]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - include/net/ipv6.h
Merge tag 'linux-watchdog-5.3-rc1' of git://www.linux-watchdog.org/linux-watchdog
[mirror_ubuntu-focal-kernel.git] / include / net / ipv6.h
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3 * Linux INET6 implementation
4 *
5 * Authors:
6 * Pedro Roque <roque@di.fc.ul.pt>
7 */
8
9 #ifndef _NET_IPV6_H
10 #define _NET_IPV6_H
11
12 #include <linux/ipv6.h>
13 #include <linux/hardirq.h>
14 #include <linux/jhash.h>
15 #include <linux/refcount.h>
16 #include <linux/jump_label_ratelimit.h>
17 #include <net/if_inet6.h>
18 #include <net/ndisc.h>
19 #include <net/flow.h>
20 #include <net/flow_dissector.h>
21 #include <net/snmp.h>
22 #include <net/netns/hash.h>
23
24 #define SIN6_LEN_RFC2133 24
25
26 #define IPV6_MAXPLEN 65535
27
28 /*
29 * NextHeader field of IPv6 header
30 */
31
32 #define NEXTHDR_HOP 0 /* Hop-by-hop option header. */
33 #define NEXTHDR_TCP 6 /* TCP segment. */
34 #define NEXTHDR_UDP 17 /* UDP message. */
35 #define NEXTHDR_IPV6 41 /* IPv6 in IPv6 */
36 #define NEXTHDR_ROUTING 43 /* Routing header. */
37 #define NEXTHDR_FRAGMENT 44 /* Fragmentation/reassembly header. */
38 #define NEXTHDR_GRE 47 /* GRE header. */
39 #define NEXTHDR_ESP 50 /* Encapsulating security payload. */
40 #define NEXTHDR_AUTH 51 /* Authentication header. */
41 #define NEXTHDR_ICMP 58 /* ICMP for IPv6. */
42 #define NEXTHDR_NONE 59 /* No next header */
43 #define NEXTHDR_DEST 60 /* Destination options header. */
44 #define NEXTHDR_SCTP 132 /* SCTP message. */
45 #define NEXTHDR_MOBILITY 135 /* Mobility header. */
46
47 #define NEXTHDR_MAX 255
48
49 #define IPV6_DEFAULT_HOPLIMIT 64
50 #define IPV6_DEFAULT_MCASTHOPS 1
51
52 /* Limits on Hop-by-Hop and Destination options.
53 *
54 * Per RFC8200 there is no limit on the maximum number or lengths of options in
55 * Hop-by-Hop or Destination options other then the packet must fit in an MTU.
56 * We allow configurable limits in order to mitigate potential denial of
57 * service attacks.
58 *
59 * There are three limits that may be set:
60 * - Limit the number of options in a Hop-by-Hop or Destination options
61 * extension header
62 * - Limit the byte length of a Hop-by-Hop or Destination options extension
63 * header
64 * - Disallow unknown options
65 *
66 * The limits are expressed in corresponding sysctls:
67 *
68 * ipv6.sysctl.max_dst_opts_cnt
69 * ipv6.sysctl.max_hbh_opts_cnt
70 * ipv6.sysctl.max_dst_opts_len
71 * ipv6.sysctl.max_hbh_opts_len
72 *
73 * max_*_opts_cnt is the number of TLVs that are allowed for Destination
74 * options or Hop-by-Hop options. If the number is less than zero then unknown
75 * TLVs are disallowed and the number of known options that are allowed is the
76 * absolute value. Setting the value to INT_MAX indicates no limit.
77 *
78 * max_*_opts_len is the length limit in bytes of a Destination or
79 * Hop-by-Hop options extension header. Setting the value to INT_MAX
80 * indicates no length limit.
81 *
82 * If a limit is exceeded when processing an extension header the packet is
83 * silently discarded.
84 */
85
86 /* Default limits for Hop-by-Hop and Destination options */
87 #define IP6_DEFAULT_MAX_DST_OPTS_CNT 8
88 #define IP6_DEFAULT_MAX_HBH_OPTS_CNT 8
89 #define IP6_DEFAULT_MAX_DST_OPTS_LEN INT_MAX /* No limit */
90 #define IP6_DEFAULT_MAX_HBH_OPTS_LEN INT_MAX /* No limit */
91
92 /*
93 * Addr type
94 *
95 * type - unicast | multicast
96 * scope - local | site | global
97 * v4 - compat
98 * v4mapped
99 * any
100 * loopback
101 */
102
103 #define IPV6_ADDR_ANY 0x0000U
104
105 #define IPV6_ADDR_UNICAST 0x0001U
106 #define IPV6_ADDR_MULTICAST 0x0002U
107
108 #define IPV6_ADDR_LOOPBACK 0x0010U
109 #define IPV6_ADDR_LINKLOCAL 0x0020U
110 #define IPV6_ADDR_SITELOCAL 0x0040U
111
112 #define IPV6_ADDR_COMPATv4 0x0080U
113
114 #define IPV6_ADDR_SCOPE_MASK 0x00f0U
115
116 #define IPV6_ADDR_MAPPED 0x1000U
117
118 /*
119 * Addr scopes
120 */
121 #define IPV6_ADDR_MC_SCOPE(a) \
122 ((a)->s6_addr[1] & 0x0f) /* nonstandard */
123 #define __IPV6_ADDR_SCOPE_INVALID -1
124 #define IPV6_ADDR_SCOPE_NODELOCAL 0x01
125 #define IPV6_ADDR_SCOPE_LINKLOCAL 0x02
126 #define IPV6_ADDR_SCOPE_SITELOCAL 0x05
127 #define IPV6_ADDR_SCOPE_ORGLOCAL 0x08
128 #define IPV6_ADDR_SCOPE_GLOBAL 0x0e
129
130 /*
131 * Addr flags
132 */
133 #define IPV6_ADDR_MC_FLAG_TRANSIENT(a) \
134 ((a)->s6_addr[1] & 0x10)
135 #define IPV6_ADDR_MC_FLAG_PREFIX(a) \
136 ((a)->s6_addr[1] & 0x20)
137 #define IPV6_ADDR_MC_FLAG_RENDEZVOUS(a) \
