]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - include/net/sock.h
hlist: drop the node parameter from iterators
[mirror_ubuntu-jammy-kernel.git] / include / net / sock.h
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Definitions for the AF_INET socket handler.
7 *
8 * Version: @(#)sock.h 1.0.4 05/13/93
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche <flla@stud.uni-sb.de>
14 *
15 * Fixes:
16 * Alan Cox : Volatiles in skbuff pointers. See
17 * skbuff comments. May be overdone,
18 * better to prove they can be removed
19 * than the reverse.
20 * Alan Cox : Added a zapped field for tcp to note
21 * a socket is reset and must stay shut up
22 * Alan Cox : New fields for options
23 * Pauline Middelink : identd support
24 * Alan Cox : Eliminate low level recv/recvfrom
25 * David S. Miller : New socket lookup architecture.
26 * Steve Whitehouse: Default routines for sock_ops
27 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made
28 * protinfo be just a void pointer, as the
29 * protocol specific parts were moved to
30 * respective headers and ipv4/v6, etc now
31 * use private slabcaches for its socks
32 * Pedro Hortas : New flags field for socket options
33 *
34 *
35 * This program is free software; you can redistribute it and/or
36 * modify it under the terms of the GNU General Public License
37 * as published by the Free Software Foundation; either version
38 * 2 of the License, or (at your option) any later version.
39 */
40 #ifndef _SOCK_H
41 #define _SOCK_H
42
43 #include <linux/hardirq.h>
44 #include <linux/kernel.h>
45 #include <linux/list.h>
46 #include <linux/list_nulls.h>
47 #include <linux/timer.h>
48 #include <linux/cache.h>
49 #include <linux/bitops.h>
50 #include <linux/lockdep.h>
51 #include <linux/netdevice.h>
52 #include <linux/skbuff.h> /* struct sk_buff */
53 #include <linux/mm.h>
54 #include <linux/security.h>
55 #include <linux/slab.h>
56 #include <linux/uaccess.h>
57 #include <linux/memcontrol.h>
58 #include <linux/res_counter.h>
59 #include <linux/static_key.h>
60 #include <linux/aio.h>
61 #include <linux/sched.h>
62
63 #include <linux/filter.h>
64 #include <linux/rculist_nulls.h>
65 #include <linux/poll.h>
66
67 #include <linux/atomic.h>
68 #include <net/dst.h>
69 #include <net/checksum.h>
70
71 struct cgroup;
72 struct cgroup_subsys;
73 #ifdef CONFIG_NET
74 int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss);
75 void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg);
76 #else
77 static inline
78 int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
79 {
80 return 0;
81 }
82 static inline
83 void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg)
84 {
85 }
86 #endif
87 /*
88 * This structure really needs to be cleaned up.
89 * Most of it is for TCP, and not used by any of
90 * the other protocols.
91 */
92
93 /* Define this to get the SOCK_DBG debugging facility. */
94 #define SOCK_DEBUGGING
95 #ifdef SOCK_DEBUGGING
96 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
97 printk(KERN_DEBUG msg); } while (0)
98 #else
99 /* Validate arguments and do nothing */
100 static inline __printf(2, 3)
101 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
102 {
103 }
104 #endif
105
106 /* This is the per-socket lock. The spinlock provides a synchronization
107 * between user contexts and software interrupt processing, whereas the
108 * mini-semaphore synchronizes multiple users amongst themselves.
109 */
110 typedef struct {
111 spinlock_t slock;
112 int owned;
113 wait_queue_head_t wq;
114 /*
115 * We express the mutex-alike socket_lock semantics
116 * to the lock validator by explicitly managing
117 * the slock as a lock variant (in addition to
118 * the slock itself):
119 */
120 #ifdef CONFIG_DEBUG_LOCK_ALLOC
121 struct lockdep_map dep_map;
122 #endif
123 } socket_lock_t;
124
125 struct sock;
126 struct proto;
127 struct net;
128
129 typedef __u32 __bitwise __portpair;
130 typedef __u64 __bitwise __addrpair;
131
132 /**
133 * struct sock_common - minimal network layer representation of sockets
134 * @skc_daddr: Foreign IPv4 addr
135 * @skc_rcv_saddr: Bound local IPv4 addr
136 * @skc_hash: hash value used with various protocol lookup tables
137 * @skc_u16hashes: two u16 hash values used by UDP lookup tables
138 * @skc_dport: placeholder for inet_dport/tw_dport
139 * @skc_num: placeholder for inet_num/tw_num
140 * @skc_family: network address family
141 * @skc_state: Connection state
142 * @skc_reuse: %SO_REUSEADDR setting
143 * @skc_reuseport: %SO_REUSEPORT setting
144 * @skc_bound_dev_if: bound device index if != 0
145 * @skc_bind_node: bind hash linkage for various protocol lookup tables
146 * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
147 * @skc_prot: protocol handlers inside a network family
148 * @skc_net: reference to the network namespace of this socket
149 * @skc_node: main hash linkage for various protocol lookup tables
150 * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
151 * @skc_tx_queue_mapping: tx queue number for this connection
152 * @skc_refcnt: reference count
153 *
154 * This is the minimal network layer representation of sockets, the header
155 * for struct sock and struct inet_timewait_sock.
156 */
157 struct sock_common {
158 /* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned
159 * address on 64bit arches : cf INET_MATCH() and INET_TW_MATCH()
160 */
161 union {
162 __addrpair skc_addrpair;
163 struct {
164 __be32 skc_daddr;
165 __be32 skc_rcv_saddr;
166 };
167 };
168 union {
169 unsigned int skc_hash;
170 __u16 skc_u16hashes[2];
171 };
172 /* skc_dport && skc_num must be grouped as well */
173 union {
174 __portpair skc_portpair;
175 struct {
176 __be16 skc_dport;
177 __u16 skc_num;
178 };
179 };
180
181 unsigned short skc_family;
182 volatile unsigned char skc_state;
183 unsigned char skc_reuse:4;
184 unsigned char skc_reuseport:4;
185 int skc_bound_dev_if;
186 union {
187 struct hlist_node skc_bind_node;
188 struct hlist_nulls_node skc_portaddr_node;
189 };
190 struct proto *skc_prot;
191 #ifdef CONFIG_NET_NS
192 struct net *skc_net;
193 #endif
194 /*
195 * fields between dontcopy_begin/dontcopy_end
196 * are not copied in sock_copy()
197 */
198 /* private: */
199 int skc_dontcopy_begin[0];
200 /* public: */
201 union {
202 struct hlist_node skc_node;
203 struct hlist_nulls_node skc_nulls_node;
204 };
205 int skc_tx_queue_mapping;
206 atomic_t skc_refcnt;
207 /* private: */
208 int skc_dontcopy_end[0];
209 /* public: */
210 };
211
212 struct cg_proto;
213 /**
214 * struct sock - network layer representation of sockets
215 * @__sk_common: shared layout with inet_timewait_sock
216 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
217 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
218 * @sk_lock: synchronizer
219 * @sk_rcvbuf: size of receive buffer in bytes
220 * @sk_wq: sock wait queue and async head
221 * @sk_rx_dst: receive input route used by early tcp demux
222 * @sk_dst_cache: destination cache
223 * @sk_dst_lock: destination cache lock
224 * @sk_policy: flow policy
225 * @sk_receive_queue: incoming packets
226 * @sk_wmem_alloc: transmit queue bytes committed
227 * @sk_write_queue: Packet sending queue
228 * @sk_async_wait_queue: DMA copied packets
229 * @sk_omem_alloc: "o" is "option" or "other"
230 * @sk_wmem_queued: persistent queue size
231 * @sk_forward_alloc: space allocated forward
232 * @sk_allocation: allocation mode
233 * @sk_sndbuf: size of send buffer in bytes
234 * @sk_flags: %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
235 * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
236 * @sk_no_check: %SO_NO_CHECK setting, whether or not checkup packets
237 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
238 * @sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
239 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
240 * @sk_gso_max_size: Maximum GSO segment size to build
241 * @sk_gso_max_segs: Maximum number of GSO segments
242 * @sk_lingertime: %SO_LINGER l_linger setting
243 * @sk_backlog: always used with the per-socket spinlock held
244 * @sk_callback_lock: used with the callbacks in the end of this struct
245 * @sk_error_queue: rarely used
246 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
247 * IPV6_ADDRFORM for instance)
248 * @sk_err: last error
249 * @sk_err_soft: errors that don't cause failure but are the cause of a
250 * persistent failure not just 'timed out'
251 * @sk_drops: raw/udp drops counter
252 * @sk_ack_backlog: current listen backlog
253 * @sk_max_ack_backlog: listen backlog set in listen()
254 * @sk_priority: %SO_PRIORITY setting
255 * @sk_cgrp_prioidx: socket group's priority map index
256 * @sk_type: socket type (%SOCK_STREAM, etc)
257 * @sk_protocol: which protocol this socket belongs in this network family
258 * @sk_peer_pid: &struct pid for this socket's peer
259 * @sk_peer_cred: %SO_PEERCRED setting
260 * @sk_rcvlowat: %SO_RCVLOWAT setting
261 * @sk_rcvtimeo: %SO_RCVTIMEO setting
262 * @sk_sndtimeo: %SO_SNDTIMEO setting
263 * @sk_rxhash: flow hash received from netif layer
264 * @sk_filter: socket filtering instructions
265 * @sk_protinfo: private area, net family specific, when not using slab
266 * @sk_timer: sock cleanup timer
267 * @sk_stamp: time stamp of last packet received
268 * @sk_socket: Identd and reporting IO signals
269 * @sk_user_data: RPC layer private data
270 * @sk_frag: cached page frag
271 * @sk_peek_off: current peek_offset value
272 * @sk_send_head: front of stuff to transmit
273 * @sk_security: used by security modules
274 * @sk_mark: generic packet mark
275 * @sk_classid: this socket's cgroup classid
276 * @sk_cgrp: this socket's cgroup-specific proto data
277 * @sk_write_pending: a write to stream socket waits to start
278 * @sk_state_change: callback to indicate change in the state of the sock
279 * @sk_data_ready: callback to indicate there is data to be processed
280 * @sk_write_space: callback to indicate there is bf sending space available
281 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
282 * @sk_backlog_rcv: callback to process the backlog
283 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
284 */
285 struct sock {
286 /*
287 * Now struct inet_timewait_sock also uses sock_common, so please just
288 * don't add nothing before this first member (__sk_common) --acme
289 */
290 struct sock_common __sk_common;
291 #define sk_node __sk_common.skc_node
292 #define sk_nulls_node __sk_common.skc_nulls_node
293 #define sk_refcnt __sk_common.skc_refcnt
294 #define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping
295
296 #define sk_dontcopy_begin __sk_common.skc_dontcopy_begin
297 #define sk_dontcopy_end __sk_common.skc_dontcopy_end
298 #define sk_hash __sk_common.skc_hash
299 #define sk_family __sk_common.skc_family
300 #define sk_state __sk_common.skc_state
301 #define sk_reuse __sk_common.skc_reuse
302 #define sk_reuseport __sk_common.skc_reuseport
303 #define sk_bound_dev_if __sk_common.skc_bound_dev_if
304 #define sk_bind_node __sk_common.skc_bind_node
305 #define sk_prot __sk_common.skc_prot
306 #define sk_net __sk_common.skc_net
307 socket_lock_t sk_lock;
308 struct sk_buff_head sk_receive_queue;
309 /*
310 * The backlog queue is special, it is always used with
311 * the per-socket spinlock held and requires low latency
312 * access. Therefore we special case it's implementation.
