]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - include/net/bluetooth/hci_core.h
UBUNTU: Ubuntu-4.15.0-96.97
[mirror_ubuntu-bionic-kernel.git] / include / net / bluetooth / hci_core.h
1 /*
2 BlueZ - Bluetooth protocol stack for Linux
3 Copyright (c) 2000-2001, 2010, Code Aurora Forum. All rights reserved.
4
5 Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License version 2 as
9 published by the Free Software Foundation;
10
11 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
12 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
13 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
14 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
15 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
16 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19
20 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
21 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
22 SOFTWARE IS DISCLAIMED.
23 */
24
25 #ifndef __HCI_CORE_H
26 #define __HCI_CORE_H
27
28 #include <linux/leds.h>
29 #include <linux/rculist.h>
30
31 #include <net/bluetooth/hci.h>
32 #include <net/bluetooth/hci_sock.h>
33
34 /* HCI priority */
35 #define HCI_PRIO_MAX 7
36
37 /* HCI Core structures */
38 struct inquiry_data {
39 bdaddr_t bdaddr;
40 __u8 pscan_rep_mode;
41 __u8 pscan_period_mode;
42 __u8 pscan_mode;
43 __u8 dev_class[3];
44 __le16 clock_offset;
45 __s8 rssi;
46 __u8 ssp_mode;
47 };
48
49 struct inquiry_entry {
50 struct list_head all; /* inq_cache.all */
51 struct list_head list; /* unknown or resolve */
52 enum {
53 NAME_NOT_KNOWN,
54 NAME_NEEDED,
55 NAME_PENDING,
56 NAME_KNOWN,
57 } name_state;
58 __u32 timestamp;
59 struct inquiry_data data;
60 };
61
62 struct discovery_state {
63 int type;
64 enum {
65 DISCOVERY_STOPPED,
66 DISCOVERY_STARTING,
67 DISCOVERY_FINDING,
68 DISCOVERY_RESOLVING,
69 DISCOVERY_STOPPING,
70 } state;
71 struct list_head all; /* All devices found during inquiry */
72 struct list_head unknown; /* Name state not known */
73 struct list_head resolve; /* Name needs to be resolved */
74 __u32 timestamp;
75 bdaddr_t last_adv_addr;
76 u8 last_adv_addr_type;
77 s8 last_adv_rssi;
78 u32 last_adv_flags;
79 u8 last_adv_data[HCI_MAX_AD_LENGTH];
80 u8 last_adv_data_len;
81 bool report_invalid_rssi;
82 bool result_filtering;
83 bool limited;
84 s8 rssi;
85 u16 uuid_count;
86 u8 (*uuids)[16];
87 unsigned long scan_start;
88 unsigned long scan_duration;
89 };
90
91 struct hci_conn_hash {
92 struct list_head list;
93 unsigned int acl_num;
94 unsigned int amp_num;
95 unsigned int sco_num;
96 unsigned int le_num;
97 unsigned int le_num_slave;
98 };
99
100 struct bdaddr_list {
101 struct list_head list;
102 bdaddr_t bdaddr;
103 u8 bdaddr_type;
104 };
105
106 struct bt_uuid {
107 struct list_head list;
108 u8 uuid[16];
109 u8 size;
110 u8 svc_hint;
111 };
112
113 struct smp_csrk {
114 bdaddr_t bdaddr;
115 u8 bdaddr_type;
116 u8 type;
117 u8 val[16];
118 };
119
120 struct smp_ltk {
121 struct list_head list;
122 struct rcu_head rcu;
123 bdaddr_t bdaddr;
124 u8 bdaddr_type;
125 u8 authenticated;
126 u8 type;
127 u8 enc_size;
128 __le16 ediv;
129 __le64 rand;
130 u8 val[16];
131 };
132
133 struct smp_irk {
134 struct list_head list;
135 struct rcu_head rcu;
136 bdaddr_t rpa;
137 bdaddr_t bdaddr;
138 u8 addr_type;
139 u8 val[16];
140 };
141
142 struct link_key {
143 struct list_head list;
144 struct rcu_head rcu;
145 bdaddr_t bdaddr;
146 u8 type;
147 u8 val[HCI_LINK_KEY_SIZE];
148 u8 pin_len;
149 };
150
151 struct oob_data {
152 struct list_head list;
153 bdaddr_t bdaddr;
154 u8 bdaddr_type;
155 u8 present;
156 u8 hash192[16];
157 u8 rand192[16];
158 u8 hash256[16];
159 u8 rand256[16];
160 };
161
162 struct adv_info {
163 struct list_head list;
164 bool pending;
165 __u8 instance;
166 __u32 flags;
167 __u16 timeout;
168 __u16 remaining_time;
169 __u16 duration;
170 __u16 adv_data_len;
171 __u8 adv_data[HCI_MAX_AD_LENGTH];
172 __u16 scan_rsp_len;
173 __u8 scan_rsp_data[HCI_MAX_AD_LENGTH];
174 };
175
176 #define HCI_MAX_ADV_INSTANCES 5
177 #define HCI_DEFAULT_ADV_DURATION 2
178
179 #define HCI_MAX_SHORT_NAME_LENGTH 10
180
181 /* Min encryption key size to match with SMP */
182 #define HCI_MIN_ENC_KEY_SIZE 7
183
184 /* Default LE RPA expiry time, 15 minutes */
185 #define HCI_DEFAULT_RPA_TIMEOUT (15 * 60)
186
187 /* Default min/max age of connection information (1s/3s) */
188 #define DEFAULT_CONN_INFO_MIN_AGE 1000
189 #define DEFAULT_CONN_INFO_MAX_AGE 3000
190
191 struct amp_assoc {
192 __u16 len;
193 __u16 offset;
194 __u16 rem_len;
195 __u16 len_so_far;
196 __u8 data[HCI_MAX_AMP_ASSOC_SIZE];
197 };
198
199 #define HCI_MAX_PAGES 3
200
201 struct hci_dev {
202 struct list_head list;
203 struct mutex lock;
204
205 char name[8];
206 unsigned long flags;
207 __u16 id;
208 __u8 bus;
209 __u8 dev_type;
210 bdaddr_t bdaddr;
211 bdaddr_t setup_addr;
212 bdaddr_t public_addr;
213 bdaddr_t random_addr;
214 bdaddr_t static_addr;
215 __u8 adv_addr_type;
216 __u8 dev_name[HCI_MAX_NAME_LENGTH];
217 __u8 short_name[HCI_MAX_SHORT_NAME_LENGTH];
218 __u8 eir[HCI_MAX_EIR_LENGTH];
219 __u16 appearance;
220 __u8 dev_class[3];
221 __u8 major_class;
222 __u8 minor_class;
223 __u8 max_page;
224 __u8 features[HCI_MAX_PAGES][8];
225 __u8 le_features[8];
226 __u8 le_white_list_size;
227 __u8 le_states[8];
228 __u8 commands[64];
229 __u8 hci_ver;
230 __u16 hci_rev;
231 __u8 lmp_ver;
232 __u16 manufacturer;
233 __u16 lmp_subver;
234 __u16 voice_setting;
235 __u8 num_iac;
236 __u8 stored_max_keys;
237 __u8 stored_num_keys;
238 __u8 io_capability;
239 __s8 inq_tx_power;
240 __u16 page_scan_interval;
241 __u16 page_scan_window;
242 __u8 page_scan_type;
243 __u8 le_adv_channel_map;
244 __u16 le_adv_min_interval;
245 __u16 le_adv_max_interval;
246 __u8 le_scan_type;
247 __u16 le_scan_interval;
248 __u16 le_scan_window;
249 __u16 le_conn_min_interval;
250 __u16 le_conn_max_interval;
251 __u16 le_conn_latency;
252 __u16 le_supv_timeout;
253 __u16 le_def_tx_len;
