]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - include/net/mac80211.h
mac80211: tell driver when idle
[mirror_ubuntu-bionic-kernel.git] / include / net / mac80211.h
1 /*
2 * mac80211 <-> driver interface
3 *
4 * Copyright 2002-2005, Devicescape Software, Inc.
5 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
6 * Copyright 2007-2008 Johannes Berg <johannes@sipsolutions.net>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13 #ifndef MAC80211_H
14 #define MAC80211_H
15
16 #include <linux/kernel.h>
17 #include <linux/if_ether.h>
18 #include <linux/skbuff.h>
19 #include <linux/wireless.h>
20 #include <linux/device.h>
21 #include <linux/ieee80211.h>
22 #include <net/cfg80211.h>
23
24 /**
25 * DOC: Introduction
26 *
27 * mac80211 is the Linux stack for 802.11 hardware that implements
28 * only partial functionality in hard- or firmware. This document
29 * defines the interface between mac80211 and low-level hardware
30 * drivers.
31 */
32
33 /**
34 * DOC: Calling mac80211 from interrupts
35 *
36 * Only ieee80211_tx_status_irqsafe() and ieee80211_rx_irqsafe() can be
37 * called in hardware interrupt context. The low-level driver must not call any
38 * other functions in hardware interrupt context. If there is a need for such
39 * call, the low-level driver should first ACK the interrupt and perform the
40 * IEEE 802.11 code call after this, e.g. from a scheduled workqueue or even
41 * tasklet function.
42 *
43 * NOTE: If the driver opts to use the _irqsafe() functions, it may not also
44 * use the non-IRQ-safe functions!
45 */
46
47 /**
48 * DOC: Warning
49 *
50 * If you're reading this document and not the header file itself, it will
51 * be incomplete because not all documentation has been converted yet.
52 */
53
54 /**
55 * DOC: Frame format
56 *
57 * As a general rule, when frames are passed between mac80211 and the driver,
58 * they start with the IEEE 802.11 header and include the same octets that are
59 * sent over the air except for the FCS which should be calculated by the
60 * hardware.
61 *
62 * There are, however, various exceptions to this rule for advanced features:
63 *
64 * The first exception is for hardware encryption and decryption offload
65 * where the IV/ICV may or may not be generated in hardware.
66 *
67 * Secondly, when the hardware handles fragmentation, the frame handed to
68 * the driver from mac80211 is the MSDU, not the MPDU.
69 *
70 * Finally, for received frames, the driver is able to indicate that it has
71 * filled a radiotap header and put that in front of the frame; if it does
72 * not do so then mac80211 may add this under certain circumstances.
73 */
74
75 /**
76 * struct ieee80211_ht_bss_info - describing BSS's HT characteristics
77 *
78 * This structure describes most essential parameters needed
79 * to describe 802.11n HT characteristics in a BSS.
80 *
81 * @primary_channel: channel number of primery channel
82 * @bss_cap: 802.11n's general BSS capabilities (e.g. channel width)
83 * @bss_op_mode: 802.11n's BSS operation modes (e.g. HT protection)
84 */
85 struct ieee80211_ht_bss_info {
86 u8 primary_channel;
87 u8 bss_cap; /* use IEEE80211_HT_IE_CHA_ */
88 u8 bss_op_mode; /* use IEEE80211_HT_IE_ */
89 };
90
91 /**
92 * enum ieee80211_max_queues - maximum number of queues
93 *
94 * @IEEE80211_MAX_QUEUES: Maximum number of regular device queues.
95 */
96 enum ieee80211_max_queues {
97 IEEE80211_MAX_QUEUES = 4,
98 };
99
100 /**
101 * struct ieee80211_tx_queue_params - transmit queue configuration
102 *
103 * The information provided in this structure is required for QoS
104 * transmit queue configuration. Cf. IEEE 802.11 7.3.2.29.
105 *
106 * @aifs: arbitration interframe space [0..255]
107 * @cw_min: minimum contention window [a value of the form
108 * 2^n-1 in the range 1..32767]
109 * @cw_max: maximum contention window [like @cw_min]
110 * @txop: maximum burst time in units of 32 usecs, 0 meaning disabled
111 */
112 struct ieee80211_tx_queue_params {
113 u16 txop;
114 u16 cw_min;
115 u16 cw_max;
116 u8 aifs;
117 };
118
119 /**
120 * struct ieee80211_tx_queue_stats - transmit queue statistics
121 *
122 * @len: number of packets in queue
123 * @limit: queue length limit
124 * @count: number of frames sent
125 */
126 struct ieee80211_tx_queue_stats {
127 unsigned int len;
128 unsigned int limit;
129 unsigned int count;
130 };
131
132 struct ieee80211_low_level_stats {
133 unsigned int dot11ACKFailureCount;
134 unsigned int dot11RTSFailureCount;
135 unsigned int dot11FCSErrorCount;
136 unsigned int dot11RTSSuccessCount;
137 };
138
139 /**
140 * enum ieee80211_bss_change - BSS change notification flags
141 *
142 * These flags are used with the bss_info_changed() callback
143 * to indicate which BSS parameter changed.
144 *
145 * @BSS_CHANGED_ASSOC: association status changed (associated/disassociated),
146 * also implies a change in the AID.
147 * @BSS_CHANGED_ERP_CTS_PROT: CTS protection changed
148 * @BSS_CHANGED_ERP_PREAMBLE: preamble changed
149 * @BSS_CHANGED_ERP_SLOT: slot timing changed
150 * @BSS_CHANGED_HT: 802.11n parameters changed
151 * @BSS_CHANGED_BASIC_RATES: Basic rateset changed
152 * @BSS_CHANGED_BEACON_INT: Beacon interval changed
153 * @BSS_CHANGED_BSSID: BSSID changed, for whatever
154 * reason (IBSS and managed mode)
155 * @BSS_CHANGED_BEACON: Beacon data changed, retrieve
156 * new beacon (beaconing modes)
157 * @BSS_CHANGED_BEACON_ENABLED: Beaconing should be
158 * enabled/disabled (beaconing modes)
159 */
160 enum ieee80211_bss_change {
161 BSS_CHANGED_ASSOC = 1<<0,
162 BSS_CHANGED_ERP_CTS_PROT = 1<<1,
163 BSS_CHANGED_ERP_PREAMBLE = 1<<2,
164 BSS_CHANGED_ERP_SLOT = 1<<3,
165 BSS_CHANGED_HT = 1<<4,
166 BSS_CHANGED_BASIC_RATES = 1<<5,
167 BSS_CHANGED_BEACON_INT = 1<<6,
168 BSS_CHANGED_BSSID = 1<<7,
169 BSS_CHANGED_BEACON = 1<<8,
170 BSS_CHANGED_BEACON_ENABLED = 1<<9,
171 };
172
173 /**
174 * struct ieee80211_bss_ht_conf - BSS's changing HT configuration
175 * @operation_mode: HT operation mode (like in &struct ieee80211_ht_info)
176 */
177 struct ieee80211_bss_ht_conf {
178 u16 operation_mode;
179 };
180
181 /**
182 * struct ieee80211_bss_conf - holds the BSS's changing parameters
183 *
184 * This structure keeps information about a BSS (and an association
185 * to that BSS) that can change during the lifetime of the BSS.
186 *
187 * @assoc: association status
188 * @aid: association ID number, valid only when @assoc is true
189 * @use_cts_prot: use CTS protection
190 * @use_short_preamble: use 802.11b short preamble;
191 * if the hardware cannot handle this it must set the
192 * IEEE80211_HW_2GHZ_SHORT_PREAMBLE_INCAPABLE hardware flag
193 * @use_short_slot: use short slot time (only relevant for ERP);
194 * if the hardware cannot handle this it must set the
195 * IEEE80211_HW_2GHZ_SHORT_SLOT_INCAPABLE hardware flag
196 * @dtim_period: num of beacons before the next DTIM, for PSM
197 * @timestamp: beacon timestamp
198 * @beacon_int: beacon interval
199 * @assoc_capability: capabilities taken from assoc resp
200 * @ht: BSS's HT configuration
201 * @basic_rates: bitmap of basic rates, each bit stands for an
202 * index into the rate table configured by the driver in
203 * the current band.
204 * @bssid: The BSSID for this BSS
205 * @enable_beacon: whether beaconing should be enabled or not
206 */
207 struct ieee80211_bss_conf {
208 const u8 *bssid;
209 /* association related data */
210 bool assoc;
211 u16 aid;
212 /* erp related data */
213 bool use_cts_prot;
214 bool use_short_preamble;
215 bool use_short_slot;
216 bool enable_beacon;
217 u8 dtim_period;
218 u16 beacon_int;
219 u16 assoc_capability;
220 u64 timestamp;
221 u32 basic_rates;
222 struct ieee80211_bss_ht_conf ht;
223 };
224
225 /**
226 * enum mac80211_tx_control_flags - flags to describe transmission information/status
227 *
228 * These flags are used with the @flags member of &ieee80211_tx_info.
229 *
230 * @IEEE80211_TX_CTL_REQ_TX_STATUS: request TX status callback for this frame.
231 * @IEEE80211_TX_CTL_ASSIGN_SEQ: The driver has to assign a sequence
232 * number to this frame, taking care of not overwriting the fragment
233 * number and increasing the sequence number only when the
234 * IEEE80211_TX_CTL_FIRST_FRAGMENT flag is set. mac80211 will properly
235 * assign sequence numbers to QoS-data frames but cannot do so correctly
236 * for non-QoS-data and management frames because beacons need them from
237 * that counter as well and mac80211 cannot guarantee proper sequencing.
238 * If this flag is set, the driver should instruct the hardware to
239 * assign a sequence number to the frame or assign one itself. Cf. IEEE
240 * 802.11-2007 7.1.3.4.1 paragraph 3. This flag will always be set for
241 * beacons and always be clear for frames without a sequence number field.
242 * @IEEE80211_TX_CTL_NO_ACK: tell the low level not to wait for an ack
243 * @IEEE80211_TX_CTL_CLEAR_PS_FILT: clear powersave filter for destination
244 * station
245 * @IEEE80211_TX_CTL_FIRST_FRAGMENT: this is a first fragment of the frame
246 * @IEEE80211_TX_CTL_SEND_AFTER_DTIM: send this frame after DTIM beacon
247 * @IEEE80211_TX_CTL_AMPDU: this frame should be sent as part of an A-MPDU
248 * @IEEE80211_TX_CTL_INJECTED: Frame was injected, internal to mac80211.
249 * @IEEE80211_TX_STAT_TX_FILTERED: The frame was not transmitted
250 * because the destination STA was in powersave mode.
251 * @IEEE80211_TX_STAT_ACK: Frame was acknowledged
252 * @IEEE80211_TX_STAT_AMPDU: The frame was aggregated, so status
253 * is for the whole aggregation.
254 * @IEEE80211_TX_STAT_AMPDU_NO_BACK: no block ack was returned,
255 * so consider using block ack request (BAR).
256 * @IEEE80211_TX_CTL_RATE_CTRL_PROBE: internal to mac80211, can be
257 * set by rate control algorithms to indicate probe rate, will
258 * be cleared for fragmented frames (except on the last fragment)
259 * @IEEE80211_TX_INTFL_RCALGO: mac80211 internal flag, do not test or
260 * set this flag in the driver; indicates that the rate control
261 * algorithm was used and should be notified of TX status
262 * @IEEE80211_TX_INTFL_NEED_TXPROCESSING: completely internal to mac80211,
263 * used to indicate that a pending frame requires TX processing before
264 * it can be sent out.
265 */
266 enum mac80211_tx_control_flags {
267 IEEE80211_TX_CTL_REQ_TX_STATUS = BIT(0),
268 IEEE80211_TX_CTL_ASSIGN_SEQ = BIT(1),
269 IEEE80211_TX_CTL_NO_ACK = BIT(2),
270 IEEE80211_TX_CTL_CLEAR_PS_FILT = BIT(3),
271 IEEE80211_TX_CTL_FIRST_FRAGMENT = BIT(4),
272 IEEE80211_TX_CTL_SEND_AFTER_DTIM = BIT(5),
273 IEEE80211_TX_CTL_AMPDU = BIT(6),
274 IEEE80211_TX_CTL_INJECTED = BIT(7),
275 IEEE80211_TX_STAT_TX_FILTERED = BIT(8),
276 IEEE80211_TX_STAT_ACK = BIT(9),
277 IEEE80211_TX_STAT_AMPDU = BIT(10),
278 IEEE80211_TX_STAT_AMPDU_NO_BACK = BIT(11),
279 IEEE80211_TX_CTL_RATE_CTRL_PROBE = BIT(12),
280 IEEE80211_TX_INTFL_RCALGO = BIT(13),
281 IEEE80211_TX_INTFL_NEED_TXPROCESSING = BIT(14),
282 };
283
284 /**
285 * enum mac80211_rate_control_flags - per-rate flags set by the
286 * Rate Control algorithm.