138 ((a)->s6_addr[1] & 0x40)
139
140 /*
141 * fragmentation header
142 */
143
144 struct frag_hdr {
145 __u8 nexthdr;
146 __u8 reserved;
147 __be16 frag_off;
148 __be32 identification;
149 };
150
151 #define IP6_MF 0x0001
152 #define IP6_OFFSET 0xFFF8
153
154 struct ip6_fraglist_iter {
155 struct ipv6hdr *tmp_hdr;
156 struct sk_buff *frag;
157 int offset;
158 unsigned int hlen;
159 __be32 frag_id;
160 u8 nexthdr;
161 };
162
163 int ip6_fraglist_init(struct sk_buff *skb, unsigned int hlen, u8 *prevhdr,
164 u8 nexthdr, __be32 frag_id,
165 struct ip6_fraglist_iter *iter);
166 void ip6_fraglist_prepare(struct sk_buff *skb, struct ip6_fraglist_iter *iter);
167
168 static inline struct sk_buff *ip6_fraglist_next(struct ip6_fraglist_iter *iter)
169 {
170 struct sk_buff *skb = iter->frag;
171
172 iter->frag = skb->next;
173 skb_mark_not_on_list(skb);
174
175 return skb;
176 }
177
178 struct ip6_frag_state {
179 u8 *prevhdr;
180 unsigned int hlen;
181 unsigned int mtu;
182 unsigned int left;
183 int offset;
184 int ptr;
185 int hroom;
186 int troom;
187 __be32 frag_id;
188 u8 nexthdr;
189 };
190
191 void ip6_frag_init(struct sk_buff *skb, unsigned int hlen, unsigned int mtu,
192 unsigned short needed_tailroom, int hdr_room, u8 *prevhdr,
193 u8 nexthdr, __be32 frag_id, struct ip6_frag_state *state);
194 struct sk_buff *ip6_frag_next(struct sk_buff *skb,
195 struct ip6_frag_state *state);
196
197 #define IP6_REPLY_MARK(net, mark) \
198 ((net)->ipv6.sysctl.fwmark_reflect ? (mark) : 0)
199
200 #include <net/sock.h>
201
202 /* sysctls */
203 extern int sysctl_mld_max_msf;
204 extern int sysctl_mld_qrv;
205
206 #define _DEVINC(net, statname, mod, idev, field) \
207 ({ \
208 struct inet6_dev *_idev = (idev); \
209 if (likely(_idev != NULL)) \
210 mod##SNMP_INC_STATS64((_idev)->stats.statname, (field));\
211 mod##SNMP_INC_STATS64((net)->mib.statname##_statistics, (field));\
212 })
213
214 /* per device counters are atomic_long_t */
215 #define _DEVINCATOMIC(net, statname, mod, idev, field) \
216 ({ \
217 struct inet6_dev *_idev = (idev); \
218 if (likely(_idev != NULL)) \
219 SNMP_INC_STATS_ATOMIC_LONG((_idev)->stats.statname##dev, (field)); \
220 mod##SNMP_INC_STATS((net)->mib.statname##_statistics, (field));\
221 })
222
223 /* per device and per net counters are atomic_long_t */
224 #define _DEVINC_ATOMIC_ATOMIC(net, statname, idev, field) \
225 ({ \
226 struct inet6_dev *_idev = (idev); \
227 if (likely(_idev != NULL)) \
228 SNMP_INC_STATS_ATOMIC_LONG((_idev)->stats.statname##dev, (field)); \
229 SNMP_INC_STATS_ATOMIC_LONG((net)->mib.statname##_statistics, (field));\
230 })
231
232 #define _DEVADD(net, statname, mod, idev, field, val) \
233 ({ \
234 struct inet6_dev *_idev = (idev); \
235 if (likely(_idev != NULL)) \
236 mod##SNMP_ADD_STATS((_idev)->stats.statname, (field), (val)); \
237 mod##SNMP_ADD_STATS((net)->mib.statname##_statistics, (field), (val));\
238 })
239
240 #define _DEVUPD(net, statname, mod, idev, field, val) \
241 ({ \
242 struct inet6_dev *_idev = (idev); \
243 if (likely(_idev != NULL)) \
244 mod##SNMP_UPD_PO_STATS((_idev)->stats.statname, field, (val)); \
245 mod##SNMP_UPD_PO_STATS((net)->mib.statname##_statistics, field, (val));\
246 })
247
248 /* MIBs */
249
250 #define IP6_INC_STATS(net, idev,field) \
251 _DEVINC(net, ipv6, , idev, field)
252 #define __IP6_INC_STATS(net, idev,field) \
253 _DEVINC(net, ipv6, __, idev, field)
254 #define IP6_ADD_STATS(net, idev,field,val) \
255 _DEVADD(net, ipv6, , idev, field, val)
256 #define __IP6_ADD_STATS(net, idev,field,val) \
257 _DEVADD(net, ipv6, __, idev, field, val)
258 #define IP6_UPD_PO_STATS(net, idev,field,val) \
259 _DEVUPD(net, ipv6, , idev, field, val)
260 #define __IP6_UPD_PO_STATS(net, idev,field,val) \
261 _DEVUPD(net, ipv6, __, idev, field, val)
262 #define ICMP6_INC_STATS(net, idev, field) \
263 _DEVINCATOMIC(net, icmpv6, , idev, field)
264 #define __ICMP6_INC_STATS(net, idev, field) \
265 _DEVINCATOMIC(net, icmpv6, __, idev, field)
266
267 #define ICMP6MSGOUT_INC_STATS(net, idev, field) \
268 _DEVINC_ATOMIC_ATOMIC(net, icmpv6msg, idev, field +256)
269 #define ICMP6MSGIN_INC_STATS(net, idev, field) \
270 _DEVINC_ATOMIC_ATOMIC(net, icmpv6msg, idev, field)
271
272 struct ip6_ra_chain {
273 struct ip6_ra_chain *next;
274 struct sock *sk;
275 int sel;
276 void (*destructor)(struct sock *);
277 };
278
279 extern struct ip6_ra_chain *ip6_ra_chain;
280 extern rwlock_t ip6_ra_lock;
281
282 /*
283 This structure is prepared by protocol, when parsing
284 ancillary data and passed to IPv6.
