]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - include/net/sock.h
ASoC: cs4271: configure reset GPIO as output
[mirror_ubuntu-eoan-kernel.git] / include / net / sock.h
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Definitions for the AF_INET socket handler.
7 *
8 * Version: @(#)sock.h 1.0.4 05/13/93
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche <flla@stud.uni-sb.de>
14 *
15 * Fixes:
16 * Alan Cox : Volatiles in skbuff pointers. See
17 * skbuff comments. May be overdone,
18 * better to prove they can be removed
19 * than the reverse.
20 * Alan Cox : Added a zapped field for tcp to note
21 * a socket is reset and must stay shut up
22 * Alan Cox : New fields for options
23 * Pauline Middelink : identd support
24 * Alan Cox : Eliminate low level recv/recvfrom
25 * David S. Miller : New socket lookup architecture.
26 * Steve Whitehouse: Default routines for sock_ops
27 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made
28 * protinfo be just a void pointer, as the
29 * protocol specific parts were moved to
30 * respective headers and ipv4/v6, etc now
31 * use private slabcaches for its socks
32 * Pedro Hortas : New flags field for socket options
33 *
34 *
35 * This program is free software; you can redistribute it and/or
36 * modify it under the terms of the GNU General Public License
37 * as published by the Free Software Foundation; either version
38 * 2 of the License, or (at your option) any later version.
39 */
40 #ifndef _SOCK_H
41 #define _SOCK_H
42
43 #include <linux/hardirq.h>
44 #include <linux/kernel.h>
45 #include <linux/list.h>
46 #include <linux/list_nulls.h>
47 #include <linux/timer.h>
48 #include <linux/cache.h>
49 #include <linux/bitops.h>
50 #include <linux/lockdep.h>
51 #include <linux/netdevice.h>
52 #include <linux/skbuff.h> /* struct sk_buff */
53 #include <linux/mm.h>
54 #include <linux/security.h>
55 #include <linux/slab.h>
56 #include <linux/uaccess.h>
57 #include <linux/page_counter.h>
58 #include <linux/memcontrol.h>
59 #include <linux/static_key.h>
60 #include <linux/sched.h>
61 #include <linux/wait.h>
62 #include <linux/cgroup-defs.h>
63
64 #include <linux/filter.h>
65 #include <linux/rculist_nulls.h>
66 #include <linux/poll.h>
67
68 #include <linux/atomic.h>
69 #include <net/dst.h>
70 #include <net/checksum.h>
71 #include <net/tcp_states.h>
72 #include <linux/net_tstamp.h>
73 #include <net/smc.h>
74
75 /*
76 * This structure really needs to be cleaned up.
77 * Most of it is for TCP, and not used by any of
78 * the other protocols.
79 */
80
81 /* Define this to get the SOCK_DBG debugging facility. */
82 #define SOCK_DEBUGGING
83 #ifdef SOCK_DEBUGGING
84 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
85 printk(KERN_DEBUG msg); } while (0)
86 #else
87 /* Validate arguments and do nothing */
88 static inline __printf(2, 3)
89 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
90 {
91 }
92 #endif
93
94 /* This is the per-socket lock. The spinlock provides a synchronization
95 * between user contexts and software interrupt processing, whereas the
96 * mini-semaphore synchronizes multiple users amongst themselves.
97 */
98 typedef struct {
99 spinlock_t slock;
100 int owned;
101 wait_queue_head_t wq;
102 /*
103 * We express the mutex-alike socket_lock semantics
104 * to the lock validator by explicitly managing
105 * the slock as a lock variant (in addition to
106 * the slock itself):
107 */
108 #ifdef CONFIG_DEBUG_LOCK_ALLOC
109 struct lockdep_map dep_map;
110 #endif
111 } socket_lock_t;
112
113 struct sock;
114 struct proto;
115 struct net;
116
117 typedef __u32 __bitwise __portpair;
118 typedef __u64 __bitwise __addrpair;
119
120 /**
121 * struct sock_common - minimal network layer representation of sockets
122 * @skc_daddr: Foreign IPv4 addr
123 * @skc_rcv_saddr: Bound local IPv4 addr
124 * @skc_hash: hash value used with various protocol lookup tables
125 * @skc_u16hashes: two u16 hash values used by UDP lookup tables
126 * @skc_dport: placeholder for inet_dport/tw_dport
127 * @skc_num: placeholder for inet_num/tw_num
128 * @skc_family: network address family
129 * @skc_state: Connection state
130 * @skc_reuse: %SO_REUSEADDR setting
131 * @skc_reuseport: %SO_REUSEPORT setting
132 * @skc_bound_dev_if: bound device index if != 0
133 * @skc_bind_node: bind hash linkage for various protocol lookup tables
134 * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
135 * @skc_prot: protocol handlers inside a network family
136 * @skc_net: reference to the network namespace of this socket
137 * @skc_node: main hash linkage for various protocol lookup tables
138 * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
139 * @skc_tx_queue_mapping: tx queue number for this connection
140 * @skc_flags: place holder for sk_flags
141 * %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
142 * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
143 * @skc_incoming_cpu: record/match cpu processing incoming packets
144 * @skc_refcnt: reference count
145 *
146 * This is the minimal network layer representation of sockets, the header
147 * for struct sock and struct inet_timewait_sock.
148 */
149 struct sock_common {
150 /* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned
151 * address on 64bit arches : cf INET_MATCH()
152 */
153 union {
154 __addrpair skc_addrpair;
155 struct {
156 __be32 skc_daddr;
157 __be32 skc_rcv_saddr;
158 };
159 };
160 union {
161 unsigned int skc_hash;
162 __u16 skc_u16hashes[2];
163 };
164 /* skc_dport && skc_num must be grouped as well */
165 union {
166 __portpair skc_portpair;
167 struct {
168 __be16 skc_dport;
169 __u16 skc_num;
170 };
171 };
172
173 unsigned short skc_family;
174 volatile unsigned char skc_state;
175 unsigned char skc_reuse:4;
176 unsigned char skc_reuseport:1;
177 unsigned char skc_ipv6only:1;
178 unsigned char skc_net_refcnt:1;
179 int skc_bound_dev_if;
180 union {
181 struct hlist_node skc_bind_node;
182 struct hlist_node skc_portaddr_node;
183 };
184 struct proto *skc_prot;
185 possible_net_t skc_net;
186
187 #if IS_ENABLED(CONFIG_IPV6)
188 struct in6_addr skc_v6_daddr;
189 struct in6_addr skc_v6_rcv_saddr;
190 #endif
191
192 atomic64_t skc_cookie;
193
194 /* following fields are padding to force
195 * offset(struct sock, sk_refcnt) == 128 on 64bit arches
196 * assuming IPV6 is enabