]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - include/net/sock.h
Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
[mirror_ubuntu-artful-kernel.git] / include / net / sock.h
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Definitions for the AF_INET socket handler.
7 *
8 * Version: @(#)sock.h 1.0.4 05/13/93
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche <flla@stud.uni-sb.de>
14 *
15 * Fixes:
16 * Alan Cox : Volatiles in skbuff pointers. See
17 * skbuff comments. May be overdone,
18 * better to prove they can be removed
19 * than the reverse.
20 * Alan Cox : Added a zapped field for tcp to note
21 * a socket is reset and must stay shut up
22 * Alan Cox : New fields for options
23 * Pauline Middelink : identd support
24 * Alan Cox : Eliminate low level recv/recvfrom
25 * David S. Miller : New socket lookup architecture.
26 * Steve Whitehouse: Default routines for sock_ops
27 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made
28 * protinfo be just a void pointer, as the
29 * protocol specific parts were moved to
30 * respective headers and ipv4/v6, etc now
31 * use private slabcaches for its socks
32 * Pedro Hortas : New flags field for socket options
33 *
34 *
35 * This program is free software; you can redistribute it and/or
36 * modify it under the terms of the GNU General Public License
37 * as published by the Free Software Foundation; either version
38 * 2 of the License, or (at your option) any later version.
39 */
40 #ifndef _SOCK_H
41 #define _SOCK_H
42
43 #include <linux/hardirq.h>
44 #include <linux/kernel.h>
45 #include <linux/list.h>
46 #include <linux/list_nulls.h>
47 #include <linux/timer.h>
48 #include <linux/cache.h>
49 #include <linux/bitops.h>
50 #include <linux/lockdep.h>
51 #include <linux/netdevice.h>
52 #include <linux/skbuff.h> /* struct sk_buff */
53 #include <linux/mm.h>
54 #include <linux/security.h>
55 #include <linux/slab.h>
56 #include <linux/uaccess.h>
57 #include <linux/page_counter.h>
58 #include <linux/memcontrol.h>
59 #include <linux/static_key.h>
60 #include <linux/sched.h>
61 #include <linux/wait.h>
62 #include <linux/cgroup-defs.h>
63
64 #include <linux/filter.h>
65 #include <linux/rculist_nulls.h>
66 #include <linux/poll.h>
67
68 #include <linux/atomic.h>
69 #include <net/dst.h>
70 #include <net/checksum.h>
71 #include <net/tcp_states.h>
72 #include <linux/net_tstamp.h>
73
74 /*
75 * This structure really needs to be cleaned up.
76 * Most of it is for TCP, and not used by any of
77 * the other protocols.
78 */
79
80 /* Define this to get the SOCK_DBG debugging facility. */
81 #define SOCK_DEBUGGING
82 #ifdef SOCK_DEBUGGING
83 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
84 printk(KERN_DEBUG msg); } while (0)
85 #else
86 /* Validate arguments and do nothing */
87 static inline __printf(2, 3)
88 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
89 {
90 }
91 #endif
92
93 /* This is the per-socket lock. The spinlock provides a synchronization
94 * between user contexts and software interrupt processing, whereas the
95 * mini-semaphore synchronizes multiple users amongst themselves.
96 */
97 typedef struct {
98 spinlock_t slock;
99 int owned;
100 wait_queue_head_t wq;
101 /*
102 * We express the mutex-alike socket_lock semantics
103 * to the lock validator by explicitly managing
104 * the slock as a lock variant (in addition to
105 * the slock itself):
106 */
107 #ifdef CONFIG_DEBUG_LOCK_ALLOC
108 struct lockdep_map dep_map;
109 #endif
110 } socket_lock_t;
111
112 struct sock;
113 struct proto;
114 struct net;
115
116 typedef __u32 __bitwise __portpair;
117 typedef __u64 __bitwise __addrpair;
118
119 /**
120 * struct sock_common - minimal network layer representation of sockets
121 * @skc_daddr: Foreign IPv4 addr
122 * @skc_rcv_saddr: Bound local IPv4 addr
123 * @skc_hash: hash value used with various protocol lookup tables
124 * @skc_u16hashes: two u16 hash values used by UDP lookup tables
125 * @skc_dport: placeholder for inet_dport/tw_dport
126 * @skc_num: placeholder for inet_num/tw_num
127 * @skc_family: network address family
128 * @skc_state: Connection state
129 * @skc_reuse: %SO_REUSEADDR setting
130 * @skc_reuseport: %SO_REUSEPORT setting
131 * @skc_bound_dev_if: bound device index if != 0
132 * @skc_bind_node: bind hash linkage for various protocol lookup tables
133 * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
134 * @skc_prot: protocol handlers inside a network family
135 * @skc_net: reference to the network namespace of this socket
136 * @skc_node: main hash linkage for various protocol lookup tables
137 * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
138 * @skc_tx_queue_mapping: tx queue number for this connection
139 * @skc_flags: place holder for sk_flags
140 * %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
141 * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
142 * @skc_incoming_cpu: record/match cpu processing incoming packets
143 * @skc_refcnt: reference count
144 *
145 * This is the minimal network layer representation of sockets, the header
146 * for struct sock and struct inet_timewait_sock.
147 */
148 struct sock_common {
149 /* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned
150 * address on 64bit arches : cf INET_MATCH()
151 */
152 union {
153 __addrpair skc_addrpair;
154 struct {
155 __be32 skc_daddr;
156 __be32 skc_rcv_saddr;
157 };
158 };
159 union {
160 unsigned int skc_hash;
161 __u16 skc_u16hashes[2];
162 };
163 /* skc_dport && skc_num must be grouped as well */
164 union {
165 __portpair skc_portpair;
166 struct {
167 __be16 skc_dport;
168 __u16 skc_num;
169 };
170 };
171
172 unsigned short skc_family;
173 volatile unsigned char skc_state;
174 unsigned char skc_reuse:4;
175 unsigned char skc_reuseport:1;
176 unsigned char skc_ipv6only:1;
177 unsigned char skc_net_refcnt:1;
178 int skc_bound_dev_if;
179 union {
180 struct hlist_node skc_bind_node;
181 struct hlist_node skc_portaddr_node;
182 };
183 struct proto *skc_prot;
184 possible_net_t skc_net;
185
186 #if IS_ENABLED(CONFIG_IPV6)
187 struct in6_addr skc_v6_daddr;
188 struct in6_addr skc_v6_rcv_saddr;
189 #endif
190
191 atomic64_t skc_cookie;
192
193 /* following fields are padding to force
194 * offset(struct sock, sk_refcnt) == 128 on 64bit arches
195 * assuming IPV6 is enabled. We use this padding differently
196 * for different kind of 'sockets'
197 */
198 union {
199 unsigned long skc_flags;
200 struct sock *skc_listener; /* request_sock */
201 struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */
202 };
203 /*
204 * fields between dontcopy_begin/dontcopy_end
205 * are not copied in sock_copy()
206 */
207 /* private: */
208 int skc_dontcopy_begin[0];
209 /* public: */
210 union {
211 struct hlist_node skc_node;
212 struct hlist_nulls_node skc_nulls_node;
213 };
214 int skc_tx_queue_mapping;
215 union {
216 int skc_incoming_cpu;
217 u32 skc_rcv_wnd;
218 u32 skc_tw_rcv_nxt; /* struct tcp_timewait_sock */
219 };
220
221 atomic_t skc_refcnt;
222 /* private: */
223 int skc_dontcopy_end[0];
224 union {
225 u32 skc_rxhash;
226 u32 skc_window_clamp;
227 u32 skc_tw_snd_nxt; /* struct tcp_timewait_sock */
228 };
229 /* public: */
230 };
231
232 /**
233 * struct sock - network layer representation of sockets
234 * @__sk_common: shared layout with inet_timewait_sock
235 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
236 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
237 * @sk_lock: synchronizer
238 * @sk_rcvbuf: size of receive buffer in bytes
239 * @sk_wq: sock wait queue and async head
240 * @sk_rx_dst: receive input route used by early demux
241 * @sk_dst_cache: destination cache
242 * @sk_policy: flow policy
243 * @sk_receive_queue: incoming packets
244 * @sk_wmem_alloc: transmit queue bytes committed
245 * @sk_write_queue: Packet sending queue
246 * @sk_omem_alloc: "o" is "option" or "other"
247 * @sk_wmem_queued: persistent queue size
248 * @sk_forward_alloc: space allocated forward
249 * @sk_napi_id: id of the last napi context to receive data for sk
250 * @sk_ll_usec: usecs to busypoll when there is no data
251 * @sk_allocation: allocation mode
252 * @sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
253 * @sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
254 * @sk_sndbuf: size of send buffer in bytes
255 * @sk_padding: unused element for alignment
256 * @sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
257 * @sk_no_check_rx: allow zero checksum in RX packets
258 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
259 * @sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
260 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
261 * @sk_gso_max_size: Maximum GSO segment size to build
262 * @sk_gso_max_segs: Maximum number of GSO segments
263 * @sk_lingertime: %SO_LINGER l_linger setting
264 * @sk_backlog: always used with the per-socket spinlock held
