]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - include/net/sock.h
macvlan: add source mode
[mirror_ubuntu-jammy-kernel.git] / include / net / sock.h
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Definitions for the AF_INET socket handler.
7 *
8 * Version: @(#)sock.h 1.0.4 05/13/93
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche <flla@stud.uni-sb.de>
14 *
15 * Fixes:
16 * Alan Cox : Volatiles in skbuff pointers. See
17 * skbuff comments. May be overdone,
18 * better to prove they can be removed
19 * than the reverse.
20 * Alan Cox : Added a zapped field for tcp to note
21 * a socket is reset and must stay shut up
22 * Alan Cox : New fields for options
23 * Pauline Middelink : identd support
24 * Alan Cox : Eliminate low level recv/recvfrom
25 * David S. Miller : New socket lookup architecture.
26 * Steve Whitehouse: Default routines for sock_ops
27 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made
28 * protinfo be just a void pointer, as the
29 * protocol specific parts were moved to
30 * respective headers and ipv4/v6, etc now
31 * use private slabcaches for its socks
32 * Pedro Hortas : New flags field for socket options
33 *
34 *
35 * This program is free software; you can redistribute it and/or
36 * modify it under the terms of the GNU General Public License
37 * as published by the Free Software Foundation; either version
38 * 2 of the License, or (at your option) any later version.
39 */
40 #ifndef _SOCK_H
41 #define _SOCK_H
42
43 #include <linux/hardirq.h>
44 #include <linux/kernel.h>
45 #include <linux/list.h>
46 #include <linux/list_nulls.h>
47 #include <linux/timer.h>
48 #include <linux/cache.h>
49 #include <linux/bitops.h>
50 #include <linux/lockdep.h>
51 #include <linux/netdevice.h>
52 #include <linux/skbuff.h> /* struct sk_buff */
53 #include <linux/mm.h>
54 #include <linux/security.h>
55 #include <linux/slab.h>
56 #include <linux/uaccess.h>
57 #include <linux/memcontrol.h>
58 #include <linux/res_counter.h>
59 #include <linux/static_key.h>
60 #include <linux/aio.h>
61 #include <linux/sched.h>
62
63 #include <linux/filter.h>
64 #include <linux/rculist_nulls.h>
65 #include <linux/poll.h>
66
67 #include <linux/atomic.h>
68 #include <net/dst.h>
69 #include <net/checksum.h>
70 #include <linux/net_tstamp.h>
71
72 struct cgroup;
73 struct cgroup_subsys;
74 #ifdef CONFIG_NET
75 int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss);
76 void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg);
77 #else
78 static inline
79 int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
80 {
81 return 0;
82 }
83 static inline
84 void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg)
85 {
86 }
87 #endif
88 /*
89 * This structure really needs to be cleaned up.
90 * Most of it is for TCP, and not used by any of
91 * the other protocols.
92 */
93
94 /* Define this to get the SOCK_DBG debugging facility. */
95 #define SOCK_DEBUGGING
96 #ifdef SOCK_DEBUGGING
97 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
98 printk(KERN_DEBUG msg); } while (0)
99 #else
100 /* Validate arguments and do nothing */
101 static inline __printf(2, 3)
102 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
103 {
104 }
105 #endif
106
107 /* This is the per-socket lock. The spinlock provides a synchronization
108 * between user contexts and software interrupt processing, whereas the
109 * mini-semaphore synchronizes multiple users amongst themselves.
110 */
111 typedef struct {
112 spinlock_t slock;
113 int owned;
114 wait_queue_head_t wq;
115 /*
116 * We express the mutex-alike socket_lock semantics
117 * to the lock validator by explicitly managing
118 * the slock as a lock variant (in addition to
119 * the slock itself):
120 */
121 #ifdef CONFIG_DEBUG_LOCK_ALLOC
122 struct lockdep_map dep_map;
123 #endif
124 } socket_lock_t;
125
126 struct sock;
127 struct proto;
128 struct net;
129
130 typedef __u32 __bitwise __portpair;
131 typedef __u64 __bitwise __addrpair;
132
133 /**
134 * struct sock_common - minimal network layer representation of sockets
135 * @skc_daddr: Foreign IPv4 addr
136 * @skc_rcv_saddr: Bound local IPv4 addr
137 * @skc_hash: hash value used with various protocol lookup tables
138 * @skc_u16hashes: two u16 hash values used by UDP lookup tables
139 * @skc_dport: placeholder for inet_dport/tw_dport
140 * @skc_num: placeholder for inet_num/tw_num
141 * @skc_family: network address family
142 * @skc_state: Connection state
143 * @skc_reuse: %SO_REUSEADDR setting
144 * @skc_reuseport: %SO_REUSEPORT setting
145 * @skc_bound_dev_if: bound device index if != 0
146 * @skc_bind_node: bind hash linkage for various protocol lookup tables
147 * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
148 * @skc_prot: protocol handlers inside a network family
149 * @skc_net: reference to the network namespace of this socket
150 * @skc_node: main hash linkage for various protocol lookup tables
151 * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
152 * @skc_tx_queue_mapping: tx queue number for this connection
153 * @skc_refcnt: reference count
154 *
155 * This is the minimal network layer representation of sockets, the header
156 * for struct sock and struct inet_timewait_sock.
157 */
158 struct sock_common {
159 /* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned
160 * address on 64bit arches : cf INET_MATCH()
161 */
162 union {
163 __addrpair skc_addrpair;
164 struct {
165 __be32 skc_daddr;
166 __be32 skc_rcv_saddr;
167 };
168 };
169 union {
170 unsigned int skc_hash;
171 __u16 skc_u16hashes[2];
172 };
173 /* skc_dport && skc_num must be grouped as well */
174 union {
175 __portpair skc_portpair;
176 struct {
177 __be16 skc_dport;
178 __u16 skc_num;
179 };
180 };
181
182 unsigned short skc_family;
183 volatile unsigned char skc_state;
184 unsigned char skc_reuse:4;
185 unsigned char skc_reuseport:1;
186 unsigned char skc_ipv6only:1;
187 int skc_bound_dev_if;
188 union {
189 struct hlist_node skc_bind_node;
190 struct hlist_nulls_node skc_portaddr_node;
191 };
192 struct proto *skc_prot;
193 #ifdef CONFIG_NET_NS
194 struct net *skc_net;
195 #endif
196
197 #if IS_ENABLED(CONFIG_IPV6)
198 struct in6_addr skc_v6_daddr;
199 struct in6_addr skc_v6_rcv_saddr;
200 #endif
201
202 /*
203 * fields between dontcopy_begin/dontcopy_end
204 * are not copied in sock_copy()
205 */
206 /* private: */
207 int skc_dontcopy_begin[0];
208 /* public: */
209 union {
210 struct hlist_node skc_node;
211 struct hlist_nulls_node skc_nulls_node;
212 };
213 int skc_tx_queue_mapping;
214 atomic_t skc_refcnt;
215 /* private: */
216 int skc_dontcopy_end[0];
217 /* public: */
218 };
219
220 struct cg_proto;
221 /**
222 * struct sock - network layer representation of sockets
223 * @__sk_common: shared layout with inet_timewait_sock
224 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
225 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
226 * @sk_lock: synchronizer
227 * @sk_rcvbuf: size of receive buffer in bytes
228 * @sk_wq: sock wait queue and async head
229 * @sk_rx_dst: receive input route used by early demux
230 * @sk_dst_cache: destination cache
231 * @sk_dst_lock: destination cache lock
232 * @sk_policy: flow policy
233 * @sk_receive_queue: incoming packets
234 * @sk_wmem_alloc: transmit queue bytes committed
235 * @sk_write_queue: Packet sending queue
236 * @sk_async_wait_queue: DMA copied packets
237 * @sk_omem_alloc: "o" is "option" or "other"
238 * @sk_wmem_queued: persistent queue size
239 * @sk_forward_alloc: space allocated forward
240 * @sk_napi_id: id of the last napi context to receive data for sk
241 * @sk_ll_usec: usecs to busypoll when there is no data
242 * @sk_allocation: allocation mode
243 * @sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
244 * @sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
245 * @sk_sndbuf: size of send buffer in bytes
246 * @sk_flags: %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
247 * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
248 * @sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
249 * @sk_no_check_rx: allow zero checksum in RX packets
250 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
251 * @sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
252 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
253 * @sk_gso_max_size: Maximum GSO segment size to build
254 * @sk_gso_max_segs: Maximum number of GSO segments
255 * @sk_lingertime: %SO_LINGER l_linger setting
256 * @sk_backlog: always used with the per-socket spinlock held
257 * @sk_callback_lock: used with the callbacks in the end of this struct
258 * @sk_error_queue: rarely used
259 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