254 __u16 le_def_tx_time;
255 __u16 le_max_tx_len;
256 __u16 le_max_tx_time;
257 __u16 le_max_rx_len;
258 __u16 le_max_rx_time;
259 __u8 le_max_key_size;
260 __u8 le_min_key_size;
261 __u16 discov_interleaved_timeout;
262 __u16 conn_info_min_age;
263 __u16 conn_info_max_age;
264 __u8 ssp_debug_mode;
265 __u8 hw_error_code;
266 __u32 clock;
267
268 __u16 devid_source;
269 __u16 devid_vendor;
270 __u16 devid_product;
271 __u16 devid_version;
272
273 __u16 pkt_type;
274 __u16 esco_type;
275 __u16 link_policy;
276 __u16 link_mode;
277
278 __u32 idle_timeout;
279 __u16 sniff_min_interval;
280 __u16 sniff_max_interval;
281
282 __u8 amp_status;
283 __u32 amp_total_bw;
284 __u32 amp_max_bw;
285 __u32 amp_min_latency;
286 __u32 amp_max_pdu;
287 __u8 amp_type;
288 __u16 amp_pal_cap;
289 __u16 amp_assoc_size;
290 __u32 amp_max_flush_to;
291 __u32 amp_be_flush_to;
292
293 struct amp_assoc loc_assoc;
294
295 __u8 flow_ctl_mode;
296
297 unsigned int auto_accept_delay;
298
299 unsigned long quirks;
300
301 atomic_t cmd_cnt;
302 unsigned int acl_cnt;
303 unsigned int sco_cnt;
304 unsigned int le_cnt;
305
306 unsigned int acl_mtu;
307 unsigned int sco_mtu;
308 unsigned int le_mtu;
309 unsigned int acl_pkts;
310 unsigned int sco_pkts;
311 unsigned int le_pkts;
312
313 __u16 block_len;
314 __u16 block_mtu;
315 __u16 num_blocks;
316 __u16 block_cnt;
317
318 unsigned long acl_last_tx;
319 unsigned long sco_last_tx;
320 unsigned long le_last_tx;
321
322 struct workqueue_struct *workqueue;
323 struct workqueue_struct *req_workqueue;
324
325 struct work_struct power_on;
326 struct delayed_work power_off;
327 struct work_struct error_reset;
328
329 __u16 discov_timeout;
330 struct delayed_work discov_off;
331
332 struct delayed_work service_cache;
333
334 struct delayed_work cmd_timer;
335
336 struct work_struct rx_work;
337 struct work_struct cmd_work;
338 struct work_struct tx_work;
339
340 struct work_struct discov_update;
341 struct work_struct bg_scan_update;
342 struct work_struct scan_update;
343 struct work_struct connectable_update;
344 struct work_struct discoverable_update;
345 struct delayed_work le_scan_disable;
346 struct delayed_work le_scan_restart;
347
348 struct sk_buff_head rx_q;
349 struct sk_buff_head raw_q;
350 struct sk_buff_head cmd_q;
351
352 struct sk_buff *sent_cmd;
353
354 struct mutex req_lock;
355 wait_queue_head_t req_wait_q;
356 __u32 req_status;
357 __u32 req_result;
358 struct sk_buff *req_skb;
359
360 void *smp_data;
361 void *smp_bredr_data;
362
363 struct discovery_state discovery;
364 struct hci_conn_hash conn_hash;
365
366 struct list_head mgmt_pending;
367 struct list_head blacklist;
368 struct list_head whitelist;
369 struct list_head uuids;
370 struct list_head link_keys;
371 struct list_head long_term_keys;
372 struct list_head identity_resolving_keys;
373 struct list_head remote_oob_data;
374 struct list_head le_white_list;
375 struct list_head le_conn_params;
376 struct list_head pend_le_conns;
377 struct list_head pend_le_reports;
378
379 struct hci_dev_stats stat;
380
381 atomic_t promisc;
382
383 const char *hw_info;
384 const char *fw_info;
385 struct dentry *debugfs;
386
387 struct device dev;
388
389 struct rfkill *rfkill;
390
391 DECLARE_BITMAP(dev_flags, __HCI_NUM_FLAGS);
392
393 __s8 adv_tx_power;
394 __u8 adv_data[HCI_MAX_AD_LENGTH];
395 __u8 adv_data_len;
396 __u8 scan_rsp_data[HCI_MAX_AD_LENGTH];
397 __u8 scan_rsp_data_len;
398
399 struct list_head adv_instances;
400 unsigned int adv_instance_cnt;
401 __u8 cur_adv_instance;
402 __u16 adv_instance_timeout;
403 struct delayed_work adv_instance_expire;
404
405 __u8 irk[16];
406 __u32 rpa_timeout;
407 struct delayed_work rpa_expired;
408 bdaddr_t rpa;
409
410 #if IS_ENABLED(CONFIG_BT_LEDS)
411 struct led_trigger *power_led;
412 #endif
413
414 int (*open)(struct hci_dev *hdev);
415 int (*close)(struct hci_dev *hdev);
416 int (*flush)(struct hci_dev *hdev);
417 int (*setup)(struct hci_dev *hdev);
418 int (*shutdown)(struct hci_dev *hdev);
419 int (*send)(struct hci_dev *hdev, struct sk_buff *skb);
420 void (*notify)(struct hci_dev *hdev, unsigned int evt);
421 void (*hw_error)(struct hci_dev *hdev, u8 code);
422 int (*post_init)(struct hci_dev *hdev);
423 int (*set_diag)(struct hci_dev *hdev, bool enable);
424 int (*set_bdaddr)(struct hci_dev *hdev, const bdaddr_t *bdaddr);
425 };
426
427 #define HCI_PHY_HANDLE(handle) (handle & 0xff)
428
429 struct hci_conn {
430 struct list_head list;
431
432 atomic_t refcnt;
433
434 bdaddr_t dst;
435 __u8 dst_type;
436 bdaddr_t src;
437 __u8 src_type;
438 bdaddr_t init_addr;
439 __u8 init_addr_type;
440 bdaddr_t resp_addr;
441 __u8 resp_addr_type;
442 __u16 handle;
443 __u16 state;
444 __u8 mode;
445 __u8 type;
446 __u8 role;
447 bool out;
448 __u8 attempt;
449 __u8 dev_class[3];
450 __u8 features[HCI_MAX_PAGES][8];
451 __u16 pkt_type;
452 __u16 link_policy;
453 __u8 key_type;
454 __u8 auth_type;
455 __u8 sec_level;
456 __u8 pending_sec_level;
457 __u8 pin_length;
458 __u8 enc_key_size;
459 __u8 io_capability;
460 __u32 passkey_notify;
461 __u8 passkey_entered;
462 __u16 disc_timeout;
463 __u16 conn_timeout;
464 __u16 setting;
465 __u16 le_conn_min_interval;
466 __u16 le_conn_max_interval;
467 __u16 le_conn_interval;
468 __u16 le_conn_latency;
469 __u16 le_supv_timeout;
470 __u8 le_adv_data[HCI_MAX_AD_LENGTH];
471 __u8 le_adv_data_len;
472 __s8 rssi;
473 __s8 tx_power;
474 __s8 max_tx_power;
475 unsigned long flags;
476
477 __u32 clock;
478 __u16 clock_accuracy;
479
480 unsigned long conn_info_timestamp;
481
482 __u8 remote_cap;
483 __u8 remote_auth;
484 __u8 remote_id;
485
486 unsigned int sent;
487
488 struct sk_buff_head data_q;
489 struct list_head chan_list;
490
491 struct delayed_work disc_work;
492 struct delayed_work auto_accept_work;
493 struct delayed_work idle_work;
494 struct delayed_work le_conn_timeout;
495 struct work_struct le_scan_cleanup;
496
497 struct device dev;
498 struct dentry *debugfs;