265 * @sk_callback_lock: used with the callbacks in the end of this struct
266 * @sk_error_queue: rarely used
267 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
268 * IPV6_ADDRFORM for instance)
269 * @sk_err: last error
270 * @sk_err_soft: errors that don't cause failure but are the cause of a
271 * persistent failure not just 'timed out'
272 * @sk_drops: raw/udp drops counter
273 * @sk_ack_backlog: current listen backlog
274 * @sk_max_ack_backlog: listen backlog set in listen()
275 * @sk_priority: %SO_PRIORITY setting
276 * @sk_type: socket type (%SOCK_STREAM, etc)
277 * @sk_protocol: which protocol this socket belongs in this network family
278 * @sk_peer_pid: &struct pid for this socket's peer
279 * @sk_peer_cred: %SO_PEERCRED setting
280 * @sk_rcvlowat: %SO_RCVLOWAT setting
281 * @sk_rcvtimeo: %SO_RCVTIMEO setting
282 * @sk_sndtimeo: %SO_SNDTIMEO setting
283 * @sk_txhash: computed flow hash for use on transmit
284 * @sk_filter: socket filtering instructions
285 * @sk_timer: sock cleanup timer
286 * @sk_stamp: time stamp of last packet received
287 * @sk_tsflags: SO_TIMESTAMPING socket options
288 * @sk_tskey: counter to disambiguate concurrent tstamp requests
289 * @sk_socket: Identd and reporting IO signals
290 * @sk_user_data: RPC layer private data
291 * @sk_frag: cached page frag
292 * @sk_peek_off: current peek_offset value
293 * @sk_send_head: front of stuff to transmit
294 * @sk_security: used by security modules
295 * @sk_mark: generic packet mark
296 * @sk_cgrp_data: cgroup data for this cgroup
297 * @sk_memcg: this socket's memory cgroup association
298 * @sk_write_pending: a write to stream socket waits to start
299 * @sk_state_change: callback to indicate change in the state of the sock
300 * @sk_data_ready: callback to indicate there is data to be processed
301 * @sk_write_space: callback to indicate there is bf sending space available
302 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
303 * @sk_backlog_rcv: callback to process the backlog
304 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
305 * @sk_reuseport_cb: reuseport group container
306 * @sk_rcu: used during RCU grace period
307 */
308 struct sock {
309 /*
310 * Now struct inet_timewait_sock also uses sock_common, so please just
311 * don't add nothing before this first member (__sk_common) --acme
312 */
313 struct sock_common __sk_common;
314 #define sk_node __sk_common.skc_node
315 #define sk_nulls_node __sk_common.skc_nulls_node
316 #define sk_refcnt __sk_common.skc_refcnt
317 #define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping
318
319 #define sk_dontcopy_begin __sk_common.skc_dontcopy_begin
320 #define sk_dontcopy_end __sk_common.skc_dontcopy_end
321 #define sk_hash __sk_common.skc_hash
322 #define sk_portpair __sk_common.skc_portpair
323 #define sk_num __sk_common.skc_num
324 #define sk_dport __sk_common.skc_dport
325 #define sk_addrpair __sk_common.skc_addrpair
326 #define sk_daddr __sk_common.skc_daddr
327 #define sk_rcv_saddr __sk_common.skc_rcv_saddr
328 #define sk_family __sk_common.skc_family
329 #define sk_state __sk_common.skc_state
330 #define sk_reuse __sk_common.skc_reuse
331 #define sk_reuseport __sk_common.skc_reuseport
332 #define sk_ipv6only __sk_common.skc_ipv6only
333 #define sk_net_refcnt __sk_common.skc_net_refcnt
334 #define sk_bound_dev_if __sk_common.skc_bound_dev_if
335 #define sk_bind_node __sk_common.skc_bind_node
336 #define sk_prot __sk_common.skc_prot
337 #define sk_net __sk_common.skc_net
338 #define sk_v6_daddr __sk_common.skc_v6_daddr
339 #define sk_v6_rcv_saddr __sk_common.skc_v6_rcv_saddr
340 #define sk_cookie __sk_common.skc_cookie
341 #define sk_incoming_cpu __sk_common.skc_incoming_cpu
342 #define sk_flags __sk_common.skc_flags
343 #define sk_rxhash __sk_common.skc_rxhash
344
345 socket_lock_t sk_lock;
346 struct sk_buff_head sk_receive_queue;
347 /*
348 * The backlog queue is special, it is always used with
349 * the per-socket spinlock held and requires low latency
350 * access. Therefore we special case it's implementation.
351 * Note : rmem_alloc is in this structure to fill a hole
352 * on 64bit arches, not because its logically part of
353 * backlog.
354 */
355 struct {
356 atomic_t rmem_alloc;
357 int len;
358 struct sk_buff *head;
359 struct sk_buff *tail;
360 } sk_backlog;
361 #define sk_rmem_alloc sk_backlog.rmem_alloc
362 int sk_forward_alloc;
363
364 __u32 sk_txhash;
365 #ifdef CONFIG_NET_RX_BUSY_POLL
366 unsigned int sk_napi_id;
367 unsigned int sk_ll_usec;
368 #endif
369 atomic_t sk_drops;
370 int sk_rcvbuf;
371
372 struct sk_filter __rcu *sk_filter;
373 union {
374 struct socket_wq __rcu *sk_wq;
375 struct socket_wq *sk_wq_raw;
376 };
377 #ifdef CONFIG_XFRM
378 struct xfrm_policy __rcu *sk_policy[2];
379 #endif
380 struct dst_entry *sk_rx_dst;
381 struct dst_entry __rcu *sk_dst_cache;
382 /* Note: 32bit hole on 64bit arches */
383 atomic_t sk_wmem_alloc;
384 atomic_t sk_omem_alloc;
385 int sk_sndbuf;
386 struct sk_buff_head sk_write_queue;
387
388 /*
389 * Because of non atomicity rules, all
390 * changes are protected by socket lock.
391 */
392 kmemcheck_bitfield_begin(flags);
393 unsigned int sk_padding : 2,
394 sk_no_check_tx : 1,
395 sk_no_check_rx : 1,
396 sk_userlocks : 4,
397 sk_protocol : 8,
398 sk_type : 16;
399 #define SK_PROTOCOL_MAX U8_MAX
400 kmemcheck_bitfield_end(flags);
401
402 int sk_wmem_queued;
403 gfp_t sk_allocation;
404 u32 sk_pacing_rate; /* bytes per second */
405 u32 sk_max_pacing_rate;
406 netdev_features_t sk_route_caps;
407 netdev_features_t sk_route_nocaps;
408 int sk_gso_type;
409 unsigned int sk_gso_max_size;
410 u16 sk_gso_max_segs;
411 int sk_rcvlowat;
412 unsigned long sk_lingertime;
413 struct sk_buff_head sk_error_queue;
414 struct proto *sk_prot_creator;
415 rwlock_t sk_callback_lock;
416 int sk_err,
417 sk_err_soft;
418 u32 sk_ack_backlog;
419 u32 sk_max_ack_backlog;
420 __u32 sk_priority;
421 __u32 sk_mark;
422 kuid_t sk_uid;
423 struct pid *sk_peer_pid;
424 const struct cred *sk_peer_cred;
425 long sk_rcvtimeo;
426 long sk_sndtimeo;
427 struct timer_list sk_timer;
428 ktime_t sk_stamp;
429 u16 sk_tsflags;
430 u8 sk_shutdown;
431 u32 sk_tskey;
432 struct socket *sk_socket;
433 void *sk_user_data;
434 struct page_frag sk_frag;
435 struct sk_buff *sk_send_head;
436 __s32 sk_peek_off;
437 int sk_write_pending;
438 #ifdef CONFIG_SECURITY
439 void *sk_security;
440 #endif
441 struct sock_cgroup_data sk_cgrp_data;
442 struct mem_cgroup *sk_memcg;
443 void (*sk_state_change)(struct sock *sk);
444 void (*sk_data_ready)(struct sock *sk);
445 void (*sk_write_space)(struct sock *sk);
446 void (*sk_error_report)(struct sock *sk);
447 int (*sk_backlog_rcv)(struct sock *sk,
448 struct sk_buff *skb);
449 void (*sk_destruct)(struct sock *sk);
450 struct sock_reuseport __rcu *sk_reuseport_cb;
451 struct rcu_head sk_rcu;
452 };
453
454 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
455
456 #define rcu_dereference_sk_user_data(sk) rcu_dereference(__sk_user_data((sk)))
457 #define rcu_assign_sk_user_data(sk, ptr) rcu_assign_pointer(__sk_user_data((sk)), ptr)
458
459 /*
460 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
461 * or not whether his port will be reused by someone else. SK_FORCE_REUSE
462 * on a socket means that the socket will reuse everybody else's port
463 * without looking at the other's sk_reuse value.
464 */
465
466 #define SK_NO_REUSE 0
467 #define SK_CAN_REUSE 1
468 #define SK_FORCE_REUSE 2
469
470 int sk_set_peek_off(struct sock *sk, int val);
471
472 static inline int sk_peek_offset(struct sock *sk, int flags)
473 {
474 if (unlikely(flags & MSG_PEEK)) {
475 s32 off = READ_ONCE(sk->sk_peek_off);
476 if (off >= 0)
477 return off;
478 }
479
480 return 0;
481 }
482
483 static inline void sk_peek_offset_bwd(struct sock *sk, int val)
484 {
485 s32 off = READ_ONCE(sk->sk_peek_off);
486
487 if (unlikely(off >= 0)) {
488 off = max_t(s32, off - val, 0);
489 WRITE_ONCE(sk->sk_peek_off, off);
490 }
491 }
492
493 static inline void sk_peek_offset_fwd(struct sock *sk, int val)
494 {
495 sk_peek_offset_bwd(sk, -val);
496 }
497
498 /*
499 * Hashed lists helper routines
500 */
501 static inline struct sock *sk_entry(const struct hlist_node *node)
502 {
503 return hlist_entry(node, struct sock, sk_node);
504 }
505
506 static inline struct sock *__sk_head(const struct hlist_head *head)
507 {
508 return hlist_entry(head->first, struct sock, sk_node);
509 }
510
511 static inline struct sock *sk_head(const struct hlist_head *head)
512 {
513 return hlist_empty(head) ? NULL : __sk_head(head);
514 }
515
516 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
517 {
518 return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
519 }
520
521 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
522 {
523 return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
524 }
525
526 static inline struct sock *sk_next(const struct sock *sk)
527 {
528 return sk->sk_node.next ?
