]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - include/net/ipv6.h
mmc: core: prepend 0x to OCR entry in sysfs
[mirror_ubuntu-bionic-kernel.git] / include / net / ipv6.h
1 /*
2 * Linux INET6 implementation
3 *
4 * Authors:
5 * Pedro Roque <roque@di.fc.ul.pt>
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
11 */
12
13 #ifndef _NET_IPV6_H
14 #define _NET_IPV6_H
15
16 #include <linux/ipv6.h>
17 #include <linux/hardirq.h>
18 #include <linux/jhash.h>
19 #include <linux/refcount.h>
20 #include <net/if_inet6.h>
21 #include <net/ndisc.h>
22 #include <net/flow.h>
23 #include <net/flow_dissector.h>
24 #include <net/snmp.h>
25
26 #define SIN6_LEN_RFC2133 24
27
28 #define IPV6_MAXPLEN 65535
29
30 /*
31 * NextHeader field of IPv6 header
32 */
33
34 #define NEXTHDR_HOP 0 /* Hop-by-hop option header. */
35 #define NEXTHDR_TCP 6 /* TCP segment. */
36 #define NEXTHDR_UDP 17 /* UDP message. */
37 #define NEXTHDR_IPV6 41 /* IPv6 in IPv6 */
38 #define NEXTHDR_ROUTING 43 /* Routing header. */
39 #define NEXTHDR_FRAGMENT 44 /* Fragmentation/reassembly header. */
40 #define NEXTHDR_GRE 47 /* GRE header. */
41 #define NEXTHDR_ESP 50 /* Encapsulating security payload. */
42 #define NEXTHDR_AUTH 51 /* Authentication header. */
43 #define NEXTHDR_ICMP 58 /* ICMP for IPv6. */
44 #define NEXTHDR_NONE 59 /* No next header */
45 #define NEXTHDR_DEST 60 /* Destination options header. */
46 #define NEXTHDR_SCTP 132 /* SCTP message. */
47 #define NEXTHDR_MOBILITY 135 /* Mobility header. */
48
49 #define NEXTHDR_MAX 255
50
51 #define IPV6_DEFAULT_HOPLIMIT 64
52 #define IPV6_DEFAULT_MCASTHOPS 1
53
54 /* Limits on Hop-by-Hop and Destination options.
55 *
56 * Per RFC8200 there is no limit on the maximum number or lengths of options in
57 * Hop-by-Hop or Destination options other then the packet must fit in an MTU.
58 * We allow configurable limits in order to mitigate potential denial of
59 * service attacks.
60 *
61 * There are three limits that may be set:
62 * - Limit the number of options in a Hop-by-Hop or Destination options
63 * extension header
64 * - Limit the byte length of a Hop-by-Hop or Destination options extension
65 * header
66 * - Disallow unknown options
67 *
68 * The limits are expressed in corresponding sysctls:
69 *
70 * ipv6.sysctl.max_dst_opts_cnt
71 * ipv6.sysctl.max_hbh_opts_cnt
72 * ipv6.sysctl.max_dst_opts_len
73 * ipv6.sysctl.max_hbh_opts_len
74 *
75 * max_*_opts_cnt is the number of TLVs that are allowed for Destination
76 * options or Hop-by-Hop options. If the number is less than zero then unknown
77 * TLVs are disallowed and the number of known options that are allowed is the
78 * absolute value. Setting the value to INT_MAX indicates no limit.
79 *
80 * max_*_opts_len is the length limit in bytes of a Destination or
81 * Hop-by-Hop options extension header. Setting the value to INT_MAX
82 * indicates no length limit.
83 *
84 * If a limit is exceeded when processing an extension header the packet is
85 * silently discarded.
86 */
87
88 /* Default limits for Hop-by-Hop and Destination options */
89 #define IP6_DEFAULT_MAX_DST_OPTS_CNT 8
90 #define IP6_DEFAULT_MAX_HBH_OPTS_CNT 8
91 #define IP6_DEFAULT_MAX_DST_OPTS_LEN INT_MAX /* No limit */
92 #define IP6_DEFAULT_MAX_HBH_OPTS_LEN INT_MAX /* No limit */
93
94 /*
95 * Addr type
96 *
97 * type - unicast | multicast
98 * scope - local | site | global
99 * v4 - compat
100 * v4mapped
101 * any
102 * loopback
103 */
104
105 #define IPV6_ADDR_ANY 0x0000U
106
107 #define IPV6_ADDR_UNICAST 0x0001U
108 #define IPV6_ADDR_MULTICAST 0x0002U
109
110 #define IPV6_ADDR_LOOPBACK 0x0010U
111 #define IPV6_ADDR_LINKLOCAL 0x0020U
112 #define IPV6_ADDR_SITELOCAL 0x0040U
113
114 #define IPV6_ADDR_COMPATv4 0x0080U
115
116 #define IPV6_ADDR_SCOPE_MASK 0x00f0U
117
118 #define IPV6_ADDR_MAPPED 0x1000U
119
120 /*
121 * Addr scopes
122 */
123 #define IPV6_ADDR_MC_SCOPE(a) \