260 * IPV6_ADDRFORM for instance)
261 * @sk_err: last error
262 * @sk_err_soft: errors that don't cause failure but are the cause of a
263 * persistent failure not just 'timed out'
264 * @sk_drops: raw/udp drops counter
265 * @sk_ack_backlog: current listen backlog
266 * @sk_max_ack_backlog: listen backlog set in listen()
267 * @sk_priority: %SO_PRIORITY setting
268 * @sk_cgrp_prioidx: socket group's priority map index
269 * @sk_type: socket type (%SOCK_STREAM, etc)
270 * @sk_protocol: which protocol this socket belongs in this network family
271 * @sk_peer_pid: &struct pid for this socket's peer
272 * @sk_peer_cred: %SO_PEERCRED setting
273 * @sk_rcvlowat: %SO_RCVLOWAT setting
274 * @sk_rcvtimeo: %SO_RCVTIMEO setting
275 * @sk_sndtimeo: %SO_SNDTIMEO setting
276 * @sk_rxhash: flow hash received from netif layer
277 * @sk_txhash: computed flow hash for use on transmit
278 * @sk_filter: socket filtering instructions
279 * @sk_protinfo: private area, net family specific, when not using slab
280 * @sk_timer: sock cleanup timer
281 * @sk_stamp: time stamp of last packet received
282 * @sk_tsflags: SO_TIMESTAMPING socket options
283 * @sk_tskey: counter to disambiguate concurrent tstamp requests
284 * @sk_socket: Identd and reporting IO signals
285 * @sk_user_data: RPC layer private data
286 * @sk_frag: cached page frag
287 * @sk_peek_off: current peek_offset value
288 * @sk_send_head: front of stuff to transmit
289 * @sk_security: used by security modules
290 * @sk_mark: generic packet mark
291 * @sk_classid: this socket's cgroup classid
292 * @sk_cgrp: this socket's cgroup-specific proto data
293 * @sk_write_pending: a write to stream socket waits to start
294 * @sk_state_change: callback to indicate change in the state of the sock
295 * @sk_data_ready: callback to indicate there is data to be processed
296 * @sk_write_space: callback to indicate there is bf sending space available
297 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
298 * @sk_backlog_rcv: callback to process the backlog
299 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
300 */
301 struct sock {
302 /*
303 * Now struct inet_timewait_sock also uses sock_common, so please just
304 * don't add nothing before this first member (__sk_common) --acme
305 */
306 struct sock_common __sk_common;
307 #define sk_node __sk_common.skc_node
308 #define sk_nulls_node __sk_common.skc_nulls_node
309 #define sk_refcnt __sk_common.skc_refcnt
310 #define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping
311
312 #define sk_dontcopy_begin __sk_common.skc_dontcopy_begin
313 #define sk_dontcopy_end __sk_common.skc_dontcopy_end
314 #define sk_hash __sk_common.skc_hash
315 #define sk_portpair __sk_common.skc_portpair
316 #define sk_num __sk_common.skc_num
317 #define sk_dport __sk_common.skc_dport
318 #define sk_addrpair __sk_common.skc_addrpair
319 #define sk_daddr __sk_common.skc_daddr
320 #define sk_rcv_saddr __sk_common.skc_rcv_saddr
321 #define sk_family __sk_common.skc_family
322 #define sk_state __sk_common.skc_state
323 #define sk_reuse __sk_common.skc_reuse
324 #define sk_reuseport __sk_common.skc_reuseport
325 #define sk_ipv6only __sk_common.skc_ipv6only
326 #define sk_bound_dev_if __sk_common.skc_bound_dev_if
327 #define sk_bind_node __sk_common.skc_bind_node
328 #define sk_prot __sk_common.skc_prot
329 #define sk_net __sk_common.skc_net
330 #define sk_v6_daddr __sk_common.skc_v6_daddr
331 #define sk_v6_rcv_saddr __sk_common.skc_v6_rcv_saddr
332
333 socket_lock_t sk_lock;
334 struct sk_buff_head sk_receive_queue;
335 /*
336 * The backlog queue is special, it is always used with
337 * the per-socket spinlock held and requires low latency
338 * access. Therefore we special case it's implementation.
339 * Note : rmem_alloc is in this structure to fill a hole
340 * on 64bit arches, not because its logically part of
341 * backlog.
342 */
343 struct {
344 atomic_t rmem_alloc;
345 int len;
346 struct sk_buff *head;
347 struct sk_buff *tail;
348 } sk_backlog;
349 #define sk_rmem_alloc sk_backlog.rmem_alloc
350 int sk_forward_alloc;
351 #ifdef CONFIG_RPS
352 __u32 sk_rxhash;
353 #endif
354 __u32 sk_txhash;
355 #ifdef CONFIG_NET_RX_BUSY_POLL
356 unsigned int sk_napi_id;
357 unsigned int sk_ll_usec;
358 #endif
359 atomic_t sk_drops;
360 int sk_rcvbuf;
361
362 struct sk_filter __rcu *sk_filter;
363 struct socket_wq __rcu *sk_wq;
364
365 #ifdef CONFIG_NET_DMA
366 struct sk_buff_head sk_async_wait_queue;
367 #endif
368
369 #ifdef CONFIG_XFRM
370 struct xfrm_policy *sk_policy[2];
371 #endif
372 unsigned long sk_flags;
373 struct dst_entry *sk_rx_dst;
374 struct dst_entry __rcu *sk_dst_cache;
375 spinlock_t sk_dst_lock;
376 atomic_t sk_wmem_alloc;
377 atomic_t sk_omem_alloc;
378 int sk_sndbuf;
379 struct sk_buff_head sk_write_queue;
380 kmemcheck_bitfield_begin(flags);
381 unsigned int sk_shutdown : 2,
382 sk_no_check_tx : 1,
383 sk_no_check_rx : 1,
384 sk_userlocks : 4,
385 sk_protocol : 8,
386 sk_type : 16;
387 kmemcheck_bitfield_end(flags);
388 int sk_wmem_queued;
389 gfp_t sk_allocation;
390 u32 sk_pacing_rate; /* bytes per second */
391 u32 sk_max_pacing_rate;
392 netdev_features_t sk_route_caps;
393 netdev_features_t sk_route_nocaps;
394 int sk_gso_type;
395 unsigned int sk_gso_max_size;
396 u16 sk_gso_max_segs;
397 int sk_rcvlowat;
398 unsigned long sk_lingertime;
399 struct sk_buff_head sk_error_queue;
400 struct proto *sk_prot_creator;
401 rwlock_t sk_callback_lock;
402 int sk_err,
403 sk_err_soft;
404 unsigned short sk_ack_backlog;
405 unsigned short sk_max_ack_backlog;
406 __u32 sk_priority;
407 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
408 __u32 sk_cgrp_prioidx;
409 #endif
410 struct pid *sk_peer_pid;
411 const struct cred *sk_peer_cred;
412 long sk_rcvtimeo;
413 long sk_sndtimeo;
414 void *sk_protinfo;
415 struct timer_list sk_timer;
416 ktime_t sk_stamp;
417 u16 sk_tsflags;
418 u32 sk_tskey;
419 struct socket *sk_socket;
420 void *sk_user_data;
421 struct page_frag sk_frag;
422 struct sk_buff *sk_send_head;
423 __s32 sk_peek_off;
424 int sk_write_pending;
425 #ifdef CONFIG_SECURITY
426 void *sk_security;
427 #endif
428 __u32 sk_mark;
429 u32 sk_classid;
430 struct cg_proto *sk_cgrp;
431 void (*sk_state_change)(struct sock *sk);
432 void (*sk_data_ready)(struct sock *sk);
433 void (*sk_write_space)(struct sock *sk);
434 void (*sk_error_report)(struct sock *sk);
435 int (*sk_backlog_rcv)(struct sock *sk,
436 struct sk_buff *skb);
437 void (*sk_destruct)(struct sock *sk);
438 };
439
440 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
441
442 #define rcu_dereference_sk_user_data(sk) rcu_dereference(__sk_user_data((sk)))
443 #define rcu_assign_sk_user_data(sk, ptr) rcu_assign_pointer(__sk_user_data((sk)), ptr)
444
445 /*
446 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
447 * or not whether his port will be reused by someone else. SK_FORCE_REUSE
448 * on a socket means that the socket will reuse everybody else's port
449 * without looking at the other's sk_reuse value.
450 */
451
452 #define SK_NO_REUSE 0
453 #define SK_CAN_REUSE 1
454 #define SK_FORCE_REUSE 2
455
456 static inline int sk_peek_offset(struct sock *sk, int flags)
457 {
458 if ((flags & MSG_PEEK) && (sk->sk_peek_off >= 0))
459 return sk->sk_peek_off;
460 else
461 return 0;
462 }
463
464 static inline void sk_peek_offset_bwd(struct sock *sk, int val)
465 {
466 if (sk->sk_peek_off >= 0) {
467 if (sk->sk_peek_off >= val)
468 sk->sk_peek_off -= val;
469 else
470 sk->sk_peek_off = 0;
471 }
472 }
473
474 static inline void sk_peek_offset_fwd(struct sock *sk, int val)
475 {
476 if (sk->sk_peek_off >= 0)
477 sk->sk_peek_off += val;
478 }
479
480 /*
481 * Hashed lists helper routines
482 */
483 static inline struct sock *sk_entry(const struct hlist_node *node)
484 {
485 return hlist_entry(node, struct sock, sk_node);
486 }
487
488 static inline struct sock *__sk_head(const struct hlist_head *head)
489 {
490 return hlist_entry(head->first, struct sock, sk_node);
491 }
492
493 static inline struct sock *sk_head(const struct hlist_head *head)
494 {
495 return hlist_empty(head) ? NULL : __sk_head(head);
496 }
497
498 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
499 {
500 return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
501 }
502
503 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
504 {
505 return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
506 }
507
508 static inline struct sock *sk_next(const struct sock *sk)
509 {
510 return sk->sk_node.next ?
511 hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL;
512 }
513
514 static inline struct sock *sk_nulls_next(const struct sock *sk)
515 {
516 return (!is_a_nulls(sk->sk_nulls_node.next)) ?
