995 break;
996
997 parsed += field_len + 1;
998
999 if (parsed > data_len)
1000 break;
1001
1002 if (data[1] == type)
1003 return true;
1004
1005 data += field_len + 1;
1006 }
1007
1008 return false;
1009 }
1010
1011 static inline size_t eir_get_length(u8 *eir, size_t eir_len)
1012 {
1013 size_t parsed = 0;
1014
1015 while (parsed < eir_len) {
1016 u8 field_len = eir[0];
1017
1018 if (field_len == 0)
1019 return parsed;
1020
1021 parsed += field_len + 1;
1022 eir += field_len + 1;
1023 }
1024
1025 return eir_len;
1026 }
1027
1028 static inline u16 eir_append_data(u8 *eir, u16 eir_len, u8 type, u8 *data,
1029 u8 data_len)
1030 {
1031 eir[eir_len++] = sizeof(type) + data_len;
1032 eir[eir_len++] = type;
1033 memcpy(&eir[eir_len], data, data_len);
1034 eir_len += data_len;
1035
1036 return eir_len;
1037 }
1038
1039 int hci_register_cb(struct hci_cb *hcb);
1040 int hci_unregister_cb(struct hci_cb *hcb);
1041
1042 struct hci_request {
1043 struct hci_dev *hdev;
1044 struct sk_buff_head cmd_q;
1045
1046 /* If something goes wrong when building the HCI request, the error
1047 * value is stored in this field.
1048 */
1049 int err;
1050 };
1051
1052 void hci_req_init(struct hci_request *req, struct hci_dev *hdev);
1053 int hci_req_run(struct hci_request *req, hci_req_complete_t complete);
1054 void hci_req_add(struct hci_request *req, u16 opcode, u32 plen,
1055 const void *param);
1056 void hci_req_add_ev(struct hci_request *req, u16 opcode, u32 plen,
1057 const void *param, u8 event);
1058 void hci_req_cmd_complete(struct hci_dev *hdev, u16 opcode, u8 status);
1059
1060 struct sk_buff *__hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
1061 const void *param, u32 timeout);
1062 struct sk_buff *__hci_cmd_sync_ev(struct hci_dev *hdev, u16 opcode, u32 plen,
1063 const void *param, u8 event, u32 timeout);
1064
1065 int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen,
1066 const void *param);
1067 void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags);
1068 void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb);
1069
1070 void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode);
1071
1072 /* ----- HCI Sockets ----- */
1073 void hci_send_to_sock(struct hci_dev *hdev, struct sk_buff *skb);
1074 void hci_send_to_control(struct sk_buff *skb, struct sock *skip_sk);
1075 void hci_send_to_monitor(struct hci_dev *hdev, struct sk_buff *skb);
1076
1077 void hci_sock_dev_event(struct hci_dev *hdev, int event);
1078
1079 /* Management interface */
1080 #define DISCOV_TYPE_BREDR (BIT(BDADDR_BREDR))
1081 #define DISCOV_TYPE_LE (BIT(BDADDR_LE_PUBLIC) | \
1082 BIT(BDADDR_LE_RANDOM))
1083 #define DISCOV_TYPE_INTERLEAVED (BIT(BDADDR_BREDR) | \
1084 BIT(BDADDR_LE_PUBLIC) | \
1085 BIT(BDADDR_LE_RANDOM))
1086
1087 /* These LE scan and inquiry parameters were chosen according to LE General
1088 * Discovery Procedure specification.
