]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - include/net/sock.h
net: fix sock_wake_async() rcu protection
[mirror_ubuntu-artful-kernel.git] / include / net / sock.h
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Definitions for the AF_INET socket handler.
7 *
8 * Version: @(#)sock.h 1.0.4 05/13/93
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche <flla@stud.uni-sb.de>
14 *
15 * Fixes:
16 * Alan Cox : Volatiles in skbuff pointers. See
17 * skbuff comments. May be overdone,
18 * better to prove they can be removed
19 * than the reverse.
20 * Alan Cox : Added a zapped field for tcp to note
21 * a socket is reset and must stay shut up
22 * Alan Cox : New fields for options
23 * Pauline Middelink : identd support
24 * Alan Cox : Eliminate low level recv/recvfrom
25 * David S. Miller : New socket lookup architecture.
26 * Steve Whitehouse: Default routines for sock_ops
27 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made
28 * protinfo be just a void pointer, as the
29 * protocol specific parts were moved to
30 * respective headers and ipv4/v6, etc now
31 * use private slabcaches for its socks
32 * Pedro Hortas : New flags field for socket options
33 *
34 *
35 * This program is free software; you can redistribute it and/or
36 * modify it under the terms of the GNU General Public License
37 * as published by the Free Software Foundation; either version
38 * 2 of the License, or (at your option) any later version.
39 */
40 #ifndef _SOCK_H
41 #define _SOCK_H
42
43 #include <linux/hardirq.h>
44 #include <linux/kernel.h>
45 #include <linux/list.h>
46 #include <linux/list_nulls.h>
47 #include <linux/timer.h>
48 #include <linux/cache.h>
49 #include <linux/bitops.h>
50 #include <linux/lockdep.h>
51 #include <linux/netdevice.h>
52 #include <linux/skbuff.h> /* struct sk_buff */
53 #include <linux/mm.h>
54 #include <linux/security.h>
55 #include <linux/slab.h>
56 #include <linux/uaccess.h>
57 #include <linux/page_counter.h>
58 #include <linux/memcontrol.h>
59 #include <linux/static_key.h>
60 #include <linux/sched.h>
61
62 #include <linux/filter.h>
63 #include <linux/rculist_nulls.h>
64 #include <linux/poll.h>
65
66 #include <linux/atomic.h>
67 #include <net/dst.h>
68 #include <net/checksum.h>
69 #include <net/tcp_states.h>
70 #include <linux/net_tstamp.h>
71
72 struct cgroup;
73 struct cgroup_subsys;
74 #ifdef CONFIG_NET
75 int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss);
76 void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg);
77 #else
78 static inline
79 int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
80 {
81 return 0;
82 }
83 static inline
84 void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg)
85 {
86 }
87 #endif
88 /*
89 * This structure really needs to be cleaned up.
90 * Most of it is for TCP, and not used by any of
91 * the other protocols.
92 */
93
94 /* Define this to get the SOCK_DBG debugging facility. */
95 #define SOCK_DEBUGGING
96 #ifdef SOCK_DEBUGGING
97 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
98 printk(KERN_DEBUG msg); } while (0)
99 #else
100 /* Validate arguments and do nothing */
101 static inline __printf(2, 3)
102 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
103 {
104 }
105 #endif
106
107 /* This is the per-socket lock. The spinlock provides a synchronization
108 * between user contexts and software interrupt processing, whereas the
109 * mini-semaphore synchronizes multiple users amongst themselves.
110 */
111 typedef struct {
112 spinlock_t slock;
113 int owned;
114 wait_queue_head_t wq;
115 /*
116 * We express the mutex-alike socket_lock semantics
117 * to the lock validator by explicitly managing
118 * the slock as a lock variant (in addition to
119 * the slock itself):
120 */
121 #ifdef CONFIG_DEBUG_LOCK_ALLOC
122 struct lockdep_map dep_map;
123 #endif
124 } socket_lock_t;
125
126 struct sock;
127 struct proto;
128 struct net;
129
130 typedef __u32 __bitwise __portpair;
131 typedef __u64 __bitwise __addrpair;
132
133 /**
134 * struct sock_common - minimal network layer representation of sockets
135 * @skc_daddr: Foreign IPv4 addr
136 * @skc_rcv_saddr: Bound local IPv4 addr
137 * @skc_hash: hash value used with various protocol lookup tables
138 * @skc_u16hashes: two u16 hash values used by UDP lookup tables
139 * @skc_dport: placeholder for inet_dport/tw_dport
140 * @skc_num: placeholder for inet_num/tw_num
141 * @skc_family: network address family
142 * @skc_state: Connection state
143 * @skc_reuse: %SO_REUSEADDR setting
144 * @skc_reuseport: %SO_REUSEPORT setting
145 * @skc_bound_dev_if: bound device index if != 0
146 * @skc_bind_node: bind hash linkage for various protocol lookup tables
147 * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
148 * @skc_prot: protocol handlers inside a network family
149 * @skc_net: reference to the network namespace of this socket
150 * @skc_node: main hash linkage for various protocol lookup tables
151 * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
152 * @skc_tx_queue_mapping: tx queue number for this connection
153 * @skc_flags: place holder for sk_flags
154 * %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
155 * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
156 * @skc_incoming_cpu: record/match cpu processing incoming packets
157 * @skc_refcnt: reference count
158 *
159 * This is the minimal network layer representation of sockets, the header
160 * for struct sock and struct inet_timewait_sock.
161 */
162 struct sock_common {
163 /* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned
164 * address on 64bit arches : cf INET_MATCH()
165 */
166 union {
167 __addrpair skc_addrpair;
168 struct {
169 __be32 skc_daddr;
170 __be32 skc_rcv_saddr;
171 };
172 };
173 union {
174 unsigned int skc_hash;
175 __u16 skc_u16hashes[2];
176 };
177 /* skc_dport && skc_num must be grouped as well */
178 union {
179 __portpair skc_portpair;
180 struct {
181 __be16 skc_dport;
182 __u16 skc_num;
183 };
184 };
185
186 unsigned short skc_family;
187 volatile unsigned char skc_state;
188 unsigned char skc_reuse:4;
189 unsigned char skc_reuseport:1;
190 unsigned char skc_ipv6only:1;
191 unsigned char skc_net_refcnt:1;
192 int skc_bound_dev_if;
193 union {
194 struct hlist_node skc_bind_node;
195 struct hlist_nulls_node skc_portaddr_node;
196 };
197 struct proto *skc_prot;
198 possible_net_t skc_net;
199
200 #if IS_ENABLED(CONFIG_IPV6)
201 struct in6_addr skc_v6_daddr;
202 struct in6_addr skc_v6_rcv_saddr;
203 #endif
204
205 atomic64_t skc_cookie;
206
207 /* following fields are padding to force
208 * offset(struct sock, sk_refcnt) == 128 on 64bit arches
209 * assuming IPV6 is enabled. We use this padding differently
210 * for different kind of 'sockets'
211 */
212 union {
213 unsigned long skc_flags;
214 struct sock *skc_listener; /* request_sock */
215 struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */
216 };
217 /*
218 * fields between dontcopy_begin/dontcopy_end
219 * are not copied in sock_copy()
220 */
221 /* private: */
222 int skc_dontcopy_begin[0];
223 /* public: */
224 union {
225 struct hlist_node skc_node;
226 struct hlist_nulls_node skc_nulls_node;
227 };
228 int skc_tx_queue_mapping;
229 union {
230 int skc_incoming_cpu;
231 u32 skc_rcv_wnd;
232 u32 skc_tw_rcv_nxt; /* struct tcp_timewait_sock */
233 };
234
235 atomic_t skc_refcnt;
236 /* private: */
237 int skc_dontcopy_end[0];
238 union {
239 u32 skc_rxhash;
240 u32 skc_window_clamp;
241 u32 skc_tw_snd_nxt; /* struct tcp_timewait_sock */
242 };
243 /* public: */
244 };
245
246 struct cg_proto;
247 /**
248 * struct sock - network layer representation of sockets
249 * @__sk_common: shared layout with inet_timewait_sock
250 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
251 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
252 * @sk_lock: synchronizer
253 * @sk_rcvbuf: size of receive buffer in bytes
254 * @sk_wq: sock wait queue and async head
255 * @sk_rx_dst: receive input route used by early demux
256 * @sk_dst_cache: destination cache
257 * @sk_dst_lock: destination cache lock
258 * @sk_policy: flow policy
259 * @sk_receive_queue: incoming packets
260 * @sk_wmem_alloc: transmit queue bytes committed
261 * @sk_write_queue: Packet sending queue
262 * @sk_omem_alloc: "o" is "option" or "other"
263 * @sk_wmem_queued: persistent queue size
264 * @sk_forward_alloc: space allocated forward
265 * @sk_napi_id: id of the last napi context to receive data for sk
266 * @sk_ll_usec: usecs to busypoll when there is no data
267 * @sk_allocation: allocation mode
268 * @sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
269 * @sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
270 * @sk_sndbuf: size of send buffer in bytes
271 * @sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
272 * @sk_no_check_rx: allow zero checksum in RX packets
273 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
274 * @sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