287 *
288 * These flags are set by the Rate control algorithm for each rate during tx,
289 * in the @flags member of struct ieee80211_tx_rate.
290 *
291 * @IEEE80211_TX_RC_USE_RTS_CTS: Use RTS/CTS exchange for this rate.
292 * @IEEE80211_TX_RC_USE_CTS_PROTECT: CTS-to-self protection is required.
293 * This is set if the current BSS requires ERP protection.
294 * @IEEE80211_TX_RC_USE_SHORT_PREAMBLE: Use short preamble.
295 * @IEEE80211_TX_RC_MCS: HT rate.
296 * @IEEE80211_TX_RC_GREEN_FIELD: Indicates whether this rate should be used in
297 * Greenfield mode.
298 * @IEEE80211_TX_RC_40_MHZ_WIDTH: Indicates if the Channel Width should be 40 MHz.
299 * @IEEE80211_TX_RC_DUP_DATA: The frame should be transmitted on both of the
300 * adjacent 20 MHz channels, if the current channel type is
301 * NL80211_CHAN_HT40MINUS or NL80211_CHAN_HT40PLUS.
302 * @IEEE80211_TX_RC_SHORT_GI: Short Guard interval should be used for this rate.
303 */
304 enum mac80211_rate_control_flags {
305 IEEE80211_TX_RC_USE_RTS_CTS = BIT(0),
306 IEEE80211_TX_RC_USE_CTS_PROTECT = BIT(1),
307 IEEE80211_TX_RC_USE_SHORT_PREAMBLE = BIT(2),
308
309 /* rate index is an MCS rate number instead of an index */
310 IEEE80211_TX_RC_MCS = BIT(3),
311 IEEE80211_TX_RC_GREEN_FIELD = BIT(4),
312 IEEE80211_TX_RC_40_MHZ_WIDTH = BIT(5),
313 IEEE80211_TX_RC_DUP_DATA = BIT(6),
314 IEEE80211_TX_RC_SHORT_GI = BIT(7),
315 };
316
317
318 /* there are 40 bytes if you don't need the rateset to be kept */
319 #define IEEE80211_TX_INFO_DRIVER_DATA_SIZE 40
320
321 /* if you do need the rateset, then you have less space */
322 #define IEEE80211_TX_INFO_RATE_DRIVER_DATA_SIZE 24
323
324 /* maximum number of rate stages */
325 #define IEEE80211_TX_MAX_RATES 5
326
327 /**
328 * struct ieee80211_tx_rate - rate selection/status
329 *
330 * @idx: rate index to attempt to send with
331 * @flags: rate control flags (&enum mac80211_rate_control_flags)
332 * @count: number of tries in this rate before going to the next rate
333 *
334 * A value of -1 for @idx indicates an invalid rate and, if used
335 * in an array of retry rates, that no more rates should be tried.
336 *
337 * When used for transmit status reporting, the driver should
338 * always report the rate along with the flags it used.
339 */
340 struct ieee80211_tx_rate {
341 s8 idx;
342 u8 count;
343 u8 flags;
344 } __attribute__((packed));
345
346 /**
347 * struct ieee80211_tx_info - skb transmit information
348 *
349 * This structure is placed in skb->cb for three uses:
350 * (1) mac80211 TX control - mac80211 tells the driver what to do
351 * (2) driver internal use (if applicable)
352 * (3) TX status information - driver tells mac80211 what happened
353 *
354 * The TX control's sta pointer is only valid during the ->tx call,
355 * it may be NULL.
356 *
357 * @flags: transmit info flags, defined above
358 * @band: the band to transmit on (use for checking for races)
359 * @antenna_sel_tx: antenna to use, 0 for automatic diversity
360 * @pad: padding, ignore
361 * @control: union for control data
362 * @status: union for status data
363 * @driver_data: array of driver_data pointers
364 * @ampdu_ack_len: number of aggregated frames.
365 * relevant only if IEEE80211_TX_STATUS_AMPDU was set.
366 * @ampdu_ack_map: block ack bit map for the aggregation.
367 * relevant only if IEEE80211_TX_STATUS_AMPDU was set.
368 * @ack_signal: signal strength of the ACK frame
369 */
370 struct ieee80211_tx_info {
371 /* common information */
372 u32 flags;
373 u8 band;
374
375 u8 antenna_sel_tx;
376
377 /* 2 byte hole */
378 u8 pad[2];
379
380 union {
381 struct {
382 union {
383 /* rate control */
384 struct {
385 struct ieee80211_tx_rate rates[
386 IEEE80211_TX_MAX_RATES];
387 s8 rts_cts_rate_idx;
388 };
389 /* only needed before rate control */
390 unsigned long jiffies;
391 };
392 /* NB: vif can be NULL for injected frames */
393 struct ieee80211_vif *vif;
394 struct ieee80211_key_conf *hw_key;
395 struct ieee80211_sta *sta;
396 } control;
397 struct {
398 struct ieee80211_tx_rate rates[IEEE80211_TX_MAX_RATES];
399 u8 ampdu_ack_len;
400 u64 ampdu_ack_map;
401 int ack_signal;
402 /* 8 bytes free */
403 } status;
404 struct {
405 struct ieee80211_tx_rate driver_rates[
406 IEEE80211_TX_MAX_RATES];
407 void *rate_driver_data[
408 IEEE80211_TX_INFO_RATE_DRIVER_DATA_SIZE / sizeof(void *)];
409 };
410 void *driver_data[
411 IEEE80211_TX_INFO_DRIVER_DATA_SIZE / sizeof(void *)];
412 };
413 };
414
415 static inline struct ieee80211_tx_info *IEEE80211_SKB_CB(struct sk_buff *skb)
416 {
417 return (struct ieee80211_tx_info *)skb->cb;
418 }
419
420 /**
421 * ieee80211_tx_info_clear_status - clear TX status
422 *
423 * @info: The &struct ieee80211_tx_info to be cleared.
424 *
425 * When the driver passes an skb back to mac80211, it must report
426 * a number of things in TX status. This function clears everything
427 * in the TX status but the rate control information (it does clear
428 * the count since you need to fill that in anyway).
429 *
430 * NOTE: You can only use this function if you do NOT use
431 * info->driver_data! Use info->rate_driver_data
432 * instead if you need only the less space that allows.
433 */
434 static inline void
435 ieee80211_tx_info_clear_status(struct ieee80211_tx_info *info)
436 {
437 int i;
438
439 BUILD_BUG_ON(offsetof(struct ieee80211_tx_info, status.rates) !=
440 offsetof(struct ieee80211_tx_info, control.rates));
441 BUILD_BUG_ON(offsetof(struct ieee80211_tx_info, status.rates) !=
442 offsetof(struct ieee80211_tx_info, driver_rates));
443 BUILD_BUG_ON(offsetof(struct ieee80211_tx_info, status.rates) != 8);
444 /* clear the rate counts */
445 for (i = 0; i < IEEE80211_TX_MAX_RATES; i++)
446 info->status.rates[i].count = 0;
447
448 BUILD_BUG_ON(
449 offsetof(struct ieee80211_tx_info, status.ampdu_ack_len) != 23);
450 memset(&info->status.ampdu_ack_len, 0,
451 sizeof(struct ieee80211_tx_info) -
452 offsetof(struct ieee80211_tx_info, status.ampdu_ack_len));
453 }
454
455
456 /**
457 * enum mac80211_rx_flags - receive flags
458 *
459 * These flags are used with the @flag member of &struct ieee80211_rx_status.
460 * @RX_FLAG_MMIC_ERROR: Michael MIC error was reported on this frame.
461 * Use together with %RX_FLAG_MMIC_STRIPPED.
462 * @RX_FLAG_DECRYPTED: This frame was decrypted in hardware.
463 * @RX_FLAG_RADIOTAP: This frame starts with a radiotap header.
464 * @RX_FLAG_MMIC_STRIPPED: the Michael MIC is stripped off this frame,
465 * verification has been done by the hardware.
466 * @RX_FLAG_IV_STRIPPED: The IV/ICV are stripped from this frame.
467 * If this flag is set, the stack cannot do any replay detection
468 * hence the driver or hardware will have to do that.
469 * @RX_FLAG_FAILED_FCS_CRC: Set this flag if the FCS check failed on
470 * the frame.
471 * @RX_FLAG_FAILED_PLCP_CRC: Set this flag if the PCLP check failed on
472 * the frame.
473 * @RX_FLAG_TSFT: The timestamp passed in the RX status (@mactime field)
474 * is valid. This is useful in monitor mode and necessary for beacon frames
475 * to enable IBSS merging.
476 * @RX_FLAG_SHORTPRE: Short preamble was used for this frame
477 * @RX_FLAG_HT: HT MCS was used and rate_idx is MCS index
478 * @RX_FLAG_40MHZ: HT40 (40 MHz) was used
479 * @RX_FLAG_SHORT_GI: Short guard interval was used
480 */
481 enum mac80211_rx_flags {
482 RX_FLAG_MMIC_ERROR = 1<<0,
483 RX_FLAG_DECRYPTED = 1<<1,
484 RX_FLAG_RADIOTAP = 1<<2,
485 RX_FLAG_MMIC_STRIPPED = 1<<3,
486 RX_FLAG_IV_STRIPPED = 1<<4,
487 RX_FLAG_FAILED_FCS_CRC = 1<<5,
488 RX_FLAG_FAILED_PLCP_CRC = 1<<6,
489 RX_FLAG_TSFT = 1<<7,
490 RX_FLAG_SHORTPRE = 1<<8,
491 RX_FLAG_HT = 1<<9,
492 RX_FLAG_40MHZ = 1<<10,
493 RX_FLAG_SHORT_GI = 1<<11,
494 };
495
496 /**
497 * struct ieee80211_rx_status - receive status
498 *
499 * The low-level driver should provide this information (the subset
500 * supported by hardware) to the 802.11 code with each received
501 * frame.
502 *
503 * @mactime: value in microseconds of the 64-bit Time Synchronization Function
504 * (TSF) timer when the first data symbol (MPDU) arrived at the hardware.
505 * @band: the active band when this frame was received
506 * @freq: frequency the radio was tuned to when receiving this frame, in MHz
507 * @signal: signal strength when receiving this frame, either in dBm, in dB or
508 * unspecified depending on the hardware capabilities flags
509 * @IEEE80211_HW_SIGNAL_*
510 * @noise: noise when receiving this frame, in dBm.
511 * @qual: overall signal quality indication, in percent (0-100).
512 * @antenna: antenna used
513 * @rate_idx: index of data rate into band's supported rates or MCS index if
514 * HT rates are use (RX_FLAG_HT)
515 * @flag: %RX_FLAG_*
516 */
517 struct ieee80211_rx_status {
518 u64 mactime;
519 enum ieee80211_band band;
520 int freq;
521 int signal;
522 int noise;
523 int qual;
524 int antenna;
525 int rate_idx;
526 int flag;
527 };
528
529 /**
530 * enum ieee80211_conf_flags - configuration flags
531 *
532 * Flags to define PHY configuration options
533 *
534 * @IEEE80211_CONF_RADIOTAP: add radiotap header at receive time (if supported)
535 * @IEEE80211_CONF_PS: Enable 802.11 power save mode (managed mode only)
536 * @IEEE80211_CONF_IDLE: The device is running, but idle; if the flag is set
537 * the driver should be prepared to handle configuration requests but
538 * may turn the device off as much as possible. Typically, this flag will
539 * be set when an interface is set UP but not associated or scanning, but
540 * it can also be unset in that case when monitor interfaces are active.