124 ((a)->s6_addr[1] & 0x0f) /* nonstandard */
125 #define __IPV6_ADDR_SCOPE_INVALID -1
126 #define IPV6_ADDR_SCOPE_NODELOCAL 0x01
127 #define IPV6_ADDR_SCOPE_LINKLOCAL 0x02
128 #define IPV6_ADDR_SCOPE_SITELOCAL 0x05
129 #define IPV6_ADDR_SCOPE_ORGLOCAL 0x08
130 #define IPV6_ADDR_SCOPE_GLOBAL 0x0e
131
132 /*
133 * Addr flags
134 */
135 #define IPV6_ADDR_MC_FLAG_TRANSIENT(a) \
136 ((a)->s6_addr[1] & 0x10)
137 #define IPV6_ADDR_MC_FLAG_PREFIX(a) \
138 ((a)->s6_addr[1] & 0x20)
139 #define IPV6_ADDR_MC_FLAG_RENDEZVOUS(a) \
140 ((a)->s6_addr[1] & 0x40)
141
142 /*
143 * fragmentation header
144 */
145
146 struct frag_hdr {
147 __u8 nexthdr;
148 __u8 reserved;
149 __be16 frag_off;
150 __be32 identification;
151 };
152
153 #define IP6_MF 0x0001
154 #define IP6_OFFSET 0xFFF8
155
156 #define IP6_REPLY_MARK(net, mark) \
157 ((net)->ipv6.sysctl.fwmark_reflect ? (mark) : 0)
158
159 #include <net/sock.h>
160
161 /* sysctls */
162 extern int sysctl_mld_max_msf;
163 extern int sysctl_mld_qrv;
164
165 #define _DEVINC(net, statname, mod, idev, field) \
166 ({ \
167 struct inet6_dev *_idev = (idev); \
168 if (likely(_idev != NULL)) \
169 mod##SNMP_INC_STATS64((_idev)->stats.statname, (field));\
170 mod##SNMP_INC_STATS64((net)->mib.statname##_statistics, (field));\
171 })
172
173 /* per device counters are atomic_long_t */
174 #define _DEVINCATOMIC(net, statname, mod, idev, field) \
175 ({ \
176 struct inet6_dev *_idev = (idev); \
177 if (likely(_idev != NULL)) \
178 SNMP_INC_STATS_ATOMIC_LONG((_idev)->stats.statname##dev, (field)); \
179 mod##SNMP_INC_STATS((net)->mib.statname##_statistics, (field));\
180 })
181
182 /* per device and per net counters are atomic_long_t */
183 #define _DEVINC_ATOMIC_ATOMIC(net, statname, idev, field) \
184 ({ \
185 struct inet6_dev *_idev = (idev); \
186 if (likely(_idev != NULL)) \
187 SNMP_INC_STATS_ATOMIC_LONG((_idev)->stats.statname##dev, (field)); \
188 SNMP_INC_STATS_ATOMIC_LONG((net)->mib.statname##_statistics, (field));\
189 })
190
191 #define _DEVADD(net, statname, mod, idev, field, val) \
192 ({ \
193 struct inet6_dev *_idev = (idev); \
194 if (likely(_idev != NULL)) \
195 mod##SNMP_ADD_STATS((_idev)->stats.statname, (field), (val)); \
196 mod##SNMP_ADD_STATS((net)->mib.statname##_statistics, (field), (val));\
197 })
198
199 #define _DEVUPD(net, statname, mod, idev, field, val) \
200 ({ \
201 struct inet6_dev *_idev = (idev); \
202 if (likely(_idev != NULL)) \
203 mod##SNMP_UPD_PO_STATS((_idev)->stats.statname, field, (val)); \
204 mod##SNMP_UPD_PO_STATS((net)->mib.statname##_statistics, field, (val));\
205 })
206
207 /* MIBs */
208
209 #define IP6_INC_STATS(net, idev,field) \
210 _DEVINC(net, ipv6, , idev, field)
211 #define __IP6_INC_STATS(net, idev,field) \
212 _DEVINC(net, ipv6, __, idev, field)
213 #define IP6_ADD_STATS(net, idev,field,val) \
214 _DEVADD(net, ipv6, , idev, field, val)
215 #define __IP6_ADD_STATS(net, idev,field,val) \
216 _DEVADD(net, ipv6, __, idev, field, val)
217 #define IP6_UPD_PO_STATS(net, idev,field,val) \
218 _DEVUPD(net, ipv6, , idev, field, val)
219 #define __IP6_UPD_PO_STATS(net, idev,field,val) \
220 _DEVUPD(net, ipv6, __, idev, field, val)
221 #define ICMP6_INC_STATS(net, idev, field) \
222 _DEVINCATOMIC(net, icmpv6, , idev, field)
223 #define __ICMP6_INC_STATS(net, idev, field) \
224 _DEVINCATOMIC(net, icmpv6, __, idev, field)
225
226 #define ICMP6MSGOUT_INC_STATS(net, idev, field) \
227 _DEVINC_ATOMIC_ATOMIC(net, icmpv6msg, idev, field +256)
228 #define ICMP6MSGIN_INC_STATS(net, idev, field) \
229 _DEVINC_ATOMIC_ATOMIC(net, icmpv6msg, idev, field)
230
231 struct ip6_ra_chain {
232 struct ip6_ra_chain *next;
233 struct sock *sk;
234 int sel;
235 void (*destructor)(struct sock *);
236 };
237
238 extern struct ip6_ra_chain *ip6_ra_chain;
239 extern rwlock_t ip6_ra_lock;
240
241 /*
242 This structure is prepared by protocol, when parsing
243 ancillary data and passed to IPv6.