313 * Note : rmem_alloc is in this structure to fill a hole
314 * on 64bit arches, not because its logically part of
315 * backlog.
316 */
317 struct {
318 atomic_t rmem_alloc;
319 int len;
320 struct sk_buff *head;
321 struct sk_buff *tail;
322 } sk_backlog;
323 #define sk_rmem_alloc sk_backlog.rmem_alloc
324 int sk_forward_alloc;
325 #ifdef CONFIG_RPS
326 __u32 sk_rxhash;
327 #endif
328 atomic_t sk_drops;
329 int sk_rcvbuf;
330
331 struct sk_filter __rcu *sk_filter;
332 struct socket_wq __rcu *sk_wq;
333
334 #ifdef CONFIG_NET_DMA
335 struct sk_buff_head sk_async_wait_queue;
336 #endif
337
338 #ifdef CONFIG_XFRM
339 struct xfrm_policy *sk_policy[2];
340 #endif
341 unsigned long sk_flags;
342 struct dst_entry *sk_rx_dst;
343 struct dst_entry __rcu *sk_dst_cache;
344 spinlock_t sk_dst_lock;
345 atomic_t sk_wmem_alloc;
346 atomic_t sk_omem_alloc;
347 int sk_sndbuf;
348 struct sk_buff_head sk_write_queue;
349 kmemcheck_bitfield_begin(flags);
350 unsigned int sk_shutdown : 2,
351 sk_no_check : 2,
352 sk_userlocks : 4,
353 sk_protocol : 8,
354 sk_type : 16;
355 kmemcheck_bitfield_end(flags);
356 int sk_wmem_queued;
357 gfp_t sk_allocation;
358 netdev_features_t sk_route_caps;
359 netdev_features_t sk_route_nocaps;
360 int sk_gso_type;
361 unsigned int sk_gso_max_size;
362 u16 sk_gso_max_segs;
363 int sk_rcvlowat;
364 unsigned long sk_lingertime;
365 struct sk_buff_head sk_error_queue;
366 struct proto *sk_prot_creator;
367 rwlock_t sk_callback_lock;
368 int sk_err,
369 sk_err_soft;
370 unsigned short sk_ack_backlog;
371 unsigned short sk_max_ack_backlog;
372 __u32 sk_priority;
373 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
374 __u32 sk_cgrp_prioidx;
375 #endif
376 struct pid *sk_peer_pid;
377 const struct cred *sk_peer_cred;
378 long sk_rcvtimeo;
379 long sk_sndtimeo;
380 void *sk_protinfo;
381 struct timer_list sk_timer;
382 ktime_t sk_stamp;
383 struct socket *sk_socket;
384 void *sk_user_data;
385 struct page_frag sk_frag;
386 struct sk_buff *sk_send_head;
387 __s32 sk_peek_off;
388 int sk_write_pending;
389 #ifdef CONFIG_SECURITY
390 void *sk_security;
391 #endif
392 __u32 sk_mark;
393 u32 sk_classid;
394 struct cg_proto *sk_cgrp;
395 void (*sk_state_change)(struct sock *sk);
396 void (*sk_data_ready)(struct sock *sk, int bytes);
397 void (*sk_write_space)(struct sock *sk);
398 void (*sk_error_report)(struct sock *sk);
399 int (*sk_backlog_rcv)(struct sock *sk,
400 struct sk_buff *skb);
401 void (*sk_destruct)(struct sock *sk);
402 };
403
404 /*
405 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
406 * or not whether his port will be reused by someone else. SK_FORCE_REUSE
407 * on a socket means that the socket will reuse everybody else's port
408 * without looking at the other's sk_reuse value.
409 */
410
411 #define SK_NO_REUSE 0
412 #define SK_CAN_REUSE 1
413 #define SK_FORCE_REUSE 2
414
415 static inline int sk_peek_offset(struct sock *sk, int flags)
416 {
417 if ((flags & MSG_PEEK) && (sk->sk_peek_off >= 0))
418 return sk->sk_peek_off;
419 else
420 return 0;
421 }
422
423 static inline void sk_peek_offset_bwd(struct sock *sk, int val)
424 {
425 if (sk->sk_peek_off >= 0) {
426 if (sk->sk_peek_off >= val)
427 sk->sk_peek_off -= val;
428 else
429 sk->sk_peek_off = 0;
430 }
431 }
432
433 static inline void sk_peek_offset_fwd(struct sock *sk, int val)
434 {
435 if (sk->sk_peek_off >= 0)
436 sk->sk_peek_off += val;
437 }
438
439 /*
440 * Hashed lists helper routines
441 */
442 static inline struct sock *sk_entry(const struct hlist_node *node)
443 {
444 return hlist_entry(node, struct sock, sk_node);
445 }
446
447 static inline struct sock *__sk_head(const struct hlist_head *head)
448 {
449 return hlist_entry(head->first, struct sock, sk_node);
450 }
451
452 static inline struct sock *sk_head(const struct hlist_head *head)
453 {
454 return hlist_empty(head) ? NULL : __sk_head(head);
455 }
456
457 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
458 {
459 return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
460 }
461
462 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
463 {
464 return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
465 }
466
467 static inline struct sock *sk_next(const struct sock *sk)
468 {
469 return sk->sk_node.next ?
470 hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL;
471 }
472
473 static inline struct sock *sk_nulls_next(const struct sock *sk)
474 {
475 return (!is_a_nulls(sk->sk_nulls_node.next)) ?
476 hlist_nulls_entry(sk->sk_nulls_node.next,
477 struct sock, sk_nulls_node) :
478 NULL;
479 }
480
481 static inline bool sk_unhashed(const struct sock *sk)
482 {
483 return hlist_unhashed(&sk->sk_node);
484 }
485
486 static inline bool sk_hashed(const struct sock *sk)
487 {
488 return !sk_unhashed(sk);
489 }
490
491 static inline void sk_node_init(struct hlist_node *node)
492 {
493 node->pprev = NULL;
494 }
495
496 static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
497 {
498 node->pprev = NULL;
499 }
500
501 static inline void __sk_del_node(struct sock *sk)
502 {
503 __hlist_del(&sk->sk_node);
504 }
505
506 /* NB: equivalent to hlist_del_init_rcu */
507 static inline bool __sk_del_node_init(struct sock *sk)
508 {
509 if (sk_hashed(sk)) {
510 __sk_del_node(sk);
511 sk_node_init(&sk->sk_node);
512 return true;
513 }
514 return false;
515 }
516
517 /* Grab socket reference count. This operation is valid only
518 when sk is ALREADY grabbed f.e. it is found in hash table
519 or a list and the lookup is made under lock preventing hash table
520 modifications.
521 */
522
523 static inline void sock_hold(struct sock *sk)
524 {
525 atomic_inc(&sk->sk_refcnt);
526 }
527
528 /* Ungrab socket in the context, which assumes that socket refcnt
529 cannot hit zero, f.e. it is true in context of any socketcall.