499
500 struct hci_dev *hdev;
501 void *l2cap_data;
502 void *sco_data;
503 struct amp_mgr *amp_mgr;
504
505 struct hci_conn *link;
506
507 void (*connect_cfm_cb) (struct hci_conn *conn, u8 status);
508 void (*security_cfm_cb) (struct hci_conn *conn, u8 status);
509 void (*disconn_cfm_cb) (struct hci_conn *conn, u8 reason);
510 };
511
512 struct hci_chan {
513 struct list_head list;
514 __u16 handle;
515 struct hci_conn *conn;
516 struct sk_buff_head data_q;
517 unsigned int sent;
518 __u8 state;
519 };
520
521 struct hci_conn_params {
522 struct list_head list;
523 struct list_head action;
524
525 bdaddr_t addr;
526 u8 addr_type;
527
528 u16 conn_min_interval;
529 u16 conn_max_interval;
530 u16 conn_latency;
531 u16 supervision_timeout;
532
533 enum {
534 HCI_AUTO_CONN_DISABLED,
535 HCI_AUTO_CONN_REPORT,
536 HCI_AUTO_CONN_DIRECT,
537 HCI_AUTO_CONN_ALWAYS,
538 HCI_AUTO_CONN_LINK_LOSS,
539 HCI_AUTO_CONN_EXPLICIT,
540 } auto_connect;
541
542 struct hci_conn *conn;
543 bool explicit_connect;
544 };
545
546 extern struct list_head hci_dev_list;
547 extern struct list_head hci_cb_list;
548 extern rwlock_t hci_dev_list_lock;
549 extern struct mutex hci_cb_list_lock;
550
551 #define hci_dev_set_flag(hdev, nr) set_bit((nr), (hdev)->dev_flags)
552 #define hci_dev_clear_flag(hdev, nr) clear_bit((nr), (hdev)->dev_flags)
553 #define hci_dev_change_flag(hdev, nr) change_bit((nr), (hdev)->dev_flags)
554 #define hci_dev_test_flag(hdev, nr) test_bit((nr), (hdev)->dev_flags)
555 #define hci_dev_test_and_set_flag(hdev, nr) test_and_set_bit((nr), (hdev)->dev_flags)
556 #define hci_dev_test_and_clear_flag(hdev, nr) test_and_clear_bit((nr), (hdev)->dev_flags)
557 #define hci_dev_test_and_change_flag(hdev, nr) test_and_change_bit((nr), (hdev)->dev_flags)
558
559 #define hci_dev_clear_volatile_flags(hdev) \
560 do { \
561 hci_dev_clear_flag(hdev, HCI_LE_SCAN); \
562 hci_dev_clear_flag(hdev, HCI_LE_ADV); \
563 hci_dev_clear_flag(hdev, HCI_PERIODIC_INQ); \
564 } while (0)
565
566 /* ----- HCI interface to upper protocols ----- */
567 int l2cap_connect_ind(struct hci_dev *hdev, bdaddr_t *bdaddr);
568 int l2cap_disconn_ind(struct hci_conn *hcon);
569 void l2cap_recv_acldata(struct hci_conn *hcon, struct sk_buff *skb, u16 flags);
570
571 #if IS_ENABLED(CONFIG_BT_BREDR)
572 int sco_connect_ind(struct hci_dev *hdev, bdaddr_t *bdaddr, __u8 *flags);
573 void sco_recv_scodata(struct hci_conn *hcon, struct sk_buff *skb);
574 #else
575 static inline int sco_connect_ind(struct hci_dev *hdev, bdaddr_t *bdaddr,
576 __u8 *flags)
577 {
578 return 0;
579 }
580
581 static inline void sco_recv_scodata(struct hci_conn *hcon, struct sk_buff *skb)
582 {
583 }
584 #endif
585
586 /* ----- Inquiry cache ----- */
587 #define INQUIRY_CACHE_AGE_MAX (HZ*30) /* 30 seconds */
588 #define INQUIRY_ENTRY_AGE_MAX (HZ*60) /* 60 seconds */
589
590 static inline void discovery_init(struct hci_dev *hdev)
591 {
592 hdev->discovery.state = DISCOVERY_STOPPED;
593 INIT_LIST_HEAD(&hdev->discovery.all);
594 INIT_LIST_HEAD(&hdev->discovery.unknown);
595 INIT_LIST_HEAD(&hdev->discovery.resolve);
596 hdev->discovery.report_invalid_rssi = true;
597 hdev->discovery.rssi = HCI_RSSI_INVALID;
598 }
599
600 static inline void hci_discovery_filter_clear(struct hci_dev *hdev)
601 {
602 hdev->discovery.result_filtering = false;
603 hdev->discovery.report_invalid_rssi = true;
604 hdev->discovery.rssi = HCI_RSSI_INVALID;
605 hdev->discovery.uuid_count = 0;
606 kfree(hdev->discovery.uuids);
607 hdev->discovery.uuids = NULL;
608 hdev->discovery.scan_start = 0;
609 hdev->discovery.scan_duration = 0;
610 }
611
612 bool hci_discovery_active(struct hci_dev *hdev);
613
614 void hci_discovery_set_state(struct hci_dev *hdev, int state);
615
616 static inline int inquiry_cache_empty(struct hci_dev *hdev)
617 {
618 return list_empty(&hdev->discovery.all);
619 }
620
621 static inline long inquiry_cache_age(struct hci_dev *hdev)
622 {
623 struct discovery_state *c = &hdev->discovery;
624 return jiffies - c->timestamp;
625 }
626
627 static inline long inquiry_entry_age(struct inquiry_entry *e)
628 {
629 return jiffies - e->timestamp;
630 }
631
632 struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev,
633 bdaddr_t *bdaddr);
634 struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev,
635 bdaddr_t *bdaddr);
636 struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev,
637 bdaddr_t *bdaddr,
638 int state);
639 void hci_inquiry_cache_update_resolve(struct hci_dev *hdev,
640 struct inquiry_entry *ie);
641 u32 hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data,
642 bool name_known);
643 void hci_inquiry_cache_flush(struct hci_dev *hdev);
644
645 /* ----- HCI Connections ----- */
646 enum {
647 HCI_CONN_AUTH_PEND,
648 HCI_CONN_REAUTH_PEND,
649 HCI_CONN_ENCRYPT_PEND,
650 HCI_CONN_RSWITCH_PEND,
651 HCI_CONN_MODE_CHANGE_PEND,
652 HCI_CONN_SCO_SETUP_PEND,
653 HCI_CONN_MGMT_CONNECTED,
654 HCI_CONN_SSP_ENABLED,
655 HCI_CONN_SC_ENABLED,
656 HCI_CONN_AES_CCM,
657 HCI_CONN_POWER_SAVE,
658 HCI_CONN_FLUSH_KEY,
659 HCI_CONN_ENCRYPT,
660 HCI_CONN_AUTH,
661 HCI_CONN_SECURE,
662 HCI_CONN_FIPS,
663 HCI_CONN_STK_ENCRYPT,
664 HCI_CONN_AUTH_INITIATOR,
665 HCI_CONN_DROP,
666 HCI_CONN_PARAM_REMOVAL_PEND,
667 HCI_CONN_NEW_LINK_KEY,
668 HCI_CONN_SCANNING,
669 HCI_CONN_AUTH_FAILURE,
670 };
671
672 static inline bool hci_conn_ssp_enabled(struct hci_conn *conn)
673 {
674 struct hci_dev *hdev = conn->hdev;
675 return hci_dev_test_flag(hdev, HCI_SSP_ENABLED) &&
676 test_bit(HCI_CONN_SSP_ENABLED, &conn->flags);
677 }
678
679 static inline bool hci_conn_sc_enabled(struct hci_conn *conn)
680 {
681 struct hci_dev *hdev = conn->hdev;
682 return hci_dev_test_flag(hdev, HCI_SC_ENABLED) &&
683 test_bit(HCI_CONN_SC_ENABLED, &conn->flags);
684 }
685
686 static inline void hci_conn_hash_add(struct hci_dev *hdev, struct hci_conn *c)
687 {
688 struct hci_conn_hash *h = &hdev->conn_hash;
689 list_add_rcu(&c->list, &h->list);
