]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - include/net/route.h
Merge tag 'nfsd-5.4' of git://linux-nfs.org/~bfields/linux
[mirror_ubuntu-focal-kernel.git] / include / net / route.h
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Definitions for the IP router.
8 *
9 * Version: @(#)route.h 1.0.4 05/27/93
10 *
11 * Authors: Ross Biro
12 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13 * Fixes:
14 * Alan Cox : Reformatted. Added ip_rt_local()
15 * Alan Cox : Support for TCP parameters.
16 * Alexey Kuznetsov: Major changes for new routing code.
17 * Mike McLagan : Routing by source
18 * Robert Olsson : Added rt_cache statistics
19 */
20 #ifndef _ROUTE_H
21 #define _ROUTE_H
22
23 #include <net/dst.h>
24 #include <net/inetpeer.h>
25 #include <net/flow.h>
26 #include <net/inet_sock.h>
27 #include <net/ip_fib.h>
28 #include <net/arp.h>
29 #include <net/ndisc.h>
30 #include <linux/in_route.h>
31 #include <linux/rtnetlink.h>
32 #include <linux/rcupdate.h>
33 #include <linux/route.h>
34 #include <linux/ip.h>
35 #include <linux/cache.h>
36 #include <linux/security.h>
37
38 /* IPv4 datagram length is stored into 16bit field (tot_len) */
39 #define IP_MAX_MTU 0xFFFFU
40
41 #define RTO_ONLINK 0x01
42
43 #define RT_CONN_FLAGS(sk) (RT_TOS(inet_sk(sk)->tos) | sock_flag(sk, SOCK_LOCALROUTE))
44 #define RT_CONN_FLAGS_TOS(sk,tos) (RT_TOS(tos) | sock_flag(sk, SOCK_LOCALROUTE))
45
46 struct fib_nh;
47 struct fib_info;
48 struct uncached_list;
49 struct rtable {
50 struct dst_entry dst;
51
52 int rt_genid;
53 unsigned int rt_flags;
54 __u16 rt_type;
55 __u8 rt_is_input;
56 u8 rt_gw_family;
57
58 int rt_iif;
59
60 /* Info on neighbour */
61 union {
62 __be32 rt_gw4;
63 struct in6_addr rt_gw6;
64 };
65
66 /* Miscellaneous cached information */
67 u32 rt_mtu_locked:1,
68 rt_pmtu:31;
69
70 struct list_head rt_uncached;
71 struct uncached_list *rt_uncached_list;
72 };
73
74 static inline bool rt_is_input_route(const struct rtable *rt)
75 {
76 return rt->rt_is_input != 0;
77 }
78
79 static inline bool rt_is_output_route(const struct rtable *rt)
80 {
81 return rt->rt_is_input == 0;
82 }
83
84 static inline __be32 rt_nexthop(const struct rtable *rt, __be32 daddr)
85 {
86 if (rt->rt_gw_family == AF_INET)
87 return rt->rt_gw4;
88 return daddr;
89 }
90
91 struct ip_rt_acct {
92 __u32 o_bytes;
93 __u32 o_packets;
94 __u32 i_bytes;
95 __u32 i_packets;
96 };
97
98 struct rt_cache_stat {
99 unsigned int in_slow_tot;
100 unsigned int in_slow_mc;
101 unsigned int in_no_route;
102 unsigned int in_brd;
103 unsigned int in_martian_dst;
104 unsigned int in_martian_src;
105 unsigned int out_slow_tot;
106 unsigned int out_slow_mc;
107 };
108
109 extern struct ip_rt_acct __percpu *ip_rt_acct;
110
111 struct in_device;
112
113 int ip_rt_init(void);
114 void rt_cache_flush(struct net *net);
115 void rt_flush_dev(struct net_device *dev);
116 struct rtable *ip_route_output_key_hash(struct net *net, struct flowi4 *flp,
117 const struct sk_buff *skb);
118 struct rtable *ip_route_output_key_hash_rcu(struct net *net, struct flowi4 *flp,
119 struct fib_result *res,
120 const struct sk_buff *skb);
121
122 static inline struct rtable *__ip_route_output_key(struct net *net,
123 struct flowi4 *flp)
124 {
125 return ip_route_output_key_hash(net, flp, NULL);
126 }
127
128 struct rtable *ip_route_output_flow(struct net *, struct flowi4 *flp,
129 const struct sock *sk);
130 struct dst_entry *ipv4_blackhole_route(struct net *net,
131 struct dst_entry *dst_orig);
132
133 static inline struct rtable *ip_route_output_key(struct net *net, struct flowi4 *flp)
134 {
135 return ip_route_output_flow(net, flp, NULL);
136 }
137
138 static inline struct rtable *ip_route_output(struct net *net, __be32 daddr,
139 __be32 saddr, u8 tos, int oif)
140 {
141 struct flowi4 fl4 = {
142 .flowi4_oif = oif,
143 .flowi4_tos = tos,
144 .daddr = daddr,
145 .saddr = saddr,
146 };
147 return ip_route_output_key(net, &fl4);
148 }
149