517 hlist_nulls_entry(sk->sk_nulls_node.next,
518 struct sock, sk_nulls_node) :
519 NULL;
520 }
521
522 static inline bool sk_unhashed(const struct sock *sk)
523 {
524 return hlist_unhashed(&sk->sk_node);
525 }
526
527 static inline bool sk_hashed(const struct sock *sk)
528 {
529 return !sk_unhashed(sk);
530 }
531
532 static inline void sk_node_init(struct hlist_node *node)
533 {
534 node->pprev = NULL;
535 }
536
537 static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
538 {
539 node->pprev = NULL;
540 }
541
542 static inline void __sk_del_node(struct sock *sk)
543 {
544 __hlist_del(&sk->sk_node);
545 }
546
547 /* NB: equivalent to hlist_del_init_rcu */
548 static inline bool __sk_del_node_init(struct sock *sk)
549 {
550 if (sk_hashed(sk)) {
551 __sk_del_node(sk);
552 sk_node_init(&sk->sk_node);
553 return true;
554 }
555 return false;
556 }
557
558 /* Grab socket reference count. This operation is valid only
559 when sk is ALREADY grabbed f.e. it is found in hash table
560 or a list and the lookup is made under lock preventing hash table
561 modifications.
562 */
563
564 static inline void sock_hold(struct sock *sk)
565 {
566 atomic_inc(&sk->sk_refcnt);
567 }
568
569 /* Ungrab socket in the context, which assumes that socket refcnt
570 cannot hit zero, f.e. it is true in context of any socketcall.
571 */
572 static inline void __sock_put(struct sock *sk)
573 {
574 atomic_dec(&sk->sk_refcnt);
575 }
576
577 static inline bool sk_del_node_init(struct sock *sk)
578 {
579 bool rc = __sk_del_node_init(sk);
580
581 if (rc) {
582 /* paranoid for a while -acme */
583 WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
584 __sock_put(sk);
585 }
586 return rc;
587 }
588 #define sk_del_node_init_rcu(sk) sk_del_node_init(sk)
589
590 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
591 {
592 if (sk_hashed(sk)) {
593 hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
594 return true;
595 }
596 return false;
597 }
598
599 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
600 {
601 bool rc = __sk_nulls_del_node_init_rcu(sk);
602
603 if (rc) {
604 /* paranoid for a while -acme */
605 WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
606 __sock_put(sk);
607 }
608 return rc;
609 }
610
611 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
612 {
613 hlist_add_head(&sk->sk_node, list);
614 }
615
616 static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
617 {
618 sock_hold(sk);
619 __sk_add_node(sk, list);
620 }
621
622 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
623 {
624 sock_hold(sk);
625 hlist_add_head_rcu(&sk->sk_node, list);
626 }
627
628 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
629 {
630 hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
631 }
632
633 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
634 {
635 sock_hold(sk);
636 __sk_nulls_add_node_rcu(sk, list);
637 }
638
639 static inline void __sk_del_bind_node(struct sock *sk)
640 {
641 __hlist_del(&sk->sk_bind_node);
642 }
643
644 static inline void sk_add_bind_node(struct sock *sk,
645 struct hlist_head *list)
646 {
647 hlist_add_head(&sk->sk_bind_node, list);
648 }
649
650 #define sk_for_each(__sk, list) \
651 hlist_for_each_entry(__sk, list, sk_node)
652 #define sk_for_each_rcu(__sk, list) \
653 hlist_for_each_entry_rcu(__sk, list, sk_node)
654 #define sk_nulls_for_each(__sk, node, list) \
655 hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
656 #define sk_nulls_for_each_rcu(__sk, node, list) \
657 hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
658 #define sk_for_each_from(__sk) \
659 hlist_for_each_entry_from(__sk, sk_node)
660 #define sk_nulls_for_each_from(__sk, node) \
661 if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
662 hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
663 #define sk_for_each_safe(__sk, tmp, list) \
664 hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
665 #define sk_for_each_bound(__sk, list) \
666 hlist_for_each_entry(__sk, list, sk_bind_node)
667
668 /**
669 * sk_nulls_for_each_entry_offset - iterate over a list at a given struct offset
670 * @tpos: the type * to use as a loop cursor.
671 * @pos: the &struct hlist_node to use as a loop cursor.
672 * @head: the head for your list.
673 * @offset: offset of hlist_node within the struct.
674 *
675 */
676 #define sk_nulls_for_each_entry_offset(tpos, pos, head, offset) \
677 for (pos = (head)->first; \
678 (!is_a_nulls(pos)) && \
679 ({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;}); \
680 pos = pos->next)
681
682 static inline struct user_namespace *sk_user_ns(struct sock *sk)
683 {
684 /* Careful only use this in a context where these parameters
685 * can not change and must all be valid, such as recvmsg from
686 * userspace.
687 */
688 return sk->sk_socket->file->f_cred->user_ns;
689 }
690
691 /* Sock flags */
692 enum sock_flags {
693 SOCK_DEAD,
694 SOCK_DONE,
695 SOCK_URGINLINE,
696 SOCK_KEEPOPEN,
697 SOCK_LINGER,
698 SOCK_DESTROY,
699 SOCK_BROADCAST,
700 SOCK_TIMESTAMP,
701 SOCK_ZAPPED,
702 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
703 SOCK_DBG, /* %SO_DEBUG setting */
704 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
705 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
706 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
707 SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
708 SOCK_MEMALLOC, /* VM depends on this socket for swapping */
709 SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */
710 SOCK_FASYNC, /* fasync() active */
711 SOCK_RXQ_OVFL,
712 SOCK_ZEROCOPY, /* buffers from userspace */
713 SOCK_WIFI_STATUS, /* push wifi status to userspace */
714 SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
715 * Will use last 4 bytes of packet sent from
716 * user-space instead.
717 */
718 SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
719 SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
720 };
721
722 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
723 {
724 nsk->sk_flags = osk->sk_flags;
725 }
726
727 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
728 {
729 __set_bit(flag, &sk->sk_flags);
730 }
731
732 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
733 {
734 __clear_bit(flag, &sk->sk_flags);
735 }
736
737 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
738 {
739 return test_bit(flag, &sk->sk_flags);
740 }
741
742 #ifdef CONFIG_NET
743 extern struct static_key memalloc_socks;
744 static inline int sk_memalloc_socks(void)
745 {
746 return static_key_false(&memalloc_socks);
747 }
748 #else
749
750 static inline int sk_memalloc_socks(void)
751 {
752 return 0;
753 }
754
755 #endif
756
757 static inline gfp_t sk_gfp_atomic(struct sock *sk, gfp_t gfp_mask)
758 {
759 return GFP_ATOMIC | (sk->sk_allocation & __GFP_MEMALLOC);
760 }
761
762 static inline void sk_acceptq_removed(struct sock *sk)
763 {
764 sk->sk_ack_backlog--;
765 }
766
767 static inline void sk_acceptq_added(struct sock *sk)
768 {
769 sk->sk_ack_backlog++;
770 }
771
772 static inline bool sk_acceptq_is_full(const struct sock *sk)
773 {
774 return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
775 }
776
777 /*
778 * Compute minimal free write space needed to queue new packets.
779 */
780 static inline int sk_stream_min_wspace(const struct sock *sk)
781 {
782 return sk->sk_wmem_queued >> 1;
783 }
784
785 static inline int sk_stream_wspace(const struct sock *sk)
786 {
787 return sk->sk_sndbuf - sk->sk_wmem_queued;
788 }
789
790 void sk_stream_write_space(struct sock *sk);
791
792 /* OOB backlog add */
793 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
794 {
795 /* dont let skb dst not refcounted, we are going to leave rcu lock */
796 skb_dst_force(skb);
797
798 if (!sk->sk_backlog.tail)
799 sk->sk_backlog.head = skb;
800 else
801 sk->sk_backlog.tail->next = skb;
802
803 sk->sk_backlog.tail = skb;
804 skb->next = NULL;
805 }
806
807 /*
808 * Take into account size of receive queue and backlog queue
809 * Do not take into account this skb truesize,
810 * to allow even a single big packet to come.