541 */
542 enum ieee80211_conf_flags {
543 IEEE80211_CONF_RADIOTAP = (1<<0),
544 IEEE80211_CONF_PS = (1<<1),
545 IEEE80211_CONF_IDLE = (1<<2),
546 };
547
548
549 /**
550 * enum ieee80211_conf_changed - denotes which configuration changed
551 *
552 * @IEEE80211_CONF_CHANGE_RADIO_ENABLED: the value of radio_enabled changed
553 * @_IEEE80211_CONF_CHANGE_BEACON_INTERVAL: DEPRECATED
554 * @IEEE80211_CONF_CHANGE_LISTEN_INTERVAL: the listen interval changed
555 * @IEEE80211_CONF_CHANGE_RADIOTAP: the radiotap flag changed
556 * @IEEE80211_CONF_CHANGE_PS: the PS flag or dynamic PS timeout changed
557 * @IEEE80211_CONF_CHANGE_POWER: the TX power changed
558 * @IEEE80211_CONF_CHANGE_CHANNEL: the channel/channel_type changed
559 * @IEEE80211_CONF_CHANGE_RETRY_LIMITS: retry limits changed
560 * @IEEE80211_CONF_CHANGE_IDLE: Idle flag changed
561 */
562 enum ieee80211_conf_changed {
563 IEEE80211_CONF_CHANGE_RADIO_ENABLED = BIT(0),
564 _IEEE80211_CONF_CHANGE_BEACON_INTERVAL = BIT(1),
565 IEEE80211_CONF_CHANGE_LISTEN_INTERVAL = BIT(2),
566 IEEE80211_CONF_CHANGE_RADIOTAP = BIT(3),
567 IEEE80211_CONF_CHANGE_PS = BIT(4),
568 IEEE80211_CONF_CHANGE_POWER = BIT(5),
569 IEEE80211_CONF_CHANGE_CHANNEL = BIT(6),
570 IEEE80211_CONF_CHANGE_RETRY_LIMITS = BIT(7),
571 IEEE80211_CONF_CHANGE_IDLE = BIT(8),
572 };
573
574 static inline __deprecated enum ieee80211_conf_changed
575 __IEEE80211_CONF_CHANGE_BEACON_INTERVAL(void)
576 {
577 return _IEEE80211_CONF_CHANGE_BEACON_INTERVAL;
578 }
579 #define IEEE80211_CONF_CHANGE_BEACON_INTERVAL \
580 __IEEE80211_CONF_CHANGE_BEACON_INTERVAL()
581
582 /**
583 * struct ieee80211_conf - configuration of the device
584 *
585 * This struct indicates how the driver shall configure the hardware.
586 *
587 * @flags: configuration flags defined above
588 *
589 * @radio_enabled: when zero, driver is required to switch off the radio.
590 * @beacon_int: beacon interval (TODO make interface config)
591 *
592 * @listen_interval: listen interval in units of beacon interval
593 * @max_sleep_period: the maximum number of beacon intervals to sleep for
594 * before checking the beacon for a TIM bit (managed mode only); this
595 * value will be only achievable between DTIM frames, the hardware
596 * needs to check for the multicast traffic bit in DTIM beacons.
597 * This variable is valid only when the CONF_PS flag is set.
598 * @dynamic_ps_timeout: The dynamic powersave timeout (in ms), see the
599 * powersave documentation below. This variable is valid only when
600 * the CONF_PS flag is set.
601 *
602 * @power_level: requested transmit power (in dBm)
603 *
604 * @channel: the channel to tune to
605 * @channel_type: the channel (HT) type
606 *
607 * @long_frame_max_tx_count: Maximum number of transmissions for a "long" frame
608 * (a frame not RTS protected), called "dot11LongRetryLimit" in 802.11,
609 * but actually means the number of transmissions not the number of retries
610 * @short_frame_max_tx_count: Maximum number of transmissions for a "short"
611 * frame, called "dot11ShortRetryLimit" in 802.11, but actually means the
612 * number of transmissions not the number of retries
613 */
614 struct ieee80211_conf {
615 int beacon_int;
616 u32 flags;
617 int power_level, dynamic_ps_timeout;
618 int max_sleep_period;
619
620 u16 listen_interval;
621 bool radio_enabled;
622
623 u8 long_frame_max_tx_count, short_frame_max_tx_count;
624
625 struct ieee80211_channel *channel;
626 enum nl80211_channel_type channel_type;
627 };
628
629 /**
630 * struct ieee80211_vif - per-interface data
631 *
632 * Data in this structure is continually present for driver
633 * use during the life of a virtual interface.
634 *
635 * @type: type of this virtual interface
636 * @bss_conf: BSS configuration for this interface, either our own
637 * or the BSS we're associated to
638 * @drv_priv: data area for driver use, will always be aligned to
639 * sizeof(void *).
640 */
641 struct ieee80211_vif {
642 enum nl80211_iftype type;
643 struct ieee80211_bss_conf bss_conf;
644 /* must be last */
645 u8 drv_priv[0] __attribute__((__aligned__(sizeof(void *))));
646 };
647
648 static inline bool ieee80211_vif_is_mesh(struct ieee80211_vif *vif)
649 {
650 #ifdef CONFIG_MAC80211_MESH
651 return vif->type == NL80211_IFTYPE_MESH_POINT;
652 #endif
653 return false;
654 }
655
656 /**
657 * struct ieee80211_if_init_conf - initial configuration of an interface
658 *
659 * @vif: pointer to a driver-use per-interface structure. The pointer
660 * itself is also used for various functions including
661 * ieee80211_beacon_get() and ieee80211_get_buffered_bc().
662 * @type: one of &enum nl80211_iftype constants. Determines the type of
663 * added/removed interface.
664 * @mac_addr: pointer to MAC address of the interface. This pointer is valid
665 * until the interface is removed (i.e. it cannot be used after
666 * remove_interface() callback was called for this interface).
667 *
668 * This structure is used in add_interface() and remove_interface()
669 * callbacks of &struct ieee80211_hw.
670 *
671 * When you allow multiple interfaces to be added to your PHY, take care
672 * that the hardware can actually handle multiple MAC addresses. However,
673 * also take care that when there's no interface left with mac_addr != %NULL
674 * you remove the MAC address from the device to avoid acknowledging packets
675 * in pure monitor mode.
676 */
677 struct ieee80211_if_init_conf {
678 enum nl80211_iftype type;
679 struct ieee80211_vif *vif;
680 void *mac_addr;
681 };
682
683 /**
684 * enum ieee80211_key_alg - key algorithm
685 * @ALG_WEP: WEP40 or WEP104
686 * @ALG_TKIP: TKIP
687 * @ALG_CCMP: CCMP (AES)
688 * @ALG_AES_CMAC: AES-128-CMAC
689 */
690 enum ieee80211_key_alg {
691 ALG_WEP,
692 ALG_TKIP,
693 ALG_CCMP,
694 ALG_AES_CMAC,
695 };
696
697 /**
698 * enum ieee80211_key_len - key length
699 * @LEN_WEP40: WEP 5-byte long key
700 * @LEN_WEP104: WEP 13-byte long key
701 */
702 enum ieee80211_key_len {
703 LEN_WEP40 = 5,
704 LEN_WEP104 = 13,
705 };
706
707 /**
708 * enum ieee80211_key_flags - key flags
709 *
710 * These flags are used for communication about keys between the driver
711 * and mac80211, with the @flags parameter of &struct ieee80211_key_conf.
712 *
713 * @IEEE80211_KEY_FLAG_WMM_STA: Set by mac80211, this flag indicates
714 * that the STA this key will be used with could be using QoS.
715 * @IEEE80211_KEY_FLAG_GENERATE_IV: This flag should be set by the
716 * driver to indicate that it requires IV generation for this
717 * particular key.
718 * @IEEE80211_KEY_FLAG_GENERATE_MMIC: This flag should be set by
719 * the driver for a TKIP key if it requires Michael MIC
720 * generation in software.
721 * @IEEE80211_KEY_FLAG_PAIRWISE: Set by mac80211, this flag indicates
722 * that the key is pairwise rather then a shared key.
723 * @IEEE80211_KEY_FLAG_SW_MGMT: This flag should be set by the driver for a
724 * CCMP key if it requires CCMP encryption of management frames (MFP) to
725 * be done in software.
726 */
727 enum ieee80211_key_flags {
728 IEEE80211_KEY_FLAG_WMM_STA = 1<<0,
729 IEEE80211_KEY_FLAG_GENERATE_IV = 1<<1,
730 IEEE80211_KEY_FLAG_GENERATE_MMIC= 1<<2,
731 IEEE80211_KEY_FLAG_PAIRWISE = 1<<3,
732 IEEE80211_KEY_FLAG_SW_MGMT = 1<<4,
733 };
734
735 /**
736 * struct ieee80211_key_conf - key information
737 *
738 * This key information is given by mac80211 to the driver by
739 * the set_key() callback in &struct ieee80211_ops.
740 *
741 * @hw_key_idx: To be set by the driver, this is the key index the driver
742 * wants to be given when a frame is transmitted and needs to be
743 * encrypted in hardware.
744 * @alg: The key algorithm.
745 * @flags: key flags, see &enum ieee80211_key_flags.
746 * @keyidx: the key index (0-3)
747 * @keylen: key material length
748 * @key: key material. For ALG_TKIP the key is encoded as a 256-bit (32 byte)
749 * data block:
750 * - Temporal Encryption Key (128 bits)
751 * - Temporal Authenticator Tx MIC Key (64 bits)
752 * - Temporal Authenticator Rx MIC Key (64 bits)
753 * @icv_len: The ICV length for this key type
754 * @iv_len: The IV length for this key type
755 */
756 struct ieee80211_key_conf {
757 enum ieee80211_key_alg alg;
758 u8 icv_len;
759 u8 iv_len;
760 u8 hw_key_idx;
761 u8 flags;
762 s8 keyidx;
763 u8 keylen;
764 u8 key[0];
765 };
766
767 /**
768 * enum set_key_cmd - key command
769 *
770 * Used with the set_key() callback in &struct ieee80211_ops, this
771 * indicates whether a key is being removed or added.
772 *
773 * @SET_KEY: a key is set
774 * @DISABLE_KEY: a key must be disabled
775 */
776 enum set_key_cmd {
777 SET_KEY, DISABLE_KEY,
778 };
779
780 /**
781 * struct ieee80211_sta - station table entry
782 *
783 * A station table entry represents a station we are possibly
784 * communicating with. Since stations are RCU-managed in
785 * mac80211, any ieee80211_sta pointer you get access to must
786 * either be protected by rcu_read_lock() explicitly or implicitly,
787 * or you must take good care to not use such a pointer after a
788 * call to your sta_notify callback that removed it.
789 *
790 * @addr: MAC address
791 * @aid: AID we assigned to the station if we're an AP
792 * @supp_rates: Bitmap of supported rates (per band)
793 * @ht_cap: HT capabilities of this STA; restricted to our own TX capabilities
794 * @drv_priv: data area for driver use, will always be aligned to
795 * sizeof(void *), size is determined in hw information.
796 */
797 struct ieee80211_sta {
798 u32 supp_rates[IEEE80211_NUM_BANDS];
799 u8 addr[ETH_ALEN];
800 u16 aid;
801 struct ieee80211_sta_ht_cap ht_cap;
802
803 /* must be last */
804 u8 drv_priv[0] __attribute__((__aligned__(sizeof(void *))));
805 };
806
807 /**
808 * enum sta_notify_cmd - sta notify command
809 *
810 * Used with the sta_notify() callback in &struct ieee80211_ops, this
811 * indicates addition and removal of a station to station table,
812 * or if a associated station made a power state transition.
813 *
814 * @STA_NOTIFY_ADD: a station was added to the station table
815 * @STA_NOTIFY_REMOVE: a station being removed from the station table
816 * @STA_NOTIFY_SLEEP: a station is now sleeping
817 * @STA_NOTIFY_AWAKE: a sleeping station woke up
818 */
819 enum sta_notify_cmd {
820 STA_NOTIFY_ADD, STA_NOTIFY_REMOVE,
821 STA_NOTIFY_SLEEP, STA_NOTIFY_AWAKE,
822 };
823
824 /**
825 * enum ieee80211_tkip_key_type - get tkip key
826 *
827 * Used by drivers which need to get a tkip key for skb. Some drivers need a
828 * phase 1 key, others need a phase 2 key. A single function allows the driver
829 * to get the key, this enum indicates what type of key is required.