529 hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL;
530 }
531
532 static inline struct sock *sk_nulls_next(const struct sock *sk)
533 {
534 return (!is_a_nulls(sk->sk_nulls_node.next)) ?
535 hlist_nulls_entry(sk->sk_nulls_node.next,
536 struct sock, sk_nulls_node) :
537 NULL;
538 }
539
540 static inline bool sk_unhashed(const struct sock *sk)
541 {
542 return hlist_unhashed(&sk->sk_node);
543 }
544
545 static inline bool sk_hashed(const struct sock *sk)
546 {
547 return !sk_unhashed(sk);
548 }
549
550 static inline void sk_node_init(struct hlist_node *node)
551 {
552 node->pprev = NULL;
553 }
554
555 static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
556 {
557 node->pprev = NULL;
558 }
559
560 static inline void __sk_del_node(struct sock *sk)
561 {
562 __hlist_del(&sk->sk_node);
563 }
564
565 /* NB: equivalent to hlist_del_init_rcu */
566 static inline bool __sk_del_node_init(struct sock *sk)
567 {
568 if (sk_hashed(sk)) {
569 __sk_del_node(sk);
570 sk_node_init(&sk->sk_node);
571 return true;
572 }
573 return false;
574 }
575
576 /* Grab socket reference count. This operation is valid only
577 when sk is ALREADY grabbed f.e. it is found in hash table
578 or a list and the lookup is made under lock preventing hash table
579 modifications.
580 */
581
582 static __always_inline void sock_hold(struct sock *sk)
583 {
584 atomic_inc(&sk->sk_refcnt);
585 }
586
587 /* Ungrab socket in the context, which assumes that socket refcnt
588 cannot hit zero, f.e. it is true in context of any socketcall.
589 */
590 static __always_inline void __sock_put(struct sock *sk)
591 {
592 atomic_dec(&sk->sk_refcnt);
593 }
594
595 static inline bool sk_del_node_init(struct sock *sk)
596 {
597 bool rc = __sk_del_node_init(sk);
598
599 if (rc) {
600 /* paranoid for a while -acme */
601 WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
602 __sock_put(sk);
603 }
604 return rc;
605 }
606 #define sk_del_node_init_rcu(sk) sk_del_node_init(sk)
607
608 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
609 {
610 if (sk_hashed(sk)) {
611 hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
612 return true;
613 }
614 return false;
615 }
616
617 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
618 {
619 bool rc = __sk_nulls_del_node_init_rcu(sk);
620
621 if (rc) {
622 /* paranoid for a while -acme */
623 WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
624 __sock_put(sk);
625 }
626 return rc;
627 }
628
629 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
630 {
631 hlist_add_head(&sk->sk_node, list);
632 }
633
634 static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
635 {
636 sock_hold(sk);
637 __sk_add_node(sk, list);
638 }
639
640 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
641 {
642 sock_hold(sk);
643 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
644 sk->sk_family == AF_INET6)
645 hlist_add_tail_rcu(&sk->sk_node, list);
646 else
647 hlist_add_head_rcu(&sk->sk_node, list);
648 }
649
650 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
651 {
652 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
653 sk->sk_family == AF_INET6)
654 hlist_nulls_add_tail_rcu(&sk->sk_nulls_node, list);
655 else
656 hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
657 }
658
659 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
660 {
661 sock_hold(sk);
662 __sk_nulls_add_node_rcu(sk, list);
663 }
664
665 static inline void __sk_del_bind_node(struct sock *sk)
666 {
667 __hlist_del(&sk->sk_bind_node);
668 }
669
670 static inline void sk_add_bind_node(struct sock *sk,
671 struct hlist_head *list)
672 {
673 hlist_add_head(&sk->sk_bind_node, list);
674 }
675
676 #define sk_for_each(__sk, list) \
677 hlist_for_each_entry(__sk, list, sk_node)
678 #define sk_for_each_rcu(__sk, list) \
679 hlist_for_each_entry_rcu(__sk, list, sk_node)
680 #define sk_nulls_for_each(__sk, node, list) \
681 hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
682 #define sk_nulls_for_each_rcu(__sk, node, list) \
683 hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
684 #define sk_for_each_from(__sk) \
685 hlist_for_each_entry_from(__sk, sk_node)
686 #define sk_nulls_for_each_from(__sk, node) \
687 if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
688 hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
689 #define sk_for_each_safe(__sk, tmp, list) \
690 hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
691 #define sk_for_each_bound(__sk, list) \
692 hlist_for_each_entry(__sk, list, sk_bind_node)
693
694 /**
695 * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset
696 * @tpos: the type * to use as a loop cursor.
697 * @pos: the &struct hlist_node to use as a loop cursor.
698 * @head: the head for your list.
699 * @offset: offset of hlist_node within the struct.
700 *
701 */
702 #define sk_for_each_entry_offset_rcu(tpos, pos, head, offset) \
703 for (pos = rcu_dereference((head)->first); \
704 pos != NULL && \
705 ({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;}); \
706 pos = rcu_dereference(pos->next))
707
708 static inline struct user_namespace *sk_user_ns(struct sock *sk)
709 {
710 /* Careful only use this in a context where these parameters
711 * can not change and must all be valid, such as recvmsg from
712 * userspace.
713 */
714 return sk->sk_socket->file->f_cred->user_ns;
715 }
716
717 /* Sock flags */
718 enum sock_flags {
719 SOCK_DEAD,
720 SOCK_DONE,
721 SOCK_URGINLINE,
722 SOCK_KEEPOPEN,
723 SOCK_LINGER,
724 SOCK_DESTROY,
725 SOCK_BROADCAST,
726 SOCK_TIMESTAMP,
727 SOCK_ZAPPED,
728 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
729 SOCK_DBG, /* %SO_DEBUG setting */
730 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
731 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
732 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
733 SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
734 SOCK_MEMALLOC, /* VM depends on this socket for swapping */
735 SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */
736 SOCK_FASYNC, /* fasync() active */
737 SOCK_RXQ_OVFL,
738 SOCK_ZEROCOPY, /* buffers from userspace */
739 SOCK_WIFI_STATUS, /* push wifi status to userspace */
740 SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
741 * Will use last 4 bytes of packet sent from
742 * user-space instead.
743 */
744 SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
745 SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
746 SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */
747 };
748
749 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
750
751 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
752 {
753 nsk->sk_flags = osk->sk_flags;
754 }
755
756 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
757 {
758 __set_bit(flag, &sk->sk_flags);
759 }
760
761 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
762 {
763 __clear_bit(flag, &sk->sk_flags);
764 }
765
766 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
767 {
768 return test_bit(flag, &sk->sk_flags);
769 }
770
771 #ifdef CONFIG_NET
772 extern struct static_key memalloc_socks;
773 static inline int sk_memalloc_socks(void)
774 {
775 return static_key_false(&memalloc_socks);
776 }
777 #else
778
779 static inline int sk_memalloc_socks(void)
780 {
781 return 0;
782 }
783
784 #endif
785
786 static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask)
787 {
788 return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC);
789 }
790
791 static inline void sk_acceptq_removed(struct sock *sk)
792 {
793 sk->sk_ack_backlog--;
794 }
795
796 static inline void sk_acceptq_added(struct sock *sk)
797 {
798 sk->sk_ack_backlog++;
799 }
800
801 static inline bool sk_acceptq_is_full(const struct sock *sk)
802 {
803 return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
804 }
805
806 /*
807 * Compute minimal free write space needed to queue new packets.
808 */
809 static inline int sk_stream_min_wspace(const struct sock *sk)
810 {
811 return sk->sk_wmem_queued >> 1;
812 }
813
814 static inline int sk_stream_wspace(const struct sock *sk)
815 {
816 return sk->sk_sndbuf - sk->sk_wmem_queued;
817 }
818
819 void sk_stream_write_space(struct sock *sk);
820
821 /* OOB backlog add */
822 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
823 {
824 /* dont let skb dst not refcounted, we are going to leave rcu lock */
825 skb_dst_force_safe(skb);
826
827 if (!sk->sk_backlog.tail)
828 sk->sk_backlog.head = skb;
829 else
830 sk->sk_backlog.tail->next = skb;
831
832 sk->sk_backlog.tail = skb;
833 skb->next = NULL;
834 }
835
836 /*
837 * Take into account size of receive queue and backlog queue
838 * Do not take into account this skb truesize,
839 * to allow even a single big packet to come.