530 */
531 static inline void __sock_put(struct sock *sk)
532 {
533 atomic_dec(&sk->sk_refcnt);
534 }
535
536 static inline bool sk_del_node_init(struct sock *sk)
537 {
538 bool rc = __sk_del_node_init(sk);
539
540 if (rc) {
541 /* paranoid for a while -acme */
542 WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
543 __sock_put(sk);
544 }
545 return rc;
546 }
547 #define sk_del_node_init_rcu(sk) sk_del_node_init(sk)
548
549 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
550 {
551 if (sk_hashed(sk)) {
552 hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
553 return true;
554 }
555 return false;
556 }
557
558 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
559 {
560 bool rc = __sk_nulls_del_node_init_rcu(sk);
561
562 if (rc) {
563 /* paranoid for a while -acme */
564 WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
565 __sock_put(sk);
566 }
567 return rc;
568 }
569
570 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
571 {
572 hlist_add_head(&sk->sk_node, list);
573 }
574
575 static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
576 {
577 sock_hold(sk);
578 __sk_add_node(sk, list);
579 }
580
581 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
582 {
583 sock_hold(sk);
584 hlist_add_head_rcu(&sk->sk_node, list);
585 }
586
587 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
588 {
589 hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
590 }
591
592 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
593 {
594 sock_hold(sk);
595 __sk_nulls_add_node_rcu(sk, list);
596 }
597
598 static inline void __sk_del_bind_node(struct sock *sk)
599 {
600 __hlist_del(&sk->sk_bind_node);
601 }
602
603 static inline void sk_add_bind_node(struct sock *sk,
604 struct hlist_head *list)
605 {
606 hlist_add_head(&sk->sk_bind_node, list);
607 }
608
609 #define sk_for_each(__sk, list) \
610 hlist_for_each_entry(__sk, list, sk_node)
611 #define sk_for_each_rcu(__sk, list) \
612 hlist_for_each_entry_rcu(__sk, list, sk_node)
613 #define sk_nulls_for_each(__sk, node, list) \
614 hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
615 #define sk_nulls_for_each_rcu(__sk, node, list) \
616 hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
617 #define sk_for_each_from(__sk) \
618 hlist_for_each_entry_from(__sk, sk_node)
619 #define sk_nulls_for_each_from(__sk, node) \
620 if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
621 hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
622 #define sk_for_each_safe(__sk, tmp, list) \
623 hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
624 #define sk_for_each_bound(__sk, list) \
625 hlist_for_each_entry(__sk, list, sk_bind_node)
626
627 static inline struct user_namespace *sk_user_ns(struct sock *sk)
628 {
629 /* Careful only use this in a context where these parameters
630 * can not change and must all be valid, such as recvmsg from
631 * userspace.
632 */
633 return sk->sk_socket->file->f_cred->user_ns;
634 }
635
636 /* Sock flags */
637 enum sock_flags {
638 SOCK_DEAD,
639 SOCK_DONE,
640 SOCK_URGINLINE,
641 SOCK_KEEPOPEN,
642 SOCK_LINGER,
643 SOCK_DESTROY,
644 SOCK_BROADCAST,
645 SOCK_TIMESTAMP,
646 SOCK_ZAPPED,
647 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
648 SOCK_DBG, /* %SO_DEBUG setting */
649 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
650 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
651 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
652 SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
653 SOCK_MEMALLOC, /* VM depends on this socket for swapping */
654 SOCK_TIMESTAMPING_TX_HARDWARE, /* %SOF_TIMESTAMPING_TX_HARDWARE */
655 SOCK_TIMESTAMPING_TX_SOFTWARE, /* %SOF_TIMESTAMPING_TX_SOFTWARE */
656 SOCK_TIMESTAMPING_RX_HARDWARE, /* %SOF_TIMESTAMPING_RX_HARDWARE */
657 SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */
658 SOCK_TIMESTAMPING_SOFTWARE, /* %SOF_TIMESTAMPING_SOFTWARE */
659 SOCK_TIMESTAMPING_RAW_HARDWARE, /* %SOF_TIMESTAMPING_RAW_HARDWARE */
660 SOCK_TIMESTAMPING_SYS_HARDWARE, /* %SOF_TIMESTAMPING_SYS_HARDWARE */
661 SOCK_FASYNC, /* fasync() active */
662 SOCK_RXQ_OVFL,
663 SOCK_ZEROCOPY, /* buffers from userspace */
664 SOCK_WIFI_STATUS, /* push wifi status to userspace */
665 SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
666 * Will use last 4 bytes of packet sent from
667 * user-space instead.
668 */
669 SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
670 };
671
672 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
673 {
674 nsk->sk_flags = osk->sk_flags;
675 }
676
677 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
678 {
679 __set_bit(flag, &sk->sk_flags);
680 }
681
682 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
683 {
684 __clear_bit(flag, &sk->sk_flags);
685 }
686
687 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
688 {
689 return test_bit(flag, &sk->sk_flags);
690 }
691
692 #ifdef CONFIG_NET
693 extern struct static_key memalloc_socks;
694 static inline int sk_memalloc_socks(void)
695 {
696 return static_key_false(&memalloc_socks);
697 }
698 #else
699
700 static inline int sk_memalloc_socks(void)
701 {
702 return 0;
703 }
704
705 #endif
706
707 static inline gfp_t sk_gfp_atomic(struct sock *sk, gfp_t gfp_mask)
708 {
709 return GFP_ATOMIC | (sk->sk_allocation & __GFP_MEMALLOC);
710 }
711
712 static inline void sk_acceptq_removed(struct sock *sk)
713 {
714 sk->sk_ack_backlog--;
715 }
716
717 static inline void sk_acceptq_added(struct sock *sk)
718 {
719 sk->sk_ack_backlog++;
720 }
721
722 static inline bool sk_acceptq_is_full(const struct sock *sk)
723 {
724 return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
725 }
726
727 /*
728 * Compute minimal free write space needed to queue new packets.
729 */
730 static inline int sk_stream_min_wspace(const struct sock *sk)
731 {
732 return sk->sk_wmem_queued >> 1;
733 }
734
735 static inline int sk_stream_wspace(const struct sock *sk)
736 {
737 return sk->sk_sndbuf - sk->sk_wmem_queued;
738 }
739
740 extern void sk_stream_write_space(struct sock *sk);
741
742 static inline bool sk_stream_memory_free(const struct sock *sk)
743 {
744 return sk->sk_wmem_queued < sk->sk_sndbuf;
745 }
746
747 /* OOB backlog add */
748 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
749 {
750 /* dont let skb dst not refcounted, we are going to leave rcu lock */
751 skb_dst_force(skb);
752
753 if (!sk->sk_backlog.tail)
754 sk->sk_backlog.head = skb;
755 else
756 sk->sk_backlog.tail->next = skb;
757
758 sk->sk_backlog.tail = skb;
759 skb->next = NULL;
760 }
761
762 /*
763 * Take into account size of receive queue and backlog queue
764 * Do not take into account this skb truesize,
765 * to allow even a single big packet to come.
766 */
767 static inline bool sk_rcvqueues_full(const struct sock *sk, const struct sk_buff *skb,
768 unsigned int limit)
769 {
770 unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
771
772 return qsize > limit;
773 }
774
775 /* The per-socket spinlock must be held here. */
776 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
777 unsigned int limit)
778 {
779 if (sk_rcvqueues_full(sk, skb, limit))
780 return -ENOBUFS;
781
782 __sk_add_backlog(sk, skb);
783 sk->sk_backlog.len += skb->truesize;
784 return 0;
785 }
786
787 extern int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
788
789 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
790 {
791 if (sk_memalloc_socks() && skb_pfmemalloc(skb))
792 return __sk_backlog_rcv(sk, skb);
793
794 return sk->sk_backlog_rcv(sk, skb);
795 }
796
797 static inline void sock_rps_record_flow(const struct sock *sk)
798 {
799 #ifdef CONFIG_RPS
800 struct rps_sock_flow_table *sock_flow_table;
801
802 rcu_read_lock();
803 sock_flow_table = rcu_dereference(rps_sock_flow_table);
804 rps_record_sock_flow(sock_flow_table, sk->sk_rxhash);
805 rcu_read_unlock();
806 #endif
807 }
808
809 static inline void sock_rps_reset_flow(const struct sock *sk)
810 {
811 #ifdef CONFIG_RPS
812 struct rps_sock_flow_table *sock_flow_table;
813
814 rcu_read_lock();
815 sock_flow_table = rcu_dereference(rps_sock_flow_table);
816 rps_reset_sock_flow(sock_flow_table, sk->sk_rxhash);
817 rcu_read_unlock();
818 #endif
819 }
820
821 static inline void sock_rps_save_rxhash(struct sock *sk,
822 const struct sk_buff *skb)
823 {
824 #ifdef CONFIG_RPS
825 if (unlikely(sk->sk_rxhash != skb->rxhash)) {
826 sock_rps_reset_flow(sk);
827 sk->sk_rxhash = skb->rxhash;
828 }
829 #endif
830 }
831
832 static inline void sock_rps_reset_rxhash(struct sock *sk)
833 {
834 #ifdef CONFIG_RPS
835 sock_rps_reset_flow(sk);
836 sk->sk_rxhash = 0;
837 #endif
838 }
839
840 #define sk_wait_event(__sk, __timeo, __condition) \
841 ({ int __rc; \
842 release_sock(__sk); \
843 __rc = __condition; \
844 if (!__rc) { \
845 *(__timeo) = schedule_timeout(*(__timeo)); \
846 } \
847 lock_sock(__sk); \
848 __rc = __condition; \
849 __rc; \
850 })
851
852 extern int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
853 extern int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
854 extern void sk_stream_wait_close(struct sock *sk, long timeo_p);
855 extern int sk_stream_error(struct sock *sk, int flags, int err);
856 extern void sk_stream_kill_queues(struct sock *sk);
857 extern void sk_set_memalloc(struct sock *sk);
858 extern void sk_clear_memalloc(struct sock *sk);
859
860 extern int sk_wait_data(struct sock *sk, long *timeo);
861
862 struct request_sock_ops;
863 struct timewait_sock_ops;
864 struct inet_hashinfo;
865 struct raw_hashinfo;
866 struct module;
867
868 /* Networking protocol blocks we attach to sockets.