244 */
245
246 struct ipv6_txoptions {
247 refcount_t refcnt;
248 /* Length of this structure */
249 int tot_len;
250
251 /* length of extension headers */
252
253 __u16 opt_flen; /* after fragment hdr */
254 __u16 opt_nflen; /* before fragment hdr */
255
256 struct ipv6_opt_hdr *hopopt;
257 struct ipv6_opt_hdr *dst0opt;
258 struct ipv6_rt_hdr *srcrt; /* Routing Header */
259 struct ipv6_opt_hdr *dst1opt;
260 struct rcu_head rcu;
261 /* Option buffer, as read by IPV6_PKTOPTIONS, starts here. */
262 };
263
264 struct ip6_flowlabel {
265 struct ip6_flowlabel __rcu *next;
266 __be32 label;
267 atomic_t users;
268 struct in6_addr dst;
269 struct ipv6_txoptions *opt;
270 unsigned long linger;
271 struct rcu_head rcu;
272 u8 share;
273 union {
274 struct pid *pid;
275 kuid_t uid;
276 } owner;
277 unsigned long lastuse;
278 unsigned long expires;
279 struct net *fl_net;
280 };
281
282 #define IPV6_FLOWINFO_MASK cpu_to_be32(0x0FFFFFFF)
283 #define IPV6_FLOWLABEL_MASK cpu_to_be32(0x000FFFFF)
284 #define IPV6_FLOWLABEL_STATELESS_FLAG cpu_to_be32(0x00080000)
285
286 #define IPV6_TCLASS_MASK (IPV6_FLOWINFO_MASK & ~IPV6_FLOWLABEL_MASK)
287 #define IPV6_TCLASS_SHIFT 20
288
289 struct ipv6_fl_socklist {
290 struct ipv6_fl_socklist __rcu *next;
291 struct ip6_flowlabel *fl;
292 struct rcu_head rcu;
293 };
294
295 struct ipcm6_cookie {
296 __s16 hlimit;
297 __s16 tclass;
298 __s8 dontfrag;
299 struct ipv6_txoptions *opt;
300 };
301
302 static inline struct ipv6_txoptions *txopt_get(const struct ipv6_pinfo *np)
303 {
304 struct ipv6_txoptions *opt;
305
306 rcu_read_lock();
307 opt = rcu_dereference(np->opt);
308 if (opt) {
309 if (!refcount_inc_not_zero(&opt->refcnt))
310 opt = NULL;
311 else
312 opt = rcu_pointer_handoff(opt);
313 }
314 rcu_read_unlock();
315 return opt;
316 }
317
318 static inline void txopt_put(struct ipv6_txoptions *opt)
319 {
320 if (opt && refcount_dec_and_test(&opt->refcnt))
321 kfree_rcu(opt, rcu);
322 }
323
324 struct ip6_flowlabel *fl6_sock_lookup(struct sock *sk, __be32 label);
325 struct ipv6_txoptions *fl6_merge_options(struct ipv6_txoptions *opt_space,
326 struct ip6_flowlabel *fl,
327 struct ipv6_txoptions *fopt);
328 void fl6_free_socklist(struct sock *sk);
329 int ipv6_flowlabel_opt(struct sock *sk, char __user *optval, int optlen);
330 int ipv6_flowlabel_opt_get(struct sock *sk, struct in6_flowlabel_req *freq,
331 int flags);
332 int ip6_flowlabel_init(void);
333 void ip6_flowlabel_cleanup(void);
334
335 static inline void fl6_sock_release(struct ip6_flowlabel *fl)
336 {
337 if (fl)
338 atomic_dec(&fl->users);
339 }
340
341 void icmpv6_notify(struct sk_buff *skb, u8 type, u8 code, __be32 info);
342
343 void icmpv6_push_pending_frames(struct sock *sk, struct flowi6 *fl6,
344 struct icmp6hdr *thdr, int len);
345
346 int ip6_ra_control(struct sock *sk, int sel);
347
348 int ipv6_parse_hopopts(struct sk_buff *skb);
349
350 struct ipv6_txoptions *ipv6_dup_options(struct sock *sk,
351 struct ipv6_txoptions *opt);
352 struct ipv6_txoptions *ipv6_renew_options(struct sock *sk,
353 struct ipv6_txoptions *opt,
354 int newtype,
355 struct ipv6_opt_hdr __user *newopt,
356 int newoptlen);
357 struct ipv6_txoptions *
358 ipv6_renew_options_kern(struct sock *sk,
359 struct ipv6_txoptions *opt,
360 int newtype,
361 struct ipv6_opt_hdr *newopt,
362 int newoptlen);
363 struct ipv6_txoptions *ipv6_fixup_options(struct ipv6_txoptions *opt_space,
364 struct ipv6_txoptions *opt);
365
366 bool ipv6_opt_accepted(const struct sock *sk, const struct sk_buff *skb,
367 const struct inet6_skb_parm *opt);
368 struct ipv6_txoptions *ipv6_update_options(struct sock *sk,
369 struct ipv6_txoptions *opt);
370
371 static inline bool ipv6_accept_ra(struct inet6_dev *idev)
372 {
373 /* If forwarding is enabled, RA are not accepted unless the special
374 * hybrid mode (accept_ra=2) is enabled.