275 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
276 * @sk_gso_max_size: Maximum GSO segment size to build
277 * @sk_gso_max_segs: Maximum number of GSO segments
278 * @sk_lingertime: %SO_LINGER l_linger setting
279 * @sk_backlog: always used with the per-socket spinlock held
280 * @sk_callback_lock: used with the callbacks in the end of this struct
281 * @sk_error_queue: rarely used
282 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
283 * IPV6_ADDRFORM for instance)
284 * @sk_err: last error
285 * @sk_err_soft: errors that don't cause failure but are the cause of a
286 * persistent failure not just 'timed out'
287 * @sk_drops: raw/udp drops counter
288 * @sk_ack_backlog: current listen backlog
289 * @sk_max_ack_backlog: listen backlog set in listen()
290 * @sk_priority: %SO_PRIORITY setting
291 * @sk_cgrp_prioidx: socket group's priority map index
292 * @sk_type: socket type (%SOCK_STREAM, etc)
293 * @sk_protocol: which protocol this socket belongs in this network family
294 * @sk_peer_pid: &struct pid for this socket's peer
295 * @sk_peer_cred: %SO_PEERCRED setting
296 * @sk_rcvlowat: %SO_RCVLOWAT setting
297 * @sk_rcvtimeo: %SO_RCVTIMEO setting
298 * @sk_sndtimeo: %SO_SNDTIMEO setting
299 * @sk_txhash: computed flow hash for use on transmit
300 * @sk_filter: socket filtering instructions
301 * @sk_timer: sock cleanup timer
302 * @sk_stamp: time stamp of last packet received
303 * @sk_tsflags: SO_TIMESTAMPING socket options
304 * @sk_tskey: counter to disambiguate concurrent tstamp requests
305 * @sk_socket: Identd and reporting IO signals
306 * @sk_user_data: RPC layer private data
307 * @sk_frag: cached page frag
308 * @sk_peek_off: current peek_offset value
309 * @sk_send_head: front of stuff to transmit
310 * @sk_security: used by security modules
311 * @sk_mark: generic packet mark
312 * @sk_classid: this socket's cgroup classid
313 * @sk_cgrp: this socket's cgroup-specific proto data
314 * @sk_write_pending: a write to stream socket waits to start
315 * @sk_state_change: callback to indicate change in the state of the sock
316 * @sk_data_ready: callback to indicate there is data to be processed
317 * @sk_write_space: callback to indicate there is bf sending space available
318 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
319 * @sk_backlog_rcv: callback to process the backlog
320 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
321 */
322 struct sock {
323 /*
324 * Now struct inet_timewait_sock also uses sock_common, so please just
325 * don't add nothing before this first member (__sk_common) --acme
326 */
327 struct sock_common __sk_common;
328 #define sk_node __sk_common.skc_node
329 #define sk_nulls_node __sk_common.skc_nulls_node
330 #define sk_refcnt __sk_common.skc_refcnt
331 #define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping
332
333 #define sk_dontcopy_begin __sk_common.skc_dontcopy_begin
334 #define sk_dontcopy_end __sk_common.skc_dontcopy_end
335 #define sk_hash __sk_common.skc_hash
336 #define sk_portpair __sk_common.skc_portpair
337 #define sk_num __sk_common.skc_num
338 #define sk_dport __sk_common.skc_dport
339 #define sk_addrpair __sk_common.skc_addrpair
340 #define sk_daddr __sk_common.skc_daddr
341 #define sk_rcv_saddr __sk_common.skc_rcv_saddr
342 #define sk_family __sk_common.skc_family
343 #define sk_state __sk_common.skc_state
344 #define sk_reuse __sk_common.skc_reuse
345 #define sk_reuseport __sk_common.skc_reuseport
346 #define sk_ipv6only __sk_common.skc_ipv6only
347 #define sk_net_refcnt __sk_common.skc_net_refcnt
348 #define sk_bound_dev_if __sk_common.skc_bound_dev_if
349 #define sk_bind_node __sk_common.skc_bind_node
350 #define sk_prot __sk_common.skc_prot
351 #define sk_net __sk_common.skc_net
352 #define sk_v6_daddr __sk_common.skc_v6_daddr
353 #define sk_v6_rcv_saddr __sk_common.skc_v6_rcv_saddr
354 #define sk_cookie __sk_common.skc_cookie
355 #define sk_incoming_cpu __sk_common.skc_incoming_cpu
356 #define sk_flags __sk_common.skc_flags
357 #define sk_rxhash __sk_common.skc_rxhash
358
359 socket_lock_t sk_lock;
360 struct sk_buff_head sk_receive_queue;
361 /*
362 * The backlog queue is special, it is always used with
363 * the per-socket spinlock held and requires low latency
364 * access. Therefore we special case it's implementation.
365 * Note : rmem_alloc is in this structure to fill a hole
366 * on 64bit arches, not because its logically part of
367 * backlog.
368 */
369 struct {
370 atomic_t rmem_alloc;
371 int len;
372 struct sk_buff *head;
373 struct sk_buff *tail;
374 } sk_backlog;
375 #define sk_rmem_alloc sk_backlog.rmem_alloc
376 int sk_forward_alloc;
377
378 __u32 sk_txhash;
379 #ifdef CONFIG_NET_RX_BUSY_POLL
380 unsigned int sk_napi_id;
381 unsigned int sk_ll_usec;
382 #endif
383 atomic_t sk_drops;
384 int sk_rcvbuf;
385
386 struct sk_filter __rcu *sk_filter;
387 union {
388 struct socket_wq __rcu *sk_wq;
389 struct socket_wq *sk_wq_raw;
390 };
391 #ifdef CONFIG_XFRM
392 struct xfrm_policy *sk_policy[2];
393 #endif
394 struct dst_entry *sk_rx_dst;
395 struct dst_entry __rcu *sk_dst_cache;
396 spinlock_t sk_dst_lock;
397 atomic_t sk_wmem_alloc;
398 atomic_t sk_omem_alloc;
399 int sk_sndbuf;
400 struct sk_buff_head sk_write_queue;
401 kmemcheck_bitfield_begin(flags);
402 unsigned int sk_shutdown : 2,
403 sk_no_check_tx : 1,
404 sk_no_check_rx : 1,
405 sk_userlocks : 4,
406 sk_protocol : 8,
407 sk_type : 16;
408 kmemcheck_bitfield_end(flags);
409 int sk_wmem_queued;
410 gfp_t sk_allocation;
411 u32 sk_pacing_rate; /* bytes per second */
412 u32 sk_max_pacing_rate;
413 netdev_features_t sk_route_caps;
414 netdev_features_t sk_route_nocaps;
415 int sk_gso_type;
416 unsigned int sk_gso_max_size;
417 u16 sk_gso_max_segs;
418 int sk_rcvlowat;
419 unsigned long sk_lingertime;
420 struct sk_buff_head sk_error_queue;
421 struct proto *sk_prot_creator;
422 rwlock_t sk_callback_lock;
423 int sk_err,
424 sk_err_soft;
425 u32 sk_ack_backlog;
426 u32 sk_max_ack_backlog;
427 __u32 sk_priority;
428 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
429 __u32 sk_cgrp_prioidx;
430 #endif
431 struct pid *sk_peer_pid;
432 const struct cred *sk_peer_cred;
433 long sk_rcvtimeo;
434 long sk_sndtimeo;
435 struct timer_list sk_timer;
436 ktime_t sk_stamp;
437 u16 sk_tsflags;
438 u32 sk_tskey;
439 struct socket *sk_socket;
440 void *sk_user_data;
441 struct page_frag sk_frag;
442 struct sk_buff *sk_send_head;
443 __s32 sk_peek_off;
444 int sk_write_pending;
445 #ifdef CONFIG_SECURITY
446 void *sk_security;
447 #endif
448 __u32 sk_mark;
449 #ifdef CONFIG_CGROUP_NET_CLASSID
450 u32 sk_classid;
451 #endif
452 struct cg_proto *sk_cgrp;
453 void (*sk_state_change)(struct sock *sk);
454 void (*sk_data_ready)(struct sock *sk);
455 void (*sk_write_space)(struct sock *sk);
456 void (*sk_error_report)(struct sock *sk);
457 int (*sk_backlog_rcv)(struct sock *sk,
458 struct sk_buff *skb);
459 void (*sk_destruct)(struct sock *sk);
460 };
461
462 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
463
464 #define rcu_dereference_sk_user_data(sk) rcu_dereference(__sk_user_data((sk)))
465 #define rcu_assign_sk_user_data(sk, ptr) rcu_assign_pointer(__sk_user_data((sk)), ptr)
466
467 /*
468 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
469 * or not whether his port will be reused by someone else. SK_FORCE_REUSE
470 * on a socket means that the socket will reuse everybody else's port
471 * without looking at the other's sk_reuse value.
472 */
473
474 #define SK_NO_REUSE 0
475 #define SK_CAN_REUSE 1
476 #define SK_FORCE_REUSE 2
477
478 static inline int sk_peek_offset(struct sock *sk, int flags)
479 {
480 if ((flags & MSG_PEEK) && (sk->sk_peek_off >= 0))
481 return sk->sk_peek_off;
482 else
483 return 0;
484 }
485
486 static inline void sk_peek_offset_bwd(struct sock *sk, int val)
487 {
488 if (sk->sk_peek_off >= 0) {
489 if (sk->sk_peek_off >= val)
490 sk->sk_peek_off -= val;
491 else
492 sk->sk_peek_off = 0;
493 }
494 }
495
496 static inline void sk_peek_offset_fwd(struct sock *sk, int val)
497 {
498 if (sk->sk_peek_off >= 0)
499 sk->sk_peek_off += val;
500 }
501
502 /*
503 * Hashed lists helper routines
504 */
505 static inline struct sock *sk_entry(const struct hlist_node *node)
506 {
507 return hlist_entry(node, struct sock, sk_node);
508 }
509
510 static inline struct sock *__sk_head(const struct hlist_head *head)
511 {
512 return hlist_entry(head->first, struct sock, sk_node);
513 }
514
515 static inline struct sock *sk_head(const struct hlist_head *head)
516 {
517 return hlist_empty(head) ? NULL : __sk_head(head);
518 }
519
520 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
521 {
522 return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
523 }
524
525 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
526 {
527 return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
528 }
529
530 static inline struct sock *sk_next(const struct sock *sk)
531 {
532 return sk->sk_node.next ?