690 switch (c->type) {
691 case ACL_LINK:
692 h->acl_num++;
693 break;
694 case AMP_LINK:
695 h->amp_num++;
696 break;
697 case LE_LINK:
698 h->le_num++;
699 if (c->role == HCI_ROLE_SLAVE)
700 h->le_num_slave++;
701 break;
702 case SCO_LINK:
703 case ESCO_LINK:
704 h->sco_num++;
705 break;
706 }
707 }
708
709 static inline void hci_conn_hash_del(struct hci_dev *hdev, struct hci_conn *c)
710 {
711 struct hci_conn_hash *h = &hdev->conn_hash;
712
713 list_del_rcu(&c->list);
714 synchronize_rcu();
715
716 switch (c->type) {
717 case ACL_LINK:
718 h->acl_num--;
719 break;
720 case AMP_LINK:
721 h->amp_num--;
722 break;
723 case LE_LINK:
724 h->le_num--;
725 if (c->role == HCI_ROLE_SLAVE)
726 h->le_num_slave--;
727 break;
728 case SCO_LINK:
729 case ESCO_LINK:
730 h->sco_num--;
731 break;
732 }
733 }
734
735 static inline unsigned int hci_conn_num(struct hci_dev *hdev, __u8 type)
736 {
737 struct hci_conn_hash *h = &hdev->conn_hash;
738 switch (type) {
739 case ACL_LINK:
740 return h->acl_num;
741 case AMP_LINK:
742 return h->amp_num;
743 case LE_LINK:
744 return h->le_num;
745 case SCO_LINK:
746 case ESCO_LINK:
747 return h->sco_num;
748 default:
749 return 0;
750 }
751 }
752
753 static inline unsigned int hci_conn_count(struct hci_dev *hdev)
754 {
755 struct hci_conn_hash *c = &hdev->conn_hash;
756
757 return c->acl_num + c->amp_num + c->sco_num + c->le_num;
758 }
759
760 static inline __u8 hci_conn_lookup_type(struct hci_dev *hdev, __u16 handle)
761 {
762 struct hci_conn_hash *h = &hdev->conn_hash;
763 struct hci_conn *c;
764 __u8 type = INVALID_LINK;
765
766 rcu_read_lock();
767
768 list_for_each_entry_rcu(c, &h->list, list) {
769 if (c->handle == handle) {
770 type = c->type;
771 break;
772 }
773 }
774
775 rcu_read_unlock();
776
777 return type;
778 }
779
780 static inline struct hci_conn *hci_conn_hash_lookup_handle(struct hci_dev *hdev,
781 __u16 handle)
782 {
783 struct hci_conn_hash *h = &hdev->conn_hash;
784 struct hci_conn *c;
785
786 rcu_read_lock();
787
788 list_for_each_entry_rcu(c, &h->list, list) {
789 if (c->handle == handle) {
790 rcu_read_unlock();
791 return c;
792 }
793 }
794 rcu_read_unlock();
795
796 return NULL;
797 }
798
799 static inline struct hci_conn *hci_conn_hash_lookup_ba(struct hci_dev *hdev,
800 __u8 type, bdaddr_t *ba)
801 {
802 struct hci_conn_hash *h = &hdev->conn_hash;
803 struct hci_conn *c;
804
805 rcu_read_lock();
806
807 list_for_each_entry_rcu(c, &h->list, list) {
808 if (c->type == type && !bacmp(&c->dst, ba)) {
809 rcu_read_unlock();
810 return c;
811 }
812 }
813
814 rcu_read_unlock();
815
816 return NULL;
817 }
818
819 static inline struct hci_conn *hci_conn_hash_lookup_le(struct hci_dev *hdev,
820 bdaddr_t *ba,
821 __u8 ba_type)
822 {
823 struct hci_conn_hash *h = &hdev->conn_hash;
824 struct hci_conn *c;
825
826 rcu_read_lock();
827
828 list_for_each_entry_rcu(c, &h->list, list) {
829 if (c->type != LE_LINK)
830 continue;
831
832 if (ba_type == c->dst_type && !bacmp(&c->dst, ba)) {
833 rcu_read_unlock();
834 return c;
835 }
836 }
837
838 rcu_read_unlock();
839
840 return NULL;
841 }
842
843 static inline struct hci_conn *hci_conn_hash_lookup_state(struct hci_dev *hdev,
844 __u8 type, __u16 state)
845 {
846 struct hci_conn_hash *h = &hdev->conn_hash;
847 struct hci_conn *c;
848
849 rcu_read_lock();
850
851 list_for_each_entry_rcu(c, &h->list, list) {
852 if (c->type == type && c->state == state) {
853 rcu_read_unlock();
854 return c;
855 }
856 }
857
858 rcu_read_unlock();
859
860 return NULL;
861 }
862
863 static inline struct hci_conn *hci_lookup_le_connect(struct hci_dev *hdev)
864 {
865 struct hci_conn_hash *h = &hdev->conn_hash;
866 struct hci_conn *c;
867
868 rcu_read_lock();
869
870 list_for_each_entry_rcu(c, &h->list, list) {
871 if (c->type == LE_LINK && c->state == BT_CONNECT &&
872 !test_bit(HCI_CONN_SCANNING, &c->flags)) {
873 rcu_read_unlock();
874 return c;
875 }
876 }
877
878 rcu_read_unlock();
879
880 return NULL;
881 }
882
883 int hci_disconnect(struct hci_conn *conn, __u8 reason);
884 bool hci_setup_sync(struct hci_conn *conn, __u16 handle);
885 void hci_sco_setup(struct hci_conn *conn, __u8 status);
886
887 struct hci_conn *hci_conn_add(struct hci_dev *hdev, int type, bdaddr_t *dst,
888 u8 role);
889 int hci_conn_del(struct hci_conn *conn);
890 void hci_conn_hash_flush(struct hci_dev *hdev);
891 void hci_conn_check_pending(struct hci_dev *hdev);
892
893 struct hci_chan *hci_chan_create(struct hci_conn *conn);
894 void hci_chan_del(struct hci_chan *chan);
895 void hci_chan_list_flush(struct hci_conn *conn);
896 struct hci_chan *hci_chan_lookup_handle(struct hci_dev *hdev, __u16 handle);
897
898 struct hci_conn *hci_connect_le_scan(struct hci_dev *hdev, bdaddr_t *dst,
899 u8 dst_type, u8 sec_level,
900 u16 conn_timeout);
901 struct hci_conn *hci_connect_le(struct hci_dev *hdev, bdaddr_t *dst,
902 u8 dst_type, u8 sec_level, u16 conn_timeout,
903 u8 role, bdaddr_t *direct_rpa);
904 struct hci_conn *hci_connect_acl(struct hci_dev *hdev, bdaddr_t *dst,
905 u8 sec_level, u8 auth_type);
906 struct hci_conn *hci_connect_sco(struct hci_dev *hdev, int type, bdaddr_t *dst,
907 __u16 setting);
908 int hci_conn_check_link_mode(struct hci_conn *conn);
909 int hci_conn_check_secure(struct hci_conn *conn, __u8 sec_level);
910 int hci_conn_security(struct hci_conn *conn, __u8 sec_level, __u8 auth_type,
911 bool initiator);
912 int hci_conn_switch_role(struct hci_conn *conn, __u8 role);
913
914 void hci_conn_enter_active_mode(struct hci_conn *conn, __u8 force_active);
915
916 void hci_le_conn_failed(struct hci_conn *conn, u8 status);
917
918 /*
919 * hci_conn_get() and hci_conn_put() are used to control the life-time of an
920 * "hci_conn" object. They do not guarantee that the hci_conn object is running,
921 * working or anything else. They just guarantee that the object is available
922 * and can be dereferenced. So you can use its locks, local variables and any
923 * other constant data.