811 */
812 static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
813 {
814 unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
815
816 return qsize > limit;
817 }
818
819 /* The per-socket spinlock must be held here. */
820 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
821 unsigned int limit)
822 {
823 if (sk_rcvqueues_full(sk, limit))
824 return -ENOBUFS;
825
826 __sk_add_backlog(sk, skb);
827 sk->sk_backlog.len += skb->truesize;
828 return 0;
829 }
830
831 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
832
833 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
834 {
835 if (sk_memalloc_socks() && skb_pfmemalloc(skb))
836 return __sk_backlog_rcv(sk, skb);
837
838 return sk->sk_backlog_rcv(sk, skb);
839 }
840
841 static inline void sock_rps_record_flow_hash(__u32 hash)
842 {
843 #ifdef CONFIG_RPS
844 struct rps_sock_flow_table *sock_flow_table;
845
846 rcu_read_lock();
847 sock_flow_table = rcu_dereference(rps_sock_flow_table);
848 rps_record_sock_flow(sock_flow_table, hash);
849 rcu_read_unlock();
850 #endif
851 }
852
853 static inline void sock_rps_reset_flow_hash(__u32 hash)
854 {
855 #ifdef CONFIG_RPS
856 struct rps_sock_flow_table *sock_flow_table;
857
858 rcu_read_lock();
859 sock_flow_table = rcu_dereference(rps_sock_flow_table);
860 rps_reset_sock_flow(sock_flow_table, hash);
861 rcu_read_unlock();
862 #endif
863 }
864
865 static inline void sock_rps_record_flow(const struct sock *sk)
866 {
867 #ifdef CONFIG_RPS
868 sock_rps_record_flow_hash(sk->sk_rxhash);
869 #endif
870 }
871
872 static inline void sock_rps_reset_flow(const struct sock *sk)
873 {
874 #ifdef CONFIG_RPS
875 sock_rps_reset_flow_hash(sk->sk_rxhash);
876 #endif
877 }
878
879 static inline void sock_rps_save_rxhash(struct sock *sk,
880 const struct sk_buff *skb)
881 {
882 #ifdef CONFIG_RPS
883 if (unlikely(sk->sk_rxhash != skb->hash)) {
884 sock_rps_reset_flow(sk);
885 sk->sk_rxhash = skb->hash;
886 }
887 #endif
888 }
889
890 static inline void sock_rps_reset_rxhash(struct sock *sk)
891 {
892 #ifdef CONFIG_RPS
893 sock_rps_reset_flow(sk);
894 sk->sk_rxhash = 0;
895 #endif
896 }
897
898 #define sk_wait_event(__sk, __timeo, __condition) \
899 ({ int __rc; \
900 release_sock(__sk); \
901 __rc = __condition; \
902 if (!__rc) { \
903 *(__timeo) = schedule_timeout(*(__timeo)); \
904 } \
905 lock_sock(__sk); \
906 __rc = __condition; \
907 __rc; \
908 })
909
910 int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
911 int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
912 void sk_stream_wait_close(struct sock *sk, long timeo_p);
913 int sk_stream_error(struct sock *sk, int flags, int err);
914 void sk_stream_kill_queues(struct sock *sk);
915 void sk_set_memalloc(struct sock *sk);
916 void sk_clear_memalloc(struct sock *sk);
917
918 int sk_wait_data(struct sock *sk, long *timeo);
919
920 struct request_sock_ops;
921 struct timewait_sock_ops;
922 struct inet_hashinfo;
923 struct raw_hashinfo;
924 struct module;
925
926 /*
927 * caches using SLAB_DESTROY_BY_RCU should let .next pointer from nulls nodes
928 * un-modified. Special care is taken when initializing object to zero.
929 */
930 static inline void sk_prot_clear_nulls(struct sock *sk, int size)
931 {
932 if (offsetof(struct sock, sk_node.next) != 0)
933 memset(sk, 0, offsetof(struct sock, sk_node.next));
934 memset(&sk->sk_node.pprev, 0,
935 size - offsetof(struct sock, sk_node.pprev));
936 }
937
938 /* Networking protocol blocks we attach to sockets.
939 * socket layer -> transport layer interface
940 * transport -> network interface is defined by struct inet_proto
941 */
942 struct proto {
943 void (*close)(struct sock *sk,
944 long timeout);
945 int (*connect)(struct sock *sk,
946 struct sockaddr *uaddr,
947 int addr_len);
948 int (*disconnect)(struct sock *sk, int flags);
949
950 struct sock * (*accept)(struct sock *sk, int flags, int *err);
951
952 int (*ioctl)(struct sock *sk, int cmd,
953 unsigned long arg);
954 int (*init)(struct sock *sk);
955 void (*destroy)(struct sock *sk);
956 void (*shutdown)(struct sock *sk, int how);
957 int (*setsockopt)(struct sock *sk, int level,
958 int optname, char __user *optval,
959 unsigned int optlen);
960 int (*getsockopt)(struct sock *sk, int level,
961 int optname, char __user *optval,
962 int __user *option);
963 #ifdef CONFIG_COMPAT
964 int (*compat_setsockopt)(struct sock *sk,
965 int level,
966 int optname, char __user *optval,
967 unsigned int optlen);
968 int (*compat_getsockopt)(struct sock *sk,
969 int level,
970 int optname, char __user *optval,
971 int __user *option);
972 int (*compat_ioctl)(struct sock *sk,
973 unsigned int cmd, unsigned long arg);
974 #endif
975 int (*sendmsg)(struct kiocb *iocb, struct sock *sk,
976 struct msghdr *msg, size_t len);
977 int (*recvmsg)(struct kiocb *iocb, struct sock *sk,
978 struct msghdr *msg,
979 size_t len, int noblock, int flags,
980 int *addr_len);
981 int (*sendpage)(struct sock *sk, struct page *page,
982 int offset, size_t size, int flags);
983 int (*bind)(struct sock *sk,
984 struct sockaddr *uaddr, int addr_len);
985
986 int (*backlog_rcv) (struct sock *sk,
987 struct sk_buff *skb);
988
989 void (*release_cb)(struct sock *sk);
990
991 /* Keeping track of sk's, looking them up, and port selection methods. */
992 void (*hash)(struct sock *sk);
993 void (*unhash)(struct sock *sk);
994 void (*rehash)(struct sock *sk);
995 int (*get_port)(struct sock *sk, unsigned short snum);
996 void (*clear_sk)(struct sock *sk, int size);
997
998 /* Keeping track of sockets in use */
999 #ifdef CONFIG_PROC_FS
1000 unsigned int inuse_idx;
1001 #endif
1002
1003 bool (*stream_memory_free)(const struct sock *sk);
1004 /* Memory pressure */
1005 void (*enter_memory_pressure)(struct sock *sk);
1006 atomic_long_t *memory_allocated; /* Current allocated memory. */
1007 struct percpu_counter *sockets_allocated; /* Current number of sockets. */
1008 /*
1009 * Pressure flag: try to collapse.
1010 * Technical note: it is used by multiple contexts non atomically.
1011 * All the __sk_mem_schedule() is of this nature: accounting
1012 * is strict, actions are advisory and have some latency.
1013 */
1014 int *memory_pressure;
1015 long *sysctl_mem;
1016 int *sysctl_wmem;
1017 int *sysctl_rmem;
1018 int max_header;
1019 bool no_autobind;
1020
1021 struct kmem_cache *slab;
1022 unsigned int obj_size;
1023 int slab_flags;
1024
1025 struct percpu_counter *orphan_count;
1026
1027 struct request_sock_ops *rsk_prot;
1028 struct timewait_sock_ops *twsk_prot;
1029
1030 union {
1031 struct inet_hashinfo *hashinfo;
1032 struct udp_table *udp_table;
1033 struct raw_hashinfo *raw_hash;
1034 } h;
1035
1036 struct module *owner;
1037
1038 char name[32];
1039
1040 struct list_head node;
1041 #ifdef SOCK_REFCNT_DEBUG
1042 atomic_t socks;
1043 #endif
1044 #ifdef CONFIG_MEMCG_KMEM
1045 /*
1046 * cgroup specific init/deinit functions. Called once for all
1047 * protocols that implement it, from cgroups populate function.
1048 * This function has to setup any files the protocol want to
1049 * appear in the kmem cgroup filesystem.
1050 */
1051 int (*init_cgroup)(struct mem_cgroup *memcg,
1052 struct cgroup_subsys *ss);
1053 void (*destroy_cgroup)(struct mem_cgroup *memcg);
1054 struct cg_proto *(*proto_cgroup)(struct mem_cgroup *memcg);
1055 #endif
1056 };
1057
1058 /*
1059 * Bits in struct cg_proto.flags
1060 */
1061 enum cg_proto_flags {
1062 /* Currently active and new sockets should be assigned to cgroups */
1063 MEMCG_SOCK_ACTIVE,
1064 /* It was ever activated; we must disarm static keys on destruction */
1065 MEMCG_SOCK_ACTIVATED,
1066 };
1067
1068 struct cg_proto {
1069 struct res_counter memory_allocated; /* Current allocated memory. */
1070 struct percpu_counter sockets_allocated; /* Current number of sockets. */
1071 int memory_pressure;
1072 long sysctl_mem[3];
1073 unsigned long flags;
1074 /*
1075 * memcg field is used to find which memcg we belong directly
1076 * Each memcg struct can hold more than one cg_proto, so container_of
1077 * won't really cut.
1078 *
1079 * The elegant solution would be having an inverse function to
1080 * proto_cgroup in struct proto, but that means polluting the structure
1081 * for everybody, instead of just for memcg users.
1082 */
1083 struct mem_cgroup *memcg;
1084 };
1085
1086 int proto_register(struct proto *prot, int alloc_slab);
1087 void proto_unregister(struct proto *prot);
1088
1089 static inline bool memcg_proto_active(struct cg_proto *cg_proto)
1090 {
1091 return test_bit(MEMCG_SOCK_ACTIVE, &cg_proto->flags);
1092 }
1093
1094 static inline bool memcg_proto_activated(struct cg_proto *cg_proto)
1095 {
1096 return test_bit(MEMCG_SOCK_ACTIVATED, &cg_proto->flags);
1097 }
1098
1099 #ifdef SOCK_REFCNT_DEBUG
1100 static inline void sk_refcnt_debug_inc(struct sock *sk)
1101 {
1102 atomic_inc(&sk->sk_prot->socks);
1103 }
1104
1105 static inline void sk_refcnt_debug_dec(struct sock *sk)
1106 {
1107 atomic_dec(&sk->sk_prot->socks);
1108 printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1109 sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1110 }
1111
1112 static inline void sk_refcnt_debug_release(const struct sock *sk)
1113 {
1114 if (atomic_read(&sk->sk_refcnt) != 1)
1115 printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1116 sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt));
1117 }
1118 #else /* SOCK_REFCNT_DEBUG */
1119 #define sk_refcnt_debug_inc(sk) do { } while (0)
1120 #define sk_refcnt_debug_dec(sk) do { } while (0)
1121 #define sk_refcnt_debug_release(sk) do { } while (0)
1122 #endif /* SOCK_REFCNT_DEBUG */
1123
1124 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_NET)
1125 extern struct static_key memcg_socket_limit_enabled;
1126 static inline struct cg_proto *parent_cg_proto(struct proto *proto,
1127 struct cg_proto *cg_proto)
1128 {
1129 return proto->proto_cgroup(parent_mem_cgroup(cg_proto->memcg));
1130 }
1131 #define mem_cgroup_sockets_enabled static_key_false(&memcg_socket_limit_enabled)
1132 #else
1133 #define mem_cgroup_sockets_enabled 0
1134 static inline struct cg_proto *parent_cg_proto(struct proto *proto,
1135 struct cg_proto *cg_proto)
1136 {
1137 return NULL;
1138 }
1139 #endif
1140
1141 static inline bool sk_stream_memory_free(const struct sock *sk)
1142 {
1143 if (sk->sk_wmem_queued >= sk->sk_sndbuf)
1144 return false;
1145
1146 return sk->sk_prot->stream_memory_free ?