533 hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL;
534 }
535
536 static inline struct sock *sk_nulls_next(const struct sock *sk)
537 {
538 return (!is_a_nulls(sk->sk_nulls_node.next)) ?
539 hlist_nulls_entry(sk->sk_nulls_node.next,
540 struct sock, sk_nulls_node) :
541 NULL;
542 }
543
544 static inline bool sk_unhashed(const struct sock *sk)
545 {
546 return hlist_unhashed(&sk->sk_node);
547 }
548
549 static inline bool sk_hashed(const struct sock *sk)
550 {
551 return !sk_unhashed(sk);
552 }
553
554 static inline void sk_node_init(struct hlist_node *node)
555 {
556 node->pprev = NULL;
557 }
558
559 static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
560 {
561 node->pprev = NULL;
562 }
563
564 static inline void __sk_del_node(struct sock *sk)
565 {
566 __hlist_del(&sk->sk_node);
567 }
568
569 /* NB: equivalent to hlist_del_init_rcu */
570 static inline bool __sk_del_node_init(struct sock *sk)
571 {
572 if (sk_hashed(sk)) {
573 __sk_del_node(sk);
574 sk_node_init(&sk->sk_node);
575 return true;
576 }
577 return false;
578 }
579
580 /* Grab socket reference count. This operation is valid only
581 when sk is ALREADY grabbed f.e. it is found in hash table
582 or a list and the lookup is made under lock preventing hash table
583 modifications.
584 */
585
586 static inline void sock_hold(struct sock *sk)
587 {
588 atomic_inc(&sk->sk_refcnt);
589 }
590
591 /* Ungrab socket in the context, which assumes that socket refcnt
592 cannot hit zero, f.e. it is true in context of any socketcall.
593 */
594 static inline void __sock_put(struct sock *sk)
595 {
596 atomic_dec(&sk->sk_refcnt);
597 }
598
599 static inline bool sk_del_node_init(struct sock *sk)
600 {
601 bool rc = __sk_del_node_init(sk);
602
603 if (rc) {
604 /* paranoid for a while -acme */
605 WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
606 __sock_put(sk);
607 }
608 return rc;
609 }
610 #define sk_del_node_init_rcu(sk) sk_del_node_init(sk)
611
612 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
613 {
614 if (sk_hashed(sk)) {
615 hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
616 return true;
617 }
618 return false;
619 }
620
621 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
622 {
623 bool rc = __sk_nulls_del_node_init_rcu(sk);
624
625 if (rc) {
626 /* paranoid for a while -acme */
627 WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
628 __sock_put(sk);
629 }
630 return rc;
631 }
632
633 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
634 {
635 hlist_add_head(&sk->sk_node, list);
636 }
637
638 static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
639 {
640 sock_hold(sk);
641 __sk_add_node(sk, list);
642 }
643
644 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
645 {
646 sock_hold(sk);
647 hlist_add_head_rcu(&sk->sk_node, list);
648 }
649
650 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
651 {
652 hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
653 }
654
655 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
656 {
657 sock_hold(sk);
658 __sk_nulls_add_node_rcu(sk, list);
659 }
660
661 static inline void __sk_del_bind_node(struct sock *sk)
662 {
663 __hlist_del(&sk->sk_bind_node);
664 }
665
666 static inline void sk_add_bind_node(struct sock *sk,
667 struct hlist_head *list)
668 {
669 hlist_add_head(&sk->sk_bind_node, list);
670 }
671
672 #define sk_for_each(__sk, list) \
673 hlist_for_each_entry(__sk, list, sk_node)
674 #define sk_for_each_rcu(__sk, list) \
675 hlist_for_each_entry_rcu(__sk, list, sk_node)
676 #define sk_nulls_for_each(__sk, node, list) \
677 hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
678 #define sk_nulls_for_each_rcu(__sk, node, list) \
679 hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
680 #define sk_for_each_from(__sk) \
681 hlist_for_each_entry_from(__sk, sk_node)
682 #define sk_nulls_for_each_from(__sk, node) \
683 if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
684 hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
685 #define sk_for_each_safe(__sk, tmp, list) \
686 hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
687 #define sk_for_each_bound(__sk, list) \
688 hlist_for_each_entry(__sk, list, sk_bind_node)
689
690 /**
691 * sk_nulls_for_each_entry_offset - iterate over a list at a given struct offset
692 * @tpos: the type * to use as a loop cursor.
693 * @pos: the &struct hlist_node to use as a loop cursor.
694 * @head: the head for your list.
695 * @offset: offset of hlist_node within the struct.
696 *
697 */
698 #define sk_nulls_for_each_entry_offset(tpos, pos, head, offset) \
699 for (pos = (head)->first; \
700 (!is_a_nulls(pos)) && \
701 ({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;}); \
702 pos = pos->next)
703
704 static inline struct user_namespace *sk_user_ns(struct sock *sk)
705 {
706 /* Careful only use this in a context where these parameters
707 * can not change and must all be valid, such as recvmsg from
708 * userspace.
709 */
710 return sk->sk_socket->file->f_cred->user_ns;
711 }
712
713 /* Sock flags */
714 enum sock_flags {
715 SOCK_DEAD,
716 SOCK_DONE,
717 SOCK_URGINLINE,
718 SOCK_KEEPOPEN,
719 SOCK_LINGER,
720 SOCK_DESTROY,
721 SOCK_BROADCAST,
722 SOCK_TIMESTAMP,
723 SOCK_ZAPPED,
724 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
725 SOCK_DBG, /* %SO_DEBUG setting */
726 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
727 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
728 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
729 SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
730 SOCK_MEMALLOC, /* VM depends on this socket for swapping */
731 SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */
732 SOCK_FASYNC, /* fasync() active */
733 SOCK_RXQ_OVFL,
734 SOCK_ZEROCOPY, /* buffers from userspace */
735 SOCK_WIFI_STATUS, /* push wifi status to userspace */
736 SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
737 * Will use last 4 bytes of packet sent from
738 * user-space instead.
739 */
740 SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
741 SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
742 };
743
744 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
745 {
746 nsk->sk_flags = osk->sk_flags;
747 }
748
749 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
750 {
751 __set_bit(flag, &sk->sk_flags);
752 }
753
754 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
755 {
756 __clear_bit(flag, &sk->sk_flags);
757 }
758
759 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
760 {
761 return test_bit(flag, &sk->sk_flags);
762 }
763
764 #ifdef CONFIG_NET
765 extern struct static_key memalloc_socks;
766 static inline int sk_memalloc_socks(void)
767 {
768 return static_key_false(&memalloc_socks);
769 }
770 #else
771
772 static inline int sk_memalloc_socks(void)
773 {
774 return 0;
775 }
776
777 #endif
778
779 static inline gfp_t sk_gfp_atomic(const struct sock *sk, gfp_t gfp_mask)
780 {
781 return GFP_ATOMIC | (sk->sk_allocation & __GFP_MEMALLOC);
782 }
783
784 static inline void sk_acceptq_removed(struct sock *sk)
785 {
786 sk->sk_ack_backlog--;
787 }
788
789 static inline void sk_acceptq_added(struct sock *sk)
790 {
791 sk->sk_ack_backlog++;
792 }
793
794 static inline bool sk_acceptq_is_full(const struct sock *sk)
795 {
796 return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
797 }
798
799 /*
800 * Compute minimal free write space needed to queue new packets.
801 */
802 static inline int sk_stream_min_wspace(const struct sock *sk)
803 {
804 return sk->sk_wmem_queued >> 1;
805 }
806
807 static inline int sk_stream_wspace(const struct sock *sk)
808 {
809 return sk->sk_sndbuf - sk->sk_wmem_queued;
810 }
811
812 void sk_stream_write_space(struct sock *sk);
813
814 /* OOB backlog add */
815 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
816 {
817 /* dont let skb dst not refcounted, we are going to leave rcu lock */
818 skb_dst_force(skb);
819
820 if (!sk->sk_backlog.tail)
821 sk->sk_backlog.head = skb;
822 else
823 sk->sk_backlog.tail->next = skb;
824
825 sk->sk_backlog.tail = skb;
826 skb->next = NULL;
827 }
828
829 /*
830 * Take into account size of receive queue and backlog queue
831 * Do not take into account this skb truesize,
832 * to allow even a single big packet to come.