840 */
841 static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
842 {
843 unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
844
845 return qsize > limit;
846 }
847
848 /* The per-socket spinlock must be held here. */
849 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
850 unsigned int limit)
851 {
852 if (sk_rcvqueues_full(sk, limit))
853 return -ENOBUFS;
854
855 /*
856 * If the skb was allocated from pfmemalloc reserves, only
857 * allow SOCK_MEMALLOC sockets to use it as this socket is
858 * helping free memory
859 */
860 if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
861 return -ENOMEM;
862
863 __sk_add_backlog(sk, skb);
864 sk->sk_backlog.len += skb->truesize;
865 return 0;
866 }
867
868 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
869
870 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
871 {
872 if (sk_memalloc_socks() && skb_pfmemalloc(skb))
873 return __sk_backlog_rcv(sk, skb);
874
875 return sk->sk_backlog_rcv(sk, skb);
876 }
877
878 static inline void sk_incoming_cpu_update(struct sock *sk)
879 {
880 sk->sk_incoming_cpu = raw_smp_processor_id();
881 }
882
883 static inline void sock_rps_record_flow_hash(__u32 hash)
884 {
885 #ifdef CONFIG_RPS
886 struct rps_sock_flow_table *sock_flow_table;
887
888 rcu_read_lock();
889 sock_flow_table = rcu_dereference(rps_sock_flow_table);
890 rps_record_sock_flow(sock_flow_table, hash);
891 rcu_read_unlock();
892 #endif
893 }
894
895 static inline void sock_rps_record_flow(const struct sock *sk)
896 {
897 #ifdef CONFIG_RPS
898 sock_rps_record_flow_hash(sk->sk_rxhash);
899 #endif
900 }
901
902 static inline void sock_rps_save_rxhash(struct sock *sk,
903 const struct sk_buff *skb)
904 {
905 #ifdef CONFIG_RPS
906 if (unlikely(sk->sk_rxhash != skb->hash))
907 sk->sk_rxhash = skb->hash;
908 #endif
909 }
910
911 static inline void sock_rps_reset_rxhash(struct sock *sk)
912 {
913 #ifdef CONFIG_RPS
914 sk->sk_rxhash = 0;
915 #endif
916 }
917
918 #define sk_wait_event(__sk, __timeo, __condition, __wait) \
919 ({ int __rc; \
920 release_sock(__sk); \
921 __rc = __condition; \
922 if (!__rc) { \
923 *(__timeo) = wait_woken(__wait, \
924 TASK_INTERRUPTIBLE, \
925 *(__timeo)); \
926 } \
927 sched_annotate_sleep(); \
928 lock_sock(__sk); \
929 __rc = __condition; \
930 __rc; \
931 })
932
933 int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
934 int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
935 void sk_stream_wait_close(struct sock *sk, long timeo_p);
936 int sk_stream_error(struct sock *sk, int flags, int err);
937 void sk_stream_kill_queues(struct sock *sk);
938 void sk_set_memalloc(struct sock *sk);
939 void sk_clear_memalloc(struct sock *sk);
940
941 void __sk_flush_backlog(struct sock *sk);
942
943 static inline bool sk_flush_backlog(struct sock *sk)
944 {
945 if (unlikely(READ_ONCE(sk->sk_backlog.tail))) {
946 __sk_flush_backlog(sk);
947 return true;
948 }
949 return false;
950 }
951
952 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb);
953
954 struct request_sock_ops;
955 struct timewait_sock_ops;
956 struct inet_hashinfo;
957 struct raw_hashinfo;
958 struct module;
959
960 /*
961 * caches using SLAB_DESTROY_BY_RCU should let .next pointer from nulls nodes
962 * un-modified. Special care is taken when initializing object to zero.
963 */
964 static inline void sk_prot_clear_nulls(struct sock *sk, int size)
965 {
966 if (offsetof(struct sock, sk_node.next) != 0)
967 memset(sk, 0, offsetof(struct sock, sk_node.next));
968 memset(&sk->sk_node.pprev, 0,
969 size - offsetof(struct sock, sk_node.pprev));
970 }
971
972 /* Networking protocol blocks we attach to sockets.
973 * socket layer -> transport layer interface
974 */
975 struct proto {
976 void (*close)(struct sock *sk,
977 long timeout);
978 int (*connect)(struct sock *sk,
979 struct sockaddr *uaddr,
980 int addr_len);
981 int (*disconnect)(struct sock *sk, int flags);
982
983 struct sock * (*accept)(struct sock *sk, int flags, int *err);
984
985 int (*ioctl)(struct sock *sk, int cmd,
986 unsigned long arg);
987 int (*init)(struct sock *sk);
988 void (*destroy)(struct sock *sk);
989 void (*shutdown)(struct sock *sk, int how);
990 int (*setsockopt)(struct sock *sk, int level,
991 int optname, char __user *optval,
992 unsigned int optlen);
993 int (*getsockopt)(struct sock *sk, int level,
994 int optname, char __user *optval,
995 int __user *option);
996 #ifdef CONFIG_COMPAT
997 int (*compat_setsockopt)(struct sock *sk,
998 int level,
999 int optname, char __user *optval,
1000 unsigned int optlen);
1001 int (*compat_getsockopt)(struct sock *sk,
1002 int level,
1003 int optname, char __user *optval,
1004 int __user *option);
1005 int (*compat_ioctl)(struct sock *sk,
1006 unsigned int cmd, unsigned long arg);
1007 #endif
1008 int (*sendmsg)(struct sock *sk, struct msghdr *msg,
1009 size_t len);
1010 int (*recvmsg)(struct sock *sk, struct msghdr *msg,
1011 size_t len, int noblock, int flags,
1012 int *addr_len);
1013 int (*sendpage)(struct sock *sk, struct page *page,
1014 int offset, size_t size, int flags);
1015 int (*bind)(struct sock *sk,
1016 struct sockaddr *uaddr, int addr_len);
1017
1018 int (*backlog_rcv) (struct sock *sk,
1019 struct sk_buff *skb);
1020
1021 void (*release_cb)(struct sock *sk);
1022
1023 /* Keeping track of sk's, looking them up, and port selection methods. */
1024 int (*hash)(struct sock *sk);
1025 void (*unhash)(struct sock *sk);
1026 void (*rehash)(struct sock *sk);
1027 int (*get_port)(struct sock *sk, unsigned short snum);
1028
1029 /* Keeping track of sockets in use */
1030 #ifdef CONFIG_PROC_FS
1031 unsigned int inuse_idx;
1032 #endif
1033
1034 bool (*stream_memory_free)(const struct sock *sk);
1035 /* Memory pressure */
1036 void (*enter_memory_pressure)(struct sock *sk);
1037 atomic_long_t *memory_allocated; /* Current allocated memory. */
1038 struct percpu_counter *sockets_allocated; /* Current number of sockets. */
1039 /*
1040 * Pressure flag: try to collapse.
1041 * Technical note: it is used by multiple contexts non atomically.
1042 * All the __sk_mem_schedule() is of this nature: accounting
1043 * is strict, actions are advisory and have some latency.
1044 */
1045 int *memory_pressure;
1046 long *sysctl_mem;
1047 int *sysctl_wmem;
1048 int *sysctl_rmem;
1049 int max_header;
1050 bool no_autobind;
1051
1052 struct kmem_cache *slab;
1053 unsigned int obj_size;
1054 int slab_flags;
1055
1056 struct percpu_counter *orphan_count;
1057
1058 struct request_sock_ops *rsk_prot;
1059 struct timewait_sock_ops *twsk_prot;
1060
1061 union {
1062 struct inet_hashinfo *hashinfo;
1063 struct udp_table *udp_table;
1064 struct raw_hashinfo *raw_hash;
1065 } h;
1066
1067 struct module *owner;
1068
1069 char name[32];
1070
1071 struct list_head node;
1072 #ifdef SOCK_REFCNT_DEBUG
1073 atomic_t socks;
1074 #endif
1075 int (*diag_destroy)(struct sock *sk, int err);
1076 };
1077
1078 int proto_register(struct proto *prot, int alloc_slab);
1079 void proto_unregister(struct proto *prot);
1080
1081 #ifdef SOCK_REFCNT_DEBUG
1082 static inline void sk_refcnt_debug_inc(struct sock *sk)
1083 {
1084 atomic_inc(&sk->sk_prot->socks);
1085 }
1086
1087 static inline void sk_refcnt_debug_dec(struct sock *sk)
1088 {
1089 atomic_dec(&sk->sk_prot->socks);
1090 printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1091 sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1092 }
1093
1094 static inline void sk_refcnt_debug_release(const struct sock *sk)
1095 {
1096 if (atomic_read(&sk->sk_refcnt) != 1)
1097 printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1098 sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt));
1099 }
1100 #else /* SOCK_REFCNT_DEBUG */
1101 #define sk_refcnt_debug_inc(sk) do { } while (0)
1102 #define sk_refcnt_debug_dec(sk) do { } while (0)
1103 #define sk_refcnt_debug_release(sk) do { } while (0)
1104 #endif /* SOCK_REFCNT_DEBUG */
1105
1106 static inline bool sk_stream_memory_free(const struct sock *sk)
1107 {
1108 if (sk->sk_wmem_queued >= sk->sk_sndbuf)
1109 return false;
1110
1111 return sk->sk_prot->stream_memory_free ?
