]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - include/net/sock.h
5697caf8cc76044efb9fc61dc9b7c931d74d95fa
[mirror_ubuntu-zesty-kernel.git] / include / net / sock.h
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Definitions for the AF_INET socket handler.
7 *
8 * Version: @(#)sock.h 1.0.4 05/13/93
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche <flla@stud.uni-sb.de>
14 *
15 * Fixes:
16 * Alan Cox : Volatiles in skbuff pointers. See
17 * skbuff comments. May be overdone,
18 * better to prove they can be removed
19 * than the reverse.
20 * Alan Cox : Added a zapped field for tcp to note
21 * a socket is reset and must stay shut up
22 * Alan Cox : New fields for options
23 * Pauline Middelink : identd support
24 * Alan Cox : Eliminate low level recv/recvfrom
25 * David S. Miller : New socket lookup architecture.
26 * Steve Whitehouse: Default routines for sock_ops
27 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made
28 * protinfo be just a void pointer, as the
29 * protocol specific parts were moved to
30 * respective headers and ipv4/v6, etc now
31 * use private slabcaches for its socks
32 * Pedro Hortas : New flags field for socket options
33 *
34 *
35 * This program is free software; you can redistribute it and/or
36 * modify it under the terms of the GNU General Public License
37 * as published by the Free Software Foundation; either version
38 * 2 of the License, or (at your option) any later version.
39 */
40 #ifndef _SOCK_H
41 #define _SOCK_H
42
43 #include <linux/kernel.h>
44 #include <linux/list.h>
45 #include <linux/list_nulls.h>
46 #include <linux/timer.h>
47 #include <linux/cache.h>
48 #include <linux/module.h>
49 #include <linux/lockdep.h>
50 #include <linux/netdevice.h>
51 #include <linux/skbuff.h> /* struct sk_buff */
52 #include <linux/mm.h>
53 #include <linux/security.h>
54 #include <linux/slab.h>
55
56 #include <linux/filter.h>
57 #include <linux/rculist_nulls.h>
58 #include <linux/poll.h>
59
60 #include <asm/atomic.h>
61 #include <net/dst.h>
62 #include <net/checksum.h>
63
64 /*
65 * This structure really needs to be cleaned up.
66 * Most of it is for TCP, and not used by any of
67 * the other protocols.
68 */
69
70 /* Define this to get the SOCK_DBG debugging facility. */
71 #define SOCK_DEBUGGING
72 #ifdef SOCK_DEBUGGING
73 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
74 printk(KERN_DEBUG msg); } while (0)
75 #else
76 /* Validate arguments and do nothing */
77 static inline void __attribute__ ((format (printf, 2, 3)))
78 SOCK_DEBUG(struct sock *sk, const char *msg, ...)
79 {
80 }
81 #endif
82
83 /* This is the per-socket lock. The spinlock provides a synchronization
84 * between user contexts and software interrupt processing, whereas the
85 * mini-semaphore synchronizes multiple users amongst themselves.
86 */
87 typedef struct {
88 spinlock_t slock;
89 int owned;
90 wait_queue_head_t wq;
91 /*
92 * We express the mutex-alike socket_lock semantics
93 * to the lock validator by explicitly managing
94 * the slock as a lock variant (in addition to
95 * the slock itself):
96 */
97 #ifdef CONFIG_DEBUG_LOCK_ALLOC
98 struct lockdep_map dep_map;
99 #endif
100 } socket_lock_t;
101
102 struct sock;
103 struct proto;
104 struct net;
105
106 /**
107 * struct sock_common - minimal network layer representation of sockets
108 * @skc_node: main hash linkage for various protocol lookup tables
109 * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
110 * @skc_refcnt: reference count
111 * @skc_tx_queue_mapping: tx queue number for this connection
112 * @skc_hash: hash value used with various protocol lookup tables
113 * @skc_u16hashes: two u16 hash values used by UDP lookup tables
114 * @skc_family: network address family
115 * @skc_state: Connection state
116 * @skc_reuse: %SO_REUSEADDR setting
117 * @skc_bound_dev_if: bound device index if != 0
118 * @skc_bind_node: bind hash linkage for various protocol lookup tables
119 * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
120 * @skc_prot: protocol handlers inside a network family
121 * @skc_net: reference to the network namespace of this socket
122 *
123 * This is the minimal network layer representation of sockets, the header
124 * for struct sock and struct inet_timewait_sock.
125 */
126 struct sock_common {
127 /*
128 * first fields are not copied in sock_copy()
129 */
130 union {
131 struct hlist_node skc_node;
132 struct hlist_nulls_node skc_nulls_node;
133 };
134 atomic_t skc_refcnt;
135 int skc_tx_queue_mapping;
136
137 union {
138 unsigned int skc_hash;
139 __u16 skc_u16hashes[2];
140 };
141 unsigned short skc_family;
142 volatile unsigned char skc_state;
143 unsigned char skc_reuse;
144 int skc_bound_dev_if;
145 union {
146 struct hlist_node skc_bind_node;
147 struct hlist_nulls_node skc_portaddr_node;
148 };
149 struct proto *skc_prot;
150 #ifdef CONFIG_NET_NS
151 struct net *skc_net;
152 #endif
153 };
154
155 /**
156 * struct sock - network layer representation of sockets
157 * @__sk_common: shared layout with inet_timewait_sock
158 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
159 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
160 * @sk_lock: synchronizer
161 * @sk_rcvbuf: size of receive buffer in bytes
162 * @sk_wq: sock wait queue and async head
163 * @sk_dst_cache: destination cache
164 * @sk_dst_lock: destination cache lock
165 * @sk_policy: flow policy
166 * @sk_rmem_alloc: receive queue bytes committed
167 * @sk_receive_queue: incoming packets
168 * @sk_wmem_alloc: transmit queue bytes committed
169 * @sk_write_queue: Packet sending queue
170 * @sk_async_wait_queue: DMA copied packets
171 * @sk_omem_alloc: "o" is "option" or "other"
172 * @sk_wmem_queued: persistent queue size
173 * @sk_forward_alloc: space allocated forward
174 * @sk_allocation: allocation mode
175 * @sk_sndbuf: size of send buffer in bytes
176 * @sk_flags: %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
177 * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
178 * @sk_no_check: %SO_NO_CHECK setting, wether or not checkup packets
179 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
180 * @sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
181 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
182 * @sk_gso_max_size: Maximum GSO segment size to build
183 * @sk_lingertime: %SO_LINGER l_linger setting
184 * @sk_backlog: always used with the per-socket spinlock held
185 * @sk_callback_lock: used with the callbacks in the end of this struct
186 * @sk_error_queue: rarely used
187 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
188 * IPV6_ADDRFORM for instance)
189 * @sk_err: last error
190 * @sk_err_soft: errors that don't cause failure but are the cause of a
191 * persistent failure not just 'timed out'
192 * @sk_drops: raw/udp drops counter
193 * @sk_ack_backlog: current listen backlog
194 * @sk_max_ack_backlog: listen backlog set in listen()