285 */
286
287 struct ipv6_txoptions {
288 refcount_t refcnt;
289 /* Length of this structure */
290 int tot_len;
291
292 /* length of extension headers */
293
294 __u16 opt_flen; /* after fragment hdr */
295 __u16 opt_nflen; /* before fragment hdr */
296
297 struct ipv6_opt_hdr *hopopt;
298 struct ipv6_opt_hdr *dst0opt;
299 struct ipv6_rt_hdr *srcrt; /* Routing Header */
300 struct ipv6_opt_hdr *dst1opt;
301 struct rcu_head rcu;
302 /* Option buffer, as read by IPV6_PKTOPTIONS, starts here. */
303 };
304
305 /* flowlabel_reflect sysctl values */
306 enum flowlabel_reflect {
307 FLOWLABEL_REFLECT_ESTABLISHED = 1,
308 FLOWLABEL_REFLECT_TCP_RESET = 2,
309 FLOWLABEL_REFLECT_ICMPV6_ECHO_REPLIES = 4,
310 };
311
312 struct ip6_flowlabel {
313 struct ip6_flowlabel __rcu *next;
314 __be32 label;
315 atomic_t users;
316 struct in6_addr dst;
317 struct ipv6_txoptions *opt;
318 unsigned long linger;
319 struct rcu_head rcu;
320 u8 share;
321 union {
322 struct pid *pid;
323 kuid_t uid;
324 } owner;
325 unsigned long lastuse;
326 unsigned long expires;
327 struct net *fl_net;
328 };
329
330 #define IPV6_FLOWINFO_MASK cpu_to_be32(0x0FFFFFFF)
331 #define IPV6_FLOWLABEL_MASK cpu_to_be32(0x000FFFFF)
332 #define IPV6_FLOWLABEL_STATELESS_FLAG cpu_to_be32(0x00080000)
333
334 #define IPV6_TCLASS_MASK (IPV6_FLOWINFO_MASK & ~IPV6_FLOWLABEL_MASK)
335 #define IPV6_TCLASS_SHIFT 20
336
337 struct ipv6_fl_socklist {
338 struct ipv6_fl_socklist __rcu *next;
339 struct ip6_flowlabel *fl;
340 struct rcu_head rcu;
341 };
342
343 struct ipcm6_cookie {
344 struct sockcm_cookie sockc;
345 __s16 hlimit;
346 __s16 tclass;
347 __s8 dontfrag;
348 struct ipv6_txoptions *opt;
349 __u16 gso_size;
350 };
351
352 static inline void ipcm6_init(struct ipcm6_cookie *ipc6)
353 {
354 *ipc6 = (struct ipcm6_cookie) {
355 .hlimit = -1,
356 .tclass = -1,
357 .dontfrag = -1,
358 };
359 }
360
361 static inline void ipcm6_init_sk(struct ipcm6_cookie *ipc6,
362 const struct ipv6_pinfo *np)
363 {
364 *ipc6 = (struct ipcm6_cookie) {
365 .hlimit = -1,
366 .tclass = np->tclass,
367 .dontfrag = np->dontfrag,
368 };
369 }
370
371 static inline struct ipv6_txoptions *txopt_get(const struct ipv6_pinfo *np)
372 {
373 struct ipv6_txoptions *opt;
374
375 rcu_read_lock();
376 opt = rcu_dereference(np->opt);
377 if (opt) {
378 if (!refcount_inc_not_zero(&opt->refcnt))
379 opt = NULL;
380 else
381 opt = rcu_pointer_handoff(opt);
382 }
383 rcu_read_unlock();
384 return opt;
385 }
386
387 static inline void txopt_put(struct ipv6_txoptions *opt)
388 {
389 if (opt && refcount_dec_and_test(&opt->refcnt))
390 kfree_rcu(opt, rcu);
391 }
392
393 struct ip6_flowlabel *__fl6_sock_lookup(struct sock *sk, __be32 label);
394
395 extern struct static_key_false_deferred ipv6_flowlabel_exclusive;
396 static inline struct ip6_flowlabel *fl6_sock_lookup(struct sock *sk,
397 __be32 label)
398 {
399 if (static_branch_unlikely(&ipv6_flowlabel_exclusive.key))
400 return __fl6_sock_lookup(sk, label) ? : ERR_PTR(-ENOENT);
401
402 return NULL;
403 }
404
405 struct ipv6_txoptions *fl6_merge_options(struct ipv6_txoptions *opt_space,
406 struct ip6_flowlabel *fl,
407 struct ipv6_txoptions *fopt);
408 void fl6_free_socklist(struct sock *sk);
409 int ipv6_flowlabel_opt(struct sock *sk, char __user *optval, int optlen);
410 int ipv6_flowlabel_opt_get(struct sock *sk, struct in6_flowlabel_req *freq,
411 int flags);
412 int ip6_flowlabel_init(void);
413 void ip6_flowlabel_cleanup(void);
414 bool ip6_autoflowlabel(struct net *net, const struct ipv6_pinfo *np);
415
416 static inline void fl6_sock_release(struct ip6_flowlabel *fl)
417 {
418 if (fl)
419 atomic_dec(&fl->users);
420 }
421
422 void icmpv6_notify(struct sk_buff *skb, u8 type, u8 code, __be32 info);
423
424 void icmpv6_push_pending_frames(struct sock *sk, struct flowi6 *fl6,
425 struct icmp6hdr *thdr, int len);
426
427 int ip6_ra_control(struct sock *sk, int sel);
428
429 int ipv6_parse_hopopts(struct sk_buff *skb);
430
431 struct ipv6_txoptions *ipv6_dup_options(struct sock *sk,
432 struct ipv6_txoptions *opt);
433 struct ipv6_txoptions *ipv6_renew_options(struct sock *sk,
434 struct ipv6_txoptions *opt,
435 int newtype,
436 struct ipv6_opt_hdr *newopt);
437 struct ipv6_txoptions *ipv6_fixup_options(struct ipv6_txoptions *opt_space,
438 struct ipv6_txoptions *opt);
439
440 bool ipv6_opt_accepted(const struct sock *sk, const struct sk_buff *skb,
441 const struct inet6_skb_parm *opt);
442 struct ipv6_txoptions *ipv6_update_options(struct sock *sk,
443 struct ipv6_txoptions *opt);
444
445 static inline bool ipv6_accept_ra(struct inet6_dev *idev)
446 {
447 /* If forwarding is enabled, RA are not accepted unless the special
448 * hybrid mode (accept_ra=2) is enabled.