375 */
376 return idev->cnf.forwarding ? idev->cnf.accept_ra == 2 :
377 idev->cnf.accept_ra;
378 }
379
380 #if IS_ENABLED(CONFIG_IPV6)
381 static inline int ip6_frag_mem(struct net *net)
382 {
383 return sum_frag_mem_limit(&net->ipv6.frags);
384 }
385 #endif
386
387 #define IPV6_FRAG_HIGH_THRESH (4 * 1024*1024) /* 4194304 */
388 #define IPV6_FRAG_LOW_THRESH (3 * 1024*1024) /* 3145728 */
389 #define IPV6_FRAG_TIMEOUT (60 * HZ) /* 60 seconds */
390
391 int __ipv6_addr_type(const struct in6_addr *addr);
392 static inline int ipv6_addr_type(const struct in6_addr *addr)
393 {
394 return __ipv6_addr_type(addr) & 0xffff;
395 }
396
397 static inline int ipv6_addr_scope(const struct in6_addr *addr)
398 {
399 return __ipv6_addr_type(addr) & IPV6_ADDR_SCOPE_MASK;
400 }
401
402 static inline int __ipv6_addr_src_scope(int type)
403 {
404 return (type == IPV6_ADDR_ANY) ? __IPV6_ADDR_SCOPE_INVALID : (type >> 16);
405 }
406
407 static inline int ipv6_addr_src_scope(const struct in6_addr *addr)
408 {
409 return __ipv6_addr_src_scope(__ipv6_addr_type(addr));
410 }
411
412 static inline bool __ipv6_addr_needs_scope_id(int type)
413 {
414 return type & IPV6_ADDR_LINKLOCAL ||
415 (type & IPV6_ADDR_MULTICAST &&
416 (type & (IPV6_ADDR_LOOPBACK|IPV6_ADDR_LINKLOCAL)));
417 }
418
419 static inline __u32 ipv6_iface_scope_id(const struct in6_addr *addr, int iface)
420 {
421 return __ipv6_addr_needs_scope_id(__ipv6_addr_type(addr)) ? iface : 0;
422 }
423
424 static inline int ipv6_addr_cmp(const struct in6_addr *a1, const struct in6_addr *a2)
425 {
426 return memcmp(a1, a2, sizeof(struct in6_addr));
427 }
428
429 static inline bool
430 ipv6_masked_addr_cmp(const struct in6_addr *a1, const struct in6_addr *m,
431 const struct in6_addr *a2)
432 {
433 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
434 const unsigned long *ul1 = (const unsigned long *)a1;
435 const unsigned long *ulm = (const unsigned long *)m;
436 const unsigned long *ul2 = (const unsigned long *)a2;
437
438 return !!(((ul1[0] ^ ul2[0]) & ulm[0]) |
439 ((ul1[1] ^ ul2[1]) & ulm[1]));
440 #else
441 return !!(((a1->s6_addr32[0] ^ a2->s6_addr32[0]) & m->s6_addr32[0]) |
442 ((a1->s6_addr32[1] ^ a2->s6_addr32[1]) & m->s6_addr32[1]) |
443 ((a1->s6_addr32[2] ^ a2->s6_addr32[2]) & m->s6_addr32[2]) |
444 ((a1->s6_addr32[3] ^ a2->s6_addr32[3]) & m->s6_addr32[3]));
445 #endif
446 }
447
448 static inline void ipv6_addr_prefix(struct in6_addr *pfx,
449 const struct in6_addr *addr,
450 int plen)
451 {
452 /* caller must guarantee 0 <= plen <= 128 */
453 int o = plen >> 3,
454 b = plen & 0x7;
455
456 memset(pfx->s6_addr, 0, sizeof(pfx->s6_addr));
457 memcpy(pfx->s6_addr, addr, o);
458 if (b != 0)
459 pfx->s6_addr[o] = addr->s6_addr[o] & (0xff00 >> b);
460 }
461
462 static inline void ipv6_addr_prefix_copy(struct in6_addr *addr,
463 const struct in6_addr *pfx,
464 int plen)
465 {
466 /* caller must guarantee 0 <= plen <= 128 */
467 int o = plen >> 3,
468 b = plen & 0x7;
469
470 memcpy(addr->s6_addr, pfx, o);
471 if (b != 0) {
472 addr->s6_addr[o] &= ~(0xff00 >> b);
473 addr->s6_addr[o] |= (pfx->s6_addr[o] & (0xff00 >> b));
474 }
475 }
476
477 static inline void __ipv6_addr_set_half(__be32 *addr,
478 __be32 wh, __be32 wl)
479 {
480 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
481 #if defined(__BIG_ENDIAN)
482 if (__builtin_constant_p(wh) && __builtin_constant_p(wl)) {
483 *(__force u64 *)addr = ((__force u64)(wh) << 32 | (__force u64)(wl));
484 return;
485 }
486 #elif defined(__LITTLE_ENDIAN)
487 if (__builtin_constant_p(wl) && __builtin_constant_p(wh)) {
488 *(__force u64 *)addr = ((__force u64)(wl) << 32 | (__force u64)(wh));
489 return;
490 }
491 #endif
492 #endif
493 addr[0] = wh;
494 addr[1] = wl;
495 }
496
497 static inline void ipv6_addr_set(struct in6_addr *addr,
498 __be32 w1, __be32 w2,
499 __be32 w3, __be32 w4)
500 {
501 __ipv6_addr_set_half(&addr->s6_addr32[0], w1, w2);
502 __ipv6_addr_set_half(&addr->s6_addr32[2], w3, w4);
503 }
504
505 static inline bool ipv6_addr_equal(const struct in6_addr *a1,
506 const struct in6_addr *a2)
507 {
508 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
509 const unsigned long *ul1 = (const unsigned long *)a1;
510 const unsigned long *ul2 = (const unsigned long *)a2;
511
512 return ((ul1[0] ^ ul2[0]) | (ul1[1] ^ ul2[1])) == 0UL;