1112 sk->sk_prot->stream_memory_free(sk) : true;
1113 }
1114
1115 static inline bool sk_stream_is_writeable(const struct sock *sk)
1116 {
1117 return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1118 sk_stream_memory_free(sk);
1119 }
1120
1121 static inline int sk_under_cgroup_hierarchy(struct sock *sk,
1122 struct cgroup *ancestor)
1123 {
1124 #ifdef CONFIG_SOCK_CGROUP_DATA
1125 return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data),
1126 ancestor);
1127 #else
1128 return -ENOTSUPP;
1129 #endif
1130 }
1131
1132 static inline bool sk_has_memory_pressure(const struct sock *sk)
1133 {
1134 return sk->sk_prot->memory_pressure != NULL;
1135 }
1136
1137 static inline bool sk_under_memory_pressure(const struct sock *sk)
1138 {
1139 if (!sk->sk_prot->memory_pressure)
1140 return false;
1141
1142 if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
1143 mem_cgroup_under_socket_pressure(sk->sk_memcg))
1144 return true;
1145
1146 return !!*sk->sk_prot->memory_pressure;
1147 }
1148
1149 static inline void sk_leave_memory_pressure(struct sock *sk)
1150 {
1151 int *memory_pressure = sk->sk_prot->memory_pressure;
1152
1153 if (!memory_pressure)
1154 return;
1155
1156 if (*memory_pressure)
1157 *memory_pressure = 0;
1158 }
1159
1160 static inline void sk_enter_memory_pressure(struct sock *sk)
1161 {
1162 if (!sk->sk_prot->enter_memory_pressure)
1163 return;
1164
1165 sk->sk_prot->enter_memory_pressure(sk);
1166 }
1167
1168 static inline long
1169 sk_memory_allocated(const struct sock *sk)
1170 {
1171 return atomic_long_read(sk->sk_prot->memory_allocated);
1172 }
1173
1174 static inline long
1175 sk_memory_allocated_add(struct sock *sk, int amt)
1176 {
1177 return atomic_long_add_return(amt, sk->sk_prot->memory_allocated);
1178 }
1179
1180 static inline void
1181 sk_memory_allocated_sub(struct sock *sk, int amt)
1182 {
1183 atomic_long_sub(amt, sk->sk_prot->memory_allocated);
1184 }
1185
1186 static inline void sk_sockets_allocated_dec(struct sock *sk)
1187 {
1188 percpu_counter_dec(sk->sk_prot->sockets_allocated);
1189 }
1190
1191 static inline void sk_sockets_allocated_inc(struct sock *sk)
1192 {
1193 percpu_counter_inc(sk->sk_prot->sockets_allocated);
1194 }
1195
1196 static inline int
1197 sk_sockets_allocated_read_positive(struct sock *sk)
1198 {
1199 return percpu_counter_read_positive(sk->sk_prot->sockets_allocated);
1200 }
1201
1202 static inline int
1203 proto_sockets_allocated_sum_positive(struct proto *prot)
1204 {
1205 return percpu_counter_sum_positive(prot->sockets_allocated);
1206 }
1207
1208 static inline long
1209 proto_memory_allocated(struct proto *prot)
1210 {
1211 return atomic_long_read(prot->memory_allocated);
1212 }
1213
1214 static inline bool
1215 proto_memory_pressure(struct proto *prot)
1216 {
1217 if (!prot->memory_pressure)
1218 return false;
1219 return !!*prot->memory_pressure;
1220 }
1221
1222
1223 #ifdef CONFIG_PROC_FS
1224 /* Called with local bh disabled */
1225 void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
1226 int sock_prot_inuse_get(struct net *net, struct proto *proto);
1227 #else
1228 static inline void sock_prot_inuse_add(struct net *net, struct proto *prot,
1229 int inc)
1230 {
1231 }
1232 #endif
1233
1234
1235 /* With per-bucket locks this operation is not-atomic, so that
1236 * this version is not worse.
1237 */
1238 static inline int __sk_prot_rehash(struct sock *sk)
1239 {
1240 sk->sk_prot->unhash(sk);
1241 return sk->sk_prot->hash(sk);
1242 }
1243
1244 /* About 10 seconds */
1245 #define SOCK_DESTROY_TIME (10*HZ)
1246
1247 /* Sockets 0-1023 can't be bound to unless you are superuser */
1248 #define PROT_SOCK 1024
1249
1250 #define SHUTDOWN_MASK 3
1251 #define RCV_SHUTDOWN 1
1252 #define SEND_SHUTDOWN 2
1253
1254 #define SOCK_SNDBUF_LOCK 1
1255 #define SOCK_RCVBUF_LOCK 2
1256 #define SOCK_BINDADDR_LOCK 4
1257 #define SOCK_BINDPORT_LOCK 8
1258
1259 struct socket_alloc {
1260 struct socket socket;
1261 struct inode vfs_inode;
1262 };
1263
1264 static inline struct socket *SOCKET_I(struct inode *inode)
1265 {
1266 return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1267 }
1268
1269 static inline struct inode *SOCK_INODE(struct socket *socket)
1270 {
1271 return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1272 }
1273
1274 /*
1275 * Functions for memory accounting
1276 */
1277 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind);
1278 int __sk_mem_schedule(struct sock *sk, int size, int kind);
1279 void __sk_mem_reduce_allocated(struct sock *sk, int amount);
1280 void __sk_mem_reclaim(struct sock *sk, int amount);
1281
1282 /* We used to have PAGE_SIZE here, but systems with 64KB pages
1283 * do not necessarily have 16x time more memory than 4KB ones.
1284 */
1285 #define SK_MEM_QUANTUM 4096
1286 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1287 #define SK_MEM_SEND 0
1288 #define SK_MEM_RECV 1
1289
1290 /* sysctl_mem values are in pages, we convert them in SK_MEM_QUANTUM units */
1291 static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1292 {
1293 long val = sk->sk_prot->sysctl_mem[index];
1294
1295 #if PAGE_SIZE > SK_MEM_QUANTUM
1296 val <<= PAGE_SHIFT - SK_MEM_QUANTUM_SHIFT;
1297 #elif PAGE_SIZE < SK_MEM_QUANTUM
1298 val >>= SK_MEM_QUANTUM_SHIFT - PAGE_SHIFT;
1299 #endif
1300 return val;
1301 }
1302
1303 static inline int sk_mem_pages(int amt)
1304 {
1305 return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1306 }
1307
1308 static inline bool sk_has_account(struct sock *sk)
1309 {
1310 /* return true if protocol supports memory accounting */
1311 return !!sk->sk_prot->memory_allocated;
1312 }
1313
1314 static inline bool sk_wmem_schedule(struct sock *sk, int size)
1315 {
1316 if (!sk_has_account(sk))
1317 return true;
1318 return size <= sk->sk_forward_alloc ||
1319 __sk_mem_schedule(sk, size, SK_MEM_SEND);
1320 }
1321
1322 static inline bool
1323 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1324 {
1325 if (!sk_has_account(sk))
1326 return true;
1327 return size<= sk->sk_forward_alloc ||
1328 __sk_mem_schedule(sk, size, SK_MEM_RECV) ||
1329 skb_pfmemalloc(skb);
1330 }
1331
1332 static inline void sk_mem_reclaim(struct sock *sk)
1333 {
1334 if (!sk_has_account(sk))
1335 return;
1336 if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
1337 __sk_mem_reclaim(sk, sk->sk_forward_alloc);
1338 }
1339
1340 static inline void sk_mem_reclaim_partial(struct sock *sk)
1341 {
1342 if (!sk_has_account(sk))
1343 return;
1344 if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
1345 __sk_mem_reclaim(sk, sk->sk_forward_alloc - 1);
1346 }
1347
1348 static inline void sk_mem_charge(struct sock *sk, int size)
1349 {
1350 if (!sk_has_account(sk))
1351 return;
1352 sk->sk_forward_alloc -= size;
1353 }
1354
1355 static inline void sk_mem_uncharge(struct sock *sk, int size)
1356 {
1357 if (!sk_has_account(sk))
1358 return;
1359 sk->sk_forward_alloc += size;
1360
1361 /* Avoid a possible overflow.
1362 * TCP send queues can make this happen, if sk_mem_reclaim()
1363 * is not called and more than 2 GBytes are released at once.
1364 *
1365 * If we reach 2 MBytes, reclaim 1 MBytes right now, there is
1366 * no need to hold that much forward allocation anyway.
1367 */
1368 if (unlikely(sk->sk_forward_alloc >= 1 << 21))
1369 __sk_mem_reclaim(sk, 1 << 20);
1370 }
1371
1372 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1373 {
1374 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1375 sk->sk_wmem_queued -= skb->truesize;
1376 sk_mem_uncharge(sk, skb->truesize);
1377 __kfree_skb(skb);
1378 }
1379
1380 static inline void sock_release_ownership(struct sock *sk)
1381 {
1382 if (sk->sk_lock.owned) {
1383 sk->sk_lock.owned = 0;
1384
1385 /* The sk_lock has mutex_unlock() semantics: */
1386 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
1387 }
1388 }
1389
1390 /*
1391 * Macro so as to not evaluate some arguments when
1392 * lockdep is not enabled.
1393 *
1394 * Mark both the sk_lock and the sk_lock.slock as a
1395 * per-address-family lock class.