830 *
831 * @IEEE80211_TKIP_P1_KEY: the driver needs a phase 1 key
832 * @IEEE80211_TKIP_P2_KEY: the driver needs a phase 2 key
833 */
834 enum ieee80211_tkip_key_type {
835 IEEE80211_TKIP_P1_KEY,
836 IEEE80211_TKIP_P2_KEY,
837 };
838
839 /**
840 * enum ieee80211_hw_flags - hardware flags
841 *
842 * These flags are used to indicate hardware capabilities to
843 * the stack. Generally, flags here should have their meaning
844 * done in a way that the simplest hardware doesn't need setting
845 * any particular flags. There are some exceptions to this rule,
846 * however, so you are advised to review these flags carefully.
847 *
848 * @IEEE80211_HW_RX_INCLUDES_FCS:
849 * Indicates that received frames passed to the stack include
850 * the FCS at the end.
851 *
852 * @IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING:
853 * Some wireless LAN chipsets buffer broadcast/multicast frames
854 * for power saving stations in the hardware/firmware and others
855 * rely on the host system for such buffering. This option is used
856 * to configure the IEEE 802.11 upper layer to buffer broadcast and
857 * multicast frames when there are power saving stations so that
858 * the driver can fetch them with ieee80211_get_buffered_bc().
859 *
860 * @IEEE80211_HW_2GHZ_SHORT_SLOT_INCAPABLE:
861 * Hardware is not capable of short slot operation on the 2.4 GHz band.
862 *
863 * @IEEE80211_HW_2GHZ_SHORT_PREAMBLE_INCAPABLE:
864 * Hardware is not capable of receiving frames with short preamble on
865 * the 2.4 GHz band.
866 *
867 * @IEEE80211_HW_SIGNAL_UNSPEC:
868 * Hardware can provide signal values but we don't know its units. We
869 * expect values between 0 and @max_signal.
870 * If possible please provide dB or dBm instead.
871 *
872 * @IEEE80211_HW_SIGNAL_DBM:
873 * Hardware gives signal values in dBm, decibel difference from
874 * one milliwatt. This is the preferred method since it is standardized
875 * between different devices. @max_signal does not need to be set.
876 *
877 * @IEEE80211_HW_NOISE_DBM:
878 * Hardware can provide noise (radio interference) values in units dBm,
879 * decibel difference from one milliwatt.
880 *
881 * @IEEE80211_HW_SPECTRUM_MGMT:
882 * Hardware supports spectrum management defined in 802.11h
883 * Measurement, Channel Switch, Quieting, TPC
884 *
885 * @IEEE80211_HW_AMPDU_AGGREGATION:
886 * Hardware supports 11n A-MPDU aggregation.
887 *
888 * @IEEE80211_HW_SUPPORTS_PS:
889 * Hardware has power save support (i.e. can go to sleep).
890 *
891 * @IEEE80211_HW_PS_NULLFUNC_STACK:
892 * Hardware requires nullfunc frame handling in stack, implies
893 * stack support for dynamic PS.
894 *
895 * @IEEE80211_HW_SUPPORTS_DYNAMIC_PS:
896 * Hardware has support for dynamic PS.
897 *
898 * @IEEE80211_HW_MFP_CAPABLE:
899 * Hardware supports management frame protection (MFP, IEEE 802.11w).
900 *
901 * @IEEE80211_HW_BEACON_FILTER:
902 * Hardware supports dropping of irrelevant beacon frames to
903 * avoid waking up cpu.
904 */
905 enum ieee80211_hw_flags {
906 IEEE80211_HW_RX_INCLUDES_FCS = 1<<1,
907 IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING = 1<<2,
908 IEEE80211_HW_2GHZ_SHORT_SLOT_INCAPABLE = 1<<3,
909 IEEE80211_HW_2GHZ_SHORT_PREAMBLE_INCAPABLE = 1<<4,
910 IEEE80211_HW_SIGNAL_UNSPEC = 1<<5,
911 IEEE80211_HW_SIGNAL_DBM = 1<<6,
912 IEEE80211_HW_NOISE_DBM = 1<<7,
913 IEEE80211_HW_SPECTRUM_MGMT = 1<<8,
914 IEEE80211_HW_AMPDU_AGGREGATION = 1<<9,
915 IEEE80211_HW_SUPPORTS_PS = 1<<10,
916 IEEE80211_HW_PS_NULLFUNC_STACK = 1<<11,
917 IEEE80211_HW_SUPPORTS_DYNAMIC_PS = 1<<12,
918 IEEE80211_HW_MFP_CAPABLE = 1<<13,
919 IEEE80211_HW_BEACON_FILTER = 1<<14,
920 };
921
922 /**
923 * struct ieee80211_hw - hardware information and state
924 *
925 * This structure contains the configuration and hardware
926 * information for an 802.11 PHY.
927 *
928 * @wiphy: This points to the &struct wiphy allocated for this
929 * 802.11 PHY. You must fill in the @perm_addr and @dev
930 * members of this structure using SET_IEEE80211_DEV()
931 * and SET_IEEE80211_PERM_ADDR(). Additionally, all supported
932 * bands (with channels, bitrates) are registered here.
933 *
934 * @conf: &struct ieee80211_conf, device configuration, don't use.
935 *
936 * @workqueue: single threaded workqueue available for driver use,
937 * allocated by mac80211 on registration and flushed when an
938 * interface is removed.
939 * NOTICE: All work performed on this workqueue must not
940 * acquire the RTNL lock.
941 *
942 * @priv: pointer to private area that was allocated for driver use
943 * along with this structure.
944 *
945 * @flags: hardware flags, see &enum ieee80211_hw_flags.
946 *
947 * @extra_tx_headroom: headroom to reserve in each transmit skb
948 * for use by the driver (e.g. for transmit headers.)
949 *
950 * @channel_change_time: time (in microseconds) it takes to change channels.
951 *
952 * @max_signal: Maximum value for signal (rssi) in RX information, used
953 * only when @IEEE80211_HW_SIGNAL_UNSPEC or @IEEE80211_HW_SIGNAL_DB
954 *
955 * @max_listen_interval: max listen interval in units of beacon interval
956 * that HW supports
957 *
958 * @queues: number of available hardware transmit queues for
959 * data packets. WMM/QoS requires at least four, these
960 * queues need to have configurable access parameters.
961 *
962 * @rate_control_algorithm: rate control algorithm for this hardware.
963 * If unset (NULL), the default algorithm will be used. Must be
964 * set before calling ieee80211_register_hw().
965 *
966 * @vif_data_size: size (in bytes) of the drv_priv data area
967 * within &struct ieee80211_vif.
968 * @sta_data_size: size (in bytes) of the drv_priv data area
969 * within &struct ieee80211_sta.
970 *
971 * @max_rates: maximum number of alternate rate retry stages
972 * @max_rate_tries: maximum number of tries for each stage
973 */
974 struct ieee80211_hw {
975 struct ieee80211_conf conf;
976 struct wiphy *wiphy;
977 struct workqueue_struct *workqueue;
978 const char *rate_control_algorithm;
979 void *priv;
980 u32 flags;
981 unsigned int extra_tx_headroom;
982 int channel_change_time;
983 int vif_data_size;
984 int sta_data_size;
985 u16 queues;
986 u16 max_listen_interval;
987 s8 max_signal;
988 u8 max_rates;
989 u8 max_rate_tries;
990 };
991
992 /**
993 * wiphy_to_ieee80211_hw - return a mac80211 driver hw struct from a wiphy
994 *
995 * @wiphy: the &struct wiphy which we want to query
996 *
997 * mac80211 drivers can use this to get to their respective
998 * &struct ieee80211_hw. Drivers wishing to get to their own private
999 * structure can then access it via hw->priv. Note that mac802111 drivers should
1000 * not use wiphy_priv() to try to get their private driver structure as this
1001 * is already used internally by mac80211.
1002 */
1003 struct ieee80211_hw *wiphy_to_ieee80211_hw(struct wiphy *wiphy);
1004
1005 /**
1006 * SET_IEEE80211_DEV - set device for 802.11 hardware
1007 *
1008 * @hw: the &struct ieee80211_hw to set the device for
1009 * @dev: the &struct device of this 802.11 device
1010 */
1011 static inline void SET_IEEE80211_DEV(struct ieee80211_hw *hw, struct device *dev)
1012 {
1013 set_wiphy_dev(hw->wiphy, dev);
1014 }
1015
1016 /**
1017 * SET_IEEE80211_PERM_ADDR - set the permanent MAC address for 802.11 hardware
1018 *
1019 * @hw: the &struct ieee80211_hw to set the MAC address for
1020 * @addr: the address to set
1021 */
1022 static inline void SET_IEEE80211_PERM_ADDR(struct ieee80211_hw *hw, u8 *addr)
1023 {
1024 memcpy(hw->wiphy->perm_addr, addr, ETH_ALEN);
1025 }
1026
1027 static inline struct ieee80211_rate *
1028 ieee80211_get_tx_rate(const struct ieee80211_hw *hw,
1029 const struct ieee80211_tx_info *c)
1030 {
1031 if (WARN_ON(c->control.rates[0].idx < 0))
1032 return NULL;
1033 return &hw->wiphy->bands[c->band]->bitrates[c->control.rates[0].idx];
1034 }
1035
1036 static inline struct ieee80211_rate *
1037 ieee80211_get_rts_cts_rate(const struct ieee80211_hw *hw,
1038 const struct ieee80211_tx_info *c)
1039 {
1040 if (c->control.rts_cts_rate_idx < 0)
1041 return NULL;
1042 return &hw->wiphy->bands[c->band]->bitrates[c->control.rts_cts_rate_idx];
1043 }
1044
1045 static inline struct ieee80211_rate *
1046 ieee80211_get_alt_retry_rate(const struct ieee80211_hw *hw,
1047 const struct ieee80211_tx_info *c, int idx)
1048 {
1049 if (c->control.rates[idx + 1].idx < 0)
1050 return NULL;
1051 return &hw->wiphy->bands[c->band]->bitrates[c->control.rates[idx + 1].idx];
1052 }
1053
1054 /**
1055 * DOC: Hardware crypto acceleration
1056 *
1057 * mac80211 is capable of taking advantage of many hardware
1058 * acceleration designs for encryption and decryption operations.
1059 *
1060 * The set_key() callback in the &struct ieee80211_ops for a given
1061 * device is called to enable hardware acceleration of encryption and
1062 * decryption. The callback takes a @sta parameter that will be NULL
1063 * for default keys or keys used for transmission only, or point to
1064 * the station information for the peer for individual keys.
1065 * Multiple transmission keys with the same key index may be used when
1066 * VLANs are configured for an access point.
1067 *
1068 * When transmitting, the TX control data will use the @hw_key_idx
1069 * selected by the driver by modifying the &struct ieee80211_key_conf
1070 * pointed to by the @key parameter to the set_key() function.
1071 *
1072 * The set_key() call for the %SET_KEY command should return 0 if
1073 * the key is now in use, -%EOPNOTSUPP or -%ENOSPC if it couldn't be
1074 * added; if you return 0 then hw_key_idx must be assigned to the
1075 * hardware key index, you are free to use the full u8 range.
1076 *
1077 * When the cmd is %DISABLE_KEY then it must succeed.
1078 *
1079 * Note that it is permissible to not decrypt a frame even if a key
1080 * for it has been uploaded to hardware, the stack will not make any
1081 * decision based on whether a key has been uploaded or not but rather
1082 * based on the receive flags.
1083 *
1084 * The &struct ieee80211_key_conf structure pointed to by the @key
1085 * parameter is guaranteed to be valid until another call to set_key()
1086 * removes it, but it can only be used as a cookie to differentiate
1087 * keys.
1088 *
1089 * In TKIP some HW need to be provided a phase 1 key, for RX decryption
1090 * acceleration (i.e. iwlwifi). Those drivers should provide update_tkip_key
1091 * handler.
1092 * The update_tkip_key() call updates the driver with the new phase 1 key.
1093 * This happens everytime the iv16 wraps around (every 65536 packets). The
1094 * set_key() call will happen only once for each key (unless the AP did
1095 * rekeying), it will not include a valid phase 1 key. The valid phase 1 key is
1096 * provided by update_tkip_key only. The trigger that makes mac80211 call this
1097 * handler is software decryption with wrap around of iv16.
1098 */
1099
1100 /**
1101 * DOC: Powersave support
1102 *
1103 * mac80211 has support for various powersave implementations.