924 * Before accessing runtime data, you _must_ lock the object and then check that
925 * it is still running. As soon as you release the locks, the connection might
926 * get dropped, though.
927 *
928 * On the other hand, hci_conn_hold() and hci_conn_drop() are used to control
929 * how long the underlying connection is held. So every channel that runs on the
930 * hci_conn object calls this to prevent the connection from disappearing. As
931 * long as you hold a device, you must also guarantee that you have a valid
932 * reference to the device via hci_conn_get() (or the initial reference from
933 * hci_conn_add()).
934 * The hold()/drop() ref-count is known to drop below 0 sometimes, which doesn't
935 * break because nobody cares for that. But this means, we cannot use
936 * _get()/_drop() in it, but require the caller to have a valid ref (FIXME).
937 */
938
939 static inline struct hci_conn *hci_conn_get(struct hci_conn *conn)
940 {
941 get_device(&conn->dev);
942 return conn;
943 }
944
945 static inline void hci_conn_put(struct hci_conn *conn)
946 {
947 put_device(&conn->dev);
948 }
949
950 static inline void hci_conn_hold(struct hci_conn *conn)
951 {
952 BT_DBG("hcon %p orig refcnt %d", conn, atomic_read(&conn->refcnt));
953
954 atomic_inc(&conn->refcnt);
955 cancel_delayed_work(&conn->disc_work);
956 }
957
958 static inline void hci_conn_drop(struct hci_conn *conn)
959 {
960 BT_DBG("hcon %p orig refcnt %d", conn, atomic_read(&conn->refcnt));
961
962 if (atomic_dec_and_test(&conn->refcnt)) {
963 unsigned long timeo;
964
965 switch (conn->type) {
966 case ACL_LINK:
967 case LE_LINK:
968 cancel_delayed_work(&conn->idle_work);
969 if (conn->state == BT_CONNECTED) {
970 timeo = conn->disc_timeout;
971 if (!conn->out)
972 timeo *= 2;
973 } else {
974 timeo = 0;
975 }
976 break;
977
978 case AMP_LINK:
979 timeo = conn->disc_timeout;
980 break;
981
982 default:
983 timeo = 0;
984 break;
985 }
986
987 cancel_delayed_work(&conn->disc_work);
988 queue_delayed_work(conn->hdev->workqueue,
989 &conn->disc_work, timeo);
990 }
991 }
992
993 /* ----- HCI Devices ----- */
994 static inline void hci_dev_put(struct hci_dev *d)
995 {
996 BT_DBG("%s orig refcnt %d", d->name,
997 kref_read(&d->dev.kobj.kref));
998
999 put_device(&d->dev);
1000 }
1001
1002 static inline struct hci_dev *hci_dev_hold(struct hci_dev *d)
1003 {
1004 BT_DBG("%s orig refcnt %d", d->name,
1005 kref_read(&d->dev.kobj.kref));
1006
1007 get_device(&d->dev);
1008 return d;
1009 }
1010
1011 #define hci_dev_lock(d) mutex_lock(&d->lock)
1012 #define hci_dev_unlock(d) mutex_unlock(&d->lock)
1013
1014 #define to_hci_dev(d) container_of(d, struct hci_dev, dev)
1015 #define to_hci_conn(c) container_of(c, struct hci_conn, dev)
1016
1017 static inline void *hci_get_drvdata(struct hci_dev *hdev)
1018 {
1019 return dev_get_drvdata(&hdev->dev);
1020 }
1021
1022 static inline void hci_set_drvdata(struct hci_dev *hdev, void *data)
1023 {
1024 dev_set_drvdata(&hdev->dev, data);
1025 }
1026
1027 struct hci_dev *hci_dev_get(int index);
1028 struct hci_dev *hci_get_route(bdaddr_t *dst, bdaddr_t *src, u8 src_type);
1029
1030 struct hci_dev *hci_alloc_dev(void);
1031 void hci_free_dev(struct hci_dev *hdev);
1032 int hci_register_dev(struct hci_dev *hdev);
1033 void hci_unregister_dev(struct hci_dev *hdev);
1034 int hci_suspend_dev(struct hci_dev *hdev);
1035 int hci_resume_dev(struct hci_dev *hdev);
1036 int hci_reset_dev(struct hci_dev *hdev);
1037 int hci_recv_frame(struct hci_dev *hdev, struct sk_buff *skb);
1038 int hci_recv_diag(struct hci_dev *hdev, struct sk_buff *skb);
1039 __printf(2, 3) void hci_set_hw_info(struct hci_dev *hdev, const char *fmt, ...);
1040 __printf(2, 3) void hci_set_fw_info(struct hci_dev *hdev, const char *fmt, ...);
1041 int hci_dev_open(__u16 dev);
1042 int hci_dev_close(__u16 dev);
1043 int hci_dev_do_close(struct hci_dev *hdev);
1044 int hci_dev_reset(__u16 dev);
1045 int hci_dev_reset_stat(__u16 dev);
1046 int hci_dev_cmd(unsigned int cmd, void __user *arg);
1047 int hci_get_dev_list(void __user *arg);
1048 int hci_get_dev_info(void __user *arg);
1049 int hci_get_conn_list(void __user *arg);
1050 int hci_get_conn_info(struct hci_dev *hdev, void __user *arg);
1051 int hci_get_auth_info(struct hci_dev *hdev, void __user *arg);
1052 int hci_inquiry(void __user *arg);
1053
1054 struct bdaddr_list *hci_bdaddr_list_lookup(struct list_head *list,
1055 bdaddr_t *bdaddr, u8 type);
1056 int hci_bdaddr_list_add(struct list_head *list, bdaddr_t *bdaddr, u8 type);
1057 int hci_bdaddr_list_del(struct list_head *list, bdaddr_t *bdaddr, u8 type);
1058 void hci_bdaddr_list_clear(struct list_head *list);
1059
1060 struct hci_conn_params *hci_conn_params_lookup(struct hci_dev *hdev,
1061 bdaddr_t *addr, u8 addr_type);
1062 struct hci_conn_params *hci_conn_params_add(struct hci_dev *hdev,
1063 bdaddr_t *addr, u8 addr_type);
1064 void hci_conn_params_del(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type);
1065 void hci_conn_params_clear_disabled(struct hci_dev *hdev);
1066
1067 struct hci_conn_params *hci_pend_le_action_lookup(struct list_head *list,
1068 bdaddr_t *addr,
1069 u8 addr_type);
1070
1071 void hci_uuids_clear(struct hci_dev *hdev);
1072
1073 void hci_link_keys_clear(struct hci_dev *hdev);
1074 struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr);
1075 struct link_key *hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn,
1076 bdaddr_t *bdaddr, u8 *val, u8 type,
1077 u8 pin_len, bool *persistent);
1078 struct smp_ltk *hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
1079 u8 addr_type, u8 type, u8 authenticated,
1080 u8 tk[16], u8 enc_size, __le16 ediv, __le64 rand);
1081 struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
1082 u8 addr_type, u8 role);
1083 int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type);
1084 void hci_smp_ltks_clear(struct hci_dev *hdev);
1085 int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr);
1086
1087 struct smp_irk *hci_find_irk_by_rpa(struct hci_dev *hdev, bdaddr_t *rpa);
1088 struct smp_irk *hci_find_irk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr,
1089 u8 addr_type);
1090 struct smp_irk *hci_add_irk(struct hci_dev *hdev, bdaddr_t *bdaddr,