1396 */
1397 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) \
1398 do { \
1399 sk->sk_lock.owned = 0; \
1400 init_waitqueue_head(&sk->sk_lock.wq); \
1401 spin_lock_init(&(sk)->sk_lock.slock); \
1402 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \
1403 sizeof((sk)->sk_lock)); \
1404 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \
1405 (skey), (sname)); \
1406 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \
1407 } while (0)
1408
1409 #ifdef CONFIG_LOCKDEP
1410 static inline bool lockdep_sock_is_held(const struct sock *csk)
1411 {
1412 struct sock *sk = (struct sock *)csk;
1413
1414 return lockdep_is_held(&sk->sk_lock) ||
1415 lockdep_is_held(&sk->sk_lock.slock);
1416 }
1417 #endif
1418
1419 void lock_sock_nested(struct sock *sk, int subclass);
1420
1421 static inline void lock_sock(struct sock *sk)
1422 {
1423 lock_sock_nested(sk, 0);
1424 }
1425
1426 void release_sock(struct sock *sk);
1427
1428 /* BH context may only use the following locking interface. */
1429 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock))
1430 #define bh_lock_sock_nested(__sk) \
1431 spin_lock_nested(&((__sk)->sk_lock.slock), \
1432 SINGLE_DEPTH_NESTING)
1433 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock))
1434
1435 bool lock_sock_fast(struct sock *sk);
1436 /**
1437 * unlock_sock_fast - complement of lock_sock_fast
1438 * @sk: socket
1439 * @slow: slow mode
1440 *
1441 * fast unlock socket for user context.
1442 * If slow mode is on, we call regular release_sock()
1443 */
1444 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1445 {
1446 if (slow)
1447 release_sock(sk);
1448 else
1449 spin_unlock_bh(&sk->sk_lock.slock);
1450 }
1451
1452 /* Used by processes to "lock" a socket state, so that
1453 * interrupts and bottom half handlers won't change it
1454 * from under us. It essentially blocks any incoming
1455 * packets, so that we won't get any new data or any
1456 * packets that change the state of the socket.
1457 *
1458 * While locked, BH processing will add new packets to
1459 * the backlog queue. This queue is processed by the
1460 * owner of the socket lock right before it is released.
1461 *
1462 * Since ~2.3.5 it is also exclusive sleep lock serializing
1463 * accesses from user process context.
1464 */
1465
1466 static inline void sock_owned_by_me(const struct sock *sk)
1467 {
1468 #ifdef CONFIG_LOCKDEP
1469 WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks);
1470 #endif
1471 }
1472
1473 static inline bool sock_owned_by_user(const struct sock *sk)
1474 {
1475 sock_owned_by_me(sk);
1476 return sk->sk_lock.owned;
1477 }
1478
1479 /* no reclassification while locks are held */
1480 static inline bool sock_allow_reclassification(const struct sock *csk)
1481 {
1482 struct sock *sk = (struct sock *)csk;
1483
1484 return !sk->sk_lock.owned && !spin_is_locked(&sk->sk_lock.slock);
1485 }
1486
1487 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1488 struct proto *prot, int kern);
1489 void sk_free(struct sock *sk);
1490 void sk_destruct(struct sock *sk);
1491 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1492
1493 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1494 gfp_t priority);
1495 void __sock_wfree(struct sk_buff *skb);
1496 void sock_wfree(struct sk_buff *skb);
1497 void skb_orphan_partial(struct sk_buff *skb);
1498 void sock_rfree(struct sk_buff *skb);
1499 void sock_efree(struct sk_buff *skb);
1500 #ifdef CONFIG_INET
1501 void sock_edemux(struct sk_buff *skb);
1502 #else
1503 #define sock_edemux(skb) sock_efree(skb)
1504 #endif
1505
1506 int sock_setsockopt(struct socket *sock, int level, int op,
1507 char __user *optval, unsigned int optlen);
1508
1509 int sock_getsockopt(struct socket *sock, int level, int op,
1510 char __user *optval, int __user *optlen);
1511 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1512 int noblock, int *errcode);
1513 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1514 unsigned long data_len, int noblock,
1515 int *errcode, int max_page_order);
1516 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1517 void sock_kfree_s(struct sock *sk, void *mem, int size);
1518 void sock_kzfree_s(struct sock *sk, void *mem, int size);
1519 void sk_send_sigurg(struct sock *sk);
1520
1521 struct sockcm_cookie {
1522 u32 mark;
1523 u16 tsflags;
1524 };
1525
1526 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
1527 struct sockcm_cookie *sockc);
1528 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1529 struct sockcm_cookie *sockc);
1530
1531 /*
1532 * Functions to fill in entries in struct proto_ops when a protocol
1533 * does not implement a particular function.
1534 */
1535 int sock_no_bind(struct socket *, struct sockaddr *, int);
1536 int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1537 int sock_no_socketpair(struct socket *, struct socket *);
1538 int sock_no_accept(struct socket *, struct socket *, int);
1539 int sock_no_getname(struct socket *, struct sockaddr *, int *, int);
1540 unsigned int sock_no_poll(struct file *, struct socket *,
1541 struct poll_table_struct *);
1542 int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1543 int sock_no_listen(struct socket *, int);
1544 int sock_no_shutdown(struct socket *, int);
1545 int sock_no_getsockopt(struct socket *, int , int, char __user *, int __user *);
1546 int sock_no_setsockopt(struct socket *, int, int, char __user *, unsigned int);
1547 int sock_no_sendmsg(struct socket *, struct msghdr *, size_t);
1548 int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int);
1549 int sock_no_mmap(struct file *file, struct socket *sock,
1550 struct vm_area_struct *vma);
1551 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset,
1552 size_t size, int flags);
1553
1554 /*
1555 * Functions to fill in entries in struct proto_ops when a protocol
1556 * uses the inet style.
1557 */
1558 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1559 char __user *optval, int __user *optlen);
1560 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1561 int flags);
1562 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1563 char __user *optval, unsigned int optlen);
1564 int compat_sock_common_getsockopt(struct socket *sock, int level,
1565 int optname, char __user *optval, int __user *optlen);
1566 int compat_sock_common_setsockopt(struct socket *sock, int level,
1567 int optname, char __user *optval, unsigned int optlen);
1568
1569 void sk_common_release(struct sock *sk);
1570
1571 /*
1572 * Default socket callbacks and setup code
1573 */
1574
1575 /* Initialise core socket variables */
1576 void sock_init_data(struct socket *sock, struct sock *sk);
1577
1578 /*
1579 * Socket reference counting postulates.
1580 *
1581 * * Each user of socket SHOULD hold a reference count.
1582 * * Each access point to socket (an hash table bucket, reference from a list,
1583 * running timer, skb in flight MUST hold a reference count.
1584 * * When reference count hits 0, it means it will never increase back.
1585 * * When reference count hits 0, it means that no references from
1586 * outside exist to this socket and current process on current CPU
1587 * is last user and may/should destroy this socket.
1588 * * sk_free is called from any context: process, BH, IRQ. When
1589 * it is called, socket has no references from outside -> sk_free
1590 * may release descendant resources allocated by the socket, but
1591 * to the time when it is called, socket is NOT referenced by any
1592 * hash tables, lists etc.
1593 * * Packets, delivered from outside (from network or from another process)
1594 * and enqueued on receive/error queues SHOULD NOT grab reference count,
1595 * when they sit in queue. Otherwise, packets will leak to hole, when
1596 * socket is looked up by one cpu and unhasing is made by another CPU.
1597 * It is true for udp/raw, netlink (leak to receive and error queues), tcp
1598 * (leak to backlog). Packet socket does all the processing inside
1599 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1600 * use separate SMP lock, so that they are prone too.
1601 */
1602
1603 /* Ungrab socket and destroy it, if it was the last reference. */
1604 static inline void sock_put(struct sock *sk)
1605 {
1606 if (atomic_dec_and_test(&sk->sk_refcnt))
1607 sk_free(sk);
1608 }
1609 /* Generic version of sock_put(), dealing with all sockets
1610 * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...)
1611 */
1612 void sock_gen_put(struct sock *sk);
1613
1614 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested,
1615 unsigned int trim_cap, bool refcounted);
1616 static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1617 const int nested)
1618 {
1619 return __sk_receive_skb(sk, skb, nested, 1, true);
1620 }
1621
1622 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1623 {
1624 sk->sk_tx_queue_mapping = tx_queue;
1625 }
1626
1627 static inline void sk_tx_queue_clear(struct sock *sk)
1628 {
1629 sk->sk_tx_queue_mapping = -1;
1630 }
1631
1632 static inline int sk_tx_queue_get(const struct sock *sk)
1633 {
1634 return sk ? sk->sk_tx_queue_mapping : -1;
1635 }
1636
1637 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1638 {
1639 sk_tx_queue_clear(sk);
1640 sk->sk_socket = sock;
1641 }
1642
1643 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1644 {
1645 BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1646 return &rcu_dereference_raw(sk->sk_wq)->wait;
1647 }
1648 /* Detach socket from process context.
1649 * Announce socket dead, detach it from wait queue and inode.
1650 * Note that parent inode held reference count on this struct sock,
1651 * we do not release it in this function, because protocol
1652 * probably wants some additional cleanups or even continuing
1653 * to work with this socket (TCP).