1104 *
1105 * First, it can support hardware that handles all powersaving by
1106 * itself, such hardware should simply set the %IEEE80211_HW_SUPPORTS_PS
1107 * hardware flag. In that case, it will be told about the desired
1108 * powersave mode depending on the association status, and the driver
1109 * must take care of sending nullfunc frames when necessary, i.e. when
1110 * entering and leaving powersave mode. The driver is required to look at
1111 * the AID in beacons and signal to the AP that it woke up when it finds
1112 * traffic directed to it. This mode supports dynamic PS by simply
1113 * enabling/disabling PS.
1114 *
1115 * Additionally, such hardware may set the %IEEE80211_HW_SUPPORTS_DYNAMIC_PS
1116 * flag to indicate that it can support dynamic PS mode itself (see below).
1117 *
1118 * Other hardware designs cannot send nullfunc frames by themselves and also
1119 * need software support for parsing the TIM bitmap. This is also supported
1120 * by mac80211 by combining the %IEEE80211_HW_SUPPORTS_PS and
1121 * %IEEE80211_HW_PS_NULLFUNC_STACK flags. The hardware is of course still
1122 * required to pass up beacons. The hardware is still required to handle
1123 * waking up for multicast traffic; if it cannot the driver must handle that
1124 * as best as it can, mac80211 is too slow.
1125 *
1126 * Dynamic powersave mode is an extension to normal powersave mode in which
1127 * the hardware stays awake for a user-specified period of time after sending
1128 * a frame so that reply frames need not be buffered and therefore delayed
1129 * to the next wakeup. This can either be supported by hardware, in which case
1130 * the driver needs to look at the @dynamic_ps_timeout hardware configuration
1131 * value, or by the stack if all nullfunc handling is in the stack.
1132 */
1133
1134 /**
1135 * DOC: Beacon filter support
1136 *
1137 * Some hardware have beacon filter support to reduce host cpu wakeups
1138 * which will reduce system power consumption. It usuallly works so that
1139 * the firmware creates a checksum of the beacon but omits all constantly
1140 * changing elements (TSF, TIM etc). Whenever the checksum changes the
1141 * beacon is forwarded to the host, otherwise it will be just dropped. That
1142 * way the host will only receive beacons where some relevant information
1143 * (for example ERP protection or WMM settings) have changed.
1144 *
1145 * Beacon filter support is advertised with the %IEEE80211_HW_BEACON_FILTER
1146 * hardware capability. The driver needs to enable beacon filter support
1147 * whenever power save is enabled, that is %IEEE80211_CONF_PS is set. When
1148 * power save is enabled, the stack will not check for beacon loss and the
1149 * driver needs to notify about loss of beacons with ieee80211_beacon_loss().
1150 *
1151 * The time (or number of beacons missed) until the firmware notifies the
1152 * driver of a beacon loss event (which in turn causes the driver to call
1153 * ieee80211_beacon_loss()) should be configurable and will be controlled
1154 * by mac80211 and the roaming algorithm in the future.
1155 *
1156 * Since there may be constantly changing information elements that nothing
1157 * in the software stack cares about, we will, in the future, have mac80211
1158 * tell the driver which information elements are interesting in the sense
1159 * that we want to see changes in them. This will include
1160 * - a list of information element IDs
1161 * - a list of OUIs for the vendor information element
1162 *
1163 * Ideally, the hardware would filter out any beacons without changes in the
1164 * requested elements, but if it cannot support that it may, at the expense
1165 * of some efficiency, filter out only a subset. For example, if the device
1166 * doesn't support checking for OUIs it should pass up all changes in all
1167 * vendor information elements.
1168 *
1169 * Note that change, for the sake of simplification, also includes information
1170 * elements appearing or disappearing from the beacon.
1171 *
1172 * Some hardware supports an "ignore list" instead, just make sure nothing
1173 * that was requested is on the ignore list, and include commonly changing
1174 * information element IDs in the ignore list, for example 11 (BSS load) and
1175 * the various vendor-assigned IEs with unknown contents (128, 129, 133-136,
1176 * 149, 150, 155, 156, 173, 176, 178, 179, 219); for forward compatibility
1177 * it could also include some currently unused IDs.
1178 *
1179 *
1180 * In addition to these capabilities, hardware should support notifying the
1181 * host of changes in the beacon RSSI. This is relevant to implement roaming
1182 * when no traffic is flowing (when traffic is flowing we see the RSSI of
1183 * the received data packets). This can consist in notifying the host when
1184 * the RSSI changes significantly or when it drops below or rises above
1185 * configurable thresholds. In the future these thresholds will also be
1186 * configured by mac80211 (which gets them from userspace) to implement
1187 * them as the roaming algorithm requires.
1188 *
1189 * If the hardware cannot implement this, the driver should ask it to
1190 * periodically pass beacon frames to the host so that software can do the
1191 * signal strength threshold checking.
1192 */
1193
1194 /**
1195 * DOC: Frame filtering
1196 *
1197 * mac80211 requires to see many management frames for proper
1198 * operation, and users may want to see many more frames when
1199 * in monitor mode. However, for best CPU usage and power consumption,
1200 * having as few frames as possible percolate through the stack is
1201 * desirable. Hence, the hardware should filter as much as possible.
1202 *
1203 * To achieve this, mac80211 uses filter flags (see below) to tell
1204 * the driver's configure_filter() function which frames should be
1205 * passed to mac80211 and which should be filtered out.
1206 *
1207 * The configure_filter() callback is invoked with the parameters
1208 * @mc_count and @mc_list for the combined multicast address list
1209 * of all virtual interfaces, @changed_flags telling which flags
1210 * were changed and @total_flags with the new flag states.
1211 *
1212 * If your device has no multicast address filters your driver will
1213 * need to check both the %FIF_ALLMULTI flag and the @mc_count
1214 * parameter to see whether multicast frames should be accepted
1215 * or dropped.
1216 *
1217 * All unsupported flags in @total_flags must be cleared.
1218 * Hardware does not support a flag if it is incapable of _passing_
1219 * the frame to the stack. Otherwise the driver must ignore
1220 * the flag, but not clear it.
1221 * You must _only_ clear the flag (announce no support for the
1222 * flag to mac80211) if you are not able to pass the packet type
1223 * to the stack (so the hardware always filters it).
1224 * So for example, you should clear @FIF_CONTROL, if your hardware
1225 * always filters control frames. If your hardware always passes
1226 * control frames to the kernel and is incapable of filtering them,
1227 * you do _not_ clear the @FIF_CONTROL flag.
1228 * This rule applies to all other FIF flags as well.
1229 */
1230
1231 /**
1232 * enum ieee80211_filter_flags - hardware filter flags
1233 *
1234 * These flags determine what the filter in hardware should be
1235 * programmed to let through and what should not be passed to the
1236 * stack. It is always safe to pass more frames than requested,
1237 * but this has negative impact on power consumption.
1238 *
1239 * @FIF_PROMISC_IN_BSS: promiscuous mode within your BSS,
1240 * think of the BSS as your network segment and then this corresponds
1241 * to the regular ethernet device promiscuous mode.
1242 *
1243 * @FIF_ALLMULTI: pass all multicast frames, this is used if requested
1244 * by the user or if the hardware is not capable of filtering by
1245 * multicast address.
1246 *
1247 * @FIF_FCSFAIL: pass frames with failed FCS (but you need to set the
1248 * %RX_FLAG_FAILED_FCS_CRC for them)
1249 *
1250 * @FIF_PLCPFAIL: pass frames with failed PLCP CRC (but you need to set
1251 * the %RX_FLAG_FAILED_PLCP_CRC for them
1252 *
1253 * @FIF_BCN_PRBRESP_PROMISC: This flag is set during scanning to indicate
1254 * to the hardware that it should not filter beacons or probe responses
1255 * by BSSID. Filtering them can greatly reduce the amount of processing
1256 * mac80211 needs to do and the amount of CPU wakeups, so you should
1257 * honour this flag if possible.
1258 *
1259 * @FIF_CONTROL: pass control frames, if PROMISC_IN_BSS is not set then
1260 * only those addressed to this station
1261 *
1262 * @FIF_OTHER_BSS: pass frames destined to other BSSes
1263 */
1264 enum ieee80211_filter_flags {
1265 FIF_PROMISC_IN_BSS = 1<<0,
1266 FIF_ALLMULTI = 1<<1,
1267 FIF_FCSFAIL = 1<<2,
1268 FIF_PLCPFAIL = 1<<3,
1269 FIF_BCN_PRBRESP_PROMISC = 1<<4,
1270 FIF_CONTROL = 1<<5,
1271 FIF_OTHER_BSS = 1<<6,
1272 };
1273
1274 /**
1275 * enum ieee80211_ampdu_mlme_action - A-MPDU actions
1276 *
1277 * These flags are used with the ampdu_action() callback in
1278 * &struct ieee80211_ops to indicate which action is needed.
1279 * @IEEE80211_AMPDU_RX_START: start Rx aggregation
1280 * @IEEE80211_AMPDU_RX_STOP: stop Rx aggregation
1281 * @IEEE80211_AMPDU_TX_START: start Tx aggregation
1282 * @IEEE80211_AMPDU_TX_STOP: stop Tx aggregation
1283 * @IEEE80211_AMPDU_TX_OPERATIONAL: TX aggregation has become operational
1284 */
1285 enum ieee80211_ampdu_mlme_action {
1286 IEEE80211_AMPDU_RX_START,
1287 IEEE80211_AMPDU_RX_STOP,
1288 IEEE80211_AMPDU_TX_START,
1289 IEEE80211_AMPDU_TX_STOP,
1290 IEEE80211_AMPDU_TX_OPERATIONAL,
1291 };
1292
1293 /**
1294 * struct ieee80211_ops - callbacks from mac80211 to the driver
1295 *
1296 * This structure contains various callbacks that the driver may
1297 * handle or, in some cases, must handle, for example to configure
1298 * the hardware to a new channel or to transmit a frame.
1299 *
1300 * @tx: Handler that 802.11 module calls for each transmitted frame.
1301 * skb contains the buffer starting from the IEEE 802.11 header.
1302 * The low-level driver should send the frame out based on
1303 * configuration in the TX control data. This handler should,
1304 * preferably, never fail and stop queues appropriately, more
1305 * importantly, however, it must never fail for A-MPDU-queues.
1306 * This function should return NETDEV_TX_OK except in very
1307 * limited cases.
1308 * Must be implemented and atomic.
1309 *
1310 * @start: Called before the first netdevice attached to the hardware
1311 * is enabled. This should turn on the hardware and must turn on
1312 * frame reception (for possibly enabled monitor interfaces.)
1313 * Returns negative error codes, these may be seen in userspace,
1314 * or zero.
1315 * When the device is started it should not have a MAC address
1316 * to avoid acknowledging frames before a non-monitor device
1317 * is added.
1318 * Must be implemented.
1319 *
1320 * @stop: Called after last netdevice attached to the hardware
1321 * is disabled. This should turn off the hardware (at least
1322 * it must turn off frame reception.)
1323 * May be called right after add_interface if that rejects
1324 * an interface.
1325 * Must be implemented.
1326 *
1327 * @add_interface: Called when a netdevice attached to the hardware is
1328 * enabled. Because it is not called for monitor mode devices, @start
1329 * and @stop must be implemented.
1330 * The driver should perform any initialization it needs before
1331 * the device can be enabled. The initial configuration for the
1332 * interface is given in the conf parameter.
1333 * The callback may refuse to add an interface by returning a
1334 * negative error code (which will be seen in userspace.)
1335 * Must be implemented.
1336 *
1337 * @remove_interface: Notifies a driver that an interface is going down.
1338 * The @stop callback is called after this if it is the last interface
1339 * and no monitor interfaces are present.
1340 * When all interfaces are removed, the MAC address in the hardware
1341 * must be cleared so the device no longer acknowledges packets,
1342 * the mac_addr member of the conf structure is, however, set to the
1343 * MAC address of the device going away.
1344 * Hence, this callback must be implemented.
1345 *
1346 * @config: Handler for configuration requests. IEEE 802.11 code calls this
1347 * function to change hardware configuration, e.g., channel.
1348 * This function should never fail but returns a negative error code
1349 * if it does.
1350 *
1351 * @bss_info_changed: Handler for configuration requests related to BSS
1352 * parameters that may vary during BSS's lifespan, and may affect low
1353 * level driver (e.g. assoc/disassoc status, erp parameters).