1147 sk->sk_prot->stream_memory_free(sk) : true;
1148 }
1149
1150 static inline bool sk_stream_is_writeable(const struct sock *sk)
1151 {
1152 return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1153 sk_stream_memory_free(sk);
1154 }
1155
1156
1157 static inline bool sk_has_memory_pressure(const struct sock *sk)
1158 {
1159 return sk->sk_prot->memory_pressure != NULL;
1160 }
1161
1162 static inline bool sk_under_memory_pressure(const struct sock *sk)
1163 {
1164 if (!sk->sk_prot->memory_pressure)
1165 return false;
1166
1167 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1168 return !!sk->sk_cgrp->memory_pressure;
1169
1170 return !!*sk->sk_prot->memory_pressure;
1171 }
1172
1173 static inline void sk_leave_memory_pressure(struct sock *sk)
1174 {
1175 int *memory_pressure = sk->sk_prot->memory_pressure;
1176
1177 if (!memory_pressure)
1178 return;
1179
1180 if (*memory_pressure)
1181 *memory_pressure = 0;
1182
1183 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1184 struct cg_proto *cg_proto = sk->sk_cgrp;
1185 struct proto *prot = sk->sk_prot;
1186
1187 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1188 cg_proto->memory_pressure = 0;
1189 }
1190
1191 }
1192
1193 static inline void sk_enter_memory_pressure(struct sock *sk)
1194 {
1195 if (!sk->sk_prot->enter_memory_pressure)
1196 return;
1197
1198 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1199 struct cg_proto *cg_proto = sk->sk_cgrp;
1200 struct proto *prot = sk->sk_prot;
1201
1202 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1203 cg_proto->memory_pressure = 1;
1204 }
1205
1206 sk->sk_prot->enter_memory_pressure(sk);
1207 }
1208
1209 static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1210 {
1211 long *prot = sk->sk_prot->sysctl_mem;
1212 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1213 prot = sk->sk_cgrp->sysctl_mem;
1214 return prot[index];
1215 }
1216
1217 static inline void memcg_memory_allocated_add(struct cg_proto *prot,
1218 unsigned long amt,
1219 int *parent_status)
1220 {
1221 struct res_counter *fail;
1222 int ret;
1223
1224 ret = res_counter_charge_nofail(&prot->memory_allocated,
1225 amt << PAGE_SHIFT, &fail);
1226 if (ret < 0)
1227 *parent_status = OVER_LIMIT;
1228 }
1229
1230 static inline void memcg_memory_allocated_sub(struct cg_proto *prot,
1231 unsigned long amt)
1232 {
1233 res_counter_uncharge(&prot->memory_allocated, amt << PAGE_SHIFT);
1234 }
1235
1236 static inline u64 memcg_memory_allocated_read(struct cg_proto *prot)
1237 {
1238 u64 ret;
1239 ret = res_counter_read_u64(&prot->memory_allocated, RES_USAGE);
1240 return ret >> PAGE_SHIFT;
1241 }
1242
1243 static inline long
1244 sk_memory_allocated(const struct sock *sk)
1245 {
1246 struct proto *prot = sk->sk_prot;
1247 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1248 return memcg_memory_allocated_read(sk->sk_cgrp);
1249
1250 return atomic_long_read(prot->memory_allocated);
1251 }
1252
1253 static inline long
1254 sk_memory_allocated_add(struct sock *sk, int amt, int *parent_status)
1255 {
1256 struct proto *prot = sk->sk_prot;
1257
1258 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1259 memcg_memory_allocated_add(sk->sk_cgrp, amt, parent_status);
1260 /* update the root cgroup regardless */
1261 atomic_long_add_return(amt, prot->memory_allocated);
1262 return memcg_memory_allocated_read(sk->sk_cgrp);
1263 }
1264
1265 return atomic_long_add_return(amt, prot->memory_allocated);
1266 }
1267
1268 static inline void
1269 sk_memory_allocated_sub(struct sock *sk, int amt)
1270 {
1271 struct proto *prot = sk->sk_prot;
1272
1273 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1274 memcg_memory_allocated_sub(sk->sk_cgrp, amt);
1275
1276 atomic_long_sub(amt, prot->memory_allocated);
1277 }
1278
1279 static inline void sk_sockets_allocated_dec(struct sock *sk)
1280 {
1281 struct proto *prot = sk->sk_prot;
1282
1283 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1284 struct cg_proto *cg_proto = sk->sk_cgrp;
1285
1286 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1287 percpu_counter_dec(&cg_proto->sockets_allocated);
1288 }
1289
1290 percpu_counter_dec(prot->sockets_allocated);
1291 }
1292
1293 static inline void sk_sockets_allocated_inc(struct sock *sk)
1294 {
1295 struct proto *prot = sk->sk_prot;
1296
1297 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1298 struct cg_proto *cg_proto = sk->sk_cgrp;
1299
1300 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1301 percpu_counter_inc(&cg_proto->sockets_allocated);
1302 }
1303
1304 percpu_counter_inc(prot->sockets_allocated);
1305 }
1306
1307 static inline int
1308 sk_sockets_allocated_read_positive(struct sock *sk)
1309 {
1310 struct proto *prot = sk->sk_prot;
1311
1312 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1313 return percpu_counter_read_positive(&sk->sk_cgrp->sockets_allocated);
1314
1315 return percpu_counter_read_positive(prot->sockets_allocated);
1316 }
1317
1318 static inline int
1319 proto_sockets_allocated_sum_positive(struct proto *prot)
1320 {
1321 return percpu_counter_sum_positive(prot->sockets_allocated);
1322 }
1323
1324 static inline long
1325 proto_memory_allocated(struct proto *prot)
1326 {
1327 return atomic_long_read(prot->memory_allocated);
1328 }
1329
1330 static inline bool
1331 proto_memory_pressure(struct proto *prot)
1332 {
1333 if (!prot->memory_pressure)
1334 return false;
1335 return !!*prot->memory_pressure;
1336 }
1337
1338
1339 #ifdef CONFIG_PROC_FS
1340 /* Called with local bh disabled */
1341 void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
1342 int sock_prot_inuse_get(struct net *net, struct proto *proto);
1343 #else
1344 static inline void sock_prot_inuse_add(struct net *net, struct proto *prot,
1345 int inc)
1346 {
1347 }
1348 #endif
1349
1350
1351 /* With per-bucket locks this operation is not-atomic, so that
1352 * this version is not worse.
1353 */
1354 static inline void __sk_prot_rehash(struct sock *sk)
1355 {
1356 sk->sk_prot->unhash(sk);
1357 sk->sk_prot->hash(sk);
1358 }
1359
1360 void sk_prot_clear_portaddr_nulls(struct sock *sk, int size);
1361
1362 /* About 10 seconds */
1363 #define SOCK_DESTROY_TIME (10*HZ)
1364
1365 /* Sockets 0-1023 can't be bound to unless you are superuser */
1366 #define PROT_SOCK 1024
1367
1368 #define SHUTDOWN_MASK 3
1369 #define RCV_SHUTDOWN 1
1370 #define SEND_SHUTDOWN 2
1371
1372 #define SOCK_SNDBUF_LOCK 1
1373 #define SOCK_RCVBUF_LOCK 2
1374 #define SOCK_BINDADDR_LOCK 4
1375 #define SOCK_BINDPORT_LOCK 8
1376
1377 /* sock_iocb: used to kick off async processing of socket ios */
1378 struct sock_iocb {
1379 struct list_head list;
1380
1381 int flags;
1382 int size;
1383 struct socket *sock;
1384 struct sock *sk;
1385 struct scm_cookie *scm;
1386 struct msghdr *msg, async_msg;
1387 struct kiocb *kiocb;
1388 };
1389
1390 static inline struct sock_iocb *kiocb_to_siocb(struct kiocb *iocb)
1391 {
1392 return (struct sock_iocb *)iocb->private;
1393 }
1394
1395 static inline struct kiocb *siocb_to_kiocb(struct sock_iocb *si)
1396 {
1397 return si->kiocb;
1398 }
1399
1400 struct socket_alloc {
1401 struct socket socket;
1402 struct inode vfs_inode;
1403 };
1404
1405 static inline struct socket *SOCKET_I(struct inode *inode)
1406 {
1407 return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1408 }
1409
1410 static inline struct inode *SOCK_INODE(struct socket *socket)
1411 {
1412 return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1413 }
1414
1415 /*
1416 * Functions for memory accounting
1417 */
1418 int __sk_mem_schedule(struct sock *sk, int size, int kind);
1419 void __sk_mem_reclaim(struct sock *sk);
1420
1421 #define SK_MEM_QUANTUM ((int)PAGE_SIZE)
1422 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1423 #define SK_MEM_SEND 0
1424 #define SK_MEM_RECV 1
1425
1426 static inline int sk_mem_pages(int amt)
1427 {
1428 return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1429 }
1430
1431 static inline bool sk_has_account(struct sock *sk)
1432 {
1433 /* return true if protocol supports memory accounting */
1434 return !!sk->sk_prot->memory_allocated;
1435 }
1436
1437 static inline bool sk_wmem_schedule(struct sock *sk, int size)
1438 {
1439 if (!sk_has_account(sk))
1440 return true;
1441 return size <= sk->sk_forward_alloc ||
1442 __sk_mem_schedule(sk, size, SK_MEM_SEND);
1443 }
1444
1445 static inline bool
1446 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1447 {
1448 if (!sk_has_account(sk))
1449 return true;
1450 return size<= sk->sk_forward_alloc ||
1451 __sk_mem_schedule(sk, size, SK_MEM_RECV) ||
1452 skb_pfmemalloc(skb);
1453 }
1454
1455 static inline void sk_mem_reclaim(struct sock *sk)
1456 {
1457 if (!sk_has_account(sk))
1458 return;
1459 if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
1460 __sk_mem_reclaim(sk);
1461 }
1462
1463 static inline void sk_mem_reclaim_partial(struct sock *sk)
1464 {
1465 if (!sk_has_account(sk))
1466 return;
1467 if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
1468 __sk_mem_reclaim(sk);
1469 }
1470
1471 static inline void sk_mem_charge(struct sock *sk, int size)
1472 {
1473 if (!sk_has_account(sk))
1474 return;
1475 sk->sk_forward_alloc -= size;
1476 }
1477
1478 static inline void sk_mem_uncharge(struct sock *sk, int size)
1479 {
1480 if (!sk_has_account(sk))
1481 return;
1482 sk->sk_forward_alloc += size;
1483 }
1484
1485 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1486 {
1487 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1488 sk->sk_wmem_queued -= skb->truesize;
1489 sk_mem_uncharge(sk, skb->truesize);
1490 __kfree_skb(skb);
1491 }
1492
1493 /* Used by processes to "lock" a socket state, so that
1494 * interrupts and bottom half handlers won't change it
1495 * from under us. It essentially blocks any incoming
1496 * packets, so that we won't get any new data or any
1497 * packets that change the state of the socket.