869 * socket layer -> transport layer interface
870 * transport -> network interface is defined by struct inet_proto
871 */
872 struct proto {
873 void (*close)(struct sock *sk,
874 long timeout);
875 int (*connect)(struct sock *sk,
876 struct sockaddr *uaddr,
877 int addr_len);
878 int (*disconnect)(struct sock *sk, int flags);
879
880 struct sock * (*accept)(struct sock *sk, int flags, int *err);
881
882 int (*ioctl)(struct sock *sk, int cmd,
883 unsigned long arg);
884 int (*init)(struct sock *sk);
885 void (*destroy)(struct sock *sk);
886 void (*shutdown)(struct sock *sk, int how);
887 int (*setsockopt)(struct sock *sk, int level,
888 int optname, char __user *optval,
889 unsigned int optlen);
890 int (*getsockopt)(struct sock *sk, int level,
891 int optname, char __user *optval,
892 int __user *option);
893 #ifdef CONFIG_COMPAT
894 int (*compat_setsockopt)(struct sock *sk,
895 int level,
896 int optname, char __user *optval,
897 unsigned int optlen);
898 int (*compat_getsockopt)(struct sock *sk,
899 int level,
900 int optname, char __user *optval,
901 int __user *option);
902 int (*compat_ioctl)(struct sock *sk,
903 unsigned int cmd, unsigned long arg);
904 #endif
905 int (*sendmsg)(struct kiocb *iocb, struct sock *sk,
906 struct msghdr *msg, size_t len);
907 int (*recvmsg)(struct kiocb *iocb, struct sock *sk,
908 struct msghdr *msg,
909 size_t len, int noblock, int flags,
910 int *addr_len);
911 int (*sendpage)(struct sock *sk, struct page *page,
912 int offset, size_t size, int flags);
913 int (*bind)(struct sock *sk,
914 struct sockaddr *uaddr, int addr_len);
915
916 int (*backlog_rcv) (struct sock *sk,
917 struct sk_buff *skb);
918
919 void (*release_cb)(struct sock *sk);
920 void (*mtu_reduced)(struct sock *sk);
921
922 /* Keeping track of sk's, looking them up, and port selection methods. */
923 void (*hash)(struct sock *sk);
924 void (*unhash)(struct sock *sk);
925 void (*rehash)(struct sock *sk);
926 int (*get_port)(struct sock *sk, unsigned short snum);
927 void (*clear_sk)(struct sock *sk, int size);
928
929 /* Keeping track of sockets in use */
930 #ifdef CONFIG_PROC_FS
931 unsigned int inuse_idx;
932 #endif
933
934 /* Memory pressure */
935 void (*enter_memory_pressure)(struct sock *sk);
936 atomic_long_t *memory_allocated; /* Current allocated memory. */
937 struct percpu_counter *sockets_allocated; /* Current number of sockets. */
938 /*
939 * Pressure flag: try to collapse.
940 * Technical note: it is used by multiple contexts non atomically.
941 * All the __sk_mem_schedule() is of this nature: accounting
942 * is strict, actions are advisory and have some latency.
943 */
944 int *memory_pressure;
945 long *sysctl_mem;
946 int *sysctl_wmem;
947 int *sysctl_rmem;
948 int max_header;
949 bool no_autobind;
950
951 struct kmem_cache *slab;
952 unsigned int obj_size;
953 int slab_flags;
954
955 struct percpu_counter *orphan_count;
956
957 struct request_sock_ops *rsk_prot;
958 struct timewait_sock_ops *twsk_prot;
959
960 union {
961 struct inet_hashinfo *hashinfo;
962 struct udp_table *udp_table;
963 struct raw_hashinfo *raw_hash;
964 } h;
965
966 struct module *owner;
967
968 char name[32];
969
970 struct list_head node;
971 #ifdef SOCK_REFCNT_DEBUG
972 atomic_t socks;
973 #endif
974 #ifdef CONFIG_MEMCG_KMEM
975 /*
976 * cgroup specific init/deinit functions. Called once for all
977 * protocols that implement it, from cgroups populate function.
978 * This function has to setup any files the protocol want to
979 * appear in the kmem cgroup filesystem.
980 */
981 int (*init_cgroup)(struct mem_cgroup *memcg,
982 struct cgroup_subsys *ss);
983 void (*destroy_cgroup)(struct mem_cgroup *memcg);
984 struct cg_proto *(*proto_cgroup)(struct mem_cgroup *memcg);
985 #endif
986 };
987
988 /*
989 * Bits in struct cg_proto.flags
990 */
991 enum cg_proto_flags {
992 /* Currently active and new sockets should be assigned to cgroups */
993 MEMCG_SOCK_ACTIVE,
994 /* It was ever activated; we must disarm static keys on destruction */
995 MEMCG_SOCK_ACTIVATED,
996 };
997
998 struct cg_proto {
999 void (*enter_memory_pressure)(struct sock *sk);
1000 struct res_counter *memory_allocated; /* Current allocated memory. */
1001 struct percpu_counter *sockets_allocated; /* Current number of sockets. */
1002 int *memory_pressure;
1003 long *sysctl_mem;
1004 unsigned long flags;
1005 /*
1006 * memcg field is used to find which memcg we belong directly
1007 * Each memcg struct can hold more than one cg_proto, so container_of
1008 * won't really cut.
1009 *
1010 * The elegant solution would be having an inverse function to
1011 * proto_cgroup in struct proto, but that means polluting the structure
1012 * for everybody, instead of just for memcg users.
1013 */
1014 struct mem_cgroup *memcg;
1015 };
1016
1017 extern int proto_register(struct proto *prot, int alloc_slab);
1018 extern void proto_unregister(struct proto *prot);
1019
1020 static inline bool memcg_proto_active(struct cg_proto *cg_proto)
1021 {
1022 return test_bit(MEMCG_SOCK_ACTIVE, &cg_proto->flags);
1023 }
1024
1025 static inline bool memcg_proto_activated(struct cg_proto *cg_proto)
1026 {
1027 return test_bit(MEMCG_SOCK_ACTIVATED, &cg_proto->flags);
1028 }
1029
1030 #ifdef SOCK_REFCNT_DEBUG
1031 static inline void sk_refcnt_debug_inc(struct sock *sk)
1032 {
1033 atomic_inc(&sk->sk_prot->socks);
1034 }
1035
1036 static inline void sk_refcnt_debug_dec(struct sock *sk)
1037 {
1038 atomic_dec(&sk->sk_prot->socks);
1039 printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1040 sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1041 }
1042
1043 static inline void sk_refcnt_debug_release(const struct sock *sk)
1044 {
1045 if (atomic_read(&sk->sk_refcnt) != 1)
1046 printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1047 sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt));
1048 }
1049 #else /* SOCK_REFCNT_DEBUG */
1050 #define sk_refcnt_debug_inc(sk) do { } while (0)
1051 #define sk_refcnt_debug_dec(sk) do { } while (0)
1052 #define sk_refcnt_debug_release(sk) do { } while (0)
1053 #endif /* SOCK_REFCNT_DEBUG */
1054
1055 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_NET)
1056 extern struct static_key memcg_socket_limit_enabled;
1057 static inline struct cg_proto *parent_cg_proto(struct proto *proto,
1058 struct cg_proto *cg_proto)
1059 {
1060 return proto->proto_cgroup(parent_mem_cgroup(cg_proto->memcg));
1061 }
1062 #define mem_cgroup_sockets_enabled static_key_false(&memcg_socket_limit_enabled)
1063 #else
1064 #define mem_cgroup_sockets_enabled 0
1065 static inline struct cg_proto *parent_cg_proto(struct proto *proto,
1066 struct cg_proto *cg_proto)
1067 {
1068 return NULL;
1069 }
1070 #endif
1071
1072
1073 static inline bool sk_has_memory_pressure(const struct sock *sk)
1074 {
1075 return sk->sk_prot->memory_pressure != NULL;
1076 }
1077
1078 static inline bool sk_under_memory_pressure(const struct sock *sk)
1079 {
1080 if (!sk->sk_prot->memory_pressure)
1081 return false;
1082
1083 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1084 return !!*sk->sk_cgrp->memory_pressure;
1085
1086 return !!*sk->sk_prot->memory_pressure;
1087 }
1088
1089 static inline void sk_leave_memory_pressure(struct sock *sk)
1090 {
1091 int *memory_pressure = sk->sk_prot->memory_pressure;
1092
1093 if (!memory_pressure)
1094 return;
1095
1096 if (*memory_pressure)
1097 *memory_pressure = 0;
1098
1099 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1100 struct cg_proto *cg_proto = sk->sk_cgrp;
1101 struct proto *prot = sk->sk_prot;
1102
1103 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1104 if (*cg_proto->memory_pressure)
1105 *cg_proto->memory_pressure = 0;
1106 }
1107
1108 }
1109
1110 static inline void sk_enter_memory_pressure(struct sock *sk)
1111 {
1112 if (!sk->sk_prot->enter_memory_pressure)
1113 return;
1114
1115 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1116 struct cg_proto *cg_proto = sk->sk_cgrp;
1117 struct proto *prot = sk->sk_prot;
1118
1119 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1120 cg_proto->enter_memory_pressure(sk);
1121 }
1122
1123 sk->sk_prot->enter_memory_pressure(sk);
1124 }
1125
1126 static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1127 {