1354 * This function should not be used if no BSS has been set, unless
1355 * for association indication. The @changed parameter indicates which
1356 * of the bss parameters has changed when a call is made.
1357 *
1358 * @configure_filter: Configure the device's RX filter.
1359 * See the section "Frame filtering" for more information.
1360 * This callback must be implemented and atomic.
1361 *
1362 * @set_tim: Set TIM bit. mac80211 calls this function when a TIM bit
1363 * must be set or cleared for a given STA. Must be atomic.
1364 *
1365 * @set_key: See the section "Hardware crypto acceleration"
1366 * This callback can sleep, and is only called between add_interface
1367 * and remove_interface calls, i.e. while the given virtual interface
1368 * is enabled.
1369 * Returns a negative error code if the key can't be added.
1370 *
1371 * @update_tkip_key: See the section "Hardware crypto acceleration"
1372 * This callback will be called in the context of Rx. Called for drivers
1373 * which set IEEE80211_KEY_FLAG_TKIP_REQ_RX_P1_KEY.
1374 *
1375 * @hw_scan: Ask the hardware to service the scan request, no need to start
1376 * the scan state machine in stack. The scan must honour the channel
1377 * configuration done by the regulatory agent in the wiphy's
1378 * registered bands. The hardware (or the driver) needs to make sure
1379 * that power save is disabled.
1380 * The @req ie/ie_len members are rewritten by mac80211 to contain the
1381 * entire IEs after the SSID, so that drivers need not look at these
1382 * at all but just send them after the SSID -- mac80211 includes the
1383 * (extended) supported rates and HT information (where applicable).
1384 * When the scan finishes, ieee80211_scan_completed() must be called;
1385 * note that it also must be called when the scan cannot finish due to
1386 * any error unless this callback returned a negative error code.
1387 *
1388 * @sw_scan_start: Notifier function that is called just before a software scan
1389 * is started. Can be NULL, if the driver doesn't need this notification.
1390 *
1391 * @sw_scan_complete: Notifier function that is called just after a software scan
1392 * finished. Can be NULL, if the driver doesn't need this notification.
1393 *
1394 * @get_stats: Return low-level statistics.
1395 * Returns zero if statistics are available.
1396 *
1397 * @get_tkip_seq: If your device implements TKIP encryption in hardware this
1398 * callback should be provided to read the TKIP transmit IVs (both IV32
1399 * and IV16) for the given key from hardware.
1400 *
1401 * @set_rts_threshold: Configuration of RTS threshold (if device needs it)
1402 *
1403 * @sta_notify: Notifies low level driver about addition, removal or power
1404 * state transition of an associated station, AP, IBSS/WDS/mesh peer etc.
1405 * Must be atomic.
1406 *
1407 * @conf_tx: Configure TX queue parameters (EDCF (aifs, cw_min, cw_max),
1408 * bursting) for a hardware TX queue.
1409 * Returns a negative error code on failure.
1410 *
1411 * @get_tx_stats: Get statistics of the current TX queue status. This is used
1412 * to get number of currently queued packets (queue length), maximum queue
1413 * size (limit), and total number of packets sent using each TX queue
1414 * (count). The 'stats' pointer points to an array that has hw->queues
1415 * items.
1416 *
1417 * @get_tsf: Get the current TSF timer value from firmware/hardware. Currently,
1418 * this is only used for IBSS mode BSSID merging and debugging. Is not a
1419 * required function.
1420 *
1421 * @set_tsf: Set the TSF timer to the specified value in the firmware/hardware.
1422 * Currently, this is only used for IBSS mode debugging. Is not a
1423 * required function.
1424 *
1425 * @reset_tsf: Reset the TSF timer and allow firmware/hardware to synchronize
1426 * with other STAs in the IBSS. This is only used in IBSS mode. This
1427 * function is optional if the firmware/hardware takes full care of
1428 * TSF synchronization.
1429 *
1430 * @tx_last_beacon: Determine whether the last IBSS beacon was sent by us.
1431 * This is needed only for IBSS mode and the result of this function is
1432 * used to determine whether to reply to Probe Requests.
1433 * Returns non-zero if this device sent the last beacon.
1434 *
1435 * @ampdu_action: Perform a certain A-MPDU action
1436 * The RA/TID combination determines the destination and TID we want
1437 * the ampdu action to be performed for. The action is defined through
1438 * ieee80211_ampdu_mlme_action. Starting sequence number (@ssn)
1439 * is the first frame we expect to perform the action on. Notice
1440 * that TX/RX_STOP can pass NULL for this parameter.
1441 * Returns a negative error code on failure.
1442 */
1443 struct ieee80211_ops {
1444 int (*tx)(struct ieee80211_hw *hw, struct sk_buff *skb);
1445 int (*start)(struct ieee80211_hw *hw);
1446 void (*stop)(struct ieee80211_hw *hw);
1447 int (*add_interface)(struct ieee80211_hw *hw,
1448 struct ieee80211_if_init_conf *conf);
1449 void (*remove_interface)(struct ieee80211_hw *hw,
1450 struct ieee80211_if_init_conf *conf);
1451 int (*config)(struct ieee80211_hw *hw, u32 changed);
1452 void (*bss_info_changed)(struct ieee80211_hw *hw,
1453 struct ieee80211_vif *vif,
1454 struct ieee80211_bss_conf *info,
1455 u32 changed);
1456 void (*configure_filter)(struct ieee80211_hw *hw,
1457 unsigned int changed_flags,
1458 unsigned int *total_flags,
1459 int mc_count, struct dev_addr_list *mc_list);
1460 int (*set_tim)(struct ieee80211_hw *hw, struct ieee80211_sta *sta,
1461 bool set);
1462 int (*set_key)(struct ieee80211_hw *hw, enum set_key_cmd cmd,
1463 struct ieee80211_vif *vif, struct ieee80211_sta *sta,
1464 struct ieee80211_key_conf *key);
1465 void (*update_tkip_key)(struct ieee80211_hw *hw,
1466 struct ieee80211_key_conf *conf, const u8 *address,
1467 u32 iv32, u16 *phase1key);
1468 int (*hw_scan)(struct ieee80211_hw *hw,
1469 struct cfg80211_scan_request *req);
1470 void (*sw_scan_start)(struct ieee80211_hw *hw);
1471 void (*sw_scan_complete)(struct ieee80211_hw *hw);
1472 int (*get_stats)(struct ieee80211_hw *hw,
1473 struct ieee80211_low_level_stats *stats);
1474 void (*get_tkip_seq)(struct ieee80211_hw *hw, u8 hw_key_idx,
1475 u32 *iv32, u16 *iv16);
1476 int (*set_rts_threshold)(struct ieee80211_hw *hw, u32 value);
1477 void (*sta_notify)(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
1478 enum sta_notify_cmd, struct ieee80211_sta *sta);
1479 int (*conf_tx)(struct ieee80211_hw *hw, u16 queue,
1480 const struct ieee80211_tx_queue_params *params);
1481 int (*get_tx_stats)(struct ieee80211_hw *hw,
1482 struct ieee80211_tx_queue_stats *stats);
1483 u64 (*get_tsf)(struct ieee80211_hw *hw);
1484 void (*set_tsf)(struct ieee80211_hw *hw, u64 tsf);
1485 void (*reset_tsf)(struct ieee80211_hw *hw);
1486 int (*tx_last_beacon)(struct ieee80211_hw *hw);
1487 int (*ampdu_action)(struct ieee80211_hw *hw,
1488 enum ieee80211_ampdu_mlme_action action,
1489 struct ieee80211_sta *sta, u16 tid, u16 *ssn);
1490 };
1491
1492 /**
1493 * ieee80211_alloc_hw - Allocate a new hardware device
1494 *
1495 * This must be called once for each hardware device. The returned pointer
1496 * must be used to refer to this device when calling other functions.
1497 * mac80211 allocates a private data area for the driver pointed to by
1498 * @priv in &struct ieee80211_hw, the size of this area is given as
1499 * @priv_data_len.
1500 *
1501 * @priv_data_len: length of private data
1502 * @ops: callbacks for this device
1503 */
1504 struct ieee80211_hw *ieee80211_alloc_hw(size_t priv_data_len,
1505 const struct ieee80211_ops *ops);
1506
1507 /**
1508 * ieee80211_register_hw - Register hardware device
1509 *
1510 * You must call this function before any other functions in
1511 * mac80211. Note that before a hardware can be registered, you
1512 * need to fill the contained wiphy's information.
1513 *
1514 * @hw: the device to register as returned by ieee80211_alloc_hw()
1515 */
1516 int ieee80211_register_hw(struct ieee80211_hw *hw);
1517
1518 #ifdef CONFIG_MAC80211_LEDS
1519 extern char *__ieee80211_get_tx_led_name(struct ieee80211_hw *hw);
1520 extern char *__ieee80211_get_rx_led_name(struct ieee80211_hw *hw);
1521 extern char *__ieee80211_get_assoc_led_name(struct ieee80211_hw *hw);
1522 extern char *__ieee80211_get_radio_led_name(struct ieee80211_hw *hw);
1523 #endif
1524 /**
1525 * ieee80211_get_tx_led_name - get name of TX LED
1526 *
1527 * mac80211 creates a transmit LED trigger for each wireless hardware
1528 * that can be used to drive LEDs if your driver registers a LED device.
1529 * This function returns the name (or %NULL if not configured for LEDs)
1530 * of the trigger so you can automatically link the LED device.
1531 *
1532 * @hw: the hardware to get the LED trigger name for
1533 */
1534 static inline char *ieee80211_get_tx_led_name(struct ieee80211_hw *hw)
1535 {
1536 #ifdef CONFIG_MAC80211_LEDS
1537 return __ieee80211_get_tx_led_name(hw);
1538 #else
1539 return NULL;
1540 #endif
1541 }
1542
1543 /**
1544 * ieee80211_get_rx_led_name - get name of RX LED
1545 *
1546 * mac80211 creates a receive LED trigger for each wireless hardware
1547 * that can be used to drive LEDs if your driver registers a LED device.
1548 * This function returns the name (or %NULL if not configured for LEDs)
1549 * of the trigger so you can automatically link the LED device.
1550 *
1551 * @hw: the hardware to get the LED trigger name for
1552 */
1553 static inline char *ieee80211_get_rx_led_name(struct ieee80211_hw *hw)
1554 {
1555 #ifdef CONFIG_MAC80211_LEDS
1556 return __ieee80211_get_rx_led_name(hw);
1557 #else
1558 return NULL;
1559 #endif
1560 }
1561
1562 /**
1563 * ieee80211_get_assoc_led_name - get name of association LED
1564 *
1565 * mac80211 creates a association LED trigger for each wireless hardware
1566 * that can be used to drive LEDs if your driver registers a LED device.
1567 * This function returns the name (or %NULL if not configured for LEDs)
1568 * of the trigger so you can automatically link the LED device.
1569 *
1570 * @hw: the hardware to get the LED trigger name for
1571 */
1572 static inline char *ieee80211_get_assoc_led_name(struct ieee80211_hw *hw)
1573 {
1574 #ifdef CONFIG_MAC80211_LEDS
1575 return __ieee80211_get_assoc_led_name(hw);
1576 #else
1577 return NULL;
1578 #endif
1579 }
1580
1581 /**
1582 * ieee80211_get_radio_led_name - get name of radio LED
1583 *
1584 * mac80211 creates a radio change LED trigger for each wireless hardware
1585 * that can be used to drive LEDs if your driver registers a LED device.
1586 * This function returns the name (or %NULL if not configured for LEDs)
1587 * of the trigger so you can automatically link the LED device.
1588 *
1589 * @hw: the hardware to get the LED trigger name for
1590 */
1591 static inline char *ieee80211_get_radio_led_name(struct ieee80211_hw *hw)
1592 {
1593 #ifdef CONFIG_MAC80211_LEDS
1594 return __ieee80211_get_radio_led_name(hw);
1595 #else
1596 return NULL;
1597 #endif
1598 }
1599
1600 /**
1601 * ieee80211_unregister_hw - Unregister a hardware device
1602 *
1603 * This function instructs mac80211 to free allocated resources
1604 * and unregister netdevices from the networking subsystem.