449 */
450 return idev->cnf.forwarding ? idev->cnf.accept_ra == 2 :
451 idev->cnf.accept_ra;
452 }
453
454 #define IPV6_FRAG_HIGH_THRESH (4 * 1024*1024) /* 4194304 */
455 #define IPV6_FRAG_LOW_THRESH (3 * 1024*1024) /* 3145728 */
456 #define IPV6_FRAG_TIMEOUT (60 * HZ) /* 60 seconds */
457
458 int __ipv6_addr_type(const struct in6_addr *addr);
459 static inline int ipv6_addr_type(const struct in6_addr *addr)
460 {
461 return __ipv6_addr_type(addr) & 0xffff;
462 }
463
464 static inline int ipv6_addr_scope(const struct in6_addr *addr)
465 {
466 return __ipv6_addr_type(addr) & IPV6_ADDR_SCOPE_MASK;
467 }
468
469 static inline int __ipv6_addr_src_scope(int type)
470 {
471 return (type == IPV6_ADDR_ANY) ? __IPV6_ADDR_SCOPE_INVALID : (type >> 16);
472 }
473
474 static inline int ipv6_addr_src_scope(const struct in6_addr *addr)
475 {
476 return __ipv6_addr_src_scope(__ipv6_addr_type(addr));
477 }
478
479 static inline bool __ipv6_addr_needs_scope_id(int type)
480 {
481 return type & IPV6_ADDR_LINKLOCAL ||
482 (type & IPV6_ADDR_MULTICAST &&
483 (type & (IPV6_ADDR_LOOPBACK|IPV6_ADDR_LINKLOCAL)));
484 }
485
486 static inline __u32 ipv6_iface_scope_id(const struct in6_addr *addr, int iface)
487 {
488 return __ipv6_addr_needs_scope_id(__ipv6_addr_type(addr)) ? iface : 0;
489 }
490
491 static inline int ipv6_addr_cmp(const struct in6_addr *a1, const struct in6_addr *a2)
492 {
493 return memcmp(a1, a2, sizeof(struct in6_addr));
494 }
495
496 static inline bool
497 ipv6_masked_addr_cmp(const struct in6_addr *a1, const struct in6_addr *m,
498 const struct in6_addr *a2)
499 {
500 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
501 const unsigned long *ul1 = (const unsigned long *)a1;
502 const unsigned long *ulm = (const unsigned long *)m;
503 const unsigned long *ul2 = (const unsigned long *)a2;
504
505 return !!(((ul1[0] ^ ul2[0]) & ulm[0]) |
506 ((ul1[1] ^ ul2[1]) & ulm[1]));
507 #else
508 return !!(((a1->s6_addr32[0] ^ a2->s6_addr32[0]) & m->s6_addr32[0]) |
509 ((a1->s6_addr32[1] ^ a2->s6_addr32[1]) & m->s6_addr32[1]) |
510 ((a1->s6_addr32[2] ^ a2->s6_addr32[2]) & m->s6_addr32[2]) |
511 ((a1->s6_addr32[3] ^ a2->s6_addr32[3]) & m->s6_addr32[3]));
512 #endif
513 }
514
515 static inline void ipv6_addr_prefix(struct in6_addr *pfx,
516 const struct in6_addr *addr,
517 int plen)
518 {
519 /* caller must guarantee 0 <= plen <= 128 */
520 int o = plen >> 3,
521 b = plen & 0x7;
522
523 memset(pfx->s6_addr, 0, sizeof(pfx->s6_addr));
524 memcpy(pfx->s6_addr, addr, o);
525 if (b != 0)
526 pfx->s6_addr[o] = addr->s6_addr[o] & (0xff00 >> b);
527 }
528
529 static inline void ipv6_addr_prefix_copy(struct in6_addr *addr,
530 const struct in6_addr *pfx,
531 int plen)
532 {
533 /* caller must guarantee 0 <= plen <= 128 */
534 int o = plen >> 3,
535 b = plen & 0x7;
536
537 memcpy(addr->s6_addr, pfx, o);
538 if (b != 0) {
539 addr->s6_addr[o] &= ~(0xff00 >> b);
540 addr->s6_addr[o] |= (pfx->s6_addr[o] & (0xff00 >> b));
541 }
542 }
543
544 static inline void __ipv6_addr_set_half(__be32 *addr,
545 __be32 wh, __be32 wl)
546 {
547 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
548 #if defined(__BIG_ENDIAN)
549 if (__builtin_constant_p(wh) && __builtin_constant_p(wl)) {
550 *(__force u64 *)addr = ((__force u64)(wh) << 32 | (__force u64)(wl));
551 return;
552 }
553 #elif defined(__LITTLE_ENDIAN)
554 if (__builtin_constant_p(wl) && __builtin_constant_p(wh)) {
555 *(__force u64 *)addr = ((__force u64)(wl) << 32 | (__force u64)(wh));
556 return;
557 }
558 #endif
559 #endif
560 addr[0] = wh;
561 addr[1] = wl;
562 }
563
564 static inline void ipv6_addr_set(struct in6_addr *addr,
565 __be32 w1, __be32 w2,
566 __be32 w3, __be32 w4)
567 {
568 __ipv6_addr_set_half(&addr->s6_addr32[0], w1, w2);
569 __ipv6_addr_set_half(&addr->s6_addr32[2], w3, w4);
570 }
571
572 static inline bool ipv6_addr_equal(const struct in6_addr *a1,
573 const struct in6_addr *a2)
574 {
575 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
576 const unsigned long *ul1 = (const unsigned long *)a1;
577 const unsigned long *ul2 = (const unsigned long *)a2;
578
579 return ((ul1[0] ^ ul2[0]) | (ul1[1] ^ ul2[1])) == 0UL;
580 #else
581 return ((a1->s6_addr32[0] ^ a2->s6_addr32[0]) |
582 (a1->s6_addr32[1] ^ a2->s6_addr32[1]) |
583 (a1->s6_addr32[2] ^ a2->s6_addr32[2]) |
584 (a1->s6_addr32[3] ^ a2->s6_addr32[3])) == 0;
585 #endif
586 }
587
588 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
589 static inline bool __ipv6_prefix_equal64_half(const __be64 *a1,
590 const __be64 *a2,
591 unsigned int len)
592 {
593 if (len && ((*a1 ^ *a2) & cpu_to_be64((~0UL) << (64 - len))))
594 return false;
595 return true;
596 }
597
598 static inline bool ipv6_prefix_equal(const struct in6_addr *addr1,