195 * @sk_priority: %SO_PRIORITY setting
196 * @sk_type: socket type (%SOCK_STREAM, etc)
197 * @sk_protocol: which protocol this socket belongs in this network family
198 * @sk_peercred: %SO_PEERCRED setting
199 * @sk_rcvlowat: %SO_RCVLOWAT setting
200 * @sk_rcvtimeo: %SO_RCVTIMEO setting
201 * @sk_sndtimeo: %SO_SNDTIMEO setting
202 * @sk_rxhash: flow hash received from netif layer
203 * @sk_filter: socket filtering instructions
204 * @sk_protinfo: private area, net family specific, when not using slab
205 * @sk_timer: sock cleanup timer
206 * @sk_stamp: time stamp of last packet received
207 * @sk_socket: Identd and reporting IO signals
208 * @sk_user_data: RPC layer private data
209 * @sk_sndmsg_page: cached page for sendmsg
210 * @sk_sndmsg_off: cached offset for sendmsg
211 * @sk_send_head: front of stuff to transmit
212 * @sk_security: used by security modules
213 * @sk_mark: generic packet mark
214 * @sk_write_pending: a write to stream socket waits to start
215 * @sk_state_change: callback to indicate change in the state of the sock
216 * @sk_data_ready: callback to indicate there is data to be processed
217 * @sk_write_space: callback to indicate there is bf sending space available
218 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
219 * @sk_backlog_rcv: callback to process the backlog
220 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
221 */
222 struct sock {
223 /*
224 * Now struct inet_timewait_sock also uses sock_common, so please just
225 * don't add nothing before this first member (__sk_common) --acme
226 */
227 struct sock_common __sk_common;
228 #define sk_node __sk_common.skc_node
229 #define sk_nulls_node __sk_common.skc_nulls_node
230 #define sk_refcnt __sk_common.skc_refcnt
231 #define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping
232
233 #define sk_copy_start __sk_common.skc_hash
234 #define sk_hash __sk_common.skc_hash
235 #define sk_family __sk_common.skc_family
236 #define sk_state __sk_common.skc_state
237 #define sk_reuse __sk_common.skc_reuse
238 #define sk_bound_dev_if __sk_common.skc_bound_dev_if
239 #define sk_bind_node __sk_common.skc_bind_node
240 #define sk_prot __sk_common.skc_prot
241 #define sk_net __sk_common.skc_net
242 kmemcheck_bitfield_begin(flags);
243 unsigned int sk_shutdown : 2,
244 sk_no_check : 2,
245 sk_userlocks : 4,
246 sk_protocol : 8,
247 sk_type : 16;
248 kmemcheck_bitfield_end(flags);
249 int sk_rcvbuf;
250 socket_lock_t sk_lock;
251 /*
252 * The backlog queue is special, it is always used with
253 * the per-socket spinlock held and requires low latency
254 * access. Therefore we special case it's implementation.
255 */
256 struct {
257 struct sk_buff *head;
258 struct sk_buff *tail;
259 int len;
260 } sk_backlog;
261 struct socket_wq *sk_wq;
262 struct dst_entry *sk_dst_cache;
263 #ifdef CONFIG_XFRM
264 struct xfrm_policy *sk_policy[2];
265 #endif
266 spinlock_t sk_dst_lock;
267 atomic_t sk_rmem_alloc;
268 atomic_t sk_wmem_alloc;
269 atomic_t sk_omem_alloc;
270 int sk_sndbuf;
271 struct sk_buff_head sk_receive_queue;
272 struct sk_buff_head sk_write_queue;
273 #ifdef CONFIG_NET_DMA
274 struct sk_buff_head sk_async_wait_queue;
275 #endif
276 int sk_wmem_queued;
277 int sk_forward_alloc;
278 gfp_t sk_allocation;
279 int sk_route_caps;
280 int sk_route_nocaps;
281 int sk_gso_type;
282 unsigned int sk_gso_max_size;
283 int sk_rcvlowat;
284 #ifdef CONFIG_RPS
285 __u32 sk_rxhash;
286 #endif
287 unsigned long sk_flags;
288 unsigned long sk_lingertime;
289 struct sk_buff_head sk_error_queue;
290 struct proto *sk_prot_creator;
291 rwlock_t sk_callback_lock;
292 int sk_err,
293 sk_err_soft;
294 atomic_t sk_drops;
295 unsigned short sk_ack_backlog;
296 unsigned short sk_max_ack_backlog;
297 __u32 sk_priority;
298 struct ucred sk_peercred;
299 long sk_rcvtimeo;
300 long sk_sndtimeo;
301 struct sk_filter *sk_filter;
302 void *sk_protinfo;
303 struct timer_list sk_timer;
304 ktime_t sk_stamp;
305 struct socket *sk_socket;
306 void *sk_user_data;
307 struct page *sk_sndmsg_page;
308 struct sk_buff *sk_send_head;
309 __u32 sk_sndmsg_off;
310 int sk_write_pending;
311 #ifdef CONFIG_SECURITY
312 void *sk_security;
313 #endif
314 __u32 sk_mark;
315 /* XXX 4 bytes hole on 64 bit */
316 void (*sk_state_change)(struct sock *sk);
317 void (*sk_data_ready)(struct sock *sk, int bytes);
318 void (*sk_write_space)(struct sock *sk);
319 void (*sk_error_report)(struct sock *sk);
320 int (*sk_backlog_rcv)(struct sock *sk,
321 struct sk_buff *skb);
322 void (*sk_destruct)(struct sock *sk);
323 };
324
325 /*
326 * Hashed lists helper routines
327 */
328 static inline struct sock *sk_entry(const struct hlist_node *node)
329 {
330 return hlist_entry(node, struct sock, sk_node);
331 }
332
333 static inline struct sock *__sk_head(const struct hlist_head *head)
334 {
335 return hlist_entry(head->first, struct sock, sk_node);
336 }
337
338 static inline struct sock *sk_head(const struct hlist_head *head)
339 {
340 return hlist_empty(head) ? NULL : __sk_head(head);
341 }
342
343 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
344 {
345 return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
346 }
347
348 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
349 {
350 return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
351 }
352
353 static inline struct sock *sk_next(const struct sock *sk)
354 {
355 return sk->sk_node.next ?
356 hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL;
357 }
358
359 static inline struct sock *sk_nulls_next(const struct sock *sk)
360 {
361 return (!is_a_nulls(sk->sk_nulls_node.next)) ?
362 hlist_nulls_entry(sk->sk_nulls_node.next,
363 struct sock, sk_nulls_node) :
364 NULL;
365 }
366
367 static inline int sk_unhashed(const struct sock *sk)
368 {
369 return hlist_unhashed(&sk->sk_node);
370 }
371
372 static inline int sk_hashed(const struct sock *sk)
373 {
374 return !sk_unhashed(sk);
375 }
376
377 static __inline__ void sk_node_init(struct hlist_node *node)
378 {
379 node->pprev = NULL;
380 }
381
382 static __inline__ void sk_nulls_node_init(struct hlist_nulls_node *node)
383 {
384 node->pprev = NULL;
385 }
386
387 static __inline__ void __sk_del_node(struct sock *sk)
388 {
389 __hlist_del(&sk->sk_node);
390 }
391
392 /* NB: equivalent to hlist_del_init_rcu */
393 static __inline__ int __sk_del_node_init(struct sock *sk)
394 {
395 if (sk_hashed(sk)) {
396 __sk_del_node(sk);
397 sk_node_init(&sk->sk_node);
398 return 1;
399 }
400 return 0;
401 }
402
403 /* Grab socket reference count. This operation is valid only
404 when sk is ALREADY grabbed f.e. it is found in hash table
405 or a list and the lookup is made under lock preventing hash table
406 modifications.
407 */
408
409 static inline void sock_hold(struct sock *sk)
410 {
411 atomic_inc(&sk->sk_refcnt);
412 }
413
414 /* Ungrab socket in the context, which assumes that socket refcnt
415 cannot hit zero, f.e. it is true in context of any socketcall.