1498 *
1499 * While locked, BH processing will add new packets to
1500 * the backlog queue. This queue is processed by the
1501 * owner of the socket lock right before it is released.
1502 *
1503 * Since ~2.3.5 it is also exclusive sleep lock serializing
1504 * accesses from user process context.
1505 */
1506 #define sock_owned_by_user(sk) ((sk)->sk_lock.owned)
1507
1508 static inline void sock_release_ownership(struct sock *sk)
1509 {
1510 sk->sk_lock.owned = 0;
1511 }
1512
1513 /*
1514 * Macro so as to not evaluate some arguments when
1515 * lockdep is not enabled.
1516 *
1517 * Mark both the sk_lock and the sk_lock.slock as a
1518 * per-address-family lock class.
1519 */
1520 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) \
1521 do { \
1522 sk->sk_lock.owned = 0; \
1523 init_waitqueue_head(&sk->sk_lock.wq); \
1524 spin_lock_init(&(sk)->sk_lock.slock); \
1525 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \
1526 sizeof((sk)->sk_lock)); \
1527 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \
1528 (skey), (sname)); \
1529 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \
1530 } while (0)
1531
1532 void lock_sock_nested(struct sock *sk, int subclass);
1533
1534 static inline void lock_sock(struct sock *sk)
1535 {
1536 lock_sock_nested(sk, 0);
1537 }
1538
1539 void release_sock(struct sock *sk);
1540
1541 /* BH context may only use the following locking interface. */
1542 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock))
1543 #define bh_lock_sock_nested(__sk) \
1544 spin_lock_nested(&((__sk)->sk_lock.slock), \
1545 SINGLE_DEPTH_NESTING)
1546 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock))
1547
1548 bool lock_sock_fast(struct sock *sk);
1549 /**
1550 * unlock_sock_fast - complement of lock_sock_fast
1551 * @sk: socket
1552 * @slow: slow mode
1553 *
1554 * fast unlock socket for user context.
1555 * If slow mode is on, we call regular release_sock()
1556 */
1557 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1558 {
1559 if (slow)
1560 release_sock(sk);
1561 else
1562 spin_unlock_bh(&sk->sk_lock.slock);
1563 }
1564
1565
1566 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1567 struct proto *prot);
1568 void sk_free(struct sock *sk);
1569 void sk_release_kernel(struct sock *sk);
1570 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1571
1572 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1573 gfp_t priority);
1574 void sock_wfree(struct sk_buff *skb);
1575 void skb_orphan_partial(struct sk_buff *skb);
1576 void sock_rfree(struct sk_buff *skb);
1577 void sock_efree(struct sk_buff *skb);
1578 #ifdef CONFIG_INET
1579 void sock_edemux(struct sk_buff *skb);
1580 #else
1581 #define sock_edemux(skb) sock_efree(skb)
1582 #endif
1583
1584 int sock_setsockopt(struct socket *sock, int level, int op,
1585 char __user *optval, unsigned int optlen);
1586
1587 int sock_getsockopt(struct socket *sock, int level, int op,
1588 char __user *optval, int __user *optlen);
1589 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1590 int noblock, int *errcode);
1591 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1592 unsigned long data_len, int noblock,
1593 int *errcode, int max_page_order);
1594 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1595 void sock_kfree_s(struct sock *sk, void *mem, int size);
1596 void sk_send_sigurg(struct sock *sk);
1597
1598 /*
1599 * Functions to fill in entries in struct proto_ops when a protocol
1600 * does not implement a particular function.
1601 */
1602 int sock_no_bind(struct socket *, struct sockaddr *, int);
1603 int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1604 int sock_no_socketpair(struct socket *, struct socket *);
1605 int sock_no_accept(struct socket *, struct socket *, int);
1606 int sock_no_getname(struct socket *, struct sockaddr *, int *, int);
1607 unsigned int sock_no_poll(struct file *, struct socket *,
1608 struct poll_table_struct *);
1609 int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1610 int sock_no_listen(struct socket *, int);
1611 int sock_no_shutdown(struct socket *, int);
1612 int sock_no_getsockopt(struct socket *, int , int, char __user *, int __user *);
1613 int sock_no_setsockopt(struct socket *, int, int, char __user *, unsigned int);
1614 int sock_no_sendmsg(struct kiocb *, struct socket *, struct msghdr *, size_t);
1615 int sock_no_recvmsg(struct kiocb *, struct socket *, struct msghdr *, size_t,
1616 int);
1617 int sock_no_mmap(struct file *file, struct socket *sock,
1618 struct vm_area_struct *vma);
1619 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset,
1620 size_t size, int flags);
1621
1622 /*
1623 * Functions to fill in entries in struct proto_ops when a protocol
1624 * uses the inet style.
1625 */
1626 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1627 char __user *optval, int __user *optlen);
1628 int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
1629 struct msghdr *msg, size_t size, int flags);
1630 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1631 char __user *optval, unsigned int optlen);
1632 int compat_sock_common_getsockopt(struct socket *sock, int level,
1633 int optname, char __user *optval, int __user *optlen);
1634 int compat_sock_common_setsockopt(struct socket *sock, int level,
1635 int optname, char __user *optval, unsigned int optlen);
1636
1637 void sk_common_release(struct sock *sk);
1638
1639 /*
1640 * Default socket callbacks and setup code
1641 */
1642
1643 /* Initialise core socket variables */
1644 void sock_init_data(struct socket *sock, struct sock *sk);
1645
1646 /*
1647 * Socket reference counting postulates.
1648 *
1649 * * Each user of socket SHOULD hold a reference count.
1650 * * Each access point to socket (an hash table bucket, reference from a list,
1651 * running timer, skb in flight MUST hold a reference count.
1652 * * When reference count hits 0, it means it will never increase back.
1653 * * When reference count hits 0, it means that no references from
1654 * outside exist to this socket and current process on current CPU
1655 * is last user and may/should destroy this socket.
1656 * * sk_free is called from any context: process, BH, IRQ. When
1657 * it is called, socket has no references from outside -> sk_free
1658 * may release descendant resources allocated by the socket, but
1659 * to the time when it is called, socket is NOT referenced by any
1660 * hash tables, lists etc.
1661 * * Packets, delivered from outside (from network or from another process)
1662 * and enqueued on receive/error queues SHOULD NOT grab reference count,
1663 * when they sit in queue. Otherwise, packets will leak to hole, when
1664 * socket is looked up by one cpu and unhasing is made by another CPU.
1665 * It is true for udp/raw, netlink (leak to receive and error queues), tcp
1666 * (leak to backlog). Packet socket does all the processing inside
1667 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1668 * use separate SMP lock, so that they are prone too.
1669 */
1670
1671 /* Ungrab socket and destroy it, if it was the last reference. */
1672 static inline void sock_put(struct sock *sk)
1673 {
1674 if (atomic_dec_and_test(&sk->sk_refcnt))
1675 sk_free(sk);
1676 }
1677 /* Generic version of sock_put(), dealing with all sockets
1678 * (TCP_TIMEWAIT, ESTABLISHED...)