599 const struct in6_addr *addr2,
600 unsigned int prefixlen)
601 {
602 const __be64 *a1 = (const __be64 *)addr1;
603 const __be64 *a2 = (const __be64 *)addr2;
604
605 if (prefixlen >= 64) {
606 if (a1[0] ^ a2[0])
607 return false;
608 return __ipv6_prefix_equal64_half(a1 + 1, a2 + 1, prefixlen - 64);
609 }
610 return __ipv6_prefix_equal64_half(a1, a2, prefixlen);
611 }
612 #else
613 static inline bool ipv6_prefix_equal(const struct in6_addr *addr1,
614 const struct in6_addr *addr2,
615 unsigned int prefixlen)
616 {
617 const __be32 *a1 = addr1->s6_addr32;
618 const __be32 *a2 = addr2->s6_addr32;
619 unsigned int pdw, pbi;
620
621 /* check complete u32 in prefix */
622 pdw = prefixlen >> 5;
623 if (pdw && memcmp(a1, a2, pdw << 2))
624 return false;
625
626 /* check incomplete u32 in prefix */
627 pbi = prefixlen & 0x1f;
628 if (pbi && ((a1[pdw] ^ a2[pdw]) & htonl((0xffffffff) << (32 - pbi))))
629 return false;
630
631 return true;
632 }
633 #endif
634
635 static inline bool ipv6_addr_any(const struct in6_addr *a)
636 {
637 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
638 const unsigned long *ul = (const unsigned long *)a;
639
640 return (ul[0] | ul[1]) == 0UL;
641 #else
642 return (a->s6_addr32[0] | a->s6_addr32[1] |
643 a->s6_addr32[2] | a->s6_addr32[3]) == 0;
644 #endif
645 }
646
647 static inline u32 ipv6_addr_hash(const struct in6_addr *a)
648 {
649 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
650 const unsigned long *ul = (const unsigned long *)a;
651 unsigned long x = ul[0] ^ ul[1];
652
653 return (u32)(x ^ (x >> 32));
654 #else
655 return (__force u32)(a->s6_addr32[0] ^ a->s6_addr32[1] ^
656 a->s6_addr32[2] ^ a->s6_addr32[3]);
657 #endif
658 }
659
660 /* more secured version of ipv6_addr_hash() */
661 static inline u32 __ipv6_addr_jhash(const struct in6_addr *a, const u32 initval)
662 {
663 u32 v = (__force u32)a->s6_addr32[0] ^ (__force u32)a->s6_addr32[1];
664
665 return jhash_3words(v,
666 (__force u32)a->s6_addr32[2],
667 (__force u32)a->s6_addr32[3],
668 initval);
669 }
670
671 static inline bool ipv6_addr_loopback(const struct in6_addr *a)
672 {
673 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
674 const __be64 *be = (const __be64 *)a;
675
676 return (be[0] | (be[1] ^ cpu_to_be64(1))) == 0UL;
677 #else
678 return (a->s6_addr32[0] | a->s6_addr32[1] |
679 a->s6_addr32[2] | (a->s6_addr32[3] ^ cpu_to_be32(1))) == 0;
680 #endif
681 }
682
683 /*
684 * Note that we must __force cast these to unsigned long to make sparse happy,
685 * since all of the endian-annotated types are fixed size regardless of arch.
686 */
687 static inline bool ipv6_addr_v4mapped(const struct in6_addr *a)
688 {
689 return (
690 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
691 *(unsigned long *)a |
692 #else
693 (__force unsigned long)(a->s6_addr32[0] | a->s6_addr32[1]) |
694 #endif
695 (__force unsigned long)(a->s6_addr32[2] ^
696 cpu_to_be32(0x0000ffff))) == 0UL;
697 }
698
699 static inline u32 ipv6_portaddr_hash(const struct net *net,
700 const struct in6_addr *addr6,
701 unsigned int port)
702 {
703 unsigned int hash, mix = net_hash_mix(net);
704
705 if (ipv6_addr_any(addr6))
706 hash = jhash_1word(0, mix);
707 else if (ipv6_addr_v4mapped(addr6))
708 hash = jhash_1word((__force u32)addr6->s6_addr32[3], mix);
709 else
710 hash = jhash2((__force u32 *)addr6->s6_addr32, 4, mix);
711
712 return hash ^ port;
713 }
714
715 /*
716 * Check for a RFC 4843 ORCHID address
717 * (Overlay Routable Cryptographic Hash Identifiers)
718 */
719 static inline bool ipv6_addr_orchid(const struct in6_addr *a)
720 {
721 return (a->s6_addr32[0] & htonl(0xfffffff0)) == htonl(0x20010010);
722 }
723
724 static inline bool ipv6_addr_is_multicast(const struct in6_addr *addr)
725 {
726 return (addr->s6_addr32[0] & htonl(0xFF000000)) == htonl(0xFF000000);
727 }
728
729 static inline void ipv6_addr_set_v4mapped(const __be32 addr,
730 struct in6_addr *v4mapped)
731 {
732 ipv6_addr_set(v4mapped,
733 0, 0,
734 htonl(0x0000FFFF),
735 addr);
736 }
737
738 /*
739 * find the first different bit between two addresses
740 * length of address must be a multiple of 32bits
741 */
742 static inline int __ipv6_addr_diff32(const void *token1, const void *token2, int addrlen)
743 {
744 const __be32 *a1 = token1, *a2 = token2;
745 int i;
746
747 addrlen >>= 2;
748
749 for (i = 0; i < addrlen; i++) {
750 __be32 xb = a1[i] ^ a2[i];
751 if (xb)
752 return i * 32 + 31 - __fls(ntohl(xb));
753 }
754
755 /*
756 * we should *never* get to this point since that
757 * would mean the addrs are equal
758 *
759 * However, we do get to it 8) And exacly, when
760 * addresses are equal 8)
761 *
762 * ip route add 1111::/128 via ...