1605 *
1606 * @hw: the hardware to unregister
1607 */
1608 void ieee80211_unregister_hw(struct ieee80211_hw *hw);
1609
1610 /**
1611 * ieee80211_free_hw - free hardware descriptor
1612 *
1613 * This function frees everything that was allocated, including the
1614 * private data for the driver. You must call ieee80211_unregister_hw()
1615 * before calling this function.
1616 *
1617 * @hw: the hardware to free
1618 */
1619 void ieee80211_free_hw(struct ieee80211_hw *hw);
1620
1621 /**
1622 * ieee80211_restart_hw - restart hardware completely
1623 *
1624 * Call this function when the hardware was restarted for some reason
1625 * (hardware error, ...) and the driver is unable to restore its state
1626 * by itself. mac80211 assumes that at this point the driver/hardware
1627 * is completely uninitialised and stopped, it starts the process by
1628 * calling the ->start() operation. The driver will need to reset all
1629 * internal state that it has prior to calling this function.
1630 *
1631 * @hw: the hardware to restart
1632 */
1633 void ieee80211_restart_hw(struct ieee80211_hw *hw);
1634
1635 /* trick to avoid symbol clashes with the ieee80211 subsystem */
1636 void __ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb,
1637 struct ieee80211_rx_status *status);
1638
1639 /**
1640 * ieee80211_rx - receive frame
1641 *
1642 * Use this function to hand received frames to mac80211. The receive
1643 * buffer in @skb must start with an IEEE 802.11 header or a radiotap
1644 * header if %RX_FLAG_RADIOTAP is set in the @status flags.
1645 *
1646 * This function may not be called in IRQ context. Calls to this function
1647 * for a single hardware must be synchronized against each other. Calls
1648 * to this function and ieee80211_rx_irqsafe() may not be mixed for a
1649 * single hardware.
1650 *
1651 * @hw: the hardware this frame came in on
1652 * @skb: the buffer to receive, owned by mac80211 after this call
1653 * @status: status of this frame; the status pointer need not be valid
1654 * after this function returns
1655 */
1656 static inline void ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb,
1657 struct ieee80211_rx_status *status)
1658 {
1659 __ieee80211_rx(hw, skb, status);
1660 }
1661
1662 /**
1663 * ieee80211_rx_irqsafe - receive frame
1664 *
1665 * Like ieee80211_rx() but can be called in IRQ context
1666 * (internally defers to a tasklet.)
1667 *
1668 * Calls to this function and ieee80211_rx() may not be mixed for a
1669 * single hardware.
1670 *
1671 * @hw: the hardware this frame came in on
1672 * @skb: the buffer to receive, owned by mac80211 after this call
1673 * @status: status of this frame; the status pointer need not be valid
1674 * after this function returns and is not freed by mac80211,
1675 * it is recommended that it points to a stack area
1676 */
1677 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw,
1678 struct sk_buff *skb,
1679 struct ieee80211_rx_status *status);
1680
1681 /**
1682 * ieee80211_tx_status - transmit status callback
1683 *
1684 * Call this function for all transmitted frames after they have been
1685 * transmitted. It is permissible to not call this function for
1686 * multicast frames but this can affect statistics.
1687 *
1688 * This function may not be called in IRQ context. Calls to this function
1689 * for a single hardware must be synchronized against each other. Calls
1690 * to this function and ieee80211_tx_status_irqsafe() may not be mixed
1691 * for a single hardware.
1692 *
1693 * @hw: the hardware the frame was transmitted by
1694 * @skb: the frame that was transmitted, owned by mac80211 after this call
1695 */
1696 void ieee80211_tx_status(struct ieee80211_hw *hw,
1697 struct sk_buff *skb);
1698
1699 /**
1700 * ieee80211_tx_status_irqsafe - IRQ-safe transmit status callback
1701 *
1702 * Like ieee80211_tx_status() but can be called in IRQ context
1703 * (internally defers to a tasklet.)
1704 *
1705 * Calls to this function and ieee80211_tx_status() may not be mixed for a
1706 * single hardware.
1707 *
1708 * @hw: the hardware the frame was transmitted by
1709 * @skb: the frame that was transmitted, owned by mac80211 after this call
1710 */
1711 void ieee80211_tx_status_irqsafe(struct ieee80211_hw *hw,
1712 struct sk_buff *skb);
1713
1714 /**
1715 * ieee80211_beacon_get - beacon generation function
1716 * @hw: pointer obtained from ieee80211_alloc_hw().
1717 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
1718 *
1719 * If the beacon frames are generated by the host system (i.e., not in
1720 * hardware/firmware), the low-level driver uses this function to receive
1721 * the next beacon frame from the 802.11 code. The low-level is responsible
1722 * for calling this function before beacon data is needed (e.g., based on
1723 * hardware interrupt). Returned skb is used only once and low-level driver
1724 * is responsible for freeing it.
1725 */
1726 struct sk_buff *ieee80211_beacon_get(struct ieee80211_hw *hw,
1727 struct ieee80211_vif *vif);
1728
1729 /**
1730 * ieee80211_rts_get - RTS frame generation function
1731 * @hw: pointer obtained from ieee80211_alloc_hw().
1732 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
1733 * @frame: pointer to the frame that is going to be protected by the RTS.
1734 * @frame_len: the frame length (in octets).
1735 * @frame_txctl: &struct ieee80211_tx_info of the frame.
1736 * @rts: The buffer where to store the RTS frame.
1737 *
1738 * If the RTS frames are generated by the host system (i.e., not in
1739 * hardware/firmware), the low-level driver uses this function to receive
1740 * the next RTS frame from the 802.11 code. The low-level is responsible
1741 * for calling this function before and RTS frame is needed.
1742 */
1743 void ieee80211_rts_get(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
1744 const void *frame, size_t frame_len,
1745 const struct ieee80211_tx_info *frame_txctl,
1746 struct ieee80211_rts *rts);
1747
1748 /**
1749 * ieee80211_rts_duration - Get the duration field for an RTS frame
1750 * @hw: pointer obtained from ieee80211_alloc_hw().
1751 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
1752 * @frame_len: the length of the frame that is going to be protected by the RTS.
1753 * @frame_txctl: &struct ieee80211_tx_info of the frame.
1754 *
1755 * If the RTS is generated in firmware, but the host system must provide
1756 * the duration field, the low-level driver uses this function to receive
1757 * the duration field value in little-endian byteorder.
1758 */
1759 __le16 ieee80211_rts_duration(struct ieee80211_hw *hw,
1760 struct ieee80211_vif *vif, size_t frame_len,
1761 const struct ieee80211_tx_info *frame_txctl);
1762
1763 /**
1764 * ieee80211_ctstoself_get - CTS-to-self frame generation function
1765 * @hw: pointer obtained from ieee80211_alloc_hw().
1766 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
1767 * @frame: pointer to the frame that is going to be protected by the CTS-to-self.
1768 * @frame_len: the frame length (in octets).
1769 * @frame_txctl: &struct ieee80211_tx_info of the frame.
1770 * @cts: The buffer where to store the CTS-to-self frame.
1771 *
1772 * If the CTS-to-self frames are generated by the host system (i.e., not in
1773 * hardware/firmware), the low-level driver uses this function to receive
1774 * the next CTS-to-self frame from the 802.11 code. The low-level is responsible
1775 * for calling this function before and CTS-to-self frame is needed.
1776 */
1777 void ieee80211_ctstoself_get(struct ieee80211_hw *hw,
1778 struct ieee80211_vif *vif,
1779 const void *frame, size_t frame_len,
1780 const struct ieee80211_tx_info *frame_txctl,
1781 struct ieee80211_cts *cts);
1782
1783 /**
1784 * ieee80211_ctstoself_duration - Get the duration field for a CTS-to-self frame
1785 * @hw: pointer obtained from ieee80211_alloc_hw().
1786 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
1787 * @frame_len: the length of the frame that is going to be protected by the CTS-to-self.
1788 * @frame_txctl: &struct ieee80211_tx_info of the frame.
1789 *
1790 * If the CTS-to-self is generated in firmware, but the host system must provide
1791 * the duration field, the low-level driver uses this function to receive
1792 * the duration field value in little-endian byteorder.
1793 */
1794 __le16 ieee80211_ctstoself_duration(struct ieee80211_hw *hw,
1795 struct ieee80211_vif *vif,
1796 size_t frame_len,
1797 const struct ieee80211_tx_info *frame_txctl);
1798
1799 /**
1800 * ieee80211_generic_frame_duration - Calculate the duration field for a frame
1801 * @hw: pointer obtained from ieee80211_alloc_hw().
1802 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
1803 * @frame_len: the length of the frame.
1804 * @rate: the rate at which the frame is going to be transmitted.
1805 *
1806 * Calculate the duration field of some generic frame, given its
1807 * length and transmission rate (in 100kbps).
1808 */
1809 __le16 ieee80211_generic_frame_duration(struct ieee80211_hw *hw,
1810 struct ieee80211_vif *vif,
1811 size_t frame_len,
1812 struct ieee80211_rate *rate);
1813
1814 /**
1815 * ieee80211_get_buffered_bc - accessing buffered broadcast and multicast frames
1816 * @hw: pointer as obtained from ieee80211_alloc_hw().
1817 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
1818 *
1819 * Function for accessing buffered broadcast and multicast frames. If
1820 * hardware/firmware does not implement buffering of broadcast/multicast
1821 * frames when power saving is used, 802.11 code buffers them in the host
1822 * memory. The low-level driver uses this function to fetch next buffered
1823 * frame. In most cases, this is used when generating beacon frame. This
1824 * function returns a pointer to the next buffered skb or NULL if no more
1825 * buffered frames are available.
1826 *
1827 * Note: buffered frames are returned only after DTIM beacon frame was
1828 * generated with ieee80211_beacon_get() and the low-level driver must thus
1829 * call ieee80211_beacon_get() first. ieee80211_get_buffered_bc() returns
1830 * NULL if the previous generated beacon was not DTIM, so the low-level driver
1831 * does not need to check for DTIM beacons separately and should be able to
1832 * use common code for all beacons.
1833 */
1834 struct sk_buff *
1835 ieee80211_get_buffered_bc(struct ieee80211_hw *hw, struct ieee80211_vif *vif);
1836
1837 /**
1838 * ieee80211_get_hdrlen_from_skb - get header length from data
1839 *
1840 * Given an skb with a raw 802.11 header at the data pointer this function
1841 * returns the 802.11 header length in bytes (not including encryption
1842 * headers). If the data in the sk_buff is too short to contain a valid 802.11
1843 * header the function returns 0.
1844 *
1845 * @skb: the frame
1846 */
1847 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb);
1848
1849 /**
1850 * ieee80211_hdrlen - get header length in bytes from frame control
1851 * @fc: frame control field in little-endian format
1852 */
1853 unsigned int ieee80211_hdrlen(__le16 fc);
1854
1855 /**
1856 * ieee80211_get_tkip_key - get a TKIP rc4 for skb
1857 *
1858 * This function computes a TKIP rc4 key for an skb. It computes
1859 * a phase 1 key if needed (iv16 wraps around). This function is to
1860 * be used by drivers which can do HW encryption but need to compute
1861 * to phase 1/2 key in SW.
1862 *
1863 * @keyconf: the parameter passed with the set key
1864 * @skb: the skb for which the key is needed
1865 * @type: TBD
1866 * @key: a buffer to which the key will be written
1867 */
1868 void ieee80211_get_tkip_key(struct ieee80211_key_conf *keyconf,
1869 struct sk_buff *skb,
1870 enum ieee80211_tkip_key_type type, u8 *key);
1871 /**
1872 * ieee80211_wake_queue - wake specific queue
1873 * @hw: pointer as obtained from ieee80211_alloc_hw().
1874 * @queue: queue number (counted from zero).
1875 *
1876 * Drivers should use this function instead of netif_wake_queue.
1877 */
1878 void ieee80211_wake_queue(struct ieee80211_hw *hw, int queue);
1879
1880 /**
1881 * ieee80211_stop_queue - stop specific queue
1882 * @hw: pointer as obtained from ieee80211_alloc_hw().
1883 * @queue: queue number (counted from zero).
1884 *
1885 * Drivers should use this function instead of netif_stop_queue.
1886 */
1887 void ieee80211_stop_queue(struct ieee80211_hw *hw, int queue);
1888
1889 /**
1890 * ieee80211_queue_stopped - test status of the queue
1891 * @hw: pointer as obtained from ieee80211_alloc_hw().