513 #else
514 return ((a1->s6_addr32[0] ^ a2->s6_addr32[0]) |
515 (a1->s6_addr32[1] ^ a2->s6_addr32[1]) |
516 (a1->s6_addr32[2] ^ a2->s6_addr32[2]) |
517 (a1->s6_addr32[3] ^ a2->s6_addr32[3])) == 0;
518 #endif
519 }
520
521 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
522 static inline bool __ipv6_prefix_equal64_half(const __be64 *a1,
523 const __be64 *a2,
524 unsigned int len)
525 {
526 if (len && ((*a1 ^ *a2) & cpu_to_be64((~0UL) << (64 - len))))
527 return false;
528 return true;
529 }
530
531 static inline bool ipv6_prefix_equal(const struct in6_addr *addr1,
532 const struct in6_addr *addr2,
533 unsigned int prefixlen)
534 {
535 const __be64 *a1 = (const __be64 *)addr1;
536 const __be64 *a2 = (const __be64 *)addr2;
537
538 if (prefixlen >= 64) {
539 if (a1[0] ^ a2[0])
540 return false;
541 return __ipv6_prefix_equal64_half(a1 + 1, a2 + 1, prefixlen - 64);
542 }
543 return __ipv6_prefix_equal64_half(a1, a2, prefixlen);
544 }
545 #else
546 static inline bool ipv6_prefix_equal(const struct in6_addr *addr1,
547 const struct in6_addr *addr2,
548 unsigned int prefixlen)
549 {
550 const __be32 *a1 = addr1->s6_addr32;
551 const __be32 *a2 = addr2->s6_addr32;
552 unsigned int pdw, pbi;
553
554 /* check complete u32 in prefix */
555 pdw = prefixlen >> 5;
556 if (pdw && memcmp(a1, a2, pdw << 2))
557 return false;
558
559 /* check incomplete u32 in prefix */
560 pbi = prefixlen & 0x1f;
561 if (pbi && ((a1[pdw] ^ a2[pdw]) & htonl((0xffffffff) << (32 - pbi))))
562 return false;
563
564 return true;
565 }
566 #endif
567
568 struct inet_frag_queue;
569
570 enum ip6_defrag_users {
571 IP6_DEFRAG_LOCAL_DELIVER,
572 IP6_DEFRAG_CONNTRACK_IN,
573 __IP6_DEFRAG_CONNTRACK_IN = IP6_DEFRAG_CONNTRACK_IN + USHRT_MAX,
574 IP6_DEFRAG_CONNTRACK_OUT,
575 __IP6_DEFRAG_CONNTRACK_OUT = IP6_DEFRAG_CONNTRACK_OUT + USHRT_MAX,
576 IP6_DEFRAG_CONNTRACK_BRIDGE_IN,
577 __IP6_DEFRAG_CONNTRACK_BRIDGE_IN = IP6_DEFRAG_CONNTRACK_BRIDGE_IN + USHRT_MAX,
578 };
579
580 struct ip6_create_arg {
581 __be32 id;
582 u32 user;
583 const struct in6_addr *src;
584 const struct in6_addr *dst;
585 int iif;
586 u8 ecn;
587 };
588
589 void ip6_frag_init(struct inet_frag_queue *q, const void *a);
590 bool ip6_frag_match(const struct inet_frag_queue *q, const void *a);
591
592 /*
593 * Equivalent of ipv4 struct ip
594 */
595 struct frag_queue {
596 struct inet_frag_queue q;
597
598 __be32 id; /* fragment id */
599 u32 user;
600 struct in6_addr saddr;
601 struct in6_addr daddr;
602
603 int iif;
604 unsigned int csum;
605 __u16 nhoffset;
606 u8 ecn;
607 };
608
609 void ip6_expire_frag_queue(struct net *net, struct frag_queue *fq,
610 struct inet_frags *frags);
611
612 static inline bool ipv6_addr_any(const struct in6_addr *a)
613 {
614 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
615 const unsigned long *ul = (const unsigned long *)a;
616
617 return (ul[0] | ul[1]) == 0UL;
618 #else
619 return (a->s6_addr32[0] | a->s6_addr32[1] |
620 a->s6_addr32[2] | a->s6_addr32[3]) == 0;
621 #endif
622 }
623
624 static inline u32 ipv6_addr_hash(const struct in6_addr *a)
625 {
626 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
627 const unsigned long *ul = (const unsigned long *)a;
628 unsigned long x = ul[0] ^ ul[1];
629
630 return (u32)(x ^ (x >> 32));
631 #else
632 return (__force u32)(a->s6_addr32[0] ^ a->s6_addr32[1] ^
633 a->s6_addr32[2] ^ a->s6_addr32[3]);
634 #endif
635 }
636
637 /* more secured version of ipv6_addr_hash() */
638 static inline u32 __ipv6_addr_jhash(const struct in6_addr *a, const u32 initval)
639 {
640 u32 v = (__force u32)a->s6_addr32[0] ^ (__force u32)a->s6_addr32[1];
641
642 return jhash_3words(v,
643 (__force u32)a->s6_addr32[2],
644 (__force u32)a->s6_addr32[3],
645 initval);
646 }
647
648 static inline bool ipv6_addr_loopback(const struct in6_addr *a)
649 {
650 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
651 const __be64 *be = (const __be64 *)a;
652
653 return (be[0] | (be[1] ^ cpu_to_be64(1))) == 0UL;
654 #else
655 return (a->s6_addr32[0] | a->s6_addr32[1] |
656 a->s6_addr32[2] | (a->s6_addr32[3] ^ cpu_to_be32(1))) == 0;
657 #endif
658 }
659
660 /*
661 * Note that we must __force cast these to unsigned long to make sparse happy,
662 * since all of the endian-annotated types are fixed size regardless of arch.