416 */
417 static inline void __sock_put(struct sock *sk)
418 {
419 atomic_dec(&sk->sk_refcnt);
420 }
421
422 static __inline__ int sk_del_node_init(struct sock *sk)
423 {
424 int rc = __sk_del_node_init(sk);
425
426 if (rc) {
427 /* paranoid for a while -acme */
428 WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
429 __sock_put(sk);
430 }
431 return rc;
432 }
433 #define sk_del_node_init_rcu(sk) sk_del_node_init(sk)
434
435 static __inline__ int __sk_nulls_del_node_init_rcu(struct sock *sk)
436 {
437 if (sk_hashed(sk)) {
438 hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
439 return 1;
440 }
441 return 0;
442 }
443
444 static __inline__ int sk_nulls_del_node_init_rcu(struct sock *sk)
445 {
446 int rc = __sk_nulls_del_node_init_rcu(sk);
447
448 if (rc) {
449 /* paranoid for a while -acme */
450 WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
451 __sock_put(sk);
452 }
453 return rc;
454 }
455
456 static __inline__ void __sk_add_node(struct sock *sk, struct hlist_head *list)
457 {
458 hlist_add_head(&sk->sk_node, list);
459 }
460
461 static __inline__ void sk_add_node(struct sock *sk, struct hlist_head *list)
462 {
463 sock_hold(sk);
464 __sk_add_node(sk, list);
465 }
466
467 static __inline__ void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
468 {
469 sock_hold(sk);
470 hlist_add_head_rcu(&sk->sk_node, list);
471 }
472
473 static __inline__ void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
474 {
475 hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
476 }
477
478 static __inline__ void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
479 {
480 sock_hold(sk);
481 __sk_nulls_add_node_rcu(sk, list);
482 }
483
484 static __inline__ void __sk_del_bind_node(struct sock *sk)
485 {
486 __hlist_del(&sk->sk_bind_node);
487 }
488
489 static __inline__ void sk_add_bind_node(struct sock *sk,
490 struct hlist_head *list)
491 {
492 hlist_add_head(&sk->sk_bind_node, list);
493 }
494
495 #define sk_for_each(__sk, node, list) \
496 hlist_for_each_entry(__sk, node, list, sk_node)
497 #define sk_for_each_rcu(__sk, node, list) \
498 hlist_for_each_entry_rcu(__sk, node, list, sk_node)
499 #define sk_nulls_for_each(__sk, node, list) \
500 hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
501 #define sk_nulls_for_each_rcu(__sk, node, list) \
502 hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
503 #define sk_for_each_from(__sk, node) \
504 if (__sk && ({ node = &(__sk)->sk_node; 1; })) \
505 hlist_for_each_entry_from(__sk, node, sk_node)
506 #define sk_nulls_for_each_from(__sk, node) \
507 if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
508 hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
509 #define sk_for_each_continue(__sk, node) \
510 if (__sk && ({ node = &(__sk)->sk_node; 1; })) \
511 hlist_for_each_entry_continue(__sk, node, sk_node)
512 #define sk_for_each_safe(__sk, node, tmp, list) \
513 hlist_for_each_entry_safe(__sk, node, tmp, list, sk_node)
514 #define sk_for_each_bound(__sk, node, list) \
515 hlist_for_each_entry(__sk, node, list, sk_bind_node)
516
517 /* Sock flags */
518 enum sock_flags {
519 SOCK_DEAD,
520 SOCK_DONE,
521 SOCK_URGINLINE,
522 SOCK_KEEPOPEN,
523 SOCK_LINGER,
524 SOCK_DESTROY,
525 SOCK_BROADCAST,
526 SOCK_TIMESTAMP,
527 SOCK_ZAPPED,
528 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
529 SOCK_DBG, /* %SO_DEBUG setting */
530 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
531 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
532 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
533 SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
534 SOCK_TIMESTAMPING_TX_HARDWARE, /* %SOF_TIMESTAMPING_TX_HARDWARE */
535 SOCK_TIMESTAMPING_TX_SOFTWARE, /* %SOF_TIMESTAMPING_TX_SOFTWARE */
536 SOCK_TIMESTAMPING_RX_HARDWARE, /* %SOF_TIMESTAMPING_RX_HARDWARE */
537 SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */
538 SOCK_TIMESTAMPING_SOFTWARE, /* %SOF_TIMESTAMPING_SOFTWARE */
539 SOCK_TIMESTAMPING_RAW_HARDWARE, /* %SOF_TIMESTAMPING_RAW_HARDWARE */
540 SOCK_TIMESTAMPING_SYS_HARDWARE, /* %SOF_TIMESTAMPING_SYS_HARDWARE */
541 SOCK_FASYNC, /* fasync() active */
542 SOCK_RXQ_OVFL,
543 };
544
545 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
546 {
547 nsk->sk_flags = osk->sk_flags;
548 }
549
550 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
551 {
552 __set_bit(flag, &sk->sk_flags);
553 }
554
555 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
556 {
557 __clear_bit(flag, &sk->sk_flags);
558 }
559
560 static inline int sock_flag(struct sock *sk, enum sock_flags flag)
561 {
562 return test_bit(flag, &sk->sk_flags);
563 }
564
565 static inline void sk_acceptq_removed(struct sock *sk)
566 {
567 sk->sk_ack_backlog--;
568 }
569
570 static inline void sk_acceptq_added(struct sock *sk)
571 {
572 sk->sk_ack_backlog++;
573 }
574
575 static inline int sk_acceptq_is_full(struct sock *sk)
576 {
577 return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
578 }
579
580 /*
581 * Compute minimal free write space needed to queue new packets.
582 */
583 static inline int sk_stream_min_wspace(struct sock *sk)
584 {
585 return sk->sk_wmem_queued >> 1;
586 }
587
588 static inline int sk_stream_wspace(struct sock *sk)
589 {
590 return sk->sk_sndbuf - sk->sk_wmem_queued;
591 }
592
593 extern void sk_stream_write_space(struct sock *sk);
594
595 static inline int sk_stream_memory_free(struct sock *sk)
596 {
597 return sk->sk_wmem_queued < sk->sk_sndbuf;
598 }
599
600 /* OOB backlog add */
601 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
602 {
603 /* dont let skb dst not refcounted, we are going to leave rcu lock */
604 skb_dst_force(skb);
605
606 if (!sk->sk_backlog.tail)
607 sk->sk_backlog.head = skb;
608 else
609 sk->sk_backlog.tail->next = skb;
610
611 sk->sk_backlog.tail = skb;
612 skb->next = NULL;
613 }
614
615 /*
616 * Take into account size of receive queue and backlog queue
617 */
618 static inline bool sk_rcvqueues_full(const struct sock *sk, const struct sk_buff *skb)
619 {
620 unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
621
622 return qsize + skb->truesize > sk->sk_rcvbuf;
623 }
624
625 /* The per-socket spinlock must be held here. */
626 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb)
627 {
628 if (sk_rcvqueues_full(sk, skb))
629 return -ENOBUFS;
630
631 __sk_add_backlog(sk, skb);
632 sk->sk_backlog.len += skb->truesize;
633 return 0;
634 }
635
636 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
637 {
638 return sk->sk_backlog_rcv(sk, skb);
639 }
640
641 static inline void sock_rps_record_flow(const struct sock *sk)
642 {
643 #ifdef CONFIG_RPS
644 struct rps_sock_flow_table *sock_flow_table;
645
646 rcu_read_lock();
647 sock_flow_table = rcu_dereference(rps_sock_flow_table);
648 rps_record_sock_flow(sock_flow_table, sk->sk_rxhash);
649 rcu_read_unlock();
650 #endif
651 }
652
653 static inline void sock_rps_reset_flow(const struct sock *sk)
654 {
655 #ifdef CONFIG_RPS
656 struct rps_sock_flow_table *sock_flow_table;
657
658 rcu_read_lock();
659 sock_flow_table = rcu_dereference(rps_sock_flow_table);
660 rps_reset_sock_flow(sock_flow_table, sk->sk_rxhash);
661 rcu_read_unlock();
662 #endif
663 }
664
665 static inline void sock_rps_save_rxhash(struct sock *sk, u32 rxhash)
666 {
667 #ifdef CONFIG_RPS
668 if (unlikely(sk->sk_rxhash != rxhash)) {
669 sock_rps_reset_flow(sk);
670 sk->sk_rxhash = rxhash;
671 }
672 #endif
673 }
674
675 #define sk_wait_event(__sk, __timeo, __condition) \
676 ({ int __rc; \
677 release_sock(__sk); \
678 __rc = __condition; \
679 if (!__rc) { \
680 *(__timeo) = schedule_timeout(*(__timeo)); \
681 } \
682 lock_sock(__sk); \
683 __rc = __condition; \
684 __rc; \
685 })
686
687 extern int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
688 extern int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
689 extern void sk_stream_wait_close(struct sock *sk, long timeo_p);
690 extern int sk_stream_error(struct sock *sk, int flags, int err);
691 extern void sk_stream_kill_queues(struct sock *sk);
692
693 extern int sk_wait_data(struct sock *sk, long *timeo);
694
695 struct request_sock_ops;
696 struct timewait_sock_ops;
697 struct inet_hashinfo;
698 struct raw_hashinfo;
699
700 /* Networking protocol blocks we attach to sockets.