763 * ip route add 1111::/64 via ...
764 * and we are here.
765 *
766 * Ideally, this function should stop comparison
767 * at prefix length. It does not, but it is still OK,
768 * if returned value is greater than prefix length.
769 * --ANK (980803)
770 */
771 return addrlen << 5;
772 }
773
774 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
775 static inline int __ipv6_addr_diff64(const void *token1, const void *token2, int addrlen)
776 {
777 const __be64 *a1 = token1, *a2 = token2;
778 int i;
779
780 addrlen >>= 3;
781
782 for (i = 0; i < addrlen; i++) {
783 __be64 xb = a1[i] ^ a2[i];
784 if (xb)
785 return i * 64 + 63 - __fls(be64_to_cpu(xb));
786 }
787
788 return addrlen << 6;
789 }
790 #endif
791
792 static inline int __ipv6_addr_diff(const void *token1, const void *token2, int addrlen)
793 {
794 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
795 if (__builtin_constant_p(addrlen) && !(addrlen & 7))
796 return __ipv6_addr_diff64(token1, token2, addrlen);
797 #endif
798 return __ipv6_addr_diff32(token1, token2, addrlen);
799 }
800
801 static inline int ipv6_addr_diff(const struct in6_addr *a1, const struct in6_addr *a2)
802 {
803 return __ipv6_addr_diff(a1, a2, sizeof(struct in6_addr));
804 }
805
806 __be32 ipv6_select_ident(struct net *net,
807 const struct in6_addr *daddr,
808 const struct in6_addr *saddr);
809 __be32 ipv6_proxy_select_ident(struct net *net, struct sk_buff *skb);
810
811 int ip6_dst_hoplimit(struct dst_entry *dst);
812
813 static inline int ip6_sk_dst_hoplimit(struct ipv6_pinfo *np, struct flowi6 *fl6,
814 struct dst_entry *dst)
815 {
816 int hlimit;
817
818 if (ipv6_addr_is_multicast(&fl6->daddr))
819 hlimit = np->mcast_hops;
820 else
821 hlimit = np->hop_limit;
822 if (hlimit < 0)
823 hlimit = ip6_dst_hoplimit(dst);
824 return hlimit;
825 }
826
827 /* copy IPv6 saddr & daddr to flow_keys, possibly using 64bit load/store
828 * Equivalent to : flow->v6addrs.src = iph->saddr;
829 * flow->v6addrs.dst = iph->daddr;
830 */
831 static inline void iph_to_flow_copy_v6addrs(struct flow_keys *flow,
832 const struct ipv6hdr *iph)
833 {
834 BUILD_BUG_ON(offsetof(typeof(flow->addrs), v6addrs.dst) !=
835 offsetof(typeof(flow->addrs), v6addrs.src) +
836 sizeof(flow->addrs.v6addrs.src));
837 memcpy(&flow->addrs.v6addrs, &iph->saddr, sizeof(flow->addrs.v6addrs));
838 flow->control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
839 }
840
841 #if IS_ENABLED(CONFIG_IPV6)
842
843 static inline bool ipv6_can_nonlocal_bind(struct net *net,
844 struct inet_sock *inet)
845 {
846 return net->ipv6.sysctl.ip_nonlocal_bind ||
847 inet->freebind || inet->transparent;
848 }
849
850 /* Sysctl settings for net ipv6.auto_flowlabels */
851 #define IP6_AUTO_FLOW_LABEL_OFF 0
852 #define IP6_AUTO_FLOW_LABEL_OPTOUT 1
853 #define IP6_AUTO_FLOW_LABEL_OPTIN 2
854 #define IP6_AUTO_FLOW_LABEL_FORCED 3
855
856 #define IP6_AUTO_FLOW_LABEL_MAX IP6_AUTO_FLOW_LABEL_FORCED
857
858 #define IP6_DEFAULT_AUTO_FLOW_LABELS IP6_AUTO_FLOW_LABEL_OPTOUT
859
860 static inline __be32 ip6_make_flowlabel(struct net *net, struct sk_buff *skb,
861 __be32 flowlabel, bool autolabel,
862 struct flowi6 *fl6)
863 {
864 u32 hash;
865
866 /* @flowlabel may include more than a flow label, eg, the traffic class.
867 * Here we want only the flow label value.
868 */
869 flowlabel &= IPV6_FLOWLABEL_MASK;
870
871 if (flowlabel ||
872 net->ipv6.sysctl.auto_flowlabels == IP6_AUTO_FLOW_LABEL_OFF ||
873 (!autolabel &&
874 net->ipv6.sysctl.auto_flowlabels != IP6_AUTO_FLOW_LABEL_FORCED))
875 return flowlabel;
876
877 hash = skb_get_hash_flowi6(skb, fl6);
878
879 /* Since this is being sent on the wire obfuscate hash a bit
880 * to minimize possbility that any useful information to an
881 * attacker is leaked. Only lower 20 bits are relevant.