1089 */
1090 #define DISCOV_LE_SCAN_WIN 0x12
1091 #define DISCOV_LE_SCAN_INT 0x12
1092 #define DISCOV_LE_TIMEOUT msecs_to_jiffies(10240)
1093 #define DISCOV_INTERLEAVED_TIMEOUT msecs_to_jiffies(5120)
1094 #define DISCOV_INTERLEAVED_INQUIRY_LEN 0x04
1095 #define DISCOV_BREDR_INQUIRY_LEN 0x08
1096
1097 int mgmt_control(struct sock *sk, struct msghdr *msg, size_t len);
1098 void mgmt_index_added(struct hci_dev *hdev);
1099 void mgmt_index_removed(struct hci_dev *hdev);
1100 void mgmt_set_powered_failed(struct hci_dev *hdev, int err);
1101 int mgmt_powered(struct hci_dev *hdev, u8 powered);
1102 int mgmt_discoverable(struct hci_dev *hdev, u8 discoverable);
1103 int mgmt_connectable(struct hci_dev *hdev, u8 connectable);
1104 int mgmt_write_scan_failed(struct hci_dev *hdev, u8 scan, u8 status);
1105 int mgmt_new_link_key(struct hci_dev *hdev, struct link_key *key,
1106 bool persistent);
1107 void mgmt_device_connected(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type,
1108 u8 addr_type, u32 flags, u8 *name, u8 name_len,
1109 u8 *dev_class);
1110 void mgmt_device_disconnected(struct hci_dev *hdev, bdaddr_t *bdaddr,
1111 u8 link_type, u8 addr_type, u8 reason);
1112 void mgmt_disconnect_failed(struct hci_dev *hdev, bdaddr_t *bdaddr,
1113 u8 link_type, u8 addr_type, u8 status);
1114 void mgmt_connect_failed(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type,
1115 u8 addr_type, u8 status);
1116 int mgmt_pin_code_request(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 secure);
1117 int mgmt_pin_code_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr,
1118 u8 status);
1119 int mgmt_pin_code_neg_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr,
1120 u8 status);
1121 int mgmt_user_confirm_request(struct hci_dev *hdev, bdaddr_t *bdaddr,
1122 u8 link_type, u8 addr_type, __le32 value,
1123 u8 confirm_hint);
1124 int mgmt_user_confirm_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr,
1125 u8 link_type, u8 addr_type, u8 status);
1126 int mgmt_user_confirm_neg_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr,
1127 u8 link_type, u8 addr_type, u8 status);
1128 int mgmt_user_passkey_request(struct hci_dev *hdev, bdaddr_t *bdaddr,
1129 u8 link_type, u8 addr_type);
1130 int mgmt_user_passkey_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr,
1131 u8 link_type, u8 addr_type, u8 status);
1132 int mgmt_user_passkey_neg_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr,
1133 u8 link_type, u8 addr_type, u8 status);
1134 int mgmt_user_passkey_notify(struct hci_dev *hdev, bdaddr_t *bdaddr,
1135 u8 link_type, u8 addr_type, u32 passkey,
1136 u8 entered);
1137 int mgmt_auth_failed(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type,
1138 u8 addr_type, u8 status);
1139 int mgmt_auth_enable_complete(struct hci_dev *hdev, u8 status);
1140 int mgmt_ssp_enable_complete(struct hci_dev *hdev, u8 enable, u8 status);
1141 int mgmt_set_class_of_dev_complete(struct hci_dev *hdev, u8 *dev_class,
1142 u8 status);
1143 int mgmt_set_local_name_complete(struct hci_dev *hdev, u8 *name, u8 status);
1144 int mgmt_read_local_oob_data_reply_complete(struct hci_dev *hdev, u8 *hash,
1145 u8 *randomizer, u8 status);
1146 void mgmt_device_found(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type,
1147 u8 addr_type, u8 *dev_class, s8 rssi, u8 cfm_name,
1148 u8 ssp, u8 *eir, u16 eir_len);
1149 void mgmt_remote_name(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type,
1150 u8 addr_type, s8 rssi, u8 *name, u8 name_len);
1151 void mgmt_discovering(struct hci_dev *hdev, u8 discovering);
1152 int mgmt_device_blocked(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type);
1153 int mgmt_device_unblocked(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type);
1154 int mgmt_new_ltk(struct hci_dev *hdev, struct smp_ltk *key, u8 persistent);
1155 void mgmt_reenable_advertising(struct hci_dev *hdev);
1156
1157 /* HCI info for socket */
1158 #define hci_pi(sk) ((struct hci_pinfo *) sk)
1159
1160 struct hci_pinfo {
1161 struct bt_sock bt;
1162 struct hci_dev *hdev;
1163 struct hci_filter filter;
1164 __u32 cmsg_mask;
1165 unsigned short channel;
1166 };
1167
1168 /* HCI security filter */
1169 #define HCI_SFLT_MAX_OGF 5
1170
1171 struct hci_sec_filter {
1172 __u32 type_mask;
1173 __u32 event_mask[2];
1174 __u32 ocf_mask[HCI_SFLT_MAX_OGF + 1][4];
1175 };
1176
1177 /* ----- HCI requests ----- */
1178 #define HCI_REQ_DONE 0
1179 #define HCI_REQ_PEND 1
1180 #define HCI_REQ_CANCELED 2
1181
1182 #define hci_req_lock(d) mutex_lock(&d->req_lock)
1183 #define hci_req_unlock(d) mutex_unlock(&d->req_lock)
1184
1185 void hci_update_ad(struct hci_request *req);
1186
1187 void hci_le_conn_update(struct hci_conn *conn, u16 min, u16 max,
1188 u16 latency, u16 to_multiplier);
1189 void hci_le_start_enc(struct hci_conn *conn, __le16 ediv, __u8 rand[8],
1190 __u8 ltk[16]);
1191
1192 #define SCO_AIRMODE_MASK 0x0003
1193 #define SCO_AIRMODE_CVSD 0x0000
1194 #define SCO_AIRMODE_TRANSP 0x0003
1195
1196 #endif /* __HCI_CORE_H */