701 * socket layer -> transport layer interface
702 * transport -> network interface is defined by struct inet_proto
703 */
704 struct proto {
705 void (*close)(struct sock *sk,
706 long timeout);
707 int (*connect)(struct sock *sk,
708 struct sockaddr *uaddr,
709 int addr_len);
710 int (*disconnect)(struct sock *sk, int flags);
711
712 struct sock * (*accept) (struct sock *sk, int flags, int *err);
713
714 int (*ioctl)(struct sock *sk, int cmd,
715 unsigned long arg);
716 int (*init)(struct sock *sk);
717 void (*destroy)(struct sock *sk);
718 void (*shutdown)(struct sock *sk, int how);
719 int (*setsockopt)(struct sock *sk, int level,
720 int optname, char __user *optval,
721 unsigned int optlen);
722 int (*getsockopt)(struct sock *sk, int level,
723 int optname, char __user *optval,
724 int __user *option);
725 #ifdef CONFIG_COMPAT
726 int (*compat_setsockopt)(struct sock *sk,
727 int level,
728 int optname, char __user *optval,
729 unsigned int optlen);
730 int (*compat_getsockopt)(struct sock *sk,
731 int level,
732 int optname, char __user *optval,
733 int __user *option);
734 #endif
735 int (*sendmsg)(struct kiocb *iocb, struct sock *sk,
736 struct msghdr *msg, size_t len);
737 int (*recvmsg)(struct kiocb *iocb, struct sock *sk,
738 struct msghdr *msg,
739 size_t len, int noblock, int flags,
740 int *addr_len);
741 int (*sendpage)(struct sock *sk, struct page *page,
742 int offset, size_t size, int flags);
743 int (*bind)(struct sock *sk,
744 struct sockaddr *uaddr, int addr_len);
745
746 int (*backlog_rcv) (struct sock *sk,
747 struct sk_buff *skb);
748
749 /* Keeping track of sk's, looking them up, and port selection methods. */
750 void (*hash)(struct sock *sk);
751 void (*unhash)(struct sock *sk);
752 int (*get_port)(struct sock *sk, unsigned short snum);
753
754 /* Keeping track of sockets in use */
755 #ifdef CONFIG_PROC_FS
756 unsigned int inuse_idx;
757 #endif
758
759 /* Memory pressure */
760 void (*enter_memory_pressure)(struct sock *sk);
761 atomic_t *memory_allocated; /* Current allocated memory. */
762 struct percpu_counter *sockets_allocated; /* Current number of sockets. */
763 /*
764 * Pressure flag: try to collapse.
765 * Technical note: it is used by multiple contexts non atomically.
766 * All the __sk_mem_schedule() is of this nature: accounting
767 * is strict, actions are advisory and have some latency.
768 */
769 int *memory_pressure;
770 int *sysctl_mem;
771 int *sysctl_wmem;
772 int *sysctl_rmem;
773 int max_header;
774
775 struct kmem_cache *slab;
776 unsigned int obj_size;
777 int slab_flags;
778
779 struct percpu_counter *orphan_count;
780
781 struct request_sock_ops *rsk_prot;
782 struct timewait_sock_ops *twsk_prot;
783
784 union {
785 struct inet_hashinfo *hashinfo;
786 struct udp_table *udp_table;
787 struct raw_hashinfo *raw_hash;
788 } h;
789
790 struct module *owner;
791
792 char name[32];
793
794 struct list_head node;
795 #ifdef SOCK_REFCNT_DEBUG
796 atomic_t socks;
797 #endif
798 };
799
800 extern int proto_register(struct proto *prot, int alloc_slab);
801 extern void proto_unregister(struct proto *prot);
802
803 #ifdef SOCK_REFCNT_DEBUG
804 static inline void sk_refcnt_debug_inc(struct sock *sk)
805 {
806 atomic_inc(&sk->sk_prot->socks);
807 }
808
809 static inline void sk_refcnt_debug_dec(struct sock *sk)
810 {
811 atomic_dec(&sk->sk_prot->socks);
812 printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
813 sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
814 }
815
816 static inline void sk_refcnt_debug_release(const struct sock *sk)
817 {
818 if (atomic_read(&sk->sk_refcnt) != 1)
819 printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
820 sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt));
821 }
822 #else /* SOCK_REFCNT_DEBUG */
823 #define sk_refcnt_debug_inc(sk) do { } while (0)
824 #define sk_refcnt_debug_dec(sk) do { } while (0)
825 #define sk_refcnt_debug_release(sk) do { } while (0)
826 #endif /* SOCK_REFCNT_DEBUG */
827
828
829 #ifdef CONFIG_PROC_FS
830 /* Called with local bh disabled */
831 extern void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
832 extern int sock_prot_inuse_get(struct net *net, struct proto *proto);
833 #else
834 static void inline sock_prot_inuse_add(struct net *net, struct proto *prot,
835 int inc)
836 {
837 }
838 #endif
839
840
841 /* With per-bucket locks this operation is not-atomic, so that
842 * this version is not worse.