1654 */
1655 static inline void sock_orphan(struct sock *sk)
1656 {
1657 write_lock_bh(&sk->sk_callback_lock);
1658 sock_set_flag(sk, SOCK_DEAD);
1659 sk_set_socket(sk, NULL);
1660 sk->sk_wq = NULL;
1661 write_unlock_bh(&sk->sk_callback_lock);
1662 }
1663
1664 static inline void sock_graft(struct sock *sk, struct socket *parent)
1665 {
1666 write_lock_bh(&sk->sk_callback_lock);
1667 sk->sk_wq = parent->wq;
1668 parent->sk = sk;
1669 sk_set_socket(sk, parent);
1670 sk->sk_uid = SOCK_INODE(parent)->i_uid;
1671 security_sock_graft(sk, parent);
1672 write_unlock_bh(&sk->sk_callback_lock);
1673 }
1674
1675 kuid_t sock_i_uid(struct sock *sk);
1676 unsigned long sock_i_ino(struct sock *sk);
1677
1678 static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk)
1679 {
1680 return sk ? sk->sk_uid : make_kuid(net->user_ns, 0);
1681 }
1682
1683 static inline u32 net_tx_rndhash(void)
1684 {
1685 u32 v = prandom_u32();
1686
1687 return v ?: 1;
1688 }
1689
1690 static inline void sk_set_txhash(struct sock *sk)
1691 {
1692 sk->sk_txhash = net_tx_rndhash();
1693 }
1694
1695 static inline void sk_rethink_txhash(struct sock *sk)
1696 {
1697 if (sk->sk_txhash)
1698 sk_set_txhash(sk);
1699 }
1700
1701 static inline struct dst_entry *
1702 __sk_dst_get(struct sock *sk)
1703 {
1704 return rcu_dereference_check(sk->sk_dst_cache,
1705 lockdep_sock_is_held(sk));
1706 }
1707
1708 static inline struct dst_entry *
1709 sk_dst_get(struct sock *sk)
1710 {
1711 struct dst_entry *dst;
1712
1713 rcu_read_lock();
1714 dst = rcu_dereference(sk->sk_dst_cache);
1715 if (dst && !atomic_inc_not_zero(&dst->__refcnt))
1716 dst = NULL;
1717 rcu_read_unlock();
1718 return dst;
1719 }
1720
1721 static inline void dst_negative_advice(struct sock *sk)
1722 {
1723 struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1724
1725 sk_rethink_txhash(sk);
1726
1727 if (dst && dst->ops->negative_advice) {
1728 ndst = dst->ops->negative_advice(dst);
1729
1730 if (ndst != dst) {
1731 rcu_assign_pointer(sk->sk_dst_cache, ndst);
1732 sk_tx_queue_clear(sk);
1733 }
1734 }
1735 }
1736
1737 static inline void
1738 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
1739 {
1740 struct dst_entry *old_dst;
1741
1742 sk_tx_queue_clear(sk);
1743 /*
1744 * This can be called while sk is owned by the caller only,
1745 * with no state that can be checked in a rcu_dereference_check() cond
1746 */
1747 old_dst = rcu_dereference_raw(sk->sk_dst_cache);
1748 rcu_assign_pointer(sk->sk_dst_cache, dst);
1749 dst_release(old_dst);
1750 }
1751
1752 static inline void
1753 sk_dst_set(struct sock *sk, struct dst_entry *dst)
1754 {
1755 struct dst_entry *old_dst;
1756
1757 sk_tx_queue_clear(sk);
1758 old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst);
1759 dst_release(old_dst);
1760 }
1761
1762 static inline void
1763 __sk_dst_reset(struct sock *sk)
1764 {
1765 __sk_dst_set(sk, NULL);
1766 }
1767
1768 static inline void
1769 sk_dst_reset(struct sock *sk)
1770 {
1771 sk_dst_set(sk, NULL);
1772 }
1773
1774 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1775
1776 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1777
1778 bool sk_mc_loop(struct sock *sk);
1779
1780 static inline bool sk_can_gso(const struct sock *sk)
1781 {
1782 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1783 }
1784
1785 void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
1786
1787 static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
1788 {
1789 sk->sk_route_nocaps |= flags;
1790 sk->sk_route_caps &= ~flags;
1791 }
1792
1793 static inline bool sk_check_csum_caps(struct sock *sk)
1794 {
1795 return (sk->sk_route_caps & NETIF_F_HW_CSUM) ||
1796 (sk->sk_family == PF_INET &&
1797 (sk->sk_route_caps & NETIF_F_IP_CSUM)) ||
1798 (sk->sk_family == PF_INET6 &&
1799 (sk->sk_route_caps & NETIF_F_IPV6_CSUM));
1800 }
1801
1802 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
1803 struct iov_iter *from, char *to,
1804 int copy, int offset)
1805 {
1806 if (skb->ip_summed == CHECKSUM_NONE) {
1807 __wsum csum = 0;
1808 if (csum_and_copy_from_iter(to, copy, &csum, from) != copy)
1809 return -EFAULT;
1810 skb->csum = csum_block_add(skb->csum, csum, offset);
1811 } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1812 if (copy_from_iter_nocache(to, copy, from) != copy)
1813 return -EFAULT;
1814 } else if (copy_from_iter(to, copy, from) != copy)
1815 return -EFAULT;
1816
1817 return 0;
1818 }
1819
1820 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
1821 struct iov_iter *from, int copy)
1822 {
1823 int err, offset = skb->len;
1824
1825 err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
1826 copy, offset);
1827 if (err)
1828 __skb_trim(skb, offset);
1829
1830 return err;
1831 }
1832
1833 static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from,
1834 struct sk_buff *skb,
1835 struct page *page,
1836 int off, int copy)
1837 {
1838 int err;
1839
1840 err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
1841 copy, skb->len);
1842 if (err)
1843 return err;
1844
1845 skb->len += copy;
1846 skb->data_len += copy;
1847 skb->truesize += copy;
1848 sk->sk_wmem_queued += copy;
1849 sk_mem_charge(sk, copy);
1850 return 0;
1851 }
1852
1853 /**
1854 * sk_wmem_alloc_get - returns write allocations
1855 * @sk: socket
1856 *
1857 * Returns sk_wmem_alloc minus initial offset of one
1858 */
1859 static inline int sk_wmem_alloc_get(const struct sock *sk)
1860 {
1861 return atomic_read(&sk->sk_wmem_alloc) - 1;
1862 }
1863
1864 /**
1865 * sk_rmem_alloc_get - returns read allocations
1866 * @sk: socket
1867 *
1868 * Returns sk_rmem_alloc
1869 */
1870 static inline int sk_rmem_alloc_get(const struct sock *sk)
1871 {
1872 return atomic_read(&sk->sk_rmem_alloc);
1873 }
1874
1875 /**
1876 * sk_has_allocations - check if allocations are outstanding
1877 * @sk: socket
1878 *
1879 * Returns true if socket has write or read allocations
1880 */
1881 static inline bool sk_has_allocations(const struct sock *sk)
1882 {
1883 return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
1884 }
1885
1886 /**
1887 * skwq_has_sleeper - check if there are any waiting processes
1888 * @wq: struct socket_wq
1889 *
1890 * Returns true if socket_wq has waiting processes
1891 *
1892 * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory
1893 * barrier call. They were added due to the race found within the tcp code.
1894 *
1895 * Consider following tcp code paths:
1896 *
1897 * CPU1 CPU2
1898 *
1899 * sys_select receive packet
1900 * ... ...
1901 * __add_wait_queue update tp->rcv_nxt
1902 * ... ...
1903 * tp->rcv_nxt check sock_def_readable
1904 * ... {
1905 * schedule rcu_read_lock();
1906 * wq = rcu_dereference(sk->sk_wq);
1907 * if (wq && waitqueue_active(&wq->wait))
1908 * wake_up_interruptible(&wq->wait)
1909 * ...
1910 * }
1911 *
1912 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
1913 * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1
1914 * could then endup calling schedule and sleep forever if there are no more
1915 * data on the socket.
1916 *
1917 */
1918 static inline bool skwq_has_sleeper(struct socket_wq *wq)
1919 {
1920 return wq && wq_has_sleeper(&wq->wait);
1921 }
1922
1923 /**
1924 * sock_poll_wait - place memory barrier behind the poll_wait call.
1925 * @filp: file
1926 * @wait_address: socket wait queue
1927 * @p: poll_table
1928 *
1929 * See the comments in the wq_has_sleeper function.
1930 */
1931 static inline void sock_poll_wait(struct file *filp,
1932 wait_queue_head_t *wait_address, poll_table *p)
1933 {
1934 if (!poll_does_not_wait(p) && wait_address) {
1935 poll_wait(filp, wait_address, p);
1936 /* We need to be sure we are in sync with the
1937 * socket flags modification.
1938 *
1939 * This memory barrier is paired in the wq_has_sleeper.
1940 */
1941 smp_mb();
1942 }
1943 }
1944
1945 static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
1946 {
1947 if (sk->sk_txhash) {
1948 skb->l4_hash = 1;
1949 skb->hash = sk->sk_txhash;
1950 }
1951 }
1952
1953 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk);
1954
1955 /*
1956 * Queue a received datagram if it will fit. Stream and sequenced
1957 * protocols can't normally use this as they need to fit buffers in
1958 * and play with them.
1959 *
1960 * Inlined as it's very short and called for pretty much every
1961 * packet ever received.
1962 */
1963 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
1964 {
1965 skb_orphan(skb);
1966 skb->sk = sk;
1967 skb->destructor = sock_rfree;
1968 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
1969 sk_mem_charge(sk, skb->truesize);
1970 }
1971
1972 void sk_reset_timer(struct sock *sk, struct timer_list *timer,
1973 unsigned long expires);
1974
1975 void sk_stop_timer(struct sock *sk, struct timer_list *timer);
1976
1977 int __sk_queue_drop_skb(struct sock *sk, struct sk_buff *skb,
1978 unsigned int flags);
1979 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
1980 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
1981
1982 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
1983 struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
1984
1985 /*
1986 * Recover an error report and clear atomically
1987 */
1988
1989 static inline int sock_error(struct sock *sk)
1990 {
1991 int err;
1992 if (likely(!sk->sk_err))
1993 return 0;
1994 err = xchg(&sk->sk_err, 0);
1995 return -err;
1996 }
1997
1998 static inline unsigned long sock_wspace(struct sock *sk)
1999 {
2000 int amt = 0;
2001
2002 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2003 amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
2004 if (amt < 0)
2005 amt = 0;
2006 }
2007 return amt;
2008 }
2009
2010 /* Note:
2011 * We use sk->sk_wq_raw, from contexts knowing this
2012 * pointer is not NULL and cannot disappear/change.