882 */
883 hash = rol32(hash, 16);
884
885 flowlabel = (__force __be32)hash & IPV6_FLOWLABEL_MASK;
886
887 if (net->ipv6.sysctl.flowlabel_state_ranges)
888 flowlabel |= IPV6_FLOWLABEL_STATELESS_FLAG;
889
890 return flowlabel;
891 }
892
893 static inline int ip6_default_np_autolabel(struct net *net)
894 {
895 switch (net->ipv6.sysctl.auto_flowlabels) {
896 case IP6_AUTO_FLOW_LABEL_OFF:
897 case IP6_AUTO_FLOW_LABEL_OPTIN:
898 default:
899 return 0;
900 case IP6_AUTO_FLOW_LABEL_OPTOUT:
901 case IP6_AUTO_FLOW_LABEL_FORCED:
902 return 1;
903 }
904 }
905 #else
906 static inline void ip6_set_txhash(struct sock *sk) { }
907 static inline __be32 ip6_make_flowlabel(struct net *net, struct sk_buff *skb,
908 __be32 flowlabel, bool autolabel,
909 struct flowi6 *fl6)
910 {
911 return flowlabel;
912 }
913 static inline int ip6_default_np_autolabel(struct net *net)
914 {
915 return 0;
916 }
917 #endif
918
919 #if IS_ENABLED(CONFIG_IPV6)
920 static inline int ip6_multipath_hash_policy(const struct net *net)
921 {
922 return net->ipv6.sysctl.multipath_hash_policy;
923 }
924 #else
925 static inline int ip6_multipath_hash_policy(const struct net *net)
926 {
927 return 0;
928 }
929 #endif
930
931 /*
932 * Header manipulation
933 */
934 static inline void ip6_flow_hdr(struct ipv6hdr *hdr, unsigned int tclass,
935 __be32 flowlabel)
936 {
937 *(__be32 *)hdr = htonl(0x60000000 | (tclass << 20)) | flowlabel;
938 }
939
940 static inline __be32 ip6_flowinfo(const struct ipv6hdr *hdr)
941 {
942 return *(__be32 *)hdr & IPV6_FLOWINFO_MASK;
943 }
944
945 static inline __be32 ip6_flowlabel(const struct ipv6hdr *hdr)
946 {
947 return *(__be32 *)hdr & IPV6_FLOWLABEL_MASK;
948 }
949
950 static inline u8 ip6_tclass(__be32 flowinfo)
951 {
952 return ntohl(flowinfo & IPV6_TCLASS_MASK) >> IPV6_TCLASS_SHIFT;
953 }
954
955 static inline __be32 ip6_make_flowinfo(unsigned int tclass, __be32 flowlabel)
956 {
957 return htonl(tclass << IPV6_TCLASS_SHIFT) | flowlabel;
958 }
959
960 static inline __be32 flowi6_get_flowlabel(const struct flowi6 *fl6)
961 {
962 return fl6->flowlabel & IPV6_FLOWLABEL_MASK;
963 }
964
965 /*
966 * Prototypes exported by ipv6
967 */
968
969 /*
970 * rcv function (called from netdevice level)
971 */
972
973 int ipv6_rcv(struct sk_buff *skb, struct net_device *dev,
974 struct packet_type *pt, struct net_device *orig_dev);
975 void ipv6_list_rcv(struct list_head *head, struct packet_type *pt,
976 struct net_device *orig_dev);
977
978 int ip6_rcv_finish(struct net *net, struct sock *sk, struct sk_buff *skb);
979
980 /*
981 * upper-layer output functions
982 */
983 int ip6_xmit(const struct sock *sk, struct sk_buff *skb, struct flowi6 *fl6,
984 __u32 mark, struct ipv6_txoptions *opt, int tclass);
985
986 int ip6_find_1stfragopt(struct sk_buff *skb, u8 **nexthdr);
987
988 int ip6_append_data(struct sock *sk,
989 int getfrag(void *from, char *to, int offset, int len,
990 int odd, struct sk_buff *skb),
991 void *from, int length, int transhdrlen,
992 struct ipcm6_cookie *ipc6, struct flowi6 *fl6,
993 struct rt6_info *rt, unsigned int flags);
994
995 int ip6_push_pending_frames(struct sock *sk);
996
997 void ip6_flush_pending_frames(struct sock *sk);
998
999 int ip6_send_skb(struct sk_buff *skb);
1000
1001 struct sk_buff *__ip6_make_skb(struct sock *sk, struct sk_buff_head *queue,
1002 struct inet_cork_full *cork,
1003 struct inet6_cork *v6_cork);
1004 struct sk_buff *ip6_make_skb(struct sock *sk,
1005 int getfrag(void *from, char *to, int offset,
1006 int len, int odd, struct sk_buff *skb),
1007 void *from, int length, int transhdrlen,
1008 struct ipcm6_cookie *ipc6, struct flowi6 *fl6,
1009 struct rt6_info *rt, unsigned int flags,
1010 struct inet_cork_full *cork);
1011
1012 static inline struct sk_buff *ip6_finish_skb(struct sock *sk)
1013 {
1014 return __ip6_make_skb(sk, &sk->sk_write_queue, &inet_sk(sk)->cork,
1015 &inet6_sk(sk)->cork);
1016 }
1017
1018 int ip6_dst_lookup(struct net *net, struct sock *sk, struct dst_entry **dst,
1019 struct flowi6 *fl6);
1020 struct dst_entry *ip6_dst_lookup_flow(const struct sock *sk, struct flowi6 *fl6,
1021 const struct in6_addr *final_dst);
1022 struct dst_entry *ip6_sk_dst_lookup_flow(struct sock *sk, struct flowi6 *fl6,
1023 const struct in6_addr *final_dst,
1024 bool connected);
1025 struct dst_entry *ip6_blackhole_route(struct net *net,
1026 struct dst_entry *orig_dst);
1027
1028 /*
1029 * skb processing functions
1030 */
1031
1032 int ip6_output(struct net *net, struct sock *sk, struct sk_buff *skb);
1033 int ip6_forward(struct sk_buff *skb);
1034 int ip6_input(struct sk_buff *skb);
1035 int ip6_mc_input(struct sk_buff *skb);
1036 void ip6_protocol_deliver_rcu(struct net *net, struct sk_buff *skb, int nexthdr,
1037 bool have_final);
1038
1039 int __ip6_local_out(struct net *net, struct sock *sk, struct sk_buff *skb);