833 */
834 static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
835 {
836 unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
837
838 return qsize > limit;
839 }
840
841 /* The per-socket spinlock must be held here. */
842 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
843 unsigned int limit)
844 {
845 if (sk_rcvqueues_full(sk, limit))
846 return -ENOBUFS;
847
848 /*
849 * If the skb was allocated from pfmemalloc reserves, only
850 * allow SOCK_MEMALLOC sockets to use it as this socket is
851 * helping free memory
852 */
853 if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
854 return -ENOMEM;
855
856 __sk_add_backlog(sk, skb);
857 sk->sk_backlog.len += skb->truesize;
858 return 0;
859 }
860
861 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
862
863 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
864 {
865 if (sk_memalloc_socks() && skb_pfmemalloc(skb))
866 return __sk_backlog_rcv(sk, skb);
867
868 return sk->sk_backlog_rcv(sk, skb);
869 }
870
871 static inline void sk_incoming_cpu_update(struct sock *sk)
872 {
873 sk->sk_incoming_cpu = raw_smp_processor_id();
874 }
875
876 static inline void sock_rps_record_flow_hash(__u32 hash)
877 {
878 #ifdef CONFIG_RPS
879 struct rps_sock_flow_table *sock_flow_table;
880
881 rcu_read_lock();
882 sock_flow_table = rcu_dereference(rps_sock_flow_table);
883 rps_record_sock_flow(sock_flow_table, hash);
884 rcu_read_unlock();
885 #endif
886 }
887
888 static inline void sock_rps_record_flow(const struct sock *sk)
889 {
890 #ifdef CONFIG_RPS
891 sock_rps_record_flow_hash(sk->sk_rxhash);
892 #endif
893 }
894
895 static inline void sock_rps_save_rxhash(struct sock *sk,
896 const struct sk_buff *skb)
897 {
898 #ifdef CONFIG_RPS
899 if (unlikely(sk->sk_rxhash != skb->hash))
900 sk->sk_rxhash = skb->hash;
901 #endif
902 }
903
904 static inline void sock_rps_reset_rxhash(struct sock *sk)
905 {
906 #ifdef CONFIG_RPS
907 sk->sk_rxhash = 0;
908 #endif
909 }
910
911 #define sk_wait_event(__sk, __timeo, __condition) \
912 ({ int __rc; \
913 release_sock(__sk); \
914 __rc = __condition; \
915 if (!__rc) { \
916 *(__timeo) = schedule_timeout(*(__timeo)); \
917 } \
918 sched_annotate_sleep(); \
919 lock_sock(__sk); \
920 __rc = __condition; \
921 __rc; \
922 })
923
924 int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
925 int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
926 void sk_stream_wait_close(struct sock *sk, long timeo_p);
927 int sk_stream_error(struct sock *sk, int flags, int err);
928 void sk_stream_kill_queues(struct sock *sk);
929 void sk_set_memalloc(struct sock *sk);
930 void sk_clear_memalloc(struct sock *sk);
931
932 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb);
933
934 struct request_sock_ops;
935 struct timewait_sock_ops;
936 struct inet_hashinfo;
937 struct raw_hashinfo;
938 struct module;
939
940 /*
941 * caches using SLAB_DESTROY_BY_RCU should let .next pointer from nulls nodes
942 * un-modified. Special care is taken when initializing object to zero.
943 */
944 static inline void sk_prot_clear_nulls(struct sock *sk, int size)
945 {
946 if (offsetof(struct sock, sk_node.next) != 0)
947 memset(sk, 0, offsetof(struct sock, sk_node.next));
948 memset(&sk->sk_node.pprev, 0,
949 size - offsetof(struct sock, sk_node.pprev));
950 }
951
952 /* Networking protocol blocks we attach to sockets.
953 * socket layer -> transport layer interface
954 */
955 struct proto {
956 void (*close)(struct sock *sk,
957 long timeout);
958 int (*connect)(struct sock *sk,
959 struct sockaddr *uaddr,
960 int addr_len);
961 int (*disconnect)(struct sock *sk, int flags);
962
963 struct sock * (*accept)(struct sock *sk, int flags, int *err);
964
965 int (*ioctl)(struct sock *sk, int cmd,
966 unsigned long arg);
967 int (*init)(struct sock *sk);
968 void (*destroy)(struct sock *sk);
969 void (*shutdown)(struct sock *sk, int how);
970 int (*setsockopt)(struct sock *sk, int level,
971 int optname, char __user *optval,
972 unsigned int optlen);
973 int (*getsockopt)(struct sock *sk, int level,
974 int optname, char __user *optval,
975 int __user *option);
976 #ifdef CONFIG_COMPAT
977 int (*compat_setsockopt)(struct sock *sk,
978 int level,
979 int optname, char __user *optval,
980 unsigned int optlen);
981 int (*compat_getsockopt)(struct sock *sk,
982 int level,
983 int optname, char __user *optval,
984 int __user *option);
985 int (*compat_ioctl)(struct sock *sk,
986 unsigned int cmd, unsigned long arg);
987 #endif
988 int (*sendmsg)(struct sock *sk, struct msghdr *msg,
989 size_t len);
990 int (*recvmsg)(struct sock *sk, struct msghdr *msg,
991 size_t len, int noblock, int flags,
992 int *addr_len);
993 int (*sendpage)(struct sock *sk, struct page *page,
994 int offset, size_t size, int flags);
995 int (*bind)(struct sock *sk,
996 struct sockaddr *uaddr, int addr_len);
997
998 int (*backlog_rcv) (struct sock *sk,
999 struct sk_buff *skb);
1000
1001 void (*release_cb)(struct sock *sk);
1002
1003 /* Keeping track of sk's, looking them up, and port selection methods. */
1004 void (*hash)(struct sock *sk);
1005 void (*unhash)(struct sock *sk);
1006 void (*rehash)(struct sock *sk);
1007 int (*get_port)(struct sock *sk, unsigned short snum);
1008 void (*clear_sk)(struct sock *sk, int size);
1009
1010 /* Keeping track of sockets in use */
1011 #ifdef CONFIG_PROC_FS
1012 unsigned int inuse_idx;
1013 #endif
1014
1015 bool (*stream_memory_free)(const struct sock *sk);
1016 /* Memory pressure */
1017 void (*enter_memory_pressure)(struct sock *sk);
1018 atomic_long_t *memory_allocated; /* Current allocated memory. */
1019 struct percpu_counter *sockets_allocated; /* Current number of sockets. */
1020 /*
1021 * Pressure flag: try to collapse.
1022 * Technical note: it is used by multiple contexts non atomically.
1023 * All the __sk_mem_schedule() is of this nature: accounting
1024 * is strict, actions are advisory and have some latency.
1025 */
1026 int *memory_pressure;
1027 long *sysctl_mem;
1028 int *sysctl_wmem;
1029 int *sysctl_rmem;
1030 int max_header;
1031 bool no_autobind;
1032
1033 struct kmem_cache *slab;
1034 unsigned int obj_size;
1035 int slab_flags;
1036
1037 struct percpu_counter *orphan_count;
1038
1039 struct request_sock_ops *rsk_prot;
1040 struct timewait_sock_ops *twsk_prot;
1041
1042 union {
1043 struct inet_hashinfo *hashinfo;
1044 struct udp_table *udp_table;
1045 struct raw_hashinfo *raw_hash;
1046 } h;
1047
1048 struct module *owner;
1049
1050 char name[32];
1051
1052 struct list_head node;
1053 #ifdef SOCK_REFCNT_DEBUG
1054 atomic_t socks;
1055 #endif
1056 #ifdef CONFIG_MEMCG_KMEM
1057 /*
1058 * cgroup specific init/deinit functions. Called once for all
1059 * protocols that implement it, from cgroups populate function.
1060 * This function has to setup any files the protocol want to
1061 * appear in the kmem cgroup filesystem.
1062 */
1063 int (*init_cgroup)(struct mem_cgroup *memcg,
1064 struct cgroup_subsys *ss);
1065 void (*destroy_cgroup)(struct mem_cgroup *memcg);
1066 struct cg_proto *(*proto_cgroup)(struct mem_cgroup *memcg);
1067 #endif
1068 };
1069
1070 int proto_register(struct proto *prot, int alloc_slab);
1071 void proto_unregister(struct proto *prot);
1072
1073 #ifdef SOCK_REFCNT_DEBUG
1074 static inline void sk_refcnt_debug_inc(struct sock *sk)
1075 {
1076 atomic_inc(&sk->sk_prot->socks);
1077 }
1078
1079 static inline void sk_refcnt_debug_dec(struct sock *sk)
1080 {
1081 atomic_dec(&sk->sk_prot->socks);
1082 printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1083 sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1084 }
1085
1086 static inline void sk_refcnt_debug_release(const struct sock *sk)
1087 {
1088 if (atomic_read(&sk->sk_refcnt) != 1)
1089 printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1090 sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt));
1091 }
1092 #else /* SOCK_REFCNT_DEBUG */
1093 #define sk_refcnt_debug_inc(sk) do { } while (0)
1094 #define sk_refcnt_debug_dec(sk) do { } while (0)
1095 #define sk_refcnt_debug_release(sk) do { } while (0)
1096 #endif /* SOCK_REFCNT_DEBUG */
1097
1098 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_NET)
1099 extern struct static_key memcg_socket_limit_enabled;
1100 static inline struct cg_proto *parent_cg_proto(struct proto *proto,
1101 struct cg_proto *cg_proto)
1102 {
1103 return proto->proto_cgroup(parent_mem_cgroup(cg_proto->memcg));
1104 }
1105 #define mem_cgroup_sockets_enabled static_key_false(&memcg_socket_limit_enabled)
1106 #else
1107 #define mem_cgroup_sockets_enabled 0
1108 static inline struct cg_proto *parent_cg_proto(struct proto *proto,
1109 struct cg_proto *cg_proto)
1110 {
1111 return NULL;
1112 }
1113 #endif
1114
1115 static inline bool sk_stream_memory_free(const struct sock *sk)
1116 {
1117 if (sk->sk_wmem_queued >= sk->sk_sndbuf)
1118 return false;
1119
1120 return sk->sk_prot->stream_memory_free ?