1128 long *prot = sk->sk_prot->sysctl_mem;
1129 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1130 prot = sk->sk_cgrp->sysctl_mem;
1131 return prot[index];
1132 }
1133
1134 static inline void memcg_memory_allocated_add(struct cg_proto *prot,
1135 unsigned long amt,
1136 int *parent_status)
1137 {
1138 struct res_counter *fail;
1139 int ret;
1140
1141 ret = res_counter_charge_nofail(prot->memory_allocated,
1142 amt << PAGE_SHIFT, &fail);
1143 if (ret < 0)
1144 *parent_status = OVER_LIMIT;
1145 }
1146
1147 static inline void memcg_memory_allocated_sub(struct cg_proto *prot,
1148 unsigned long amt)
1149 {
1150 res_counter_uncharge(prot->memory_allocated, amt << PAGE_SHIFT);
1151 }
1152
1153 static inline u64 memcg_memory_allocated_read(struct cg_proto *prot)
1154 {
1155 u64 ret;
1156 ret = res_counter_read_u64(prot->memory_allocated, RES_USAGE);
1157 return ret >> PAGE_SHIFT;
1158 }
1159
1160 static inline long
1161 sk_memory_allocated(const struct sock *sk)
1162 {
1163 struct proto *prot = sk->sk_prot;
1164 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1165 return memcg_memory_allocated_read(sk->sk_cgrp);
1166
1167 return atomic_long_read(prot->memory_allocated);
1168 }
1169
1170 static inline long
1171 sk_memory_allocated_add(struct sock *sk, int amt, int *parent_status)
1172 {
1173 struct proto *prot = sk->sk_prot;
1174
1175 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1176 memcg_memory_allocated_add(sk->sk_cgrp, amt, parent_status);
1177 /* update the root cgroup regardless */
1178 atomic_long_add_return(amt, prot->memory_allocated);
1179 return memcg_memory_allocated_read(sk->sk_cgrp);
1180 }
1181
1182 return atomic_long_add_return(amt, prot->memory_allocated);
1183 }
1184
1185 static inline void
1186 sk_memory_allocated_sub(struct sock *sk, int amt)
1187 {
1188 struct proto *prot = sk->sk_prot;
1189
1190 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1191 memcg_memory_allocated_sub(sk->sk_cgrp, amt);
1192
1193 atomic_long_sub(amt, prot->memory_allocated);
1194 }
1195
1196 static inline void sk_sockets_allocated_dec(struct sock *sk)
1197 {
1198 struct proto *prot = sk->sk_prot;
1199
1200 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1201 struct cg_proto *cg_proto = sk->sk_cgrp;
1202
1203 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1204 percpu_counter_dec(cg_proto->sockets_allocated);
1205 }
1206
1207 percpu_counter_dec(prot->sockets_allocated);
1208 }
1209
1210 static inline void sk_sockets_allocated_inc(struct sock *sk)
1211 {
1212 struct proto *prot = sk->sk_prot;
1213
1214 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1215 struct cg_proto *cg_proto = sk->sk_cgrp;
1216
1217 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1218 percpu_counter_inc(cg_proto->sockets_allocated);
1219 }
1220
1221 percpu_counter_inc(prot->sockets_allocated);
1222 }
1223
1224 static inline int
1225 sk_sockets_allocated_read_positive(struct sock *sk)
1226 {
1227 struct proto *prot = sk->sk_prot;
1228
1229 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1230 return percpu_counter_read_positive(sk->sk_cgrp->sockets_allocated);
1231
1232 return percpu_counter_read_positive(prot->sockets_allocated);
1233 }
1234
1235 static inline int
1236 proto_sockets_allocated_sum_positive(struct proto *prot)
1237 {
1238 return percpu_counter_sum_positive(prot->sockets_allocated);
1239 }
1240
1241 static inline long
1242 proto_memory_allocated(struct proto *prot)
1243 {
1244 return atomic_long_read(prot->memory_allocated);
1245 }
1246
1247 static inline bool
1248 proto_memory_pressure(struct proto *prot)
1249 {
1250 if (!prot->memory_pressure)
1251 return false;
1252 return !!*prot->memory_pressure;
1253 }
1254
1255
1256 #ifdef CONFIG_PROC_FS
1257 /* Called with local bh disabled */
1258 extern void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
1259 extern int sock_prot_inuse_get(struct net *net, struct proto *proto);
1260 #else
1261 static inline void sock_prot_inuse_add(struct net *net, struct proto *prot,
1262 int inc)
1263 {
1264 }
1265 #endif
1266
1267
1268 /* With per-bucket locks this operation is not-atomic, so that
1269 * this version is not worse.
1270 */
1271 static inline void __sk_prot_rehash(struct sock *sk)
1272 {
1273 sk->sk_prot->unhash(sk);
1274 sk->sk_prot->hash(sk);
1275 }
1276
1277 void sk_prot_clear_portaddr_nulls(struct sock *sk, int size);
1278
1279 /* About 10 seconds */
1280 #define SOCK_DESTROY_TIME (10*HZ)
1281
1282 /* Sockets 0-1023 can't be bound to unless you are superuser */
1283 #define PROT_SOCK 1024
1284
1285 #define SHUTDOWN_MASK 3
1286 #define RCV_SHUTDOWN 1
1287 #define SEND_SHUTDOWN 2
1288
1289 #define SOCK_SNDBUF_LOCK 1
1290 #define SOCK_RCVBUF_LOCK 2
1291 #define SOCK_BINDADDR_LOCK 4
1292 #define SOCK_BINDPORT_LOCK 8
1293
1294 /* sock_iocb: used to kick off async processing of socket ios */
1295 struct sock_iocb {
1296 struct list_head list;
1297
1298 int flags;
1299 int size;
1300 struct socket *sock;
1301 struct sock *sk;
1302 struct scm_cookie *scm;
1303 struct msghdr *msg, async_msg;
1304 struct kiocb *kiocb;
1305 };
1306
1307 static inline struct sock_iocb *kiocb_to_siocb(struct kiocb *iocb)
1308 {
1309 return (struct sock_iocb *)iocb->private;
1310 }
1311
1312 static inline struct kiocb *siocb_to_kiocb(struct sock_iocb *si)
1313 {
1314 return si->kiocb;
1315 }
1316
1317 struct socket_alloc {
1318 struct socket socket;
1319 struct inode vfs_inode;
1320 };
1321
1322 static inline struct socket *SOCKET_I(struct inode *inode)
1323 {
1324 return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1325 }
1326
1327 static inline struct inode *SOCK_INODE(struct socket *socket)
1328 {
1329 return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1330 }
1331
1332 /*
1333 * Functions for memory accounting
1334 */
1335 extern int __sk_mem_schedule(struct sock *sk, int size, int kind);
1336 extern void __sk_mem_reclaim(struct sock *sk);
1337
1338 #define SK_MEM_QUANTUM ((int)PAGE_SIZE)
1339 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1340 #define SK_MEM_SEND 0
1341 #define SK_MEM_RECV 1
1342
1343 static inline int sk_mem_pages(int amt)
1344 {
1345 return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1346 }
1347
1348 static inline bool sk_has_account(struct sock *sk)
1349 {
1350 /* return true if protocol supports memory accounting */
1351 return !!sk->sk_prot->memory_allocated;
1352 }
1353
1354 static inline bool sk_wmem_schedule(struct sock *sk, int size)
1355 {
1356 if (!sk_has_account(sk))
1357 return true;
1358 return size <= sk->sk_forward_alloc ||
1359 __sk_mem_schedule(sk, size, SK_MEM_SEND);
1360 }
1361
1362 static inline bool
1363 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1364 {
1365 if (!sk_has_account(sk))
1366 return true;
1367 return size<= sk->sk_forward_alloc ||
1368 __sk_mem_schedule(sk, size, SK_MEM_RECV) ||
1369 skb_pfmemalloc(skb);
1370 }
1371
1372 static inline void sk_mem_reclaim(struct sock *sk)
1373 {
1374 if (!sk_has_account(sk))
1375 return;
1376 if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
1377 __sk_mem_reclaim(sk);
1378 }
1379
1380 static inline void sk_mem_reclaim_partial(struct sock *sk)
1381 {
1382 if (!sk_has_account(sk))
1383 return;
1384 if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
1385 __sk_mem_reclaim(sk);
1386 }
1387
1388 static inline void sk_mem_charge(struct sock *sk, int size)
1389 {
1390 if (!sk_has_account(sk))
1391 return;
1392 sk->sk_forward_alloc -= size;
1393 }
1394
1395 static inline void sk_mem_uncharge(struct sock *sk, int size)
1396 {
1397 if (!sk_has_account(sk))
1398 return;
1399 sk->sk_forward_alloc += size;
1400 }
1401
1402 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1403 {
1404 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1405 sk->sk_wmem_queued -= skb->truesize;
1406 sk_mem_uncharge(sk, skb->truesize);
1407 __kfree_skb(skb);
1408 }
1409
1410 /* Used by processes to "lock" a socket state, so that
1411 * interrupts and bottom half handlers won't change it
1412 * from under us. It essentially blocks any incoming
1413 * packets, so that we won't get any new data or any
1414 * packets that change the state of the socket.