1040 int ip6_local_out(struct net *net, struct sock *sk, struct sk_buff *skb);
1041
1042 /*
1043 * Extension header (options) processing
1044 */
1045
1046 void ipv6_push_nfrag_opts(struct sk_buff *skb, struct ipv6_txoptions *opt,
1047 u8 *proto, struct in6_addr **daddr_p,
1048 struct in6_addr *saddr);
1049 void ipv6_push_frag_opts(struct sk_buff *skb, struct ipv6_txoptions *opt,
1050 u8 *proto);
1051
1052 int ipv6_skip_exthdr(const struct sk_buff *, int start, u8 *nexthdrp,
1053 __be16 *frag_offp);
1054
1055 bool ipv6_ext_hdr(u8 nexthdr);
1056
1057 enum {
1058 IP6_FH_F_FRAG = (1 << 0),
1059 IP6_FH_F_AUTH = (1 << 1),
1060 IP6_FH_F_SKIP_RH = (1 << 2),
1061 };
1062
1063 /* find specified header and get offset to it */
1064 int ipv6_find_hdr(const struct sk_buff *skb, unsigned int *offset, int target,
1065 unsigned short *fragoff, int *fragflg);
1066
1067 int ipv6_find_tlv(const struct sk_buff *skb, int offset, int type);
1068
1069 struct in6_addr *fl6_update_dst(struct flowi6 *fl6,
1070 const struct ipv6_txoptions *opt,
1071 struct in6_addr *orig);
1072
1073 /*
1074 * socket options (ipv6_sockglue.c)
1075 */
1076
1077 int ipv6_setsockopt(struct sock *sk, int level, int optname,
1078 char __user *optval, unsigned int optlen);
1079 int ipv6_getsockopt(struct sock *sk, int level, int optname,
1080 char __user *optval, int __user *optlen);
1081 int compat_ipv6_setsockopt(struct sock *sk, int level, int optname,
1082 char __user *optval, unsigned int optlen);
1083 int compat_ipv6_getsockopt(struct sock *sk, int level, int optname,
1084 char __user *optval, int __user *optlen);
1085
1086 int __ip6_datagram_connect(struct sock *sk, struct sockaddr *addr,
1087 int addr_len);
1088 int ip6_datagram_connect(struct sock *sk, struct sockaddr *addr, int addr_len);
1089 int ip6_datagram_connect_v6_only(struct sock *sk, struct sockaddr *addr,
1090 int addr_len);
1091 int ip6_datagram_dst_update(struct sock *sk, bool fix_sk_saddr);
1092 void ip6_datagram_release_cb(struct sock *sk);
1093
1094 int ipv6_recv_error(struct sock *sk, struct msghdr *msg, int len,
1095 int *addr_len);
1096 int ipv6_recv_rxpmtu(struct sock *sk, struct msghdr *msg, int len,
1097 int *addr_len);
1098 void ipv6_icmp_error(struct sock *sk, struct sk_buff *skb, int err, __be16 port,
1099 u32 info, u8 *payload);
1100 void ipv6_local_error(struct sock *sk, int err, struct flowi6 *fl6, u32 info);
1101 void ipv6_local_rxpmtu(struct sock *sk, struct flowi6 *fl6, u32 mtu);
1102
1103 int inet6_release(struct socket *sock);
1104 int inet6_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len);
1105 int inet6_getname(struct socket *sock, struct sockaddr *uaddr,
1106 int peer);
1107 int inet6_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg);
1108
1109 int inet6_hash_connect(struct inet_timewait_death_row *death_row,
1110 struct sock *sk);
1111
1112 /*
1113 * reassembly.c
1114 */
1115 extern const struct proto_ops inet6_stream_ops;
1116 extern const struct proto_ops inet6_dgram_ops;
1117 extern const struct proto_ops inet6_sockraw_ops;
1118
1119 struct group_source_req;
1120 struct group_filter;
1121
1122 int ip6_mc_source(int add, int omode, struct sock *sk,
1123 struct group_source_req *pgsr);
1124 int ip6_mc_msfilter(struct sock *sk, struct group_filter *gsf);
1125 int ip6_mc_msfget(struct sock *sk, struct group_filter *gsf,
1126 struct group_filter __user *optval, int __user *optlen);
1127
1128 #ifdef CONFIG_PROC_FS
1129 int ac6_proc_init(struct net *net);
1130 void ac6_proc_exit(struct net *net);
1131 int raw6_proc_init(void);
1132 void raw6_proc_exit(void);
1133 int tcp6_proc_init(struct net *net);
1134 void tcp6_proc_exit(struct net *net);
1135 int udp6_proc_init(struct net *net);
1136 void udp6_proc_exit(struct net *net);
1137 int udplite6_proc_init(void);
1138 void udplite6_proc_exit(void);
1139 int ipv6_misc_proc_init(void);
1140 void ipv6_misc_proc_exit(void);
1141 int snmp6_register_dev(struct inet6_dev *idev);
1142 int snmp6_unregister_dev(struct inet6_dev *idev);
1143
1144 #else
1145 static inline int ac6_proc_init(struct net *net) { return 0; }
1146 static inline void ac6_proc_exit(struct net *net) { }
1147 static inline int snmp6_register_dev(struct inet6_dev *idev) { return 0; }
1148 static inline int snmp6_unregister_dev(struct inet6_dev *idev) { return 0; }
1149 #endif
1150
1151 #ifdef CONFIG_SYSCTL
1152 struct ctl_table *ipv6_icmp_sysctl_init(struct net *net);
1153 struct ctl_table *ipv6_route_sysctl_init(struct net *net);
1154 int ipv6_sysctl_register(void);
1155 void ipv6_sysctl_unregister(void);
1156 #endif
1157
1158 int ipv6_sock_mc_join(struct sock *sk, int ifindex,
1159 const struct in6_addr *addr);
1160 int ipv6_sock_mc_join_ssm(struct sock *sk, int ifindex,
1161 const struct in6_addr *addr, unsigned int mode);
1162 int ipv6_sock_mc_drop(struct sock *sk, int ifindex,
1163 const struct in6_addr *addr);
1164 #endif /* _NET_IPV6_H */