663 */
664 static inline bool ipv6_addr_v4mapped(const struct in6_addr *a)
665 {
666 return (
667 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
668 *(unsigned long *)a |
669 #else
670 (__force unsigned long)(a->s6_addr32[0] | a->s6_addr32[1]) |
671 #endif
672 (__force unsigned long)(a->s6_addr32[2] ^
673 cpu_to_be32(0x0000ffff))) == 0UL;
674 }
675
676 /*
677 * Check for a RFC 4843 ORCHID address
678 * (Overlay Routable Cryptographic Hash Identifiers)
679 */
680 static inline bool ipv6_addr_orchid(const struct in6_addr *a)
681 {
682 return (a->s6_addr32[0] & htonl(0xfffffff0)) == htonl(0x20010010);
683 }
684
685 static inline bool ipv6_addr_is_multicast(const struct in6_addr *addr)
686 {
687 return (addr->s6_addr32[0] & htonl(0xFF000000)) == htonl(0xFF000000);
688 }
689
690 static inline void ipv6_addr_set_v4mapped(const __be32 addr,
691 struct in6_addr *v4mapped)
692 {
693 ipv6_addr_set(v4mapped,
694 0, 0,
695 htonl(0x0000FFFF),
696 addr);
697 }
698
699 /*
700 * find the first different bit between two addresses
701 * length of address must be a multiple of 32bits
702 */
703 static inline int __ipv6_addr_diff32(const void *token1, const void *token2, int addrlen)
704 {
705 const __be32 *a1 = token1, *a2 = token2;
706 int i;
707
708 addrlen >>= 2;
709
710 for (i = 0; i < addrlen; i++) {
711 __be32 xb = a1[i] ^ a2[i];
712 if (xb)
713 return i * 32 + 31 - __fls(ntohl(xb));
714 }
715
716 /*
717 * we should *never* get to this point since that
718 * would mean the addrs are equal
719 *
720 * However, we do get to it 8) And exacly, when
721 * addresses are equal 8)
722 *
723 * ip route add 1111::/128 via ...
724 * ip route add 1111::/64 via ...
725 * and we are here.
726 *
727 * Ideally, this function should stop comparison
728 * at prefix length. It does not, but it is still OK,
729 * if returned value is greater than prefix length.
730 * --ANK (980803)
731 */
732 return addrlen << 5;
733 }
734
735 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
736 static inline int __ipv6_addr_diff64(const void *token1, const void *token2, int addrlen)
737 {
738 const __be64 *a1 = token1, *a2 = token2;
739 int i;
740
741 addrlen >>= 3;
742
743 for (i = 0; i < addrlen; i++) {
744 __be64 xb = a1[i] ^ a2[i];
745 if (xb)
746 return i * 64 + 63 - __fls(be64_to_cpu(xb));
747 }
748
749 return addrlen << 6;
750 }
751 #endif
752
753 static inline int __ipv6_addr_diff(const void *token1, const void *token2, int addrlen)
754 {
755 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
756 if (__builtin_constant_p(addrlen) && !(addrlen & 7))
757 return __ipv6_addr_diff64(token1, token2, addrlen);
758 #endif
759 return __ipv6_addr_diff32(token1, token2, addrlen);
760 }
761
762 static inline int ipv6_addr_diff(const struct in6_addr *a1, const struct in6_addr *a2)
763 {
764 return __ipv6_addr_diff(a1, a2, sizeof(struct in6_addr));
765 }
766
767 __be32 ipv6_select_ident(struct net *net,
768 const struct in6_addr *daddr,
769 const struct in6_addr *saddr);
770
771 int ip6_dst_hoplimit(struct dst_entry *dst);
772
773 static inline int ip6_sk_dst_hoplimit(struct ipv6_pinfo *np, struct flowi6 *fl6,
774 struct dst_entry *dst)
775 {
776 int hlimit;
777
778 if (ipv6_addr_is_multicast(&fl6->daddr))
779 hlimit = np->mcast_hops;
780 else
781 hlimit = np->hop_limit;
782 if (hlimit < 0)
783 hlimit = ip6_dst_hoplimit(dst);
784 return hlimit;
785 }
786
787 /* copy IPv6 saddr & daddr to flow_keys, possibly using 64bit load/store
788 * Equivalent to : flow->v6addrs.src = iph->saddr;
789 * flow->v6addrs.dst = iph->daddr;
790 */
791 static inline void iph_to_flow_copy_v6addrs(struct flow_keys *flow,
792 const struct ipv6hdr *iph)
793 {
794 BUILD_BUG_ON(offsetof(typeof(flow->addrs), v6addrs.dst) !=
795 offsetof(typeof(flow->addrs), v6addrs.src) +
796 sizeof(flow->addrs.v6addrs.src));
797 memcpy(&flow->addrs.v6addrs, &iph->saddr, sizeof(flow->addrs.v6addrs));
798 flow->control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
799 }
800
801 #if IS_ENABLED(CONFIG_IPV6)
802
803 /* Sysctl settings for net ipv6.auto_flowlabels */
804 #define IP6_AUTO_FLOW_LABEL_OFF 0
805 #define IP6_AUTO_FLOW_LABEL_OPTOUT 1
806 #define IP6_AUTO_FLOW_LABEL_OPTIN 2
807 #define IP6_AUTO_FLOW_LABEL_FORCED 3
808
809 #define IP6_AUTO_FLOW_LABEL_MAX IP6_AUTO_FLOW_LABEL_FORCED
810
811 #define IP6_DEFAULT_AUTO_FLOW_LABELS IP6_AUTO_FLOW_LABEL_OPTOUT
812
813 static inline __be32 ip6_make_flowlabel(struct net *net, struct sk_buff *skb,
814 __be32 flowlabel, bool autolabel,
815 struct flowi6 *fl6)
816 {
817 u32 hash;
818
819 /* @flowlabel may include more than a flow label, eg, the traffic class.
820 * Here we want only the flow label value.
821 */
822 flowlabel &= IPV6_FLOWLABEL_MASK;
823
824 if (flowlabel ||
825 net->ipv6.sysctl.auto_flowlabels == IP6_AUTO_FLOW_LABEL_OFF ||
826 (!autolabel &&
827 net->ipv6.sysctl.auto_flowlabels != IP6_AUTO_FLOW_LABEL_FORCED))
828 return flowlabel;
829
830 hash = skb_get_hash_flowi6(skb, fl6);
831
832 /* Since this is being sent on the wire obfuscate hash a bit
833 * to minimize possbility that any useful information to an
834 * attacker is leaked. Only lower 20 bits are relevant.