1091 u8 addr_type, u8 val[16], bdaddr_t *rpa);
1092 void hci_remove_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type);
1093 void hci_smp_irks_clear(struct hci_dev *hdev);
1094
1095 bool hci_bdaddr_is_paired(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type);
1096
1097 void hci_remote_oob_data_clear(struct hci_dev *hdev);
1098 struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev,
1099 bdaddr_t *bdaddr, u8 bdaddr_type);
1100 int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
1101 u8 bdaddr_type, u8 *hash192, u8 *rand192,
1102 u8 *hash256, u8 *rand256);
1103 int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
1104 u8 bdaddr_type);
1105
1106 void hci_adv_instances_clear(struct hci_dev *hdev);
1107 struct adv_info *hci_find_adv_instance(struct hci_dev *hdev, u8 instance);
1108 struct adv_info *hci_get_next_instance(struct hci_dev *hdev, u8 instance);
1109 int hci_add_adv_instance(struct hci_dev *hdev, u8 instance, u32 flags,
1110 u16 adv_data_len, u8 *adv_data,
1111 u16 scan_rsp_len, u8 *scan_rsp_data,
1112 u16 timeout, u16 duration);
1113 int hci_remove_adv_instance(struct hci_dev *hdev, u8 instance);
1114
1115 void hci_event_packet(struct hci_dev *hdev, struct sk_buff *skb);
1116
1117 void hci_init_sysfs(struct hci_dev *hdev);
1118 void hci_conn_init_sysfs(struct hci_conn *conn);
1119 void hci_conn_add_sysfs(struct hci_conn *conn);
1120 void hci_conn_del_sysfs(struct hci_conn *conn);
1121
1122 #define SET_HCIDEV_DEV(hdev, pdev) ((hdev)->dev.parent = (pdev))
1123
1124 /* ----- LMP capabilities ----- */
1125 #define lmp_encrypt_capable(dev) ((dev)->features[0][0] & LMP_ENCRYPT)
1126 #define lmp_rswitch_capable(dev) ((dev)->features[0][0] & LMP_RSWITCH)
1127 #define lmp_hold_capable(dev) ((dev)->features[0][0] & LMP_HOLD)
1128 #define lmp_sniff_capable(dev) ((dev)->features[0][0] & LMP_SNIFF)
1129 #define lmp_park_capable(dev) ((dev)->features[0][1] & LMP_PARK)
1130 #define lmp_inq_rssi_capable(dev) ((dev)->features[0][3] & LMP_RSSI_INQ)
1131 #define lmp_esco_capable(dev) ((dev)->features[0][3] & LMP_ESCO)
1132 #define lmp_bredr_capable(dev) (!((dev)->features[0][4] & LMP_NO_BREDR))
1133 #define lmp_le_capable(dev) ((dev)->features[0][4] & LMP_LE)
1134 #define lmp_sniffsubr_capable(dev) ((dev)->features[0][5] & LMP_SNIFF_SUBR)
1135 #define lmp_pause_enc_capable(dev) ((dev)->features[0][5] & LMP_PAUSE_ENC)
1136 #define lmp_ext_inq_capable(dev) ((dev)->features[0][6] & LMP_EXT_INQ)
1137 #define lmp_le_br_capable(dev) (!!((dev)->features[0][6] & LMP_SIMUL_LE_BR))
1138 #define lmp_ssp_capable(dev) ((dev)->features[0][6] & LMP_SIMPLE_PAIR)
1139 #define lmp_no_flush_capable(dev) ((dev)->features[0][6] & LMP_NO_FLUSH)
1140 #define lmp_lsto_capable(dev) ((dev)->features[0][7] & LMP_LSTO)
1141 #define lmp_inq_tx_pwr_capable(dev) ((dev)->features[0][7] & LMP_INQ_TX_PWR)
1142 #define lmp_ext_feat_capable(dev) ((dev)->features[0][7] & LMP_EXTFEATURES)
1143 #define lmp_transp_capable(dev) ((dev)->features[0][2] & LMP_TRANSPARENT)
1144
1145 /* ----- Extended LMP capabilities ----- */
1146 #define lmp_csb_master_capable(dev) ((dev)->features[2][0] & LMP_CSB_MASTER)
1147 #define lmp_csb_slave_capable(dev) ((dev)->features[2][0] & LMP_CSB_SLAVE)
1148 #define lmp_sync_train_capable(dev) ((dev)->features[2][0] & LMP_SYNC_TRAIN)
1149 #define lmp_sync_scan_capable(dev) ((dev)->features[2][0] & LMP_SYNC_SCAN)
1150 #define lmp_sc_capable(dev) ((dev)->features[2][1] & LMP_SC)
1151 #define lmp_ping_capable(dev) ((dev)->features[2][1] & LMP_PING)
1152
1153 /* ----- Host capabilities ----- */
1154 #define lmp_host_ssp_capable(dev) ((dev)->features[1][0] & LMP_HOST_SSP)
1155 #define lmp_host_sc_capable(dev) ((dev)->features[1][0] & LMP_HOST_SC)
1156 #define lmp_host_le_capable(dev) (!!((dev)->features[1][0] & LMP_HOST_LE))
1157 #define lmp_host_le_br_capable(dev) (!!((dev)->features[1][0] & LMP_HOST_LE_BREDR))
1158
1159 #define hdev_is_powered(dev) (test_bit(HCI_UP, &(dev)->flags) && \
1160 !hci_dev_test_flag(dev, HCI_AUTO_OFF))
1161 #define bredr_sc_enabled(dev) (lmp_sc_capable(dev) && \
1162 hci_dev_test_flag(dev, HCI_SC_ENABLED))
1163
1164 /* ----- HCI protocols ----- */
1165 #define HCI_PROTO_DEFER 0x01
1166
1167 static inline int hci_proto_connect_ind(struct hci_dev *hdev, bdaddr_t *bdaddr,
1168 __u8 type, __u8 *flags)
1169 {
1170 switch (type) {
1171 case ACL_LINK:
1172 return l2cap_connect_ind(hdev, bdaddr);
1173
1174 case SCO_LINK:
1175 case ESCO_LINK:
1176 return sco_connect_ind(hdev, bdaddr, flags);
1177
1178 default:
1179 BT_ERR("unknown link type %d", type);
1180 return -EINVAL;
1181 }
1182 }
1183
1184 static inline int hci_proto_disconn_ind(struct hci_conn *conn)
1185 {
1186 if (conn->type != ACL_LINK && conn->type != LE_LINK)
1187 return HCI_ERROR_REMOTE_USER_TERM;
1188
1189 return l2cap_disconn_ind(conn);
1190 }
1191
1192 /* ----- HCI callbacks ----- */
1193 struct hci_cb {
1194 struct list_head list;
1195
1196 char *name;
1197
1198 void (*connect_cfm) (struct hci_conn *conn, __u8 status);
1199 void (*disconn_cfm) (struct hci_conn *conn, __u8 status);
1200 void (*security_cfm) (struct hci_conn *conn, __u8 status,
1201 __u8 encrypt);
1202 void (*key_change_cfm) (struct hci_conn *conn, __u8 status);
1203 void (*role_switch_cfm) (struct hci_conn *conn, __u8 status, __u8 role);
1204 };
1205
1206 static inline void hci_connect_cfm(struct hci_conn *conn, __u8 status)
1207 {
1208 struct hci_cb *cb;
1209
1210 mutex_lock(&hci_cb_list_lock);
1211 list_for_each_entry(cb, &hci_cb_list, list) {
1212 if (cb->connect_cfm)
1213 cb->connect_cfm(conn, status);
1214 }
1215 mutex_unlock(&hci_cb_list_lock);
1216
1217 if (conn->connect_cfm_cb)
1218 conn->connect_cfm_cb(conn, status);
1219 }
1220
1221 static inline void hci_disconn_cfm(struct hci_conn *conn, __u8 reason)
1222 {
1223 struct hci_cb *cb;
1224
1225 mutex_lock(&hci_cb_list_lock);
1226 list_for_each_entry(cb, &hci_cb_list, list) {
1227 if (cb->disconn_cfm)
1228 cb->disconn_cfm(conn, reason);
1229 }
1230 mutex_unlock(&hci_cb_list_lock);
1231
1232 if (conn->disconn_cfm_cb)
1233 conn->disconn_cfm_cb(conn, reason);
1234 }
1235
1236 static inline void hci_auth_cfm(struct hci_conn *conn, __u8 status)