1121 sk->sk_prot->stream_memory_free(sk) : true;
1122 }
1123
1124 static inline bool sk_stream_is_writeable(const struct sock *sk)
1125 {
1126 return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1127 sk_stream_memory_free(sk);
1128 }
1129
1130
1131 static inline bool sk_has_memory_pressure(const struct sock *sk)
1132 {
1133 return sk->sk_prot->memory_pressure != NULL;
1134 }
1135
1136 static inline bool sk_under_memory_pressure(const struct sock *sk)
1137 {
1138 if (!sk->sk_prot->memory_pressure)
1139 return false;
1140
1141 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1142 return !!sk->sk_cgrp->memory_pressure;
1143
1144 return !!*sk->sk_prot->memory_pressure;
1145 }
1146
1147 static inline void sk_leave_memory_pressure(struct sock *sk)
1148 {
1149 int *memory_pressure = sk->sk_prot->memory_pressure;
1150
1151 if (!memory_pressure)
1152 return;
1153
1154 if (*memory_pressure)
1155 *memory_pressure = 0;
1156
1157 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1158 struct cg_proto *cg_proto = sk->sk_cgrp;
1159 struct proto *prot = sk->sk_prot;
1160
1161 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1162 cg_proto->memory_pressure = 0;
1163 }
1164
1165 }
1166
1167 static inline void sk_enter_memory_pressure(struct sock *sk)
1168 {
1169 if (!sk->sk_prot->enter_memory_pressure)
1170 return;
1171
1172 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1173 struct cg_proto *cg_proto = sk->sk_cgrp;
1174 struct proto *prot = sk->sk_prot;
1175
1176 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1177 cg_proto->memory_pressure = 1;
1178 }
1179
1180 sk->sk_prot->enter_memory_pressure(sk);
1181 }
1182
1183 static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1184 {
1185 long *prot = sk->sk_prot->sysctl_mem;
1186 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1187 prot = sk->sk_cgrp->sysctl_mem;
1188 return prot[index];
1189 }
1190
1191 static inline void memcg_memory_allocated_add(struct cg_proto *prot,
1192 unsigned long amt,
1193 int *parent_status)
1194 {
1195 page_counter_charge(&prot->memory_allocated, amt);
1196
1197 if (page_counter_read(&prot->memory_allocated) >
1198 prot->memory_allocated.limit)
1199 *parent_status = OVER_LIMIT;
1200 }
1201
1202 static inline void memcg_memory_allocated_sub(struct cg_proto *prot,
1203 unsigned long amt)
1204 {
1205 page_counter_uncharge(&prot->memory_allocated, amt);
1206 }
1207
1208 static inline long
1209 sk_memory_allocated(const struct sock *sk)
1210 {
1211 struct proto *prot = sk->sk_prot;
1212
1213 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1214 return page_counter_read(&sk->sk_cgrp->memory_allocated);
1215
1216 return atomic_long_read(prot->memory_allocated);
1217 }
1218
1219 static inline long
1220 sk_memory_allocated_add(struct sock *sk, int amt, int *parent_status)
1221 {
1222 struct proto *prot = sk->sk_prot;
1223
1224 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1225 memcg_memory_allocated_add(sk->sk_cgrp, amt, parent_status);
1226 /* update the root cgroup regardless */
1227 atomic_long_add_return(amt, prot->memory_allocated);
1228 return page_counter_read(&sk->sk_cgrp->memory_allocated);
1229 }
1230
1231 return atomic_long_add_return(amt, prot->memory_allocated);
1232 }
1233
1234 static inline void
1235 sk_memory_allocated_sub(struct sock *sk, int amt)
1236 {
1237 struct proto *prot = sk->sk_prot;
1238
1239 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1240 memcg_memory_allocated_sub(sk->sk_cgrp, amt);
1241
1242 atomic_long_sub(amt, prot->memory_allocated);
1243 }
1244
1245 static inline void sk_sockets_allocated_dec(struct sock *sk)
1246 {
1247 struct proto *prot = sk->sk_prot;
1248
1249 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1250 struct cg_proto *cg_proto = sk->sk_cgrp;
1251
1252 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1253 percpu_counter_dec(&cg_proto->sockets_allocated);
1254 }
1255
1256 percpu_counter_dec(prot->sockets_allocated);
1257 }
1258
1259 static inline void sk_sockets_allocated_inc(struct sock *sk)
1260 {
1261 struct proto *prot = sk->sk_prot;
1262
1263 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1264 struct cg_proto *cg_proto = sk->sk_cgrp;
1265
1266 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1267 percpu_counter_inc(&cg_proto->sockets_allocated);
1268 }
1269
1270 percpu_counter_inc(prot->sockets_allocated);
1271 }
1272
1273 static inline int
1274 sk_sockets_allocated_read_positive(struct sock *sk)
1275 {
1276 struct proto *prot = sk->sk_prot;
1277
1278 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1279 return percpu_counter_read_positive(&sk->sk_cgrp->sockets_allocated);
1280
1281 return percpu_counter_read_positive(prot->sockets_allocated);
1282 }
1283
1284 static inline int
1285 proto_sockets_allocated_sum_positive(struct proto *prot)
1286 {
1287 return percpu_counter_sum_positive(prot->sockets_allocated);
1288 }
1289
1290 static inline long
1291 proto_memory_allocated(struct proto *prot)
1292 {
1293 return atomic_long_read(prot->memory_allocated);
1294 }
1295
1296 static inline bool
1297 proto_memory_pressure(struct proto *prot)
1298 {
1299 if (!prot->memory_pressure)
1300 return false;
1301 return !!*prot->memory_pressure;
1302 }
1303
1304
1305 #ifdef CONFIG_PROC_FS
1306 /* Called with local bh disabled */
1307 void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
1308 int sock_prot_inuse_get(struct net *net, struct proto *proto);
1309 #else
1310 static inline void sock_prot_inuse_add(struct net *net, struct proto *prot,
1311 int inc)
1312 {
1313 }
1314 #endif
1315
1316
1317 /* With per-bucket locks this operation is not-atomic, so that
1318 * this version is not worse.
1319 */
1320 static inline void __sk_prot_rehash(struct sock *sk)
1321 {
1322 sk->sk_prot->unhash(sk);
1323 sk->sk_prot->hash(sk);
1324 }
1325
1326 void sk_prot_clear_portaddr_nulls(struct sock *sk, int size);
1327
1328 /* About 10 seconds */
1329 #define SOCK_DESTROY_TIME (10*HZ)
1330
1331 /* Sockets 0-1023 can't be bound to unless you are superuser */
1332 #define PROT_SOCK 1024
1333
1334 #define SHUTDOWN_MASK 3
1335 #define RCV_SHUTDOWN 1
1336 #define SEND_SHUTDOWN 2
1337
1338 #define SOCK_SNDBUF_LOCK 1
1339 #define SOCK_RCVBUF_LOCK 2
1340 #define SOCK_BINDADDR_LOCK 4
1341 #define SOCK_BINDPORT_LOCK 8
1342
1343 struct socket_alloc {
1344 struct socket socket;
1345 struct inode vfs_inode;
1346 };
1347
1348 static inline struct socket *SOCKET_I(struct inode *inode)
1349 {
1350 return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1351 }
1352
1353 static inline struct inode *SOCK_INODE(struct socket *socket)
1354 {
1355 return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1356 }
1357
1358 /*
1359 * Functions for memory accounting
1360 */
1361 int __sk_mem_schedule(struct sock *sk, int size, int kind);
1362 void __sk_mem_reclaim(struct sock *sk, int amount);
1363
1364 #define SK_MEM_QUANTUM ((int)PAGE_SIZE)
1365 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1366 #define SK_MEM_SEND 0
1367 #define SK_MEM_RECV 1
1368
1369 static inline int sk_mem_pages(int amt)
1370 {
1371 return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1372 }
1373
1374 static inline bool sk_has_account(struct sock *sk)
1375 {
1376 /* return true if protocol supports memory accounting */
1377 return !!sk->sk_prot->memory_allocated;
1378 }
1379
1380 static inline bool sk_wmem_schedule(struct sock *sk, int size)
1381 {
1382 if (!sk_has_account(sk))
1383 return true;
1384 return size <= sk->sk_forward_alloc ||
1385 __sk_mem_schedule(sk, size, SK_MEM_SEND);
1386 }
1387
1388 static inline bool
1389 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1390 {
1391 if (!sk_has_account(sk))
1392 return true;
1393 return size<= sk->sk_forward_alloc ||
1394 __sk_mem_schedule(sk, size, SK_MEM_RECV) ||
1395 skb_pfmemalloc(skb);
1396 }
1397
1398 static inline void sk_mem_reclaim(struct sock *sk)
1399 {
1400 if (!sk_has_account(sk))
1401 return;
1402 if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
1403 __sk_mem_reclaim(sk, sk->sk_forward_alloc);
1404 }
1405
1406 static inline void sk_mem_reclaim_partial(struct sock *sk)
1407 {
1408 if (!sk_has_account(sk))
1409 return;
1410 if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
1411 __sk_mem_reclaim(sk, sk->sk_forward_alloc - 1);
1412 }
1413
1414 static inline void sk_mem_charge(struct sock *sk, int size)
1415 {
1416 if (!sk_has_account(sk))
1417 return;
1418 sk->sk_forward_alloc -= size;
1419 }
1420
1421 static inline void sk_mem_uncharge(struct sock *sk, int size)
1422 {
1423 if (!sk_has_account(sk))
1424 return;
1425 sk->sk_forward_alloc += size;
1426 }
1427
1428 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1429 {
1430 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1431 sk->sk_wmem_queued -= skb->truesize;
1432 sk_mem_uncharge(sk, skb->truesize);
1433 __kfree_skb(skb);
1434 }
1435
1436 /* Used by processes to "lock" a socket state, so that
1437 * interrupts and bottom half handlers won't change it
1438 * from under us. It essentially blocks any incoming
1439 * packets, so that we won't get any new data or any
1440 * packets that change the state of the socket.