1415 *
1416 * While locked, BH processing will add new packets to
1417 * the backlog queue. This queue is processed by the
1418 * owner of the socket lock right before it is released.
1419 *
1420 * Since ~2.3.5 it is also exclusive sleep lock serializing
1421 * accesses from user process context.
1422 */
1423 #define sock_owned_by_user(sk) ((sk)->sk_lock.owned)
1424
1425 /*
1426 * Macro so as to not evaluate some arguments when
1427 * lockdep is not enabled.
1428 *
1429 * Mark both the sk_lock and the sk_lock.slock as a
1430 * per-address-family lock class.
1431 */
1432 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) \
1433 do { \
1434 sk->sk_lock.owned = 0; \
1435 init_waitqueue_head(&sk->sk_lock.wq); \
1436 spin_lock_init(&(sk)->sk_lock.slock); \
1437 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \
1438 sizeof((sk)->sk_lock)); \
1439 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \
1440 (skey), (sname)); \
1441 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \
1442 } while (0)
1443
1444 extern void lock_sock_nested(struct sock *sk, int subclass);
1445
1446 static inline void lock_sock(struct sock *sk)
1447 {
1448 lock_sock_nested(sk, 0);
1449 }
1450
1451 extern void release_sock(struct sock *sk);
1452
1453 /* BH context may only use the following locking interface. */
1454 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock))
1455 #define bh_lock_sock_nested(__sk) \
1456 spin_lock_nested(&((__sk)->sk_lock.slock), \
1457 SINGLE_DEPTH_NESTING)
1458 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock))
1459
1460 extern bool lock_sock_fast(struct sock *sk);
1461 /**
1462 * unlock_sock_fast - complement of lock_sock_fast
1463 * @sk: socket
1464 * @slow: slow mode
1465 *
1466 * fast unlock socket for user context.
1467 * If slow mode is on, we call regular release_sock()
1468 */
1469 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1470 {
1471 if (slow)
1472 release_sock(sk);
1473 else
1474 spin_unlock_bh(&sk->sk_lock.slock);
1475 }
1476
1477
1478 extern struct sock *sk_alloc(struct net *net, int family,
1479 gfp_t priority,
1480 struct proto *prot);
1481 extern void sk_free(struct sock *sk);
1482 extern void sk_release_kernel(struct sock *sk);
1483 extern struct sock *sk_clone_lock(const struct sock *sk,
1484 const gfp_t priority);
1485
1486 extern struct sk_buff *sock_wmalloc(struct sock *sk,
1487 unsigned long size, int force,
1488 gfp_t priority);
1489 extern struct sk_buff *sock_rmalloc(struct sock *sk,
1490 unsigned long size, int force,
1491 gfp_t priority);
1492 extern void sock_wfree(struct sk_buff *skb);
1493 extern void sock_rfree(struct sk_buff *skb);
1494 extern void sock_edemux(struct sk_buff *skb);
1495
1496 extern int sock_setsockopt(struct socket *sock, int level,
1497 int op, char __user *optval,
1498 unsigned int optlen);
1499
1500 extern int sock_getsockopt(struct socket *sock, int level,
1501 int op, char __user *optval,
1502 int __user *optlen);
1503 extern struct sk_buff *sock_alloc_send_skb(struct sock *sk,
1504 unsigned long size,
1505 int noblock,
1506 int *errcode);
1507 extern struct sk_buff *sock_alloc_send_pskb(struct sock *sk,
1508 unsigned long header_len,
1509 unsigned long data_len,
1510 int noblock,
1511 int *errcode);
1512 extern void *sock_kmalloc(struct sock *sk, int size,
1513 gfp_t priority);
1514 extern void sock_kfree_s(struct sock *sk, void *mem, int size);
1515 extern void sk_send_sigurg(struct sock *sk);
1516
1517 /*
1518 * Functions to fill in entries in struct proto_ops when a protocol
1519 * does not implement a particular function.
1520 */
1521 extern int sock_no_bind(struct socket *,
1522 struct sockaddr *, int);
1523 extern int sock_no_connect(struct socket *,
1524 struct sockaddr *, int, int);
1525 extern int sock_no_socketpair(struct socket *,
1526 struct socket *);
1527 extern int sock_no_accept(struct socket *,
1528 struct socket *, int);
1529 extern int sock_no_getname(struct socket *,
1530 struct sockaddr *, int *, int);
1531 extern unsigned int sock_no_poll(struct file *, struct socket *,
1532 struct poll_table_struct *);
1533 extern int sock_no_ioctl(struct socket *, unsigned int,
1534 unsigned long);
1535 extern int sock_no_listen(struct socket *, int);
1536 extern int sock_no_shutdown(struct socket *, int);
1537 extern int sock_no_getsockopt(struct socket *, int , int,
1538 char __user *, int __user *);
1539 extern int sock_no_setsockopt(struct socket *, int, int,
1540 char __user *, unsigned int);
1541 extern int sock_no_sendmsg(struct kiocb *, struct socket *,
1542 struct msghdr *, size_t);
1543 extern int sock_no_recvmsg(struct kiocb *, struct socket *,
1544 struct msghdr *, size_t, int);
1545 extern int sock_no_mmap(struct file *file,
1546 struct socket *sock,
1547 struct vm_area_struct *vma);
1548 extern ssize_t sock_no_sendpage(struct socket *sock,
1549 struct page *page,
1550 int offset, size_t size,
1551 int flags);
1552
1553 /*
1554 * Functions to fill in entries in struct proto_ops when a protocol
1555 * uses the inet style.
1556 */
1557 extern int sock_common_getsockopt(struct socket *sock, int level, int optname,
1558 char __user *optval, int __user *optlen);
1559 extern int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
1560 struct msghdr *msg, size_t size, int flags);
1561 extern int sock_common_setsockopt(struct socket *sock, int level, int optname,
1562 char __user *optval, unsigned int optlen);
1563 extern int compat_sock_common_getsockopt(struct socket *sock, int level,
1564 int optname, char __user *optval, int __user *optlen);
1565 extern int compat_sock_common_setsockopt(struct socket *sock, int level,
1566 int optname, char __user *optval, unsigned int optlen);
1567
1568 extern void sk_common_release(struct sock *sk);
1569
1570 /*
1571 * Default socket callbacks and setup code
1572 */
1573
1574 /* Initialise core socket variables */
1575 extern void sock_init_data(struct socket *sock, struct sock *sk);
1576
1577 extern void sk_filter_release_rcu(struct rcu_head *rcu);
1578
1579 /**
1580 * sk_filter_release - release a socket filter
1581 * @fp: filter to remove
1582 *
1583 * Remove a filter from a socket and release its resources.
1584 */
1585
1586 static inline void sk_filter_release(struct sk_filter *fp)
1587 {
1588 if (atomic_dec_and_test(&fp->refcnt))
1589 call_rcu(&fp->rcu, sk_filter_release_rcu);
1590 }
1591
1592 static inline void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1593 {
1594 unsigned int size = sk_filter_len(fp);
1595
1596 atomic_sub(size, &sk->sk_omem_alloc);
1597 sk_filter_release(fp);
1598 }
1599
1600 static inline void sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1601 {
1602 atomic_inc(&fp->refcnt);
1603 atomic_add(sk_filter_len(fp), &sk->sk_omem_alloc);
1604 }
1605
1606 /*
1607 * Socket reference counting postulates.
1608 *
1609 * * Each user of socket SHOULD hold a reference count.
1610 * * Each access point to socket (an hash table bucket, reference from a list,
1611 * running timer, skb in flight MUST hold a reference count.
1612 * * When reference count hits 0, it means it will never increase back.
1613 * * When reference count hits 0, it means that no references from
1614 * outside exist to this socket and current process on current CPU
1615 * is last user and may/should destroy this socket.
1616 * * sk_free is called from any context: process, BH, IRQ. When
1617 * it is called, socket has no references from outside -> sk_free
1618 * may release descendant resources allocated by the socket, but
1619 * to the time when it is called, socket is NOT referenced by any
1620 * hash tables, lists etc.
1621 * * Packets, delivered from outside (from network or from another process)
1622 * and enqueued on receive/error queues SHOULD NOT grab reference count,
1623 * when they sit in queue. Otherwise, packets will leak to hole, when
1624 * socket is looked up by one cpu and unhasing is made by another CPU.
1625 * It is true for udp/raw, netlink (leak to receive and error queues), tcp
1626 * (leak to backlog). Packet socket does all the processing inside
1627 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1628 * use separate SMP lock, so that they are prone too.
1629 */
1630
1631 /* Ungrab socket and destroy it, if it was the last reference. */
1632 static inline void sock_put(struct sock *sk)
1633 {
1634 if (atomic_dec_and_test(&sk->sk_refcnt))
1635 sk_free(sk);
1636 }
1637
1638 extern int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1639 const int nested);
1640
1641 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1642 {
1643 sk->sk_tx_queue_mapping = tx_queue;
1644 }
1645
1646 static inline void sk_tx_queue_clear(struct sock *sk)
1647 {
1648 sk->sk_tx_queue_mapping = -1;
1649 }
1650
1651 static inline int sk_tx_queue_get(const struct sock *sk)
1652 {
1653 return sk ? sk->sk_tx_queue_mapping : -1;
1654 }
1655
1656 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1657 {
1658 sk_tx_queue_clear(sk);
1659 sk->sk_socket = sock;
1660 }
1661
1662 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1663 {
1664 BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1665 return &rcu_dereference_raw(sk->sk_wq)->wait;
1666 }
1667 /* Detach socket from process context.