2013 */
2014 static inline void sk_set_bit(int nr, struct sock *sk)
2015 {
2016 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2017 !sock_flag(sk, SOCK_FASYNC))
2018 return;
2019
2020 set_bit(nr, &sk->sk_wq_raw->flags);
2021 }
2022
2023 static inline void sk_clear_bit(int nr, struct sock *sk)
2024 {
2025 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2026 !sock_flag(sk, SOCK_FASYNC))
2027 return;
2028
2029 clear_bit(nr, &sk->sk_wq_raw->flags);
2030 }
2031
2032 static inline void sk_wake_async(const struct sock *sk, int how, int band)
2033 {
2034 if (sock_flag(sk, SOCK_FASYNC)) {
2035 rcu_read_lock();
2036 sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
2037 rcu_read_unlock();
2038 }
2039 }
2040
2041 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2042 * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2043 * Note: for send buffers, TCP works better if we can build two skbs at
2044 * minimum.
2045 */
2046 #define TCP_SKB_MIN_TRUESIZE (2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2047
2048 #define SOCK_MIN_SNDBUF (TCP_SKB_MIN_TRUESIZE * 2)
2049 #define SOCK_MIN_RCVBUF TCP_SKB_MIN_TRUESIZE
2050
2051 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2052 {
2053 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
2054 sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2055 sk->sk_sndbuf = max_t(u32, sk->sk_sndbuf, SOCK_MIN_SNDBUF);
2056 }
2057 }
2058
2059 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
2060 bool force_schedule);
2061
2062 /**
2063 * sk_page_frag - return an appropriate page_frag
2064 * @sk: socket
2065 *
2066 * If socket allocation mode allows current thread to sleep, it means its
2067 * safe to use the per task page_frag instead of the per socket one.
2068 */
2069 static inline struct page_frag *sk_page_frag(struct sock *sk)
2070 {
2071 if (gfpflags_allow_blocking(sk->sk_allocation))
2072 return &current->task_frag;
2073
2074 return &sk->sk_frag;
2075 }
2076
2077 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2078
2079 /*
2080 * Default write policy as shown to user space via poll/select/SIGIO
2081 */
2082 static inline bool sock_writeable(const struct sock *sk)
2083 {
2084 return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1);
2085 }
2086
2087 static inline gfp_t gfp_any(void)
2088 {
2089 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2090 }
2091
2092 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2093 {
2094 return noblock ? 0 : sk->sk_rcvtimeo;
2095 }
2096
2097 static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2098 {
2099 return noblock ? 0 : sk->sk_sndtimeo;
2100 }
2101
2102 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2103 {
2104 return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
2105 }
2106
2107 /* Alas, with timeout socket operations are not restartable.
2108 * Compare this to poll().
2109 */
2110 static inline int sock_intr_errno(long timeo)
2111 {
2112 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2113 }
2114
2115 struct sock_skb_cb {
2116 u32 dropcount;
2117 };
2118
2119 /* Store sock_skb_cb at the end of skb->cb[] so protocol families
2120 * using skb->cb[] would keep using it directly and utilize its
2121 * alignement guarantee.
2122 */
2123 #define SOCK_SKB_CB_OFFSET ((FIELD_SIZEOF(struct sk_buff, cb) - \
2124 sizeof(struct sock_skb_cb)))
2125
2126 #define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \
2127 SOCK_SKB_CB_OFFSET))
2128
2129 #define sock_skb_cb_check_size(size) \
2130 BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET)
2131
2132 static inline void
2133 sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb)
2134 {
2135 SOCK_SKB_CB(skb)->dropcount = atomic_read(&sk->sk_drops);
2136 }
2137
2138 static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb)
2139 {
2140 int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2141
2142 atomic_add(segs, &sk->sk_drops);
2143 }
2144
2145 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2146 struct sk_buff *skb);
2147 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2148 struct sk_buff *skb);
2149
2150 static inline void
2151 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2152 {
2153 ktime_t kt = skb->tstamp;
2154 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2155
2156 /*
2157 * generate control messages if
2158 * - receive time stamping in software requested
2159 * - software time stamp available and wanted
2160 * - hardware time stamps available and wanted
2161 */
2162 if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2163 (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2164 (kt.tv64 && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2165 (hwtstamps->hwtstamp.tv64 &&
2166 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
2167 __sock_recv_timestamp(msg, sk, skb);
2168 else
2169 sk->sk_stamp = kt;
2170
2171 if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2172 __sock_recv_wifi_status(msg, sk, skb);
2173 }
2174
2175 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2176 struct sk_buff *skb);
2177
2178 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2179 struct sk_buff *skb)
2180 {
2181 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL) | \
2182 (1UL << SOCK_RCVTSTAMP))
2183 #define TSFLAGS_ANY (SOF_TIMESTAMPING_SOFTWARE | \
2184 SOF_TIMESTAMPING_RAW_HARDWARE)
2185
2186 if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY)
2187 __sock_recv_ts_and_drops(msg, sk, skb);
2188 else
2189 sk->sk_stamp = skb->tstamp;
2190 }
2191
2192 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags);
2193
2194 /**
2195 * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2196 * @sk: socket sending this packet
2197 * @tsflags: timestamping flags to use
2198 * @tx_flags: completed with instructions for time stamping
2199 *
2200 * Note : callers should take care of initial *tx_flags value (usually 0)
2201 */
2202 static inline void sock_tx_timestamp(const struct sock *sk, __u16 tsflags,
2203 __u8 *tx_flags)
2204 {
2205 if (unlikely(tsflags))
2206 __sock_tx_timestamp(tsflags, tx_flags);
2207 if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS)))
2208 *tx_flags |= SKBTX_WIFI_STATUS;
2209 }
2210
2211 /**
2212 * sk_eat_skb - Release a skb if it is no longer needed
2213 * @sk: socket to eat this skb from
2214 * @skb: socket buffer to eat
2215 *
2216 * This routine must be called with interrupts disabled or with the socket
2217 * locked so that the sk_buff queue operation is ok.
2218 */
2219 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
2220 {
2221 __skb_unlink(skb, &sk->sk_receive_queue);
2222 __kfree_skb(skb);
2223 }
2224
2225 static inline
2226 struct net *sock_net(const struct sock *sk)
2227 {
2228 return read_pnet(&sk->sk_net);
2229 }
2230
2231 static inline
2232 void sock_net_set(struct sock *sk, struct net *net)
2233 {
2234 write_pnet(&sk->sk_net, net);
2235 }
2236
2237 static inline struct sock *skb_steal_sock(struct sk_buff *skb)
2238 {
2239 if (skb->sk) {
2240 struct sock *sk = skb->sk;
2241
2242 skb->destructor = NULL;
2243 skb->sk = NULL;
2244 return sk;
2245 }
2246 return NULL;
2247 }
2248
2249 /* This helper checks if a socket is a full socket,
2250 * ie _not_ a timewait or request socket.
2251 */
2252 static inline bool sk_fullsock(const struct sock *sk)
2253 {
2254 return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV);
2255 }
2256
2257 /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV
2258 * SYNACK messages can be attached to either ones (depending on SYNCOOKIE)
2259 */
2260 static inline bool sk_listener(const struct sock *sk)
2261 {
2262 return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV);
2263 }
2264
2265 /**
2266 * sk_state_load - read sk->sk_state for lockless contexts
2267 * @sk: socket pointer
2268 *
2269 * Paired with sk_state_store(). Used in places we do not hold socket lock :
2270 * tcp_diag_get_info(), tcp_get_info(), tcp_poll(), get_tcp4_sock() ...
2271 */
2272 static inline int sk_state_load(const struct sock *sk)
2273 {
2274 return smp_load_acquire(&sk->sk_state);
2275 }
2276
2277 /**
2278 * sk_state_store - update sk->sk_state
2279 * @sk: socket pointer
2280 * @newstate: new state
2281 *
2282 * Paired with sk_state_load(). Should be used in contexts where
2283 * state change might impact lockless readers.
2284 */
2285 static inline void sk_state_store(struct sock *sk, int newstate)
2286 {
2287 smp_store_release(&sk->sk_state, newstate);
2288 }
2289
2290 void sock_enable_timestamp(struct sock *sk, int flag);
2291 int sock_get_timestamp(struct sock *, struct timeval __user *);
2292 int sock_get_timestampns(struct sock *, struct timespec __user *);
2293 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2294 int type);
2295
2296 bool sk_ns_capable(const struct sock *sk,
2297 struct user_namespace *user_ns, int cap);
2298 bool sk_capable(const struct sock *sk, int cap);
2299 bool sk_net_capable(const struct sock *sk, int cap);
2300
2301 extern __u32 sysctl_wmem_max;
2302 extern __u32 sysctl_rmem_max;
2303
2304 extern int sysctl_tstamp_allow_data;
2305 extern int sysctl_optmem_max;
2306
2307 extern __u32 sysctl_wmem_default;
2308 extern __u32 sysctl_rmem_default;
2309
2310 #endif /* _SOCK_H */