1441 *
1442 * While locked, BH processing will add new packets to
1443 * the backlog queue. This queue is processed by the
1444 * owner of the socket lock right before it is released.
1445 *
1446 * Since ~2.3.5 it is also exclusive sleep lock serializing
1447 * accesses from user process context.
1448 */
1449 #define sock_owned_by_user(sk) ((sk)->sk_lock.owned)
1450
1451 static inline void sock_release_ownership(struct sock *sk)
1452 {
1453 sk->sk_lock.owned = 0;
1454 }
1455
1456 /*
1457 * Macro so as to not evaluate some arguments when
1458 * lockdep is not enabled.
1459 *
1460 * Mark both the sk_lock and the sk_lock.slock as a
1461 * per-address-family lock class.
1462 */
1463 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) \
1464 do { \
1465 sk->sk_lock.owned = 0; \
1466 init_waitqueue_head(&sk->sk_lock.wq); \
1467 spin_lock_init(&(sk)->sk_lock.slock); \
1468 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \
1469 sizeof((sk)->sk_lock)); \
1470 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \
1471 (skey), (sname)); \
1472 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \
1473 } while (0)
1474
1475 void lock_sock_nested(struct sock *sk, int subclass);
1476
1477 static inline void lock_sock(struct sock *sk)
1478 {
1479 lock_sock_nested(sk, 0);
1480 }
1481
1482 void release_sock(struct sock *sk);
1483
1484 /* BH context may only use the following locking interface. */
1485 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock))
1486 #define bh_lock_sock_nested(__sk) \
1487 spin_lock_nested(&((__sk)->sk_lock.slock), \
1488 SINGLE_DEPTH_NESTING)
1489 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock))
1490
1491 bool lock_sock_fast(struct sock *sk);
1492 /**
1493 * unlock_sock_fast - complement of lock_sock_fast
1494 * @sk: socket
1495 * @slow: slow mode
1496 *
1497 * fast unlock socket for user context.
1498 * If slow mode is on, we call regular release_sock()
1499 */
1500 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1501 {
1502 if (slow)
1503 release_sock(sk);
1504 else
1505 spin_unlock_bh(&sk->sk_lock.slock);
1506 }
1507
1508
1509 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1510 struct proto *prot, int kern);
1511 void sk_free(struct sock *sk);
1512 void sk_destruct(struct sock *sk);
1513 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1514
1515 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1516 gfp_t priority);
1517 void sock_wfree(struct sk_buff *skb);
1518 void skb_orphan_partial(struct sk_buff *skb);
1519 void sock_rfree(struct sk_buff *skb);
1520 void sock_efree(struct sk_buff *skb);
1521 #ifdef CONFIG_INET
1522 void sock_edemux(struct sk_buff *skb);
1523 #else
1524 #define sock_edemux(skb) sock_efree(skb)
1525 #endif
1526
1527 int sock_setsockopt(struct socket *sock, int level, int op,
1528 char __user *optval, unsigned int optlen);
1529
1530 int sock_getsockopt(struct socket *sock, int level, int op,
1531 char __user *optval, int __user *optlen);
1532 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1533 int noblock, int *errcode);
1534 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1535 unsigned long data_len, int noblock,
1536 int *errcode, int max_page_order);
1537 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1538 void sock_kfree_s(struct sock *sk, void *mem, int size);
1539 void sock_kzfree_s(struct sock *sk, void *mem, int size);
1540 void sk_send_sigurg(struct sock *sk);
1541
1542 struct sockcm_cookie {
1543 u32 mark;
1544 };
1545
1546 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1547 struct sockcm_cookie *sockc);
1548
1549 /*
1550 * Functions to fill in entries in struct proto_ops when a protocol
1551 * does not implement a particular function.
1552 */
1553 int sock_no_bind(struct socket *, struct sockaddr *, int);
1554 int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1555 int sock_no_socketpair(struct socket *, struct socket *);
1556 int sock_no_accept(struct socket *, struct socket *, int);
1557 int sock_no_getname(struct socket *, struct sockaddr *, int *, int);
1558 unsigned int sock_no_poll(struct file *, struct socket *,
1559 struct poll_table_struct *);
1560 int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1561 int sock_no_listen(struct socket *, int);
1562 int sock_no_shutdown(struct socket *, int);
1563 int sock_no_getsockopt(struct socket *, int , int, char __user *, int __user *);
1564 int sock_no_setsockopt(struct socket *, int, int, char __user *, unsigned int);
1565 int sock_no_sendmsg(struct socket *, struct msghdr *, size_t);
1566 int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int);
1567 int sock_no_mmap(struct file *file, struct socket *sock,
1568 struct vm_area_struct *vma);
1569 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset,
1570 size_t size, int flags);
1571
1572 /*
1573 * Functions to fill in entries in struct proto_ops when a protocol
1574 * uses the inet style.
1575 */
1576 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1577 char __user *optval, int __user *optlen);
1578 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1579 int flags);
1580 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1581 char __user *optval, unsigned int optlen);
1582 int compat_sock_common_getsockopt(struct socket *sock, int level,
1583 int optname, char __user *optval, int __user *optlen);
1584 int compat_sock_common_setsockopt(struct socket *sock, int level,
1585 int optname, char __user *optval, unsigned int optlen);
1586
1587 void sk_common_release(struct sock *sk);
1588
1589 /*
1590 * Default socket callbacks and setup code
1591 */
1592
1593 /* Initialise core socket variables */
1594 void sock_init_data(struct socket *sock, struct sock *sk);
1595
1596 /*
1597 * Socket reference counting postulates.
1598 *
1599 * * Each user of socket SHOULD hold a reference count.
1600 * * Each access point to socket (an hash table bucket, reference from a list,
1601 * running timer, skb in flight MUST hold a reference count.
1602 * * When reference count hits 0, it means it will never increase back.
1603 * * When reference count hits 0, it means that no references from
1604 * outside exist to this socket and current process on current CPU
1605 * is last user and may/should destroy this socket.
1606 * * sk_free is called from any context: process, BH, IRQ. When
1607 * it is called, socket has no references from outside -> sk_free
1608 * may release descendant resources allocated by the socket, but
1609 * to the time when it is called, socket is NOT referenced by any
1610 * hash tables, lists etc.
1611 * * Packets, delivered from outside (from network or from another process)
1612 * and enqueued on receive/error queues SHOULD NOT grab reference count,
1613 * when they sit in queue. Otherwise, packets will leak to hole, when
1614 * socket is looked up by one cpu and unhasing is made by another CPU.
1615 * It is true for udp/raw, netlink (leak to receive and error queues), tcp
1616 * (leak to backlog). Packet socket does all the processing inside
1617 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1618 * use separate SMP lock, so that they are prone too.
1619 */
1620
1621 /* Ungrab socket and destroy it, if it was the last reference. */
1622 static inline void sock_put(struct sock *sk)
1623 {
1624 if (atomic_dec_and_test(&sk->sk_refcnt))
1625 sk_free(sk);
1626 }
1627 /* Generic version of sock_put(), dealing with all sockets
1628 * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...)
1629 */
1630 void sock_gen_put(struct sock *sk);
1631
1632 int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested);
1633
1634 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1635 {
1636 sk->sk_tx_queue_mapping = tx_queue;
1637 }
1638
1639 static inline void sk_tx_queue_clear(struct sock *sk)
1640 {
1641 sk->sk_tx_queue_mapping = -1;
1642 }
1643
1644 static inline int sk_tx_queue_get(const struct sock *sk)
1645 {
1646 return sk ? sk->sk_tx_queue_mapping : -1;
1647 }
1648
1649 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1650 {
1651 sk_tx_queue_clear(sk);
1652 sk->sk_socket = sock;
1653 }
1654
1655 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1656 {
1657 BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1658 return &rcu_dereference_raw(sk->sk_wq)->wait;
1659 }
1660 /* Detach socket from process context.
1661 * Announce socket dead, detach it from wait queue and inode.
1662 * Note that parent inode held reference count on this struct sock,
1663 * we do not release it in this function, because protocol
1664 * probably wants some additional cleanups or even continuing
1665 * to work with this socket (TCP).