1668 * Announce socket dead, detach it from wait queue and inode.
1669 * Note that parent inode held reference count on this struct sock,
1670 * we do not release it in this function, because protocol
1671 * probably wants some additional cleanups or even continuing
1672 * to work with this socket (TCP).
1673 */
1674 static inline void sock_orphan(struct sock *sk)
1675 {
1676 write_lock_bh(&sk->sk_callback_lock);
1677 sock_set_flag(sk, SOCK_DEAD);
1678 sk_set_socket(sk, NULL);
1679 sk->sk_wq = NULL;
1680 write_unlock_bh(&sk->sk_callback_lock);
1681 }
1682
1683 static inline void sock_graft(struct sock *sk, struct socket *parent)
1684 {
1685 write_lock_bh(&sk->sk_callback_lock);
1686 sk->sk_wq = parent->wq;
1687 parent->sk = sk;
1688 sk_set_socket(sk, parent);
1689 security_sock_graft(sk, parent);
1690 write_unlock_bh(&sk->sk_callback_lock);
1691 }
1692
1693 extern kuid_t sock_i_uid(struct sock *sk);
1694 extern unsigned long sock_i_ino(struct sock *sk);
1695
1696 static inline struct dst_entry *
1697 __sk_dst_get(struct sock *sk)
1698 {
1699 return rcu_dereference_check(sk->sk_dst_cache, sock_owned_by_user(sk) ||
1700 lockdep_is_held(&sk->sk_lock.slock));
1701 }
1702
1703 static inline struct dst_entry *
1704 sk_dst_get(struct sock *sk)
1705 {
1706 struct dst_entry *dst;
1707
1708 rcu_read_lock();
1709 dst = rcu_dereference(sk->sk_dst_cache);
1710 if (dst)
1711 dst_hold(dst);
1712 rcu_read_unlock();
1713 return dst;
1714 }
1715
1716 extern void sk_reset_txq(struct sock *sk);
1717
1718 static inline void dst_negative_advice(struct sock *sk)
1719 {
1720 struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1721
1722 if (dst && dst->ops->negative_advice) {
1723 ndst = dst->ops->negative_advice(dst);
1724
1725 if (ndst != dst) {
1726 rcu_assign_pointer(sk->sk_dst_cache, ndst);
1727 sk_reset_txq(sk);
1728 }
1729 }
1730 }
1731
1732 static inline void
1733 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
1734 {
1735 struct dst_entry *old_dst;
1736
1737 sk_tx_queue_clear(sk);
1738 /*
1739 * This can be called while sk is owned by the caller only,
1740 * with no state that can be checked in a rcu_dereference_check() cond
1741 */
1742 old_dst = rcu_dereference_raw(sk->sk_dst_cache);
1743 rcu_assign_pointer(sk->sk_dst_cache, dst);
1744 dst_release(old_dst);
1745 }
1746
1747 static inline void
1748 sk_dst_set(struct sock *sk, struct dst_entry *dst)
1749 {
1750 spin_lock(&sk->sk_dst_lock);
1751 __sk_dst_set(sk, dst);
1752 spin_unlock(&sk->sk_dst_lock);
1753 }
1754
1755 static inline void
1756 __sk_dst_reset(struct sock *sk)
1757 {
1758 __sk_dst_set(sk, NULL);
1759 }
1760
1761 static inline void
1762 sk_dst_reset(struct sock *sk)
1763 {
1764 spin_lock(&sk->sk_dst_lock);
1765 __sk_dst_reset(sk);
1766 spin_unlock(&sk->sk_dst_lock);
1767 }
1768
1769 extern struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1770
1771 extern struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1772
1773 static inline bool sk_can_gso(const struct sock *sk)
1774 {
1775 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1776 }
1777
1778 extern void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
1779
1780 static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
1781 {
1782 sk->sk_route_nocaps |= flags;
1783 sk->sk_route_caps &= ~flags;
1784 }
1785
1786 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
1787 char __user *from, char *to,
1788 int copy, int offset)
1789 {
1790 if (skb->ip_summed == CHECKSUM_NONE) {
1791 int err = 0;
1792 __wsum csum = csum_and_copy_from_user(from, to, copy, 0, &err);
1793 if (err)
1794 return err;
1795 skb->csum = csum_block_add(skb->csum, csum, offset);
1796 } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1797 if (!access_ok(VERIFY_READ, from, copy) ||
1798 __copy_from_user_nocache(to, from, copy))
1799 return -EFAULT;
1800 } else if (copy_from_user(to, from, copy))
1801 return -EFAULT;
1802
1803 return 0;
1804 }
1805
1806 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
1807 char __user *from, int copy)
1808 {
1809 int err, offset = skb->len;
1810
1811 err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
1812 copy, offset);
1813 if (err)
1814 __skb_trim(skb, offset);
1815
1816 return err;
1817 }
1818
1819 static inline int skb_copy_to_page_nocache(struct sock *sk, char __user *from,
1820 struct sk_buff *skb,
1821 struct page *page,
1822 int off, int copy)
1823 {
1824 int err;
1825
1826 err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
1827 copy, skb->len);
1828 if (err)
1829 return err;
1830
1831 skb->len += copy;
1832 skb->data_len += copy;
1833 skb->truesize += copy;
1834 sk->sk_wmem_queued += copy;
1835 sk_mem_charge(sk, copy);
1836 return 0;
1837 }
1838
1839 static inline int skb_copy_to_page(struct sock *sk, char __user *from,
1840 struct sk_buff *skb, struct page *page,
1841 int off, int copy)
1842 {
1843 if (skb->ip_summed == CHECKSUM_NONE) {
1844 int err = 0;
1845 __wsum csum = csum_and_copy_from_user(from,
1846 page_address(page) + off,
1847 copy, 0, &err);
1848 if (err)
1849 return err;
1850 skb->csum = csum_block_add(skb->csum, csum, skb->len);
1851 } else if (copy_from_user(page_address(page) + off, from, copy))
1852 return -EFAULT;
1853
1854 skb->len += copy;
1855 skb->data_len += copy;
1856 skb->truesize += copy;
1857 sk->sk_wmem_queued += copy;
1858 sk_mem_charge(sk, copy);
1859 return 0;
1860 }
1861
1862 /**
1863 * sk_wmem_alloc_get - returns write allocations
1864 * @sk: socket
1865 *
1866 * Returns sk_wmem_alloc minus initial offset of one
1867 */
1868 static inline int sk_wmem_alloc_get(const struct sock *sk)
1869 {
1870 return atomic_read(&sk->sk_wmem_alloc) - 1;
1871 }
1872
1873 /**
1874 * sk_rmem_alloc_get - returns read allocations
1875 * @sk: socket
1876 *
1877 * Returns sk_rmem_alloc
1878 */
1879 static inline int sk_rmem_alloc_get(const struct sock *sk)
1880 {
1881 return atomic_read(&sk->sk_rmem_alloc);
1882 }
1883
1884 /**
1885 * sk_has_allocations - check if allocations are outstanding
1886 * @sk: socket
1887 *
1888 * Returns true if socket has write or read allocations
1889 */
1890 static inline bool sk_has_allocations(const struct sock *sk)
1891 {
1892 return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
1893 }
1894
1895 /**
1896 * wq_has_sleeper - check if there are any waiting processes
1897 * @wq: struct socket_wq
1898 *
1899 * Returns true if socket_wq has waiting processes
1900 *
1901 * The purpose of the wq_has_sleeper and sock_poll_wait is to wrap the memory
1902 * barrier call. They were added due to the race found within the tcp code.
1903 *
1904 * Consider following tcp code paths:
1905 *
1906 * CPU1 CPU2
1907 *
1908 * sys_select receive packet
1909 * ... ...
1910 * __add_wait_queue update tp->rcv_nxt
1911 * ... ...
1912 * tp->rcv_nxt check sock_def_readable
1913 * ... {
1914 * schedule rcu_read_lock();
1915 * wq = rcu_dereference(sk->sk_wq);
1916 * if (wq && waitqueue_active(&wq->wait))
1917 * wake_up_interruptible(&wq->wait)
1918 * ...
1919 * }
1920 *
1921 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
1922 * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1
1923 * could then endup calling schedule and sleep forever if there are no more
1924 * data on the socket.
1925 *
1926 */
1927 static inline bool wq_has_sleeper(struct socket_wq *wq)
1928 {
1929 /* We need to be sure we are in sync with the
1930 * add_wait_queue modifications to the wait queue.
1931 *
1932 * This memory barrier is paired in the sock_poll_wait.
1933 */
1934 smp_mb();
1935 return wq && waitqueue_active(&wq->wait);
1936 }
1937
1938 /**
1939 * sock_poll_wait - place memory barrier behind the poll_wait call.
1940 * @filp: file
1941 * @wait_address: socket wait queue
1942 * @p: poll_table
1943 *
1944 * See the comments in the wq_has_sleeper function.