1237 {
1238 struct hci_cb *cb;
1239 __u8 encrypt;
1240
1241 if (test_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags))
1242 return;
1243
1244 encrypt = test_bit(HCI_CONN_ENCRYPT, &conn->flags) ? 0x01 : 0x00;
1245
1246 mutex_lock(&hci_cb_list_lock);
1247 list_for_each_entry(cb, &hci_cb_list, list) {
1248 if (cb->security_cfm)
1249 cb->security_cfm(conn, status, encrypt);
1250 }
1251 mutex_unlock(&hci_cb_list_lock);
1252
1253 if (conn->security_cfm_cb)
1254 conn->security_cfm_cb(conn, status);
1255 }
1256
1257 static inline void hci_encrypt_cfm(struct hci_conn *conn, __u8 status,
1258 __u8 encrypt)
1259 {
1260 struct hci_cb *cb;
1261
1262 if (conn->sec_level == BT_SECURITY_SDP)
1263 conn->sec_level = BT_SECURITY_LOW;
1264
1265 if (conn->pending_sec_level > conn->sec_level)
1266 conn->sec_level = conn->pending_sec_level;
1267
1268 mutex_lock(&hci_cb_list_lock);
1269 list_for_each_entry(cb, &hci_cb_list, list) {
1270 if (cb->security_cfm)
1271 cb->security_cfm(conn, status, encrypt);
1272 }
1273 mutex_unlock(&hci_cb_list_lock);
1274
1275 if (conn->security_cfm_cb)
1276 conn->security_cfm_cb(conn, status);
1277 }
1278
1279 static inline void hci_key_change_cfm(struct hci_conn *conn, __u8 status)
1280 {
1281 struct hci_cb *cb;
1282
1283 mutex_lock(&hci_cb_list_lock);
1284 list_for_each_entry(cb, &hci_cb_list, list) {
1285 if (cb->key_change_cfm)
1286 cb->key_change_cfm(conn, status);
1287 }
1288 mutex_unlock(&hci_cb_list_lock);
1289 }
1290
1291 static inline void hci_role_switch_cfm(struct hci_conn *conn, __u8 status,
1292 __u8 role)
1293 {
1294 struct hci_cb *cb;
1295
1296 mutex_lock(&hci_cb_list_lock);
1297 list_for_each_entry(cb, &hci_cb_list, list) {
1298 if (cb->role_switch_cfm)
1299 cb->role_switch_cfm(conn, status, role);
1300 }
1301 mutex_unlock(&hci_cb_list_lock);
1302 }
1303
1304 static inline void *eir_get_data(u8 *eir, size_t eir_len, u8 type,
1305 size_t *data_len)
1306 {
1307 size_t parsed = 0;
1308
1309 if (eir_len < 2)
1310 return NULL;
1311
1312 while (parsed < eir_len - 1) {
1313 u8 field_len = eir[0];
1314
1315 if (field_len == 0)
1316 break;
1317
1318 parsed += field_len + 1;
1319
1320 if (parsed > eir_len)
1321 break;
1322
1323 if (eir[1] != type) {
1324 eir += field_len + 1;
1325 continue;
1326 }
1327
1328 /* Zero length data */
1329 if (field_len == 1)
1330 return NULL;
1331
1332 if (data_len)
1333 *data_len = field_len - 1;
1334
1335 return &eir[2];
1336 }
1337
1338 return NULL;
1339 }
1340
1341 static inline bool hci_bdaddr_is_rpa(bdaddr_t *bdaddr, u8 addr_type)
1342 {
1343 if (addr_type != ADDR_LE_DEV_RANDOM)
1344 return false;
1345
1346 if ((bdaddr->b[5] & 0xc0) == 0x40)
1347 return true;
1348
1349 return false;
1350 }
1351
1352 static inline bool hci_is_identity_address(bdaddr_t *addr, u8 addr_type)
1353 {
1354 if (addr_type == ADDR_LE_DEV_PUBLIC)
1355 return true;
1356
1357 /* Check for Random Static address type */
1358 if ((addr->b[5] & 0xc0) == 0xc0)
1359 return true;
1360
1361 return false;
1362 }
1363
1364 static inline struct smp_irk *hci_get_irk(struct hci_dev *hdev,
1365 bdaddr_t *bdaddr, u8 addr_type)
1366 {
1367 if (!hci_bdaddr_is_rpa(bdaddr, addr_type))
1368 return NULL;
1369
1370 return hci_find_irk_by_rpa(hdev, bdaddr);
1371 }
1372
1373 static inline int hci_check_conn_params(u16 min, u16 max, u16 latency,
1374 u16 to_multiplier)
1375 {
1376 u16 max_latency;
1377
1378 if (min > max || min < 6 || max > 3200)
1379 return -EINVAL;
1380
1381 if (to_multiplier < 10 || to_multiplier > 3200)
1382 return -EINVAL;
1383
1384 if (max >= to_multiplier * 8)
1385 return -EINVAL;
1386
1387 max_latency = (to_multiplier * 4 / max) - 1;
1388 if (latency > 499 || latency > max_latency)
1389 return -EINVAL;
1390
1391 return 0;
1392 }
1393
1394 int hci_register_cb(struct hci_cb *hcb);
1395 int hci_unregister_cb(struct hci_cb *hcb);
1396
1397 struct sk_buff *__hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
1398 const void *param, u32 timeout);
1399 struct sk_buff *__hci_cmd_sync_ev(struct hci_dev *hdev, u16 opcode, u32 plen,
1400 const void *param, u8 event, u32 timeout);
1401
1402 int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen,
1403 const void *param);
1404 void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags);
1405 void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb);
1406
1407 void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode);
1408
1409 struct sk_buff *hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
1410 const void *param, u32 timeout);
1411
1412 /* ----- HCI Sockets ----- */
1413 void hci_send_to_sock(struct hci_dev *hdev, struct sk_buff *skb);
1414 void hci_send_to_channel(unsigned short channel, struct sk_buff *skb,
1415 int flag, struct sock *skip_sk);
1416 void hci_send_to_monitor(struct hci_dev *hdev, struct sk_buff *skb);
1417 void hci_send_monitor_ctrl_event(struct hci_dev *hdev, u16 event,
1418 void *data, u16 data_len, ktime_t tstamp,
1419 int flag, struct sock *skip_sk);
1420
1421 void hci_sock_dev_event(struct hci_dev *hdev, int event);
1422
1423 #define HCI_MGMT_VAR_LEN BIT(0)
1424 #define HCI_MGMT_NO_HDEV BIT(1)
1425 #define HCI_MGMT_UNTRUSTED BIT(2)
1426 #define HCI_MGMT_UNCONFIGURED BIT(3)
1427
1428 struct hci_mgmt_handler {
1429 int (*func) (struct sock *sk, struct hci_dev *hdev, void *data,
1430 u16 data_len);
1431 size_t data_len;
1432 unsigned long flags;
1433 };
1434
1435 struct hci_mgmt_chan {
1436 struct list_head list;
1437 unsigned short channel;
1438 size_t handler_count;
1439 const struct hci_mgmt_handler *handlers;
1440 void (*hdev_init) (struct sock *sk, struct hci_dev *hdev);
1441 };
1442
1443 int hci_mgmt_chan_register(struct hci_mgmt_chan *c);
1444 void hci_mgmt_chan_unregister(struct hci_mgmt_chan *c);
1445
1446 /* Management interface */
1447 #define DISCOV_TYPE_BREDR (BIT(BDADDR_BREDR))
1448 #define DISCOV_TYPE_LE (BIT(BDADDR_LE_PUBLIC) | \
1449 BIT(BDADDR_LE_RANDOM))
1450 #define DISCOV_TYPE_INTERLEAVED (BIT(BDADDR_BREDR) | \
1451 BIT(BDADDR_LE_PUBLIC) | \
1452 BIT(BDADDR_LE_RANDOM))
1453
1454 /* These LE scan and inquiry parameters were chosen according to LE General
1455 * Discovery Procedure specification.