1679 */
1680 void sock_gen_put(struct sock *sk);
1681
1682 int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested);
1683
1684 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1685 {
1686 sk->sk_tx_queue_mapping = tx_queue;
1687 }
1688
1689 static inline void sk_tx_queue_clear(struct sock *sk)
1690 {
1691 sk->sk_tx_queue_mapping = -1;
1692 }
1693
1694 static inline int sk_tx_queue_get(const struct sock *sk)
1695 {
1696 return sk ? sk->sk_tx_queue_mapping : -1;
1697 }
1698
1699 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1700 {
1701 sk_tx_queue_clear(sk);
1702 sk->sk_socket = sock;
1703 }
1704
1705 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1706 {
1707 BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1708 return &rcu_dereference_raw(sk->sk_wq)->wait;
1709 }
1710 /* Detach socket from process context.
1711 * Announce socket dead, detach it from wait queue and inode.
1712 * Note that parent inode held reference count on this struct sock,
1713 * we do not release it in this function, because protocol
1714 * probably wants some additional cleanups or even continuing
1715 * to work with this socket (TCP).
1716 */
1717 static inline void sock_orphan(struct sock *sk)
1718 {
1719 write_lock_bh(&sk->sk_callback_lock);
1720 sock_set_flag(sk, SOCK_DEAD);
1721 sk_set_socket(sk, NULL);
1722 sk->sk_wq = NULL;
1723 write_unlock_bh(&sk->sk_callback_lock);
1724 }
1725
1726 static inline void sock_graft(struct sock *sk, struct socket *parent)
1727 {
1728 write_lock_bh(&sk->sk_callback_lock);
1729 sk->sk_wq = parent->wq;
1730 parent->sk = sk;
1731 sk_set_socket(sk, parent);
1732 security_sock_graft(sk, parent);
1733 write_unlock_bh(&sk->sk_callback_lock);
1734 }
1735
1736 kuid_t sock_i_uid(struct sock *sk);
1737 unsigned long sock_i_ino(struct sock *sk);
1738
1739 static inline struct dst_entry *
1740 __sk_dst_get(struct sock *sk)
1741 {
1742 return rcu_dereference_check(sk->sk_dst_cache, sock_owned_by_user(sk) ||
1743 lockdep_is_held(&sk->sk_lock.slock));
1744 }
1745
1746 static inline struct dst_entry *
1747 sk_dst_get(struct sock *sk)
1748 {
1749 struct dst_entry *dst;
1750
1751 rcu_read_lock();
1752 dst = rcu_dereference(sk->sk_dst_cache);
1753 if (dst && !atomic_inc_not_zero(&dst->__refcnt))
1754 dst = NULL;
1755 rcu_read_unlock();
1756 return dst;
1757 }
1758
1759 static inline void dst_negative_advice(struct sock *sk)
1760 {
1761 struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1762
1763 if (dst && dst->ops->negative_advice) {
1764 ndst = dst->ops->negative_advice(dst);
1765
1766 if (ndst != dst) {
1767 rcu_assign_pointer(sk->sk_dst_cache, ndst);
1768 sk_tx_queue_clear(sk);
1769 }
1770 }
1771 }
1772
1773 static inline void
1774 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
1775 {
1776 struct dst_entry *old_dst;
1777
1778 sk_tx_queue_clear(sk);
1779 /*
1780 * This can be called while sk is owned by the caller only,
1781 * with no state that can be checked in a rcu_dereference_check() cond
1782 */
1783 old_dst = rcu_dereference_raw(sk->sk_dst_cache);
1784 rcu_assign_pointer(sk->sk_dst_cache, dst);
1785 dst_release(old_dst);
1786 }
1787
1788 static inline void
1789 sk_dst_set(struct sock *sk, struct dst_entry *dst)
1790 {
1791 struct dst_entry *old_dst;
1792
1793 sk_tx_queue_clear(sk);
1794 old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst);
1795 dst_release(old_dst);
1796 }
1797
1798 static inline void
1799 __sk_dst_reset(struct sock *sk)
1800 {
1801 __sk_dst_set(sk, NULL);
1802 }
1803
1804 static inline void
1805 sk_dst_reset(struct sock *sk)
1806 {
1807 sk_dst_set(sk, NULL);
1808 }
1809
1810 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1811
1812 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1813
1814 static inline bool sk_can_gso(const struct sock *sk)
1815 {
1816 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1817 }
1818
1819 void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
1820
1821 static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
1822 {
1823 sk->sk_route_nocaps |= flags;
1824 sk->sk_route_caps &= ~flags;
1825 }
1826
1827 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
1828 char __user *from, char *to,
1829 int copy, int offset)
1830 {
1831 if (skb->ip_summed == CHECKSUM_NONE) {
1832 int err = 0;
1833 __wsum csum = csum_and_copy_from_user(from, to, copy, 0, &err);
1834 if (err)
1835 return err;
1836 skb->csum = csum_block_add(skb->csum, csum, offset);
1837 } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1838 if (!access_ok(VERIFY_READ, from, copy) ||
1839 __copy_from_user_nocache(to, from, copy))
1840 return -EFAULT;
1841 } else if (copy_from_user(to, from, copy))
1842 return -EFAULT;
1843
1844 return 0;
1845 }
1846
1847 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
1848 char __user *from, int copy)
1849 {
1850 int err, offset = skb->len;
1851
1852 err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
1853 copy, offset);
1854 if (err)
1855 __skb_trim(skb, offset);
1856
1857 return err;
1858 }
1859
1860 static inline int skb_copy_to_page_nocache(struct sock *sk, char __user *from,
1861 struct sk_buff *skb,
1862 struct page *page,
1863 int off, int copy)
1864 {
1865 int err;
1866
1867 err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
1868 copy, skb->len);
1869 if (err)
1870 return err;
1871
1872 skb->len += copy;
1873 skb->data_len += copy;
1874 skb->truesize += copy;
1875 sk->sk_wmem_queued += copy;
1876 sk_mem_charge(sk, copy);
1877 return 0;
1878 }
1879
1880 static inline int skb_copy_to_page(struct sock *sk, char __user *from,
1881 struct sk_buff *skb, struct page *page,
1882 int off, int copy)
1883 {
1884 if (skb->ip_summed == CHECKSUM_NONE) {
1885 int err = 0;
1886 __wsum csum = csum_and_copy_from_user(from,
1887 page_address(page) + off,
1888 copy, 0, &err);
1889 if (err)
1890 return err;
1891 skb->csum = csum_block_add(skb->csum, csum, skb->len);
1892 } else if (copy_from_user(page_address(page) + off, from, copy))
1893 return -EFAULT;
1894
1895 skb->len += copy;
1896 skb->data_len += copy;
1897 skb->truesize += copy;
1898 sk->sk_wmem_queued += copy;
1899 sk_mem_charge(sk, copy);
1900 return 0;
1901 }
1902
1903 /**
1904 * sk_wmem_alloc_get - returns write allocations
1905 * @sk: socket
1906 *
1907 * Returns sk_wmem_alloc minus initial offset of one
1908 */
1909 static inline int sk_wmem_alloc_get(const struct sock *sk)
1910 {
1911 return atomic_read(&sk->sk_wmem_alloc) - 1;
1912 }
1913
1914 /**
1915 * sk_rmem_alloc_get - returns read allocations
1916 * @sk: socket
1917 *
1918 * Returns sk_rmem_alloc
1919 */
1920 static inline int sk_rmem_alloc_get(const struct sock *sk)
1921 {
1922 return atomic_read(&sk->sk_rmem_alloc);
1923 }
1924
1925 /**
1926 * sk_has_allocations - check if allocations are outstanding
1927 * @sk: socket
1928 *
1929 * Returns true if socket has write or read allocations
1930 */
1931 static inline bool sk_has_allocations(const struct sock *sk)
1932 {
1933 return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
1934 }
1935
1936 /**
1937 * wq_has_sleeper - check if there are any waiting processes
1938 * @wq: struct socket_wq
1939 *
1940 * Returns true if socket_wq has waiting processes
1941 *
1942 * The purpose of the wq_has_sleeper and sock_poll_wait is to wrap the memory
1943 * barrier call. They were added due to the race found within the tcp code.
1944 *
1945 * Consider following tcp code paths:
1946 *
1947 * CPU1 CPU2
1948 *
1949 * sys_select receive packet
1950 * ... ...
1951 * __add_wait_queue update tp->rcv_nxt
1952 * ... ...
1953 * tp->rcv_nxt check sock_def_readable
1954 * ... {
1955 * schedule rcu_read_lock();
1956 * wq = rcu_dereference(sk->sk_wq);
1957 * if (wq && waitqueue_active(&wq->wait))
1958 * wake_up_interruptible(&wq->wait)
1959 * ...
1960 * }
1961 *
1962 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
1963 * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1
1964 * could then endup calling schedule and sleep forever if there are no more
1965 * data on the socket.
1966 *
1967 */
1968 static inline bool wq_has_sleeper(struct socket_wq *wq)
1969 {
1970 /* We need to be sure we are in sync with the
1971 * add_wait_queue modifications to the wait queue.
1972 *
1973 * This memory barrier is paired in the sock_poll_wait.
1974 */
1975 smp_mb();
1976 return wq && waitqueue_active(&wq->wait);
1977 }
1978
1979 /**
1980 * sock_poll_wait - place memory barrier behind the poll_wait call.
1981 * @filp: file
1982 * @wait_address: socket wait queue
1983 * @p: poll_table
1984 *
1985 * See the comments in the wq_has_sleeper function.
1986 */
1987 static inline void sock_poll_wait(struct file *filp,
1988 wait_queue_head_t *wait_address, poll_table *p)
1989 {
1990 if (!poll_does_not_wait(p) && wait_address) {
1991 poll_wait(filp, wait_address, p);
1992 /* We need to be sure we are in sync with the
1993 * socket flags modification.