835 */
836 rol32(hash, 16);
837
838 flowlabel = (__force __be32)hash & IPV6_FLOWLABEL_MASK;
839
840 if (net->ipv6.sysctl.flowlabel_state_ranges)
841 flowlabel |= IPV6_FLOWLABEL_STATELESS_FLAG;
842
843 return flowlabel;
844 }
845
846 static inline int ip6_default_np_autolabel(struct net *net)
847 {
848 switch (net->ipv6.sysctl.auto_flowlabels) {
849 case IP6_AUTO_FLOW_LABEL_OFF:
850 case IP6_AUTO_FLOW_LABEL_OPTIN:
851 default:
852 return 0;
853 case IP6_AUTO_FLOW_LABEL_OPTOUT:
854 case IP6_AUTO_FLOW_LABEL_FORCED:
855 return 1;
856 }
857 }
858 #else
859 static inline void ip6_set_txhash(struct sock *sk) { }
860 static inline __be32 ip6_make_flowlabel(struct net *net, struct sk_buff *skb,
861 __be32 flowlabel, bool autolabel,
862 struct flowi6 *fl6)
863 {
864 return flowlabel;
865 }
866 static inline int ip6_default_np_autolabel(struct net *net)
867 {
868 return 0;
869 }
870 #endif
871
872
873 /*
874 * Header manipulation
875 */
876 static inline void ip6_flow_hdr(struct ipv6hdr *hdr, unsigned int tclass,
877 __be32 flowlabel)
878 {
879 *(__be32 *)hdr = htonl(0x60000000 | (tclass << 20)) | flowlabel;
880 }
881
882 static inline __be32 ip6_flowinfo(const struct ipv6hdr *hdr)
883 {
884 return *(__be32 *)hdr & IPV6_FLOWINFO_MASK;
885 }
886
887 static inline __be32 ip6_flowlabel(const struct ipv6hdr *hdr)
888 {
889 return *(__be32 *)hdr & IPV6_FLOWLABEL_MASK;
890 }
891
892 static inline u8 ip6_tclass(__be32 flowinfo)
893 {
894 return ntohl(flowinfo & IPV6_TCLASS_MASK) >> IPV6_TCLASS_SHIFT;
895 }
896
897 static inline __be32 ip6_make_flowinfo(unsigned int tclass, __be32 flowlabel)
898 {
899 return htonl(tclass << IPV6_TCLASS_SHIFT) | flowlabel;
900 }
901
902 /*
903 * Prototypes exported by ipv6
904 */
905
906 /*
907 * rcv function (called from netdevice level)
908 */
909
910 int ipv6_rcv(struct sk_buff *skb, struct net_device *dev,
911 struct packet_type *pt, struct net_device *orig_dev);
912
913 int ip6_rcv_finish(struct net *net, struct sock *sk, struct sk_buff *skb);
914
915 /*
916 * upper-layer output functions
917 */
918 int ip6_xmit(const struct sock *sk, struct sk_buff *skb, struct flowi6 *fl6,
919 __u32 mark, struct ipv6_txoptions *opt, int tclass);
920
921 int ip6_find_1stfragopt(struct sk_buff *skb, u8 **nexthdr);
922
923 int ip6_append_data(struct sock *sk,
924 int getfrag(void *from, char *to, int offset, int len,
925 int odd, struct sk_buff *skb),
926 void *from, int length, int transhdrlen,
927 struct ipcm6_cookie *ipc6, struct flowi6 *fl6,
928 struct rt6_info *rt, unsigned int flags,
929 const struct sockcm_cookie *sockc);
930
931 int ip6_push_pending_frames(struct sock *sk);
932
933 void ip6_flush_pending_frames(struct sock *sk);
934
935 int ip6_send_skb(struct sk_buff *skb);
936
937 struct sk_buff *__ip6_make_skb(struct sock *sk, struct sk_buff_head *queue,
938 struct inet_cork_full *cork,
939 struct inet6_cork *v6_cork);
940 struct sk_buff *ip6_make_skb(struct sock *sk,
941 int getfrag(void *from, char *to, int offset,
942 int len, int odd, struct sk_buff *skb),
943 void *from, int length, int transhdrlen,
944 struct ipcm6_cookie *ipc6, struct flowi6 *fl6,
945 struct rt6_info *rt, unsigned int flags,
946 const struct sockcm_cookie *sockc);
947
948 static inline struct sk_buff *ip6_finish_skb(struct sock *sk)
949 {
950 return __ip6_make_skb(sk, &sk->sk_write_queue, &inet_sk(sk)->cork,
951 &inet6_sk(sk)->cork);
952 }
953
954 int ip6_dst_lookup(struct net *net, struct sock *sk, struct dst_entry **dst,
955 struct flowi6 *fl6);
956 struct dst_entry *ip6_dst_lookup_flow(const struct sock *sk, struct flowi6 *fl6,
957 const struct in6_addr *final_dst);
958 struct dst_entry *ip6_sk_dst_lookup_flow(struct sock *sk, struct flowi6 *fl6,
959 const struct in6_addr *final_dst);
960 struct dst_entry *ip6_blackhole_route(struct net *net,
961 struct dst_entry *orig_dst);
962
963 /*
964 * skb processing functions
965 */
966
967 int ip6_output(struct net *net, struct sock *sk, struct sk_buff *skb);
968 int ip6_forward(struct sk_buff *skb);
969 int ip6_input(struct sk_buff *skb);
970 int ip6_mc_input(struct sk_buff *skb);
971
972 int __ip6_local_out(struct net *net, struct sock *sk, struct sk_buff *skb);
973 int ip6_local_out(struct net *net, struct sock *sk, struct sk_buff *skb);
974
975 /*
976 * Extension header (options) processing
977 */
978
979 void ipv6_push_nfrag_opts(struct sk_buff *skb, struct ipv6_txoptions *opt,
980 u8 *proto, struct in6_addr **daddr_p,
981 struct in6_addr *saddr);