843 */
844 static inline void __sk_prot_rehash(struct sock *sk)
845 {
846 sk->sk_prot->unhash(sk);
847 sk->sk_prot->hash(sk);
848 }
849
850 /* About 10 seconds */
851 #define SOCK_DESTROY_TIME (10*HZ)
852
853 /* Sockets 0-1023 can't be bound to unless you are superuser */
854 #define PROT_SOCK 1024
855
856 #define SHUTDOWN_MASK 3
857 #define RCV_SHUTDOWN 1
858 #define SEND_SHUTDOWN 2
859
860 #define SOCK_SNDBUF_LOCK 1
861 #define SOCK_RCVBUF_LOCK 2
862 #define SOCK_BINDADDR_LOCK 4
863 #define SOCK_BINDPORT_LOCK 8
864
865 /* sock_iocb: used to kick off async processing of socket ios */
866 struct sock_iocb {
867 struct list_head list;
868
869 int flags;
870 int size;
871 struct socket *sock;
872 struct sock *sk;
873 struct scm_cookie *scm;
874 struct msghdr *msg, async_msg;
875 struct kiocb *kiocb;
876 };
877
878 static inline struct sock_iocb *kiocb_to_siocb(struct kiocb *iocb)
879 {
880 return (struct sock_iocb *)iocb->private;
881 }
882
883 static inline struct kiocb *siocb_to_kiocb(struct sock_iocb *si)
884 {
885 return si->kiocb;
886 }
887
888 struct socket_alloc {
889 struct socket socket;
890 struct inode vfs_inode;
891 };
892
893 static inline struct socket *SOCKET_I(struct inode *inode)
894 {
895 return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
896 }
897
898 static inline struct inode *SOCK_INODE(struct socket *socket)
899 {
900 return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
901 }
902
903 /*
904 * Functions for memory accounting
905 */
906 extern int __sk_mem_schedule(struct sock *sk, int size, int kind);
907 extern void __sk_mem_reclaim(struct sock *sk);
908
909 #define SK_MEM_QUANTUM ((int)PAGE_SIZE)
910 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
911 #define SK_MEM_SEND 0
912 #define SK_MEM_RECV 1
913
914 static inline int sk_mem_pages(int amt)
915 {
916 return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
917 }
918
919 static inline int sk_has_account(struct sock *sk)
920 {
921 /* return true if protocol supports memory accounting */
922 return !!sk->sk_prot->memory_allocated;
923 }
924
925 static inline int sk_wmem_schedule(struct sock *sk, int size)
926 {
927 if (!sk_has_account(sk))
928 return 1;
929 return size <= sk->sk_forward_alloc ||
930 __sk_mem_schedule(sk, size, SK_MEM_SEND);
931 }
932
933 static inline int sk_rmem_schedule(struct sock *sk, int size)
934 {
935 if (!sk_has_account(sk))
936 return 1;
937 return size <= sk->sk_forward_alloc ||
938 __sk_mem_schedule(sk, size, SK_MEM_RECV);
939 }
940
941 static inline void sk_mem_reclaim(struct sock *sk)
942 {
943 if (!sk_has_account(sk))
944 return;
945 if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
946 __sk_mem_reclaim(sk);
947 }
948
949 static inline void sk_mem_reclaim_partial(struct sock *sk)
950 {
951 if (!sk_has_account(sk))
952 return;
953 if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
954 __sk_mem_reclaim(sk);
955 }
956
957 static inline void sk_mem_charge(struct sock *sk, int size)
958 {
959 if (!sk_has_account(sk))
960 return;
961 sk->sk_forward_alloc -= size;
962 }
963
964 static inline void sk_mem_uncharge(struct sock *sk, int size)
965 {
966 if (!sk_has_account(sk))
967 return;
968 sk->sk_forward_alloc += size;
969 }
970
971 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
972 {
973 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
974 sk->sk_wmem_queued -= skb->truesize;
975 sk_mem_uncharge(sk, skb->truesize);
976 __kfree_skb(skb);
977 }
978
979 /* Used by processes to "lock" a socket state, so that
980 * interrupts and bottom half handlers won't change it
981 * from under us. It essentially blocks any incoming
982 * packets, so that we won't get any new data or any
983 * packets that change the state of the socket.
984 *
985 * While locked, BH processing will add new packets to
986 * the backlog queue. This queue is processed by the
987 * owner of the socket lock right before it is released.
988 *
989 * Since ~2.3.5 it is also exclusive sleep lock serializing
990 * accesses from user process context.
991 */
992 #define sock_owned_by_user(sk) ((sk)->sk_lock.owned)
993
994 /*
995 * Macro so as to not evaluate some arguments when
996 * lockdep is not enabled.
997 *
998 * Mark both the sk_lock and the sk_lock.slock as a
999 * per-address-family lock class.
1000 */
1001 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) \
1002 do { \
1003 sk->sk_lock.owned = 0; \
1004 init_waitqueue_head(&sk->sk_lock.wq); \
1005 spin_lock_init(&(sk)->sk_lock.slock); \
1006 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \
1007 sizeof((sk)->sk_lock)); \
1008 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \
1009 (skey), (sname)); \
1010 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \
1011 } while (0)
1012
1013 extern void lock_sock_nested(struct sock *sk, int subclass);
1014
1015 static inline void lock_sock(struct sock *sk)
1016 {
1017 lock_sock_nested(sk, 0);
1018 }
1019
1020 extern void release_sock(struct sock *sk);
1021
1022 /* BH context may only use the following locking interface. */
1023 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock))
1024 #define bh_lock_sock_nested(__sk) \
1025 spin_lock_nested(&((__sk)->sk_lock.slock), \
1026 SINGLE_DEPTH_NESTING)
1027 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock))
1028
1029 static inline void lock_sock_bh(struct sock *sk)
1030 {
1031 spin_lock_bh(&sk->sk_lock.slock);
1032 }
1033
1034 static inline void unlock_sock_bh(struct sock *sk)
1035 {
1036 spin_unlock_bh(&sk->sk_lock.slock);
1037 }
1038
1039 extern struct sock *sk_alloc(struct net *net, int family,
1040 gfp_t priority,
1041 struct proto *prot);
1042 extern void sk_free(struct sock *sk);
1043 extern void sk_release_kernel(struct sock *sk);
1044 extern struct sock *sk_clone(const struct sock *sk,
1045 const gfp_t priority);
1046
1047 extern struct sk_buff *sock_wmalloc(struct sock *sk,
1048 unsigned long size, int force,
1049 gfp_t priority);
1050 extern struct sk_buff *sock_rmalloc(struct sock *sk,
1051 unsigned long size, int force,
1052 gfp_t priority);
1053 extern void sock_wfree(struct sk_buff *skb);
1054 extern void sock_rfree(struct sk_buff *skb);
1055
1056 extern int sock_setsockopt(struct socket *sock, int level,
1057 int op, char __user *optval,
1058 unsigned int optlen);
1059
1060 extern int sock_getsockopt(struct socket *sock, int level,
1061 int op, char __user *optval,
1062 int __user *optlen);
1063 extern struct sk_buff *sock_alloc_send_skb(struct sock *sk,
1064 unsigned long size,
1065 int noblock,
1066 int *errcode);
1067 extern struct sk_buff *sock_alloc_send_pskb(struct sock *sk,
1068 unsigned long header_len,
1069 unsigned long data_len,
1070 int noblock,
1071 int *errcode);
1072 extern void *sock_kmalloc(struct sock *sk, int size,
1073 gfp_t priority);
1074 extern void sock_kfree_s(struct sock *sk, void *mem, int size);
1075 extern void sk_send_sigurg(struct sock *sk);
1076
1077 /*
1078 * Functions to fill in entries in struct proto_ops when a protocol
1079 * does not implement a particular function.