1666 */
1667 static inline void sock_orphan(struct sock *sk)
1668 {
1669 write_lock_bh(&sk->sk_callback_lock);
1670 sock_set_flag(sk, SOCK_DEAD);
1671 sk_set_socket(sk, NULL);
1672 sk->sk_wq = NULL;
1673 write_unlock_bh(&sk->sk_callback_lock);
1674 }
1675
1676 static inline void sock_graft(struct sock *sk, struct socket *parent)
1677 {
1678 write_lock_bh(&sk->sk_callback_lock);
1679 sk->sk_wq = parent->wq;
1680 parent->sk = sk;
1681 sk_set_socket(sk, parent);
1682 security_sock_graft(sk, parent);
1683 write_unlock_bh(&sk->sk_callback_lock);
1684 }
1685
1686 kuid_t sock_i_uid(struct sock *sk);
1687 unsigned long sock_i_ino(struct sock *sk);
1688
1689 static inline u32 net_tx_rndhash(void)
1690 {
1691 u32 v = prandom_u32();
1692
1693 return v ?: 1;
1694 }
1695
1696 static inline void sk_set_txhash(struct sock *sk)
1697 {
1698 sk->sk_txhash = net_tx_rndhash();
1699 }
1700
1701 static inline void sk_rethink_txhash(struct sock *sk)
1702 {
1703 if (sk->sk_txhash)
1704 sk_set_txhash(sk);
1705 }
1706
1707 static inline struct dst_entry *
1708 __sk_dst_get(struct sock *sk)
1709 {
1710 return rcu_dereference_check(sk->sk_dst_cache, sock_owned_by_user(sk) ||
1711 lockdep_is_held(&sk->sk_lock.slock));
1712 }
1713
1714 static inline struct dst_entry *
1715 sk_dst_get(struct sock *sk)
1716 {
1717 struct dst_entry *dst;
1718
1719 rcu_read_lock();
1720 dst = rcu_dereference(sk->sk_dst_cache);
1721 if (dst && !atomic_inc_not_zero(&dst->__refcnt))
1722 dst = NULL;
1723 rcu_read_unlock();
1724 return dst;
1725 }
1726
1727 static inline void dst_negative_advice(struct sock *sk)
1728 {
1729 struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1730
1731 sk_rethink_txhash(sk);
1732
1733 if (dst && dst->ops->negative_advice) {
1734 ndst = dst->ops->negative_advice(dst);
1735
1736 if (ndst != dst) {
1737 rcu_assign_pointer(sk->sk_dst_cache, ndst);
1738 sk_tx_queue_clear(sk);
1739 }
1740 }
1741 }
1742
1743 static inline void
1744 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
1745 {
1746 struct dst_entry *old_dst;
1747
1748 sk_tx_queue_clear(sk);
1749 /*
1750 * This can be called while sk is owned by the caller only,
1751 * with no state that can be checked in a rcu_dereference_check() cond
1752 */
1753 old_dst = rcu_dereference_raw(sk->sk_dst_cache);
1754 rcu_assign_pointer(sk->sk_dst_cache, dst);
1755 dst_release(old_dst);
1756 }
1757
1758 static inline void
1759 sk_dst_set(struct sock *sk, struct dst_entry *dst)
1760 {
1761 struct dst_entry *old_dst;
1762
1763 sk_tx_queue_clear(sk);
1764 old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst);
1765 dst_release(old_dst);
1766 }
1767
1768 static inline void
1769 __sk_dst_reset(struct sock *sk)
1770 {
1771 __sk_dst_set(sk, NULL);
1772 }
1773
1774 static inline void
1775 sk_dst_reset(struct sock *sk)
1776 {
1777 sk_dst_set(sk, NULL);
1778 }
1779
1780 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1781
1782 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1783
1784 bool sk_mc_loop(struct sock *sk);
1785
1786 static inline bool sk_can_gso(const struct sock *sk)
1787 {
1788 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1789 }
1790
1791 void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
1792
1793 static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
1794 {
1795 sk->sk_route_nocaps |= flags;
1796 sk->sk_route_caps &= ~flags;
1797 }
1798
1799 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
1800 struct iov_iter *from, char *to,
1801 int copy, int offset)
1802 {
1803 if (skb->ip_summed == CHECKSUM_NONE) {
1804 __wsum csum = 0;
1805 if (csum_and_copy_from_iter(to, copy, &csum, from) != copy)
1806 return -EFAULT;
1807 skb->csum = csum_block_add(skb->csum, csum, offset);
1808 } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1809 if (copy_from_iter_nocache(to, copy, from) != copy)
1810 return -EFAULT;
1811 } else if (copy_from_iter(to, copy, from) != copy)
1812 return -EFAULT;
1813
1814 return 0;
1815 }
1816
1817 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
1818 struct iov_iter *from, int copy)
1819 {
1820 int err, offset = skb->len;
1821
1822 err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
1823 copy, offset);
1824 if (err)
1825 __skb_trim(skb, offset);
1826
1827 return err;
1828 }
1829
1830 static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from,
1831 struct sk_buff *skb,
1832 struct page *page,
1833 int off, int copy)
1834 {
1835 int err;
1836
1837 err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
1838 copy, skb->len);
1839 if (err)
1840 return err;
1841
1842 skb->len += copy;
1843 skb->data_len += copy;
1844 skb->truesize += copy;
1845 sk->sk_wmem_queued += copy;
1846 sk_mem_charge(sk, copy);
1847 return 0;
1848 }
1849
1850 /**
1851 * sk_wmem_alloc_get - returns write allocations
1852 * @sk: socket
1853 *
1854 * Returns sk_wmem_alloc minus initial offset of one
1855 */
1856 static inline int sk_wmem_alloc_get(const struct sock *sk)
1857 {
1858 return atomic_read(&sk->sk_wmem_alloc) - 1;
1859 }
1860
1861 /**
1862 * sk_rmem_alloc_get - returns read allocations
1863 * @sk: socket
1864 *
1865 * Returns sk_rmem_alloc
1866 */
1867 static inline int sk_rmem_alloc_get(const struct sock *sk)
1868 {
1869 return atomic_read(&sk->sk_rmem_alloc);
1870 }
1871
1872 /**
1873 * sk_has_allocations - check if allocations are outstanding
1874 * @sk: socket
1875 *
1876 * Returns true if socket has write or read allocations
1877 */
1878 static inline bool sk_has_allocations(const struct sock *sk)
1879 {
1880 return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
1881 }
1882
1883 /**
1884 * wq_has_sleeper - check if there are any waiting processes
1885 * @wq: struct socket_wq
1886 *
1887 * Returns true if socket_wq has waiting processes
1888 *
1889 * The purpose of the wq_has_sleeper and sock_poll_wait is to wrap the memory
1890 * barrier call. They were added due to the race found within the tcp code.
1891 *
1892 * Consider following tcp code paths:
1893 *
1894 * CPU1 CPU2
1895 *
1896 * sys_select receive packet
1897 * ... ...
1898 * __add_wait_queue update tp->rcv_nxt
1899 * ... ...
1900 * tp->rcv_nxt check sock_def_readable
1901 * ... {
1902 * schedule rcu_read_lock();
1903 * wq = rcu_dereference(sk->sk_wq);
1904 * if (wq && waitqueue_active(&wq->wait))
1905 * wake_up_interruptible(&wq->wait)
1906 * ...
1907 * }
1908 *
1909 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
1910 * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1
1911 * could then endup calling schedule and sleep forever if there are no more
1912 * data on the socket.
1913 *
1914 */
1915 static inline bool wq_has_sleeper(struct socket_wq *wq)
1916 {
1917 /* We need to be sure we are in sync with the
1918 * add_wait_queue modifications to the wait queue.
1919 *
1920 * This memory barrier is paired in the sock_poll_wait.
1921 */
1922 smp_mb();
1923 return wq && waitqueue_active(&wq->wait);
1924 }
1925
1926 /**
1927 * sock_poll_wait - place memory barrier behind the poll_wait call.
1928 * @filp: file
1929 * @wait_address: socket wait queue
1930 * @p: poll_table
1931 *
1932 * See the comments in the wq_has_sleeper function.
1933 */
1934 static inline void sock_poll_wait(struct file *filp,
1935 wait_queue_head_t *wait_address, poll_table *p)
1936 {
1937 if (!poll_does_not_wait(p) && wait_address) {
1938 poll_wait(filp, wait_address, p);
1939 /* We need to be sure we are in sync with the
1940 * socket flags modification.
1941 *
1942 * This memory barrier is paired in the wq_has_sleeper.
1943 */
1944 smp_mb();
1945 }
1946 }
1947
1948 static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
1949 {
1950 if (sk->sk_txhash) {
1951 skb->l4_hash = 1;
1952 skb->hash = sk->sk_txhash;
1953 }
1954 }
1955
1956 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk);
1957
1958 /*
1959 * Queue a received datagram if it will fit. Stream and sequenced
1960 * protocols can't normally use this as they need to fit buffers in
1961 * and play with them.
1962 *
1963 * Inlined as it's very short and called for pretty much every
1964 * packet ever received.