1456 */
1457 #define DISCOV_LE_SCAN_WIN 0x12
1458 #define DISCOV_LE_SCAN_INT 0x12
1459 #define DISCOV_LE_TIMEOUT 10240 /* msec */
1460 #define DISCOV_INTERLEAVED_TIMEOUT 5120 /* msec */
1461 #define DISCOV_INTERLEAVED_INQUIRY_LEN 0x04
1462 #define DISCOV_BREDR_INQUIRY_LEN 0x08
1463 #define DISCOV_LE_RESTART_DELAY msecs_to_jiffies(200) /* msec */
1464
1465 void mgmt_fill_version_info(void *ver);
1466 int mgmt_new_settings(struct hci_dev *hdev);
1467 void mgmt_index_added(struct hci_dev *hdev);
1468 void mgmt_index_removed(struct hci_dev *hdev);
1469 void mgmt_set_powered_failed(struct hci_dev *hdev, int err);
1470 void mgmt_power_on(struct hci_dev *hdev, int err);
1471 void __mgmt_power_off(struct hci_dev *hdev);
1472 void mgmt_new_link_key(struct hci_dev *hdev, struct link_key *key,
1473 bool persistent);
1474 void mgmt_device_connected(struct hci_dev *hdev, struct hci_conn *conn,
1475 u32 flags, u8 *name, u8 name_len);
1476 void mgmt_device_disconnected(struct hci_dev *hdev, bdaddr_t *bdaddr,
1477 u8 link_type, u8 addr_type, u8 reason,
1478 bool mgmt_connected);
1479 void mgmt_disconnect_failed(struct hci_dev *hdev, bdaddr_t *bdaddr,
1480 u8 link_type, u8 addr_type, u8 status);
1481 void mgmt_connect_failed(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type,
1482 u8 addr_type, u8 status);
1483 void mgmt_pin_code_request(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 secure);
1484 void mgmt_pin_code_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr,
1485 u8 status);
1486 void mgmt_pin_code_neg_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr,
1487 u8 status);
1488 int mgmt_user_confirm_request(struct hci_dev *hdev, bdaddr_t *bdaddr,
1489 u8 link_type, u8 addr_type, u32 value,
1490 u8 confirm_hint);
1491 int mgmt_user_confirm_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr,
1492 u8 link_type, u8 addr_type, u8 status);
1493 int mgmt_user_confirm_neg_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr,
1494 u8 link_type, u8 addr_type, u8 status);
1495 int mgmt_user_passkey_request(struct hci_dev *hdev, bdaddr_t *bdaddr,
1496 u8 link_type, u8 addr_type);
1497 int mgmt_user_passkey_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr,
1498 u8 link_type, u8 addr_type, u8 status);
1499 int mgmt_user_passkey_neg_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr,
1500 u8 link_type, u8 addr_type, u8 status);
1501 int mgmt_user_passkey_notify(struct hci_dev *hdev, bdaddr_t *bdaddr,
1502 u8 link_type, u8 addr_type, u32 passkey,
1503 u8 entered);
1504 void mgmt_auth_failed(struct hci_conn *conn, u8 status);
1505 void mgmt_auth_enable_complete(struct hci_dev *hdev, u8 status);
1506 void mgmt_ssp_enable_complete(struct hci_dev *hdev, u8 enable, u8 status);
1507 void mgmt_set_class_of_dev_complete(struct hci_dev *hdev, u8 *dev_class,
1508 u8 status);
1509 void mgmt_set_local_name_complete(struct hci_dev *hdev, u8 *name, u8 status);
1510 void mgmt_start_discovery_complete(struct hci_dev *hdev, u8 status);
1511 void mgmt_stop_discovery_complete(struct hci_dev *hdev, u8 status);
1512 void mgmt_device_found(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type,
1513 u8 addr_type, u8 *dev_class, s8 rssi, u32 flags,
1514 u8 *eir, u16 eir_len, u8 *scan_rsp, u8 scan_rsp_len);
1515 void mgmt_remote_name(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type,
1516 u8 addr_type, s8 rssi, u8 *name, u8 name_len);
1517 void mgmt_discovering(struct hci_dev *hdev, u8 discovering);
1518 bool mgmt_powering_down(struct hci_dev *hdev);
1519 void mgmt_new_ltk(struct hci_dev *hdev, struct smp_ltk *key, bool persistent);
1520 void mgmt_new_irk(struct hci_dev *hdev, struct smp_irk *irk, bool persistent);
1521 void mgmt_new_csrk(struct hci_dev *hdev, struct smp_csrk *csrk,
1522 bool persistent);
1523 void mgmt_new_conn_param(struct hci_dev *hdev, bdaddr_t *bdaddr,
1524 u8 bdaddr_type, u8 store_hint, u16 min_interval,
1525 u16 max_interval, u16 latency, u16 timeout);
1526 void mgmt_smp_complete(struct hci_conn *conn, bool complete);
1527 bool mgmt_get_connectable(struct hci_dev *hdev);
1528 void mgmt_set_connectable_complete(struct hci_dev *hdev, u8 status);
1529 void mgmt_set_discoverable_complete(struct hci_dev *hdev, u8 status);
1530 u8 mgmt_get_adv_discov_flags(struct hci_dev *hdev);
1531 void mgmt_advertising_added(struct sock *sk, struct hci_dev *hdev,
1532 u8 instance);
1533 void mgmt_advertising_removed(struct sock *sk, struct hci_dev *hdev,
1534 u8 instance);
1535
1536 u8 hci_le_conn_update(struct hci_conn *conn, u16 min, u16 max, u16 latency,
1537 u16 to_multiplier);
1538 void hci_le_start_enc(struct hci_conn *conn, __le16 ediv, __le64 rand,
1539 __u8 ltk[16], __u8 key_size);
1540
1541 void hci_copy_identity_address(struct hci_dev *hdev, bdaddr_t *bdaddr,
1542 u8 *bdaddr_type);
1543
1544 #define SCO_AIRMODE_MASK 0x0003
1545 #define SCO_AIRMODE_CVSD 0x0000
1546 #define SCO_AIRMODE_TRANSP 0x0003
1547
1548 #endif /* __HCI_CORE_H */