150 static inline struct rtable *ip_route_output_ports(struct net *net, struct flowi4 *fl4,
151 struct sock *sk,
152 __be32 daddr, __be32 saddr,
153 __be16 dport, __be16 sport,
154 __u8 proto, __u8 tos, int oif)
155 {
156 flowi4_init_output(fl4, oif, sk ? sk->sk_mark : 0, tos,
157 RT_SCOPE_UNIVERSE, proto,
158 sk ? inet_sk_flowi_flags(sk) : 0,
159 daddr, saddr, dport, sport, sock_net_uid(net, sk));
160 if (sk)
161 security_sk_classify_flow(sk, flowi4_to_flowi(fl4));
162 return ip_route_output_flow(net, fl4, sk);
163 }
164
165 static inline struct rtable *ip_route_output_gre(struct net *net, struct flowi4 *fl4,
166 __be32 daddr, __be32 saddr,
167 __be32 gre_key, __u8 tos, int oif)
168 {
169 memset(fl4, 0, sizeof(*fl4));
170 fl4->flowi4_oif = oif;
171 fl4->daddr = daddr;
172 fl4->saddr = saddr;
173 fl4->flowi4_tos = tos;
174 fl4->flowi4_proto = IPPROTO_GRE;
175 fl4->fl4_gre_key = gre_key;
176 return ip_route_output_key(net, fl4);
177 }
178 int ip_mc_validate_source(struct sk_buff *skb, __be32 daddr, __be32 saddr,
179 u8 tos, struct net_device *dev,
180 struct in_device *in_dev, u32 *itag);
181 int ip_route_input_noref(struct sk_buff *skb, __be32 dst, __be32 src,
182 u8 tos, struct net_device *devin);
183 int ip_route_input_rcu(struct sk_buff *skb, __be32 dst, __be32 src,
184 u8 tos, struct net_device *devin,
185 struct fib_result *res);
186
187 static inline int ip_route_input(struct sk_buff *skb, __be32 dst, __be32 src,
188 u8 tos, struct net_device *devin)
189 {
190 int err;
191
192 rcu_read_lock();
193 err = ip_route_input_noref(skb, dst, src, tos, devin);
194 if (!err) {
195 skb_dst_force(skb);
196 if (!skb_dst(skb))
197 err = -EINVAL;
198 }
199 rcu_read_unlock();
200
201 return err;
202 }
203
204 void ipv4_update_pmtu(struct sk_buff *skb, struct net *net, u32 mtu, int oif,
205 u8 protocol);
206 void ipv4_sk_update_pmtu(struct sk_buff *skb, struct sock *sk, u32 mtu);
207 void ipv4_redirect(struct sk_buff *skb, struct net *net, int oif, u8 protocol);
208 void ipv4_sk_redirect(struct sk_buff *skb, struct sock *sk);
209 void ip_rt_send_redirect(struct sk_buff *skb);
210
211 unsigned int inet_addr_type(struct net *net, __be32 addr);
212 unsigned int inet_addr_type_table(struct net *net, __be32 addr, u32 tb_id);
213 unsigned int inet_dev_addr_type(struct net *net, const struct net_device *dev,
214 __be32 addr);
215 unsigned int inet_addr_type_dev_table(struct net *net,
216 const struct net_device *dev,
217 __be32 addr);
218 void ip_rt_multicast_event(struct in_device *);
219 int ip_rt_ioctl(struct net *, unsigned int cmd, struct rtentry *rt);
220 void ip_rt_get_source(u8 *src, struct sk_buff *skb, struct rtable *rt);
221 struct rtable *rt_dst_alloc(struct net_device *dev,
222 unsigned int flags, u16 type,
223 bool nopolicy, bool noxfrm, bool will_cache);
224 struct rtable *rt_dst_clone(struct net_device *dev, struct rtable *rt);
225
226 struct in_ifaddr;
227 void fib_add_ifaddr(struct in_ifaddr *);
228 void fib_del_ifaddr(struct in_ifaddr *, struct in_ifaddr *);
229 void fib_modify_prefix_metric(struct in_ifaddr *ifa, u32 new_metric);
230
231 void rt_add_uncached_list(struct rtable *rt);
232 void rt_del_uncached_list(struct rtable *rt);
233
234 int fib_dump_info_fnhe(struct sk_buff *skb, struct netlink_callback *cb,
235 u32 table_id, struct fib_info *fi,
236 int *fa_index, int fa_start, unsigned int flags);
237
238 static inline void ip_rt_put(struct rtable *rt)
239 {
240 /* dst_release() accepts a NULL parameter.
241 * We rely on dst being first structure in struct rtable
242 */
243 BUILD_BUG_ON(offsetof(struct rtable, dst) != 0);
244 dst_release(&rt->dst);
245 }
246
247 #define IPTOS_RT_MASK (IPTOS_TOS_MASK & ~3)
248
249 extern const __u8 ip_tos2prio[16];
250
251 static inline char rt_tos2priority(u8 tos)
252 {
253 return ip_tos2prio[IPTOS_TOS(tos)>>1];
254 }
255
256 /* ip_route_connect() and ip_route_newports() work in tandem whilst
257 * binding a socket for a new outgoing connection.