1994 *
1995 * This memory barrier is paired in the wq_has_sleeper.
1996 */
1997 smp_mb();
1998 }
1999 }
2000
2001 static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
2002 {
2003 if (sk->sk_txhash) {
2004 skb->l4_hash = 1;
2005 skb->hash = sk->sk_txhash;
2006 }
2007 }
2008
2009 /*
2010 * Queue a received datagram if it will fit. Stream and sequenced
2011 * protocols can't normally use this as they need to fit buffers in
2012 * and play with them.
2013 *
2014 * Inlined as it's very short and called for pretty much every
2015 * packet ever received.
2016 */
2017
2018 static inline void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
2019 {
2020 skb_orphan(skb);
2021 skb->sk = sk;
2022 skb->destructor = sock_wfree;
2023 skb_set_hash_from_sk(skb, sk);
2024 /*
2025 * We used to take a refcount on sk, but following operation
2026 * is enough to guarantee sk_free() wont free this sock until
2027 * all in-flight packets are completed
2028 */
2029 atomic_add(skb->truesize, &sk->sk_wmem_alloc);
2030 }
2031
2032 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
2033 {
2034 skb_orphan(skb);
2035 skb->sk = sk;
2036 skb->destructor = sock_rfree;
2037 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
2038 sk_mem_charge(sk, skb->truesize);
2039 }
2040
2041 void sk_reset_timer(struct sock *sk, struct timer_list *timer,
2042 unsigned long expires);
2043
2044 void sk_stop_timer(struct sock *sk, struct timer_list *timer);
2045
2046 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2047
2048 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
2049 struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
2050
2051 /*
2052 * Recover an error report and clear atomically
2053 */
2054
2055 static inline int sock_error(struct sock *sk)
2056 {
2057 int err;
2058 if (likely(!sk->sk_err))
2059 return 0;
2060 err = xchg(&sk->sk_err, 0);
2061 return -err;
2062 }
2063
2064 static inline unsigned long sock_wspace(struct sock *sk)
2065 {
2066 int amt = 0;
2067
2068 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2069 amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
2070 if (amt < 0)
2071 amt = 0;
2072 }
2073 return amt;
2074 }
2075
2076 static inline void sk_wake_async(struct sock *sk, int how, int band)
2077 {
2078 if (sock_flag(sk, SOCK_FASYNC))
2079 sock_wake_async(sk->sk_socket, how, band);
2080 }
2081
2082 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2083 * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2084 * Note: for send buffers, TCP works better if we can build two skbs at
2085 * minimum.
2086 */
2087 #define TCP_SKB_MIN_TRUESIZE (2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2088
2089 #define SOCK_MIN_SNDBUF (TCP_SKB_MIN_TRUESIZE * 2)
2090 #define SOCK_MIN_RCVBUF TCP_SKB_MIN_TRUESIZE
2091
2092 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2093 {
2094 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
2095 sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2096 sk->sk_sndbuf = max_t(u32, sk->sk_sndbuf, SOCK_MIN_SNDBUF);
2097 }
2098 }
2099
2100 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp);
2101
2102 /**
2103 * sk_page_frag - return an appropriate page_frag
2104 * @sk: socket
2105 *
2106 * If socket allocation mode allows current thread to sleep, it means its
2107 * safe to use the per task page_frag instead of the per socket one.
2108 */
2109 static inline struct page_frag *sk_page_frag(struct sock *sk)
2110 {
2111 if (sk->sk_allocation & __GFP_WAIT)
2112 return &current->task_frag;
2113
2114 return &sk->sk_frag;
2115 }
2116
2117 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2118
2119 /*
2120 * Default write policy as shown to user space via poll/select/SIGIO
2121 */
2122 static inline bool sock_writeable(const struct sock *sk)
2123 {
2124 return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1);
2125 }
2126
2127 static inline gfp_t gfp_any(void)
2128 {
2129 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2130 }
2131
2132 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2133 {
2134 return noblock ? 0 : sk->sk_rcvtimeo;
2135 }
2136
2137 static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2138 {
2139 return noblock ? 0 : sk->sk_sndtimeo;
2140 }
2141
2142 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2143 {
2144 return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
2145 }
2146
2147 /* Alas, with timeout socket operations are not restartable.
2148 * Compare this to poll().
2149 */
2150 static inline int sock_intr_errno(long timeo)
2151 {
2152 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2153 }
2154
2155 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2156 struct sk_buff *skb);
2157 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2158 struct sk_buff *skb);
2159
2160 static inline void
2161 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2162 {
2163 ktime_t kt = skb->tstamp;
2164 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2165
2166 /*
2167 * generate control messages if
2168 * - receive time stamping in software requested
2169 * - software time stamp available and wanted
2170 * - hardware time stamps available and wanted
2171 */
2172 if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2173 (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2174 (kt.tv64 && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2175 (hwtstamps->hwtstamp.tv64 &&
2176 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
2177 __sock_recv_timestamp(msg, sk, skb);
2178 else
2179 sk->sk_stamp = kt;
2180
2181 if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2182 __sock_recv_wifi_status(msg, sk, skb);
2183 }
2184
2185 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2186 struct sk_buff *skb);
2187
2188 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2189 struct sk_buff *skb)
2190 {
2191 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL) | \
2192 (1UL << SOCK_RCVTSTAMP))
2193 #define TSFLAGS_ANY (SOF_TIMESTAMPING_SOFTWARE | \
2194 SOF_TIMESTAMPING_RAW_HARDWARE)
2195
2196 if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY)
2197 __sock_recv_ts_and_drops(msg, sk, skb);
2198 else
2199 sk->sk_stamp = skb->tstamp;
2200 }
2201
2202 void __sock_tx_timestamp(const struct sock *sk, __u8 *tx_flags);
2203
2204 /**
2205 * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2206 * @sk: socket sending this packet
2207 * @tx_flags: completed with instructions for time stamping
2208 *
2209 * Note : callers should take care of initial *tx_flags value (usually 0)
2210 */
2211 static inline void sock_tx_timestamp(const struct sock *sk, __u8 *tx_flags)
2212 {
2213 if (unlikely(sk->sk_tsflags))
2214 __sock_tx_timestamp(sk, tx_flags);
2215 if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS)))
2216 *tx_flags |= SKBTX_WIFI_STATUS;
2217 }
2218
2219 /**
2220 * sk_eat_skb - Release a skb if it is no longer needed
2221 * @sk: socket to eat this skb from
2222 * @skb: socket buffer to eat
2223 * @copied_early: flag indicating whether DMA operations copied this data early
2224 *
2225 * This routine must be called with interrupts disabled or with the socket
2226 * locked so that the sk_buff queue operation is ok.
2227 */
2228 #ifdef CONFIG_NET_DMA
2229 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, bool copied_early)
2230 {
2231 __skb_unlink(skb, &sk->sk_receive_queue);
2232 if (!copied_early)
2233 __kfree_skb(skb);
2234 else
2235 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
2236 }
2237 #else
2238 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, bool copied_early)
2239 {
2240 __skb_unlink(skb, &sk->sk_receive_queue);
2241 __kfree_skb(skb);
2242 }
2243 #endif
2244
2245 static inline
2246 struct net *sock_net(const struct sock *sk)
2247 {
2248 return read_pnet(&sk->sk_net);
2249 }
2250
2251 static inline
2252 void sock_net_set(struct sock *sk, struct net *net)
2253 {
2254 write_pnet(&sk->sk_net, net);
2255 }
2256
2257 /*
2258 * Kernel sockets, f.e. rtnl or icmp_socket, are a part of a namespace.
2259 * They should not hold a reference to a namespace in order to allow
2260 * to stop it.
2261 * Sockets after sk_change_net should be released using sk_release_kernel
2262 */
2263 static inline void sk_change_net(struct sock *sk, struct net *net)
2264 {
2265 struct net *current_net = sock_net(sk);
2266
2267 if (!net_eq(current_net, net)) {
2268 put_net(current_net);
2269 sock_net_set(sk, hold_net(net));
2270 }
2271 }
2272
2273 static inline struct sock *skb_steal_sock(struct sk_buff *skb)
2274 {
2275 if (skb->sk) {
2276 struct sock *sk = skb->sk;
2277
2278 skb->destructor = NULL;
2279 skb->sk = NULL;
2280 return sk;
2281 }
2282 return NULL;
2283 }
2284
2285 void sock_enable_timestamp(struct sock *sk, int flag);
2286 int sock_get_timestamp(struct sock *, struct timeval __user *);
2287 int sock_get_timestampns(struct sock *, struct timespec __user *);
2288 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2289 int type);
2290
2291 bool sk_ns_capable(const struct sock *sk,
2292 struct user_namespace *user_ns, int cap);
2293 bool sk_capable(const struct sock *sk, int cap);
2294 bool sk_net_capable(const struct sock *sk, int cap);
2295
2296 /*
2297 * Enable debug/info messages
2298 */
2299 extern int net_msg_warn;
2300 #define NETDEBUG(fmt, args...) \
2301 do { if (net_msg_warn) printk(fmt,##args); } while (0)
2302
2303 #define LIMIT_NETDEBUG(fmt, args...) \
2304 do { if (net_msg_warn && net_ratelimit()) printk(fmt,##args); } while(0)
2305
2306 extern __u32 sysctl_wmem_max;
2307 extern __u32 sysctl_rmem_max;
2308
2309 extern int sysctl_optmem_max;
2310
2311 extern __u32 sysctl_wmem_default;
2312 extern __u32 sysctl_rmem_default;
2313
2314 #endif /* _SOCK_H */