1892 * @queue: queue number (counted from zero).
1893 *
1894 * Drivers should use this function instead of netif_stop_queue.
1895 */
1896
1897 int ieee80211_queue_stopped(struct ieee80211_hw *hw, int queue);
1898
1899 /**
1900 * ieee80211_stop_queues - stop all queues
1901 * @hw: pointer as obtained from ieee80211_alloc_hw().
1902 *
1903 * Drivers should use this function instead of netif_stop_queue.
1904 */
1905 void ieee80211_stop_queues(struct ieee80211_hw *hw);
1906
1907 /**
1908 * ieee80211_wake_queues - wake all queues
1909 * @hw: pointer as obtained from ieee80211_alloc_hw().
1910 *
1911 * Drivers should use this function instead of netif_wake_queue.
1912 */
1913 void ieee80211_wake_queues(struct ieee80211_hw *hw);
1914
1915 /**
1916 * ieee80211_scan_completed - completed hardware scan
1917 *
1918 * When hardware scan offload is used (i.e. the hw_scan() callback is
1919 * assigned) this function needs to be called by the driver to notify
1920 * mac80211 that the scan finished.
1921 *
1922 * @hw: the hardware that finished the scan
1923 * @aborted: set to true if scan was aborted
1924 */
1925 void ieee80211_scan_completed(struct ieee80211_hw *hw, bool aborted);
1926
1927 /**
1928 * ieee80211_iterate_active_interfaces - iterate active interfaces
1929 *
1930 * This function iterates over the interfaces associated with a given
1931 * hardware that are currently active and calls the callback for them.
1932 * This function allows the iterator function to sleep, when the iterator
1933 * function is atomic @ieee80211_iterate_active_interfaces_atomic can
1934 * be used.
1935 *
1936 * @hw: the hardware struct of which the interfaces should be iterated over
1937 * @iterator: the iterator function to call
1938 * @data: first argument of the iterator function
1939 */
1940 void ieee80211_iterate_active_interfaces(struct ieee80211_hw *hw,
1941 void (*iterator)(void *data, u8 *mac,
1942 struct ieee80211_vif *vif),
1943 void *data);
1944
1945 /**
1946 * ieee80211_iterate_active_interfaces_atomic - iterate active interfaces
1947 *
1948 * This function iterates over the interfaces associated with a given
1949 * hardware that are currently active and calls the callback for them.
1950 * This function requires the iterator callback function to be atomic,
1951 * if that is not desired, use @ieee80211_iterate_active_interfaces instead.
1952 *
1953 * @hw: the hardware struct of which the interfaces should be iterated over
1954 * @iterator: the iterator function to call, cannot sleep
1955 * @data: first argument of the iterator function
1956 */
1957 void ieee80211_iterate_active_interfaces_atomic(struct ieee80211_hw *hw,
1958 void (*iterator)(void *data,
1959 u8 *mac,
1960 struct ieee80211_vif *vif),
1961 void *data);
1962
1963 /**
1964 * ieee80211_start_tx_ba_session - Start a tx Block Ack session.
1965 * @hw: pointer as obtained from ieee80211_alloc_hw().
1966 * @ra: receiver address of the BA session recipient
1967 * @tid: the TID to BA on.
1968 *
1969 * Return: success if addBA request was sent, failure otherwise
1970 *
1971 * Although mac80211/low level driver/user space application can estimate
1972 * the need to start aggregation on a certain RA/TID, the session level
1973 * will be managed by the mac80211.
1974 */
1975 int ieee80211_start_tx_ba_session(struct ieee80211_hw *hw, u8 *ra, u16 tid);
1976
1977 /**
1978 * ieee80211_start_tx_ba_cb - low level driver ready to aggregate.
1979 * @hw: pointer as obtained from ieee80211_alloc_hw().
1980 * @ra: receiver address of the BA session recipient.
1981 * @tid: the TID to BA on.
1982 *
1983 * This function must be called by low level driver once it has
1984 * finished with preparations for the BA session.
1985 */
1986 void ieee80211_start_tx_ba_cb(struct ieee80211_hw *hw, u8 *ra, u16 tid);
1987
1988 /**
1989 * ieee80211_start_tx_ba_cb_irqsafe - low level driver ready to aggregate.
1990 * @hw: pointer as obtained from ieee80211_alloc_hw().
1991 * @ra: receiver address of the BA session recipient.
1992 * @tid: the TID to BA on.
1993 *
1994 * This function must be called by low level driver once it has
1995 * finished with preparations for the BA session.
1996 * This version of the function is IRQ-safe.
1997 */
1998 void ieee80211_start_tx_ba_cb_irqsafe(struct ieee80211_hw *hw, const u8 *ra,
1999 u16 tid);
2000
2001 /**
2002 * ieee80211_stop_tx_ba_session - Stop a Block Ack session.
2003 * @hw: pointer as obtained from ieee80211_alloc_hw().
2004 * @ra: receiver address of the BA session recipient
2005 * @tid: the TID to stop BA.
2006 * @initiator: if indicates initiator DELBA frame will be sent.
2007 *
2008 * Return: error if no sta with matching da found, success otherwise
2009 *
2010 * Although mac80211/low level driver/user space application can estimate
2011 * the need to stop aggregation on a certain RA/TID, the session level
2012 * will be managed by the mac80211.
2013 */
2014 int ieee80211_stop_tx_ba_session(struct ieee80211_hw *hw,
2015 u8 *ra, u16 tid,
2016 enum ieee80211_back_parties initiator);
2017
2018 /**
2019 * ieee80211_stop_tx_ba_cb - low level driver ready to stop aggregate.
2020 * @hw: pointer as obtained from ieee80211_alloc_hw().
2021 * @ra: receiver address of the BA session recipient.
2022 * @tid: the desired TID to BA on.
2023 *
2024 * This function must be called by low level driver once it has
2025 * finished with preparations for the BA session tear down.
2026 */
2027 void ieee80211_stop_tx_ba_cb(struct ieee80211_hw *hw, u8 *ra, u8 tid);
2028
2029 /**
2030 * ieee80211_stop_tx_ba_cb_irqsafe - low level driver ready to stop aggregate.
2031 * @hw: pointer as obtained from ieee80211_alloc_hw().
2032 * @ra: receiver address of the BA session recipient.
2033 * @tid: the desired TID to BA on.
2034 *
2035 * This function must be called by low level driver once it has
2036 * finished with preparations for the BA session tear down.
2037 * This version of the function is IRQ-safe.
2038 */
2039 void ieee80211_stop_tx_ba_cb_irqsafe(struct ieee80211_hw *hw, const u8 *ra,
2040 u16 tid);
2041
2042 /**
2043 * ieee80211_find_sta - find a station
2044 *
2045 * @hw: pointer as obtained from ieee80211_alloc_hw()
2046 * @addr: station's address
2047 *
2048 * This function must be called under RCU lock and the
2049 * resulting pointer is only valid under RCU lock as well.
2050 */
2051 struct ieee80211_sta *ieee80211_find_sta(struct ieee80211_hw *hw,
2052 const u8 *addr);
2053
2054 /**
2055 * ieee80211_beacon_loss - inform hardware does not receive beacons
2056 *
2057 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
2058 *
2059 * When beacon filtering is enabled with IEEE80211_HW_BEACON_FILTERING and
2060 * IEEE80211_CONF_PS is set, the driver needs to inform whenever the
2061 * hardware is not receiving beacons with this function.
2062 */
2063 void ieee80211_beacon_loss(struct ieee80211_vif *vif);
2064
2065 /* Rate control API */
2066
2067 /**
2068 * enum rate_control_changed - flags to indicate which parameter changed
2069 *
2070 * @IEEE80211_RC_HT_CHANGED: The HT parameters of the operating channel have
2071 * changed, rate control algorithm can update its internal state if needed.
2072 */
2073 enum rate_control_changed {
2074 IEEE80211_RC_HT_CHANGED = BIT(0)
2075 };
2076
2077 /**
2078 * struct ieee80211_tx_rate_control - rate control information for/from RC algo
2079 *
2080 * @hw: The hardware the algorithm is invoked for.
2081 * @sband: The band this frame is being transmitted on.
2082 * @bss_conf: the current BSS configuration
2083 * @reported_rate: The rate control algorithm can fill this in to indicate
2084 * which rate should be reported to userspace as the current rate and
2085 * used for rate calculations in the mesh network.
2086 * @rts: whether RTS will be used for this frame because it is longer than the
2087 * RTS threshold
2088 * @short_preamble: whether mac80211 will request short-preamble transmission
2089 * if the selected rate supports it
2090 * @max_rate_idx: user-requested maximum rate (not MCS for now)
2091 * @skb: the skb that will be transmitted, the control information in it needs
2092 * to be filled in
2093 */
2094 struct ieee80211_tx_rate_control {
2095 struct ieee80211_hw *hw;
2096 struct ieee80211_supported_band *sband;
2097 struct ieee80211_bss_conf *bss_conf;
2098 struct sk_buff *skb;
2099 struct ieee80211_tx_rate reported_rate;
2100 bool rts, short_preamble;
2101 u8 max_rate_idx;
2102 };
2103
2104 struct rate_control_ops {
2105 struct module *module;
2106 const char *name;
2107 void *(*alloc)(struct ieee80211_hw *hw, struct dentry *debugfsdir);
2108 void (*free)(void *priv);
2109
2110 void *(*alloc_sta)(void *priv, struct ieee80211_sta *sta, gfp_t gfp);
2111 void (*rate_init)(void *priv, struct ieee80211_supported_band *sband,
2112 struct ieee80211_sta *sta, void *priv_sta);
2113 void (*rate_update)(void *priv, struct ieee80211_supported_band *sband,
2114 struct ieee80211_sta *sta,
2115 void *priv_sta, u32 changed);
2116 void (*free_sta)(void *priv, struct ieee80211_sta *sta,
2117 void *priv_sta);
2118
2119 void (*tx_status)(void *priv, struct ieee80211_supported_band *sband,
2120 struct ieee80211_sta *sta, void *priv_sta,
2121 struct sk_buff *skb);
2122 void (*get_rate)(void *priv, struct ieee80211_sta *sta, void *priv_sta,
2123 struct ieee80211_tx_rate_control *txrc);
2124
2125 void (*add_sta_debugfs)(void *priv, void *priv_sta,
2126 struct dentry *dir);
2127 void (*remove_sta_debugfs)(void *priv, void *priv_sta);
2128 };
2129
2130 static inline int rate_supported(struct ieee80211_sta *sta,
2131 enum ieee80211_band band,
2132 int index)
2133 {
2134 return (sta == NULL || sta->supp_rates[band] & BIT(index));
2135 }
2136
2137 static inline s8
2138 rate_lowest_index(struct ieee80211_supported_band *sband,
2139 struct ieee80211_sta *sta)
2140 {
2141 int i;
2142
2143 for (i = 0; i < sband->n_bitrates; i++)
2144 if (rate_supported(sta, sband->band, i))
2145 return i;
2146
2147 /* warn when we cannot find a rate. */
2148 WARN_ON(1);
2149
2150 return 0;
2151 }
2152
2153
2154 int ieee80211_rate_control_register(struct rate_control_ops *ops);
2155 void ieee80211_rate_control_unregister(struct rate_control_ops *ops);
2156
2157 static inline bool
2158 conf_is_ht20(struct ieee80211_conf *conf)
2159 {
2160 return conf->channel_type == NL80211_CHAN_HT20;
2161 }
2162
2163 static inline bool
2164 conf_is_ht40_minus(struct ieee80211_conf *conf)
2165 {
2166 return conf->channel_type == NL80211_CHAN_HT40MINUS;
2167 }
2168
2169 static inline bool
2170 conf_is_ht40_plus(struct ieee80211_conf *conf)
2171 {
2172 return conf->channel_type == NL80211_CHAN_HT40PLUS;
2173 }
2174
2175 static inline bool
2176 conf_is_ht40(struct ieee80211_conf *conf)
2177 {
2178 return conf_is_ht40_minus(conf) || conf_is_ht40_plus(conf);
2179 }
2180
2181 static inline bool
2182 conf_is_ht(struct ieee80211_conf *conf)
2183 {
2184 return conf->channel_type != NL80211_CHAN_NO_HT;
2185 }
2186
2187 #endif /* MAC80211_H */