258 *
259 * In order to use IPSEC properly, we must, in the end, have a
260 * route that was looked up using all available keys including source
261 * and destination ports.
262 *
263 * However, if a source port needs to be allocated (the user specified
264 * a wildcard source port) we need to obtain addressing information
265 * in order to perform that allocation.
266 *
267 * So ip_route_connect() looks up a route using wildcarded source and
268 * destination ports in the key, simply so that we can get a pair of
269 * addresses to use for port allocation.
270 *
271 * Later, once the ports are allocated, ip_route_newports() will make
272 * another route lookup if needed to make sure we catch any IPSEC
273 * rules keyed on the port information.
274 *
275 * The callers allocate the flow key on their stack, and must pass in
276 * the same flowi4 object to both the ip_route_connect() and the
277 * ip_route_newports() calls.
278 */
279
280 static inline void ip_route_connect_init(struct flowi4 *fl4, __be32 dst, __be32 src,
281 u32 tos, int oif, u8 protocol,
282 __be16 sport, __be16 dport,
283 struct sock *sk)
284 {
285 __u8 flow_flags = 0;
286
287 if (inet_sk(sk)->transparent)
288 flow_flags |= FLOWI_FLAG_ANYSRC;
289
290 flowi4_init_output(fl4, oif, sk->sk_mark, tos, RT_SCOPE_UNIVERSE,
291 protocol, flow_flags, dst, src, dport, sport,
292 sk->sk_uid);
293 }
294
295 static inline struct rtable *ip_route_connect(struct flowi4 *fl4,
296 __be32 dst, __be32 src, u32 tos,
297 int oif, u8 protocol,
298 __be16 sport, __be16 dport,
299 struct sock *sk)
300 {
301 struct net *net = sock_net(sk);
302 struct rtable *rt;
303
304 ip_route_connect_init(fl4, dst, src, tos, oif, protocol,
305 sport, dport, sk);
306
307 if (!dst || !src) {
308 rt = __ip_route_output_key(net, fl4);
309 if (IS_ERR(rt))
310 return rt;
311 ip_rt_put(rt);
312 flowi4_update_output(fl4, oif, tos, fl4->daddr, fl4->saddr);
313 }
314 security_sk_classify_flow(sk, flowi4_to_flowi(fl4));
315 return ip_route_output_flow(net, fl4, sk);
316 }
317
318 static inline struct rtable *ip_route_newports(struct flowi4 *fl4, struct rtable *rt,
319 __be16 orig_sport, __be16 orig_dport,
320 __be16 sport, __be16 dport,
321 struct sock *sk)
322 {
323 if (sport != orig_sport || dport != orig_dport) {
324 fl4->fl4_dport = dport;
325 fl4->fl4_sport = sport;
326 ip_rt_put(rt);
327 flowi4_update_output(fl4, sk->sk_bound_dev_if,
328 RT_CONN_FLAGS(sk), fl4->daddr,
329 fl4->saddr);
330 security_sk_classify_flow(sk, flowi4_to_flowi(fl4));
331 return ip_route_output_flow(sock_net(sk), fl4, sk);
332 }
333 return rt;
334 }
335
336 static inline int inet_iif(const struct sk_buff *skb)
337 {
338 struct rtable *rt = skb_rtable(skb);
339
340 if (rt && rt->rt_iif)
341 return rt->rt_iif;
342
343 return skb->skb_iif;
344 }
345
346 static inline int ip4_dst_hoplimit(const struct dst_entry *dst)
347 {
348 int hoplimit = dst_metric_raw(dst, RTAX_HOPLIMIT);
349 struct net *net = dev_net(dst->dev);
350
351 if (hoplimit == 0)
352 hoplimit = net->ipv4.sysctl_ip_default_ttl;
353 return hoplimit;
354 }
355
356 static inline struct neighbour *ip_neigh_gw4(struct net_device *dev,
357 __be32 daddr)
358 {
359 struct neighbour *neigh;
360
361 neigh = __ipv4_neigh_lookup_noref(dev, daddr);
362 if (unlikely(!neigh))
363 neigh = __neigh_create(&arp_tbl, &daddr, dev, false);
364
365 return neigh;
366 }
367
368 static inline struct neighbour *ip_neigh_for_gw(struct rtable *rt,
369 struct sk_buff *skb,
370 bool *is_v6gw)
371 {
372 struct net_device *dev = rt->dst.dev;
373 struct neighbour *neigh;
374
375 if (likely(rt->rt_gw_family == AF_INET)) {
376 neigh = ip_neigh_gw4(dev, rt->rt_gw4);
377 } else if (rt->rt_gw_family == AF_INET6) {
378 neigh = ip_neigh_gw6(dev, &rt->rt_gw6);
379 *is_v6gw = true;
380 } else {
381 neigh = ip_neigh_gw4(dev, ip_hdr(skb)->daddr);
382 }
383 return neigh;
384 }
385
386 #endif /* _ROUTE_H */