1080 */
1081 extern int sock_no_bind(struct socket *,
1082 struct sockaddr *, int);
1083 extern int sock_no_connect(struct socket *,
1084 struct sockaddr *, int, int);
1085 extern int sock_no_socketpair(struct socket *,
1086 struct socket *);
1087 extern int sock_no_accept(struct socket *,
1088 struct socket *, int);
1089 extern int sock_no_getname(struct socket *,
1090 struct sockaddr *, int *, int);
1091 extern unsigned int sock_no_poll(struct file *, struct socket *,
1092 struct poll_table_struct *);
1093 extern int sock_no_ioctl(struct socket *, unsigned int,
1094 unsigned long);
1095 extern int sock_no_listen(struct socket *, int);
1096 extern int sock_no_shutdown(struct socket *, int);
1097 extern int sock_no_getsockopt(struct socket *, int , int,
1098 char __user *, int __user *);
1099 extern int sock_no_setsockopt(struct socket *, int, int,
1100 char __user *, unsigned int);
1101 extern int sock_no_sendmsg(struct kiocb *, struct socket *,
1102 struct msghdr *, size_t);
1103 extern int sock_no_recvmsg(struct kiocb *, struct socket *,
1104 struct msghdr *, size_t, int);
1105 extern int sock_no_mmap(struct file *file,
1106 struct socket *sock,
1107 struct vm_area_struct *vma);
1108 extern ssize_t sock_no_sendpage(struct socket *sock,
1109 struct page *page,
1110 int offset, size_t size,
1111 int flags);
1112
1113 /*
1114 * Functions to fill in entries in struct proto_ops when a protocol
1115 * uses the inet style.
1116 */
1117 extern int sock_common_getsockopt(struct socket *sock, int level, int optname,
1118 char __user *optval, int __user *optlen);
1119 extern int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
1120 struct msghdr *msg, size_t size, int flags);
1121 extern int sock_common_setsockopt(struct socket *sock, int level, int optname,
1122 char __user *optval, unsigned int optlen);
1123 extern int compat_sock_common_getsockopt(struct socket *sock, int level,
1124 int optname, char __user *optval, int __user *optlen);
1125 extern int compat_sock_common_setsockopt(struct socket *sock, int level,
1126 int optname, char __user *optval, unsigned int optlen);
1127
1128 extern void sk_common_release(struct sock *sk);
1129
1130 /*
1131 * Default socket callbacks and setup code
1132 */
1133
1134 /* Initialise core socket variables */
1135 extern void sock_init_data(struct socket *sock, struct sock *sk);
1136
1137 /**
1138 * sk_filter_release - release a socket filter
1139 * @fp: filter to remove
1140 *
1141 * Remove a filter from a socket and release its resources.
1142 */
1143
1144 static inline void sk_filter_release(struct sk_filter *fp)
1145 {
1146 if (atomic_dec_and_test(&fp->refcnt))
1147 kfree(fp);
1148 }
1149
1150 static inline void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1151 {
1152 unsigned int size = sk_filter_len(fp);
1153
1154 atomic_sub(size, &sk->sk_omem_alloc);
1155 sk_filter_release(fp);
1156 }
1157
1158 static inline void sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1159 {
1160 atomic_inc(&fp->refcnt);
1161 atomic_add(sk_filter_len(fp), &sk->sk_omem_alloc);
1162 }
1163
1164 /*
1165 * Socket reference counting postulates.
1166 *
1167 * * Each user of socket SHOULD hold a reference count.
1168 * * Each access point to socket (an hash table bucket, reference from a list,
1169 * running timer, skb in flight MUST hold a reference count.
1170 * * When reference count hits 0, it means it will never increase back.
1171 * * When reference count hits 0, it means that no references from
1172 * outside exist to this socket and current process on current CPU
1173 * is last user and may/should destroy this socket.
1174 * * sk_free is called from any context: process, BH, IRQ. When
1175 * it is called, socket has no references from outside -> sk_free
1176 * may release descendant resources allocated by the socket, but
1177 * to the time when it is called, socket is NOT referenced by any
1178 * hash tables, lists etc.
1179 * * Packets, delivered from outside (from network or from another process)
1180 * and enqueued on receive/error queues SHOULD NOT grab reference count,
1181 * when they sit in queue. Otherwise, packets will leak to hole, when
1182 * socket is looked up by one cpu and unhasing is made by another CPU.
1183 * It is true for udp/raw, netlink (leak to receive and error queues), tcp
1184 * (leak to backlog). Packet socket does all the processing inside
1185 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1186 * use separate SMP lock, so that they are prone too.
1187 */
1188
1189 /* Ungrab socket and destroy it, if it was the last reference. */
1190 static inline void sock_put(struct sock *sk)
1191 {
1192 if (atomic_dec_and_test(&sk->sk_refcnt))
1193 sk_free(sk);
1194 }
1195
1196 extern int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1197 const int nested);
1198
1199 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1200 {
1201 sk->sk_tx_queue_mapping = tx_queue;
1202 }
1203
1204 static inline void sk_tx_queue_clear(struct sock *sk)
1205 {
1206 sk->sk_tx_queue_mapping = -1;
1207 }
1208
1209 static inline int sk_tx_queue_get(const struct sock *sk)
1210 {
1211 return sk->sk_tx_queue_mapping;
1212 }
1213
1214 static inline bool sk_tx_queue_recorded(const struct sock *sk)
1215 {
1216 return (sk && sk->sk_tx_queue_mapping >= 0);
1217 }
1218
1219 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1220 {
1221 sk_tx_queue_clear(sk);
1222 sk->sk_socket = sock;
1223 }
1224
1225 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1226 {
1227 return &sk->sk_wq->wait;
1228 }
1229 /* Detach socket from process context.
1230 * Announce socket dead, detach it from wait queue and inode.
1231 * Note that parent inode held reference count on this struct sock,
1232 * we do not release it in this function, because protocol
1233 * probably wants some additional cleanups or even continuing
1234 * to work with this socket (TCP).
1235 */
1236 static inline void sock_orphan(struct sock *sk)
1237 {
1238 write_lock_bh(&sk->sk_callback_lock);
1239 sock_set_flag(sk, SOCK_DEAD);
1240 sk_set_socket(sk, NULL);
1241 sk->sk_wq = NULL;
1242 write_unlock_bh(&sk->sk_callback_lock);
1243 }
1244
1245 static inline void sock_graft(struct sock *sk, struct socket *parent)
1246 {
1247 write_lock_bh(&sk->sk_callback_lock);
1248 rcu_assign_pointer(sk->sk_wq, parent->wq);
1249 parent->sk = sk;