1965 */
1966 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
1967 {
1968 skb_orphan(skb);
1969 skb->sk = sk;
1970 skb->destructor = sock_rfree;
1971 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
1972 sk_mem_charge(sk, skb->truesize);
1973 }
1974
1975 void sk_reset_timer(struct sock *sk, struct timer_list *timer,
1976 unsigned long expires);
1977
1978 void sk_stop_timer(struct sock *sk, struct timer_list *timer);
1979
1980 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
1981
1982 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
1983 struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
1984
1985 /*
1986 * Recover an error report and clear atomically
1987 */
1988
1989 static inline int sock_error(struct sock *sk)
1990 {
1991 int err;
1992 if (likely(!sk->sk_err))
1993 return 0;
1994 err = xchg(&sk->sk_err, 0);
1995 return -err;
1996 }
1997
1998 static inline unsigned long sock_wspace(struct sock *sk)
1999 {
2000 int amt = 0;
2001
2002 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2003 amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
2004 if (amt < 0)
2005 amt = 0;
2006 }
2007 return amt;
2008 }
2009
2010 /* Note:
2011 * We use sk->sk_wq_raw, from contexts knowing this
2012 * pointer is not NULL and cannot disappear/change.
2013 */
2014 static inline void sk_set_bit(int nr, struct sock *sk)
2015 {
2016 set_bit(nr, &sk->sk_wq_raw->flags);
2017 }
2018
2019 static inline void sk_clear_bit(int nr, struct sock *sk)
2020 {
2021 clear_bit(nr, &sk->sk_wq_raw->flags);
2022 }
2023
2024 static inline void sk_wake_async(const struct sock *sk, int how, int band)
2025 {
2026 if (sock_flag(sk, SOCK_FASYNC)) {
2027 rcu_read_lock();
2028 sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
2029 rcu_read_unlock();
2030 }
2031 }
2032
2033 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2034 * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2035 * Note: for send buffers, TCP works better if we can build two skbs at
2036 * minimum.
2037 */
2038 #define TCP_SKB_MIN_TRUESIZE (2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2039
2040 #define SOCK_MIN_SNDBUF (TCP_SKB_MIN_TRUESIZE * 2)
2041 #define SOCK_MIN_RCVBUF TCP_SKB_MIN_TRUESIZE
2042
2043 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2044 {
2045 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
2046 sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2047 sk->sk_sndbuf = max_t(u32, sk->sk_sndbuf, SOCK_MIN_SNDBUF);
2048 }
2049 }
2050
2051 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
2052 bool force_schedule);
2053
2054 /**
2055 * sk_page_frag - return an appropriate page_frag
2056 * @sk: socket
2057 *
2058 * If socket allocation mode allows current thread to sleep, it means its
2059 * safe to use the per task page_frag instead of the per socket one.
2060 */
2061 static inline struct page_frag *sk_page_frag(struct sock *sk)
2062 {
2063 if (gfpflags_allow_blocking(sk->sk_allocation))
2064 return &current->task_frag;
2065
2066 return &sk->sk_frag;
2067 }
2068
2069 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2070
2071 /*
2072 * Default write policy as shown to user space via poll/select/SIGIO
2073 */
2074 static inline bool sock_writeable(const struct sock *sk)
2075 {
2076 return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1);
2077 }
2078
2079 static inline gfp_t gfp_any(void)
2080 {
2081 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2082 }
2083
2084 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2085 {
2086 return noblock ? 0 : sk->sk_rcvtimeo;
2087 }
2088
2089 static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2090 {
2091 return noblock ? 0 : sk->sk_sndtimeo;
2092 }
2093
2094 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2095 {
2096 return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
2097 }
2098
2099 /* Alas, with timeout socket operations are not restartable.
2100 * Compare this to poll().
2101 */
2102 static inline int sock_intr_errno(long timeo)
2103 {
2104 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2105 }
2106
2107 struct sock_skb_cb {
2108 u32 dropcount;
2109 };
2110
2111 /* Store sock_skb_cb at the end of skb->cb[] so protocol families
2112 * using skb->cb[] would keep using it directly and utilize its
2113 * alignement guarantee.
2114 */
2115 #define SOCK_SKB_CB_OFFSET ((FIELD_SIZEOF(struct sk_buff, cb) - \
2116 sizeof(struct sock_skb_cb)))
2117
2118 #define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \
2119 SOCK_SKB_CB_OFFSET))
2120
2121 #define sock_skb_cb_check_size(size) \
2122 BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET)
2123
2124 static inline void
2125 sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb)
2126 {
2127 SOCK_SKB_CB(skb)->dropcount = atomic_read(&sk->sk_drops);
2128 }
2129
2130 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2131 struct sk_buff *skb);
2132 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2133 struct sk_buff *skb);
2134
2135 static inline void
2136 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2137 {
2138 ktime_t kt = skb->tstamp;
2139 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2140
2141 /*
2142 * generate control messages if
2143 * - receive time stamping in software requested
2144 * - software time stamp available and wanted
2145 * - hardware time stamps available and wanted
2146 */
2147 if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2148 (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2149 (kt.tv64 && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2150 (hwtstamps->hwtstamp.tv64 &&
2151 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
2152 __sock_recv_timestamp(msg, sk, skb);
2153 else
2154 sk->sk_stamp = kt;
2155
2156 if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2157 __sock_recv_wifi_status(msg, sk, skb);
2158 }
2159
2160 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2161 struct sk_buff *skb);
2162
2163 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2164 struct sk_buff *skb)
2165 {
2166 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL) | \
2167 (1UL << SOCK_RCVTSTAMP))
2168 #define TSFLAGS_ANY (SOF_TIMESTAMPING_SOFTWARE | \
2169 SOF_TIMESTAMPING_RAW_HARDWARE)
2170
2171 if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY)
2172 __sock_recv_ts_and_drops(msg, sk, skb);
2173 else
2174 sk->sk_stamp = skb->tstamp;
2175 }
2176
2177 void __sock_tx_timestamp(const struct sock *sk, __u8 *tx_flags);
2178
2179 /**
2180 * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2181 * @sk: socket sending this packet
2182 * @tx_flags: completed with instructions for time stamping
2183 *
2184 * Note : callers should take care of initial *tx_flags value (usually 0)
2185 */
2186 static inline void sock_tx_timestamp(const struct sock *sk, __u8 *tx_flags)
2187 {
2188 if (unlikely(sk->sk_tsflags))
2189 __sock_tx_timestamp(sk, tx_flags);
2190 if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS)))
2191 *tx_flags |= SKBTX_WIFI_STATUS;
2192 }
2193
2194 /**
2195 * sk_eat_skb - Release a skb if it is no longer needed
2196 * @sk: socket to eat this skb from
2197 * @skb: socket buffer to eat
2198 *
2199 * This routine must be called with interrupts disabled or with the socket
2200 * locked so that the sk_buff queue operation is ok.
2201 */
2202 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
2203 {
2204 __skb_unlink(skb, &sk->sk_receive_queue);
2205 __kfree_skb(skb);
2206 }
2207
2208 static inline
2209 struct net *sock_net(const struct sock *sk)
2210 {
2211 return read_pnet(&sk->sk_net);
2212 }
2213
2214 static inline
2215 void sock_net_set(struct sock *sk, struct net *net)
2216 {
2217 write_pnet(&sk->sk_net, net);
2218 }
2219
2220 static inline struct sock *skb_steal_sock(struct sk_buff *skb)
2221 {
2222 if (skb->sk) {
2223 struct sock *sk = skb->sk;
2224
2225 skb->destructor = NULL;
2226 skb->sk = NULL;
2227 return sk;
2228 }
2229 return NULL;
2230 }
2231
2232 /* This helper checks if a socket is a full socket,
2233 * ie _not_ a timewait or request socket.
2234 */
2235 static inline bool sk_fullsock(const struct sock *sk)
2236 {
2237 return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV);
2238 }
2239
2240 /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV
2241 * SYNACK messages can be attached to either ones (depending on SYNCOOKIE)
2242 */
2243 static inline bool sk_listener(const struct sock *sk)
2244 {
2245 return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV);
2246 }
2247
2248 /**
2249 * sk_state_load - read sk->sk_state for lockless contexts
2250 * @sk: socket pointer
2251 *
2252 * Paired with sk_state_store(). Used in places we do not hold socket lock :
2253 * tcp_diag_get_info(), tcp_get_info(), tcp_poll(), get_tcp4_sock() ...
2254 */
2255 static inline int sk_state_load(const struct sock *sk)
2256 {
2257 return smp_load_acquire(&sk->sk_state);
2258 }
2259
2260 /**
2261 * sk_state_store - update sk->sk_state
2262 * @sk: socket pointer
2263 * @newstate: new state
2264 *
2265 * Paired with sk_state_load(). Should be used in contexts where
2266 * state change might impact lockless readers.
2267 */
2268 static inline void sk_state_store(struct sock *sk, int newstate)
2269 {
2270 smp_store_release(&sk->sk_state, newstate);
2271 }
2272
2273 void sock_enable_timestamp(struct sock *sk, int flag);
2274 int sock_get_timestamp(struct sock *, struct timeval __user *);
2275 int sock_get_timestampns(struct sock *, struct timespec __user *);
2276 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2277 int type);
2278
2279 bool sk_ns_capable(const struct sock *sk,
2280 struct user_namespace *user_ns, int cap);
2281 bool sk_capable(const struct sock *sk, int cap);
2282 bool sk_net_capable(const struct sock *sk, int cap);
2283
2284 extern __u32 sysctl_wmem_max;
2285 extern __u32 sysctl_rmem_max;
2286
2287 extern int sysctl_tstamp_allow_data;
2288 extern int sysctl_optmem_max;
2289
2290 extern __u32 sysctl_wmem_default;
2291 extern __u32 sysctl_rmem_default;
2292
2293 #endif /* _SOCK_H */