1945 */
1946 static inline void sock_poll_wait(struct file *filp,
1947 wait_queue_head_t *wait_address, poll_table *p)
1948 {
1949 if (!poll_does_not_wait(p) && wait_address) {
1950 poll_wait(filp, wait_address, p);
1951 /* We need to be sure we are in sync with the
1952 * socket flags modification.
1953 *
1954 * This memory barrier is paired in the wq_has_sleeper.
1955 */
1956 smp_mb();
1957 }
1958 }
1959
1960 /*
1961 * Queue a received datagram if it will fit. Stream and sequenced
1962 * protocols can't normally use this as they need to fit buffers in
1963 * and play with them.
1964 *
1965 * Inlined as it's very short and called for pretty much every
1966 * packet ever received.
1967 */
1968
1969 static inline void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
1970 {
1971 skb_orphan(skb);
1972 skb->sk = sk;
1973 skb->destructor = sock_wfree;
1974 /*
1975 * We used to take a refcount on sk, but following operation
1976 * is enough to guarantee sk_free() wont free this sock until
1977 * all in-flight packets are completed
1978 */
1979 atomic_add(skb->truesize, &sk->sk_wmem_alloc);
1980 }
1981
1982 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
1983 {
1984 skb_orphan(skb);
1985 skb->sk = sk;
1986 skb->destructor = sock_rfree;
1987 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
1988 sk_mem_charge(sk, skb->truesize);
1989 }
1990
1991 extern void sk_reset_timer(struct sock *sk, struct timer_list *timer,
1992 unsigned long expires);
1993
1994 extern void sk_stop_timer(struct sock *sk, struct timer_list *timer);
1995
1996 extern int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
1997
1998 extern int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
1999
2000 /*
2001 * Recover an error report and clear atomically
2002 */
2003
2004 static inline int sock_error(struct sock *sk)
2005 {
2006 int err;
2007 if (likely(!sk->sk_err))
2008 return 0;
2009 err = xchg(&sk->sk_err, 0);
2010 return -err;
2011 }
2012
2013 static inline unsigned long sock_wspace(struct sock *sk)
2014 {
2015 int amt = 0;
2016
2017 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2018 amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
2019 if (amt < 0)
2020 amt = 0;
2021 }
2022 return amt;
2023 }
2024
2025 static inline void sk_wake_async(struct sock *sk, int how, int band)
2026 {
2027 if (sock_flag(sk, SOCK_FASYNC))
2028 sock_wake_async(sk->sk_socket, how, band);
2029 }
2030
2031 #define SOCK_MIN_SNDBUF 2048
2032 /*
2033 * Since sk_rmem_alloc sums skb->truesize, even a small frame might need
2034 * sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak
2035 */
2036 #define SOCK_MIN_RCVBUF (2048 + sizeof(struct sk_buff))
2037
2038 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2039 {
2040 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
2041 sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2042 sk->sk_sndbuf = max(sk->sk_sndbuf, SOCK_MIN_SNDBUF);
2043 }
2044 }
2045
2046 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp);
2047
2048 /**
2049 * sk_page_frag - return an appropriate page_frag
2050 * @sk: socket
2051 *
2052 * If socket allocation mode allows current thread to sleep, it means its
2053 * safe to use the per task page_frag instead of the per socket one.
2054 */
2055 static inline struct page_frag *sk_page_frag(struct sock *sk)
2056 {
2057 if (sk->sk_allocation & __GFP_WAIT)
2058 return &current->task_frag;
2059
2060 return &sk->sk_frag;
2061 }
2062
2063 extern bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2064
2065 /*
2066 * Default write policy as shown to user space via poll/select/SIGIO
2067 */
2068 static inline bool sock_writeable(const struct sock *sk)
2069 {
2070 return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1);
2071 }
2072
2073 static inline gfp_t gfp_any(void)
2074 {
2075 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2076 }
2077
2078 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2079 {
2080 return noblock ? 0 : sk->sk_rcvtimeo;
2081 }
2082
2083 static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2084 {
2085 return noblock ? 0 : sk->sk_sndtimeo;
2086 }
2087
2088 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2089 {
2090 return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
2091 }
2092
2093 /* Alas, with timeout socket operations are not restartable.
2094 * Compare this to poll().
2095 */
2096 static inline int sock_intr_errno(long timeo)
2097 {
2098 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2099 }
2100
2101 extern void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2102 struct sk_buff *skb);
2103 extern void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2104 struct sk_buff *skb);
2105
2106 static inline void
2107 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2108 {
2109 ktime_t kt = skb->tstamp;
2110 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2111
2112 /*
2113 * generate control messages if
2114 * - receive time stamping in software requested (SOCK_RCVTSTAMP
2115 * or SOCK_TIMESTAMPING_RX_SOFTWARE)
2116 * - software time stamp available and wanted
2117 * (SOCK_TIMESTAMPING_SOFTWARE)
2118 * - hardware time stamps available and wanted
2119 * (SOCK_TIMESTAMPING_SYS_HARDWARE or
2120 * SOCK_TIMESTAMPING_RAW_HARDWARE)
2121 */
2122 if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2123 sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE) ||
2124 (kt.tv64 && sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) ||
2125 (hwtstamps->hwtstamp.tv64 &&
2126 sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE)) ||
2127 (hwtstamps->syststamp.tv64 &&
2128 sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE)))
2129 __sock_recv_timestamp(msg, sk, skb);
2130 else
2131 sk->sk_stamp = kt;
2132
2133 if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2134 __sock_recv_wifi_status(msg, sk, skb);
2135 }
2136
2137 extern void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2138 struct sk_buff *skb);
2139
2140 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2141 struct sk_buff *skb)
2142 {
2143 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL) | \
2144 (1UL << SOCK_RCVTSTAMP) | \
2145 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE) | \
2146 (1UL << SOCK_TIMESTAMPING_SOFTWARE) | \
2147 (1UL << SOCK_TIMESTAMPING_RAW_HARDWARE) | \
2148 (1UL << SOCK_TIMESTAMPING_SYS_HARDWARE))
2149
2150 if (sk->sk_flags & FLAGS_TS_OR_DROPS)
2151 __sock_recv_ts_and_drops(msg, sk, skb);
2152 else
2153 sk->sk_stamp = skb->tstamp;
2154 }
2155
2156 /**
2157 * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2158 * @sk: socket sending this packet
2159 * @tx_flags: filled with instructions for time stamping
2160 *
2161 * Currently only depends on SOCK_TIMESTAMPING* flags. Returns error code if
2162 * parameters are invalid.
2163 */
2164 extern int sock_tx_timestamp(struct sock *sk, __u8 *tx_flags);
2165
2166 /**
2167 * sk_eat_skb - Release a skb if it is no longer needed
2168 * @sk: socket to eat this skb from
2169 * @skb: socket buffer to eat
2170 * @copied_early: flag indicating whether DMA operations copied this data early
2171 *
2172 * This routine must be called with interrupts disabled or with the socket
2173 * locked so that the sk_buff queue operation is ok.
2174 */
2175 #ifdef CONFIG_NET_DMA
2176 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, bool copied_early)
2177 {
2178 __skb_unlink(skb, &sk->sk_receive_queue);
2179 if (!copied_early)
2180 __kfree_skb(skb);
2181 else
2182 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
2183 }
2184 #else
2185 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, bool copied_early)
2186 {
2187 __skb_unlink(skb, &sk->sk_receive_queue);
2188 __kfree_skb(skb);
2189 }
2190 #endif
2191
2192 static inline
2193 struct net *sock_net(const struct sock *sk)
2194 {
2195 return read_pnet(&sk->sk_net);
2196 }
2197
2198 static inline
2199 void sock_net_set(struct sock *sk, struct net *net)
2200 {
2201 write_pnet(&sk->sk_net, net);
2202 }
2203
2204 /*
2205 * Kernel sockets, f.e. rtnl or icmp_socket, are a part of a namespace.
2206 * They should not hold a reference to a namespace in order to allow
2207 * to stop it.
2208 * Sockets after sk_change_net should be released using sk_release_kernel
2209 */
2210 static inline void sk_change_net(struct sock *sk, struct net *net)
2211 {
2212 put_net(sock_net(sk));
2213 sock_net_set(sk, hold_net(net));
2214 }
2215
2216 static inline struct sock *skb_steal_sock(struct sk_buff *skb)
2217 {
2218 if (skb->sk) {
2219 struct sock *sk = skb->sk;
2220
2221 skb->destructor = NULL;
2222 skb->sk = NULL;
2223 return sk;
2224 }
2225 return NULL;
2226 }
2227
2228 extern void sock_enable_timestamp(struct sock *sk, int flag);
2229 extern int sock_get_timestamp(struct sock *, struct timeval __user *);
2230 extern int sock_get_timestampns(struct sock *, struct timespec __user *);
2231
2232 /*
2233 * Enable debug/info messages
2234 */
2235 extern int net_msg_warn;
2236 #define NETDEBUG(fmt, args...) \
2237 do { if (net_msg_warn) printk(fmt,##args); } while (0)
2238
2239 #define LIMIT_NETDEBUG(fmt, args...) \
2240 do { if (net_msg_warn && net_ratelimit()) printk(fmt,##args); } while(0)
2241
2242 extern __u32 sysctl_wmem_max;
2243 extern __u32 sysctl_rmem_max;
2244
2245 extern int sysctl_optmem_max;
2246
2247 extern __u32 sysctl_wmem_default;
2248 extern __u32 sysctl_rmem_default;
2249
2250 #endif /* _SOCK_H */