1250 sk_set_socket(sk, parent);
1251 security_sock_graft(sk, parent);
1252 write_unlock_bh(&sk->sk_callback_lock);
1253 }
1254
1255 extern int sock_i_uid(struct sock *sk);
1256 extern unsigned long sock_i_ino(struct sock *sk);
1257
1258 static inline struct dst_entry *
1259 __sk_dst_get(struct sock *sk)
1260 {
1261 return rcu_dereference_check(sk->sk_dst_cache, rcu_read_lock_held() ||
1262 sock_owned_by_user(sk) ||
1263 lockdep_is_held(&sk->sk_lock.slock));
1264 }
1265
1266 static inline struct dst_entry *
1267 sk_dst_get(struct sock *sk)
1268 {
1269 struct dst_entry *dst;
1270
1271 rcu_read_lock();
1272 dst = rcu_dereference(sk->sk_dst_cache);
1273 if (dst)
1274 dst_hold(dst);
1275 rcu_read_unlock();
1276 return dst;
1277 }
1278
1279 extern void sk_reset_txq(struct sock *sk);
1280
1281 static inline void dst_negative_advice(struct sock *sk)
1282 {
1283 struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1284
1285 if (dst && dst->ops->negative_advice) {
1286 ndst = dst->ops->negative_advice(dst);
1287
1288 if (ndst != dst) {
1289 rcu_assign_pointer(sk->sk_dst_cache, ndst);
1290 sk_reset_txq(sk);
1291 }
1292 }
1293 }
1294
1295 static inline void
1296 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
1297 {
1298 struct dst_entry *old_dst;
1299
1300 sk_tx_queue_clear(sk);
1301 /*
1302 * This can be called while sk is owned by the caller only,
1303 * with no state that can be checked in a rcu_dereference_check() cond
1304 */
1305 old_dst = rcu_dereference_raw(sk->sk_dst_cache);
1306 rcu_assign_pointer(sk->sk_dst_cache, dst);
1307 dst_release(old_dst);
1308 }
1309
1310 static inline void
1311 sk_dst_set(struct sock *sk, struct dst_entry *dst)
1312 {
1313 spin_lock(&sk->sk_dst_lock);
1314 __sk_dst_set(sk, dst);
1315 spin_unlock(&sk->sk_dst_lock);
1316 }
1317
1318 static inline void
1319 __sk_dst_reset(struct sock *sk)
1320 {
1321 __sk_dst_set(sk, NULL);
1322 }
1323
1324 static inline void
1325 sk_dst_reset(struct sock *sk)
1326 {
1327 spin_lock(&sk->sk_dst_lock);
1328 __sk_dst_reset(sk);
1329 spin_unlock(&sk->sk_dst_lock);
1330 }
1331
1332 extern struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1333
1334 extern struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1335
1336 static inline int sk_can_gso(const struct sock *sk)
1337 {
1338 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1339 }
1340
1341 extern void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
1342
1343 static inline void sk_nocaps_add(struct sock *sk, int flags)
1344 {
1345 sk->sk_route_nocaps |= flags;
1346 sk->sk_route_caps &= ~flags;
1347 }
1348
1349 static inline int skb_copy_to_page(struct sock *sk, char __user *from,
1350 struct sk_buff *skb, struct page *page,
1351 int off, int copy)
1352 {
1353 if (skb->ip_summed == CHECKSUM_NONE) {
1354 int err = 0;
1355 __wsum csum = csum_and_copy_from_user(from,
1356 page_address(page) + off,
1357 copy, 0, &err);
1358 if (err)
1359 return err;
1360 skb->csum = csum_block_add(skb->csum, csum, skb->len);
1361 } else if (copy_from_user(page_address(page) + off, from, copy))
1362 return -EFAULT;
1363
1364 skb->len += copy;
1365 skb->data_len += copy;
1366 skb->truesize += copy;
1367 sk->sk_wmem_queued += copy;
1368 sk_mem_charge(sk, copy);
1369 return 0;
1370 }
1371
1372 /**
1373 * sk_wmem_alloc_get - returns write allocations
1374 * @sk: socket
1375 *
1376 * Returns sk_wmem_alloc minus initial offset of one
1377 */
1378 static inline int sk_wmem_alloc_get(const struct sock *sk)
1379 {
1380 return atomic_read(&sk->sk_wmem_alloc) - 1;
1381 }
1382
1383 /**
1384 * sk_rmem_alloc_get - returns read allocations
1385 * @sk: socket
1386 *
1387 * Returns sk_rmem_alloc
1388 */
1389 static inline int sk_rmem_alloc_get(const struct sock *sk)
1390 {
1391 return atomic_read(&sk->sk_rmem_alloc);
1392 }
1393
1394 /**
1395 * sk_has_allocations - check if allocations are outstanding
1396 * @sk: socket
1397 *
1398 * Returns true if socket has write or read allocations
1399 */
1400 static inline int sk_has_allocations(const struct sock *sk)
1401 {
1402 return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
1403 }
1404
1405 /**
1406 * wq_has_sleeper - check if there are any waiting processes
1407 * @sk: struct socket_wq
1408 *
1409 * Returns true if socket_wq has waiting processes
1410 *
1411 * The purpose of the wq_has_sleeper and sock_poll_wait is to wrap the memory
1412 * barrier call. They were added due to the race found within the tcp code.
1413 *
1414 * Consider following tcp code paths:
1415 *
1416 * CPU1 CPU2
1417 *
1418 * sys_select receive packet
1419 * ... ...
1420 * __add_wait_queue update tp->rcv_nxt
1421 * ... ...
1422 * tp->rcv_nxt check sock_def_readable
1423 * ... {
1424 * schedule rcu_read_lock();
1425 * wq = rcu_dereference(sk->sk_wq);
1426 * if (wq && waitqueue_active(&wq->wait))
1427 * wake_up_interruptible(&wq->wait)
1428 * ...
1429 * }
1430 *
1431 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
1432 * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1
1433 * could then endup calling schedule and sleep forever if there are no more
1434 * data on the socket.
1435 *
1436 */
1437 static inline bool wq_has_sleeper(struct socket_wq *wq)
1438 {
1439
1440 /*
1441 * We need to be sure we are in sync with the
1442 * add_wait_queue modifications to the wait queue.
1443 *
1444 * This memory barrier is paired in the sock_poll_wait.
1445 */
1446 smp_mb();
1447 return wq && waitqueue_active(&wq->wait);
1448 }
1449
1450 /**
1451 * sock_poll_wait - place memory barrier behind the poll_wait call.
1452 * @filp: file
1453 * @wait_address: socket wait queue
1454 * @p: poll_table
1455 *
1456 * See the comments in the wq_has_sleeper function.
1457 */
1458 static inline void sock_poll_wait(struct file *filp,
1459 wait_queue_head_t *wait_address, poll_table *p)
1460 {
1461 if (p && wait_address) {
1462 poll_wait(filp, wait_address, p);
1463 /*
1464 * We need to be sure we are in sync with the
1465 * socket flags modification.
1466 *
1467 * This memory barrier is paired in the wq_has_sleeper.
1468 */
1469 smp_mb();
1470 }
1471 }
1472
1473 /*
1474 * Queue a received datagram if it will fit. Stream and sequenced
1475 * protocols can't normally use this as they need to fit buffers in
1476 * and play with them.
1477 *
1478 * Inlined as it's very short and called for pretty much every
1479 * packet ever received.