982 void ipv6_push_frag_opts(struct sk_buff *skb, struct ipv6_txoptions *opt,
983 u8 *proto);
984
985 int ipv6_skip_exthdr(const struct sk_buff *, int start, u8 *nexthdrp,
986 __be16 *frag_offp);
987
988 bool ipv6_ext_hdr(u8 nexthdr);
989
990 enum {
991 IP6_FH_F_FRAG = (1 << 0),
992 IP6_FH_F_AUTH = (1 << 1),
993 IP6_FH_F_SKIP_RH = (1 << 2),
994 };
995
996 /* find specified header and get offset to it */
997 int ipv6_find_hdr(const struct sk_buff *skb, unsigned int *offset, int target,
998 unsigned short *fragoff, int *fragflg);
999
1000 int ipv6_find_tlv(const struct sk_buff *skb, int offset, int type);
1001
1002 struct in6_addr *fl6_update_dst(struct flowi6 *fl6,
1003 const struct ipv6_txoptions *opt,
1004 struct in6_addr *orig);
1005
1006 /*
1007 * socket options (ipv6_sockglue.c)
1008 */
1009
1010 int ipv6_setsockopt(struct sock *sk, int level, int optname,
1011 char __user *optval, unsigned int optlen);
1012 int ipv6_getsockopt(struct sock *sk, int level, int optname,
1013 char __user *optval, int __user *optlen);
1014 int compat_ipv6_setsockopt(struct sock *sk, int level, int optname,
1015 char __user *optval, unsigned int optlen);
1016 int compat_ipv6_getsockopt(struct sock *sk, int level, int optname,
1017 char __user *optval, int __user *optlen);
1018
1019 int __ip6_datagram_connect(struct sock *sk, struct sockaddr *addr,
1020 int addr_len);
1021 int ip6_datagram_connect(struct sock *sk, struct sockaddr *addr, int addr_len);
1022 int ip6_datagram_connect_v6_only(struct sock *sk, struct sockaddr *addr,
1023 int addr_len);
1024 int ip6_datagram_dst_update(struct sock *sk, bool fix_sk_saddr);
1025 void ip6_datagram_release_cb(struct sock *sk);
1026
1027 int ipv6_recv_error(struct sock *sk, struct msghdr *msg, int len,
1028 int *addr_len);
1029 int ipv6_recv_rxpmtu(struct sock *sk, struct msghdr *msg, int len,
1030 int *addr_len);
1031 void ipv6_icmp_error(struct sock *sk, struct sk_buff *skb, int err, __be16 port,
1032 u32 info, u8 *payload);
1033 void ipv6_local_error(struct sock *sk, int err, struct flowi6 *fl6, u32 info);
1034 void ipv6_local_rxpmtu(struct sock *sk, struct flowi6 *fl6, u32 mtu);
1035
1036 int inet6_release(struct socket *sock);
1037 int inet6_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len);
1038 int inet6_getname(struct socket *sock, struct sockaddr *uaddr, int *uaddr_len,
1039 int peer);
1040 int inet6_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg);
1041
1042 int inet6_hash_connect(struct inet_timewait_death_row *death_row,
1043 struct sock *sk);
1044
1045 /*
1046 * reassembly.c
1047 */
1048 extern const struct proto_ops inet6_stream_ops;
1049 extern const struct proto_ops inet6_dgram_ops;
1050 extern const struct proto_ops inet6_sockraw_ops;
1051
1052 struct group_source_req;
1053 struct group_filter;
1054
1055 int ip6_mc_source(int add, int omode, struct sock *sk,
1056 struct group_source_req *pgsr);
1057 int ip6_mc_msfilter(struct sock *sk, struct group_filter *gsf);
1058 int ip6_mc_msfget(struct sock *sk, struct group_filter *gsf,
1059 struct group_filter __user *optval, int __user *optlen);
1060
1061 #ifdef CONFIG_PROC_FS
1062 int ac6_proc_init(struct net *net);
1063 void ac6_proc_exit(struct net *net);
1064 int raw6_proc_init(void);
1065 void raw6_proc_exit(void);
1066 int tcp6_proc_init(struct net *net);
1067 void tcp6_proc_exit(struct net *net);
1068 int udp6_proc_init(struct net *net);
1069 void udp6_proc_exit(struct net *net);
1070 int udplite6_proc_init(void);
1071 void udplite6_proc_exit(void);
1072 int ipv6_misc_proc_init(void);
1073 void ipv6_misc_proc_exit(void);
1074 int snmp6_register_dev(struct inet6_dev *idev);
1075 int snmp6_unregister_dev(struct inet6_dev *idev);
1076
1077 #else
1078 static inline int ac6_proc_init(struct net *net) { return 0; }
1079 static inline void ac6_proc_exit(struct net *net) { }
1080 static inline int snmp6_register_dev(struct inet6_dev *idev) { return 0; }
1081 static inline int snmp6_unregister_dev(struct inet6_dev *idev) { return 0; }
1082 #endif
1083
1084 #ifdef CONFIG_SYSCTL
1085 extern struct ctl_table ipv6_route_table_template[];
1086
1087 struct ctl_table *ipv6_icmp_sysctl_init(struct net *net);
1088 struct ctl_table *ipv6_route_sysctl_init(struct net *net);
1089 int ipv6_sysctl_register(void);
1090 void ipv6_sysctl_unregister(void);
1091 #endif
1092
1093 int ipv6_sock_mc_join(struct sock *sk, int ifindex,
1094 const struct in6_addr *addr);
1095 int ipv6_sock_mc_drop(struct sock *sk, int ifindex,
1096 const struct in6_addr *addr);
1097 #endif /* _NET_IPV6_H */