1480 */
1481
1482 static inline void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
1483 {
1484 skb_orphan(skb);
1485 skb->sk = sk;
1486 skb->destructor = sock_wfree;
1487 /*
1488 * We used to take a refcount on sk, but following operation
1489 * is enough to guarantee sk_free() wont free this sock until
1490 * all in-flight packets are completed
1491 */
1492 atomic_add(skb->truesize, &sk->sk_wmem_alloc);
1493 }
1494
1495 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
1496 {
1497 skb_orphan(skb);
1498 skb->sk = sk;
1499 skb->destructor = sock_rfree;
1500 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
1501 sk_mem_charge(sk, skb->truesize);
1502 }
1503
1504 extern void sk_reset_timer(struct sock *sk, struct timer_list* timer,
1505 unsigned long expires);
1506
1507 extern void sk_stop_timer(struct sock *sk, struct timer_list* timer);
1508
1509 extern int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
1510
1511 static inline int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
1512 {
1513 /* Cast skb->rcvbuf to unsigned... It's pointless, but reduces
1514 number of warnings when compiling with -W --ANK
1515 */
1516 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
1517 (unsigned)sk->sk_rcvbuf)
1518 return -ENOMEM;
1519 skb_set_owner_r(skb, sk);
1520 skb_queue_tail(&sk->sk_error_queue, skb);
1521 if (!sock_flag(sk, SOCK_DEAD))
1522 sk->sk_data_ready(sk, skb->len);
1523 return 0;
1524 }
1525
1526 /*
1527 * Recover an error report and clear atomically
1528 */
1529
1530 static inline int sock_error(struct sock *sk)
1531 {
1532 int err;
1533 if (likely(!sk->sk_err))
1534 return 0;
1535 err = xchg(&sk->sk_err, 0);
1536 return -err;
1537 }
1538
1539 static inline unsigned long sock_wspace(struct sock *sk)
1540 {
1541 int amt = 0;
1542
1543 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
1544 amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
1545 if (amt < 0)
1546 amt = 0;
1547 }
1548 return amt;
1549 }
1550
1551 static inline void sk_wake_async(struct sock *sk, int how, int band)
1552 {
1553 if (sock_flag(sk, SOCK_FASYNC))
1554 sock_wake_async(sk->sk_socket, how, band);
1555 }
1556
1557 #define SOCK_MIN_SNDBUF 2048
1558 #define SOCK_MIN_RCVBUF 256
1559
1560 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
1561 {
1562 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
1563 sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
1564 sk->sk_sndbuf = max(sk->sk_sndbuf, SOCK_MIN_SNDBUF);
1565 }
1566 }
1567
1568 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp);
1569
1570 static inline struct page *sk_stream_alloc_page(struct sock *sk)
1571 {
1572 struct page *page = NULL;
1573
1574 page = alloc_pages(sk->sk_allocation, 0);
1575 if (!page) {
1576 sk->sk_prot->enter_memory_pressure(sk);
1577 sk_stream_moderate_sndbuf(sk);
1578 }
1579 return page;
1580 }
1581
1582 /*
1583 * Default write policy as shown to user space via poll/select/SIGIO
1584 */
1585 static inline int sock_writeable(const struct sock *sk)
1586 {
1587 return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1);
1588 }
1589
1590 static inline gfp_t gfp_any(void)
1591 {
1592 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
1593 }
1594
1595 static inline long sock_rcvtimeo(const struct sock *sk, int noblock)
1596 {
1597 return noblock ? 0 : sk->sk_rcvtimeo;
1598 }
1599
1600 static inline long sock_sndtimeo(const struct sock *sk, int noblock)
1601 {
1602 return noblock ? 0 : sk->sk_sndtimeo;
1603 }
1604
1605 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
1606 {
1607 return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
1608 }
1609
1610 /* Alas, with timeout socket operations are not restartable.
1611 * Compare this to poll().
1612 */
1613 static inline int sock_intr_errno(long timeo)
1614 {
1615 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
1616 }
1617
1618 extern void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
1619 struct sk_buff *skb);
1620
1621 static __inline__ void
1622 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
1623 {
1624 ktime_t kt = skb->tstamp;
1625 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
1626
1627 /*
1628 * generate control messages if
1629 * - receive time stamping in software requested (SOCK_RCVTSTAMP
1630 * or SOCK_TIMESTAMPING_RX_SOFTWARE)
1631 * - software time stamp available and wanted
1632 * (SOCK_TIMESTAMPING_SOFTWARE)
1633 * - hardware time stamps available and wanted
1634 * (SOCK_TIMESTAMPING_SYS_HARDWARE or
1635 * SOCK_TIMESTAMPING_RAW_HARDWARE)
1636 */
1637 if (sock_flag(sk, SOCK_RCVTSTAMP) ||
1638 sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE) ||
1639 (kt.tv64 && sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) ||
1640 (hwtstamps->hwtstamp.tv64 &&
1641 sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE)) ||
1642 (hwtstamps->syststamp.tv64 &&
1643 sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE)))
1644 __sock_recv_timestamp(msg, sk, skb);
1645 else
1646 sk->sk_stamp = kt;
1647 }
1648
1649 extern void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
1650 struct sk_buff *skb);
1651
1652 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
1653 struct sk_buff *skb)
1654 {
1655 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL) | \
1656 (1UL << SOCK_RCVTSTAMP) | \
1657 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE) | \
1658 (1UL << SOCK_TIMESTAMPING_SOFTWARE) | \
1659 (1UL << SOCK_TIMESTAMPING_RAW_HARDWARE) | \
1660 (1UL << SOCK_TIMESTAMPING_SYS_HARDWARE))
1661
1662 if (sk->sk_flags & FLAGS_TS_OR_DROPS)
1663 __sock_recv_ts_and_drops(msg, sk, skb);
1664 else
1665 sk->sk_stamp = skb->tstamp;
1666 }
1667
1668 /**
1669 * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
1670 * @msg: outgoing packet
1671 * @sk: socket sending this packet
1672 * @shtx: filled with instructions for time stamping
1673 *
1674 * Currently only depends on SOCK_TIMESTAMPING* flags. Returns error code if
1675 * parameters are invalid.
1676 */
1677 extern int sock_tx_timestamp(struct msghdr *msg,
1678 struct sock *sk,
1679 union skb_shared_tx *shtx);
1680
1681
1682 /**
1683 * sk_eat_skb - Release a skb if it is no longer needed
1684 * @sk: socket to eat this skb from
1685 * @skb: socket buffer to eat
1686 * @copied_early: flag indicating whether DMA operations copied this data early
1687 *
1688 * This routine must be called with interrupts disabled or with the socket
1689 * locked so that the sk_buff queue operation is ok.
1690 */
1691 #ifdef CONFIG_NET_DMA
1692 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, int copied_early)
1693 {
1694 __skb_unlink(skb, &sk->sk_receive_queue);
1695 if (!copied_early)
1696 __kfree_skb(skb);
1697 else
1698 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
1699 }
1700 #else
1701 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, int copied_early)
1702 {
1703 __skb_unlink(skb, &sk->sk_receive_queue);
1704 __kfree_skb(skb);
1705 }
1706 #endif
1707
1708 static inline
1709 struct net *sock_net(const struct sock *sk)
1710 {
1711 #ifdef CONFIG_NET_NS
1712 return sk->sk_net;
1713 #else
1714 return &init_net;
1715 #endif
1716 }
1717
1718 static inline
1719 void sock_net_set(struct sock *sk, struct net *net)
1720 {
1721 #ifdef CONFIG_NET_NS
1722 sk->sk_net = net;
1723 #endif
1724 }
1725
1726 /*
1727 * Kernel sockets, f.e. rtnl or icmp_socket, are a part of a namespace.
1728 * They should not hold a referrence to a namespace in order to allow
1729 * to stop it.
1730 * Sockets after sk_change_net should be released using sk_release_kernel
1731 */
1732 static inline void sk_change_net(struct sock *sk, struct net *net)
1733 {
1734 put_net(sock_net(sk));
1735 sock_net_set(sk, hold_net(net));
1736 }
1737
1738 static inline struct sock *skb_steal_sock(struct sk_buff *skb)
1739 {
1740 if (unlikely(skb->sk)) {
1741 struct sock *sk = skb->sk;
1742
1743 skb->destructor = NULL;
1744 skb->sk = NULL;
1745 return sk;
1746 }
1747 return NULL;
1748 }
1749
1750 extern void sock_enable_timestamp(struct sock *sk, int flag);
1751 extern int sock_get_timestamp(struct sock *, struct timeval __user *);
1752 extern int sock_get_timestampns(struct sock *, struct timespec __user *);
1753
1754 /*
1755 * Enable debug/info messages
1756 */
1757 extern int net_msg_warn;
1758 #define NETDEBUG(fmt, args...) \
1759 do { if (net_msg_warn) printk(fmt,##args); } while (0)
1760
1761 #define LIMIT_NETDEBUG(fmt, args...) \
1762 do { if (net_msg_warn && net_ratelimit()) printk(fmt,##args); } while(0)
1763
1764 extern __u32 sysctl_wmem_max;
1765 extern __u32 sysctl_rmem_max;
1766
1767 extern void sk_init(void);
1768
1769 extern int sysctl_optmem_max;
1770
1771 extern __u32 sysctl_wmem_default;
1772 extern __u32 sysctl_rmem_default;
1773
1774 #endif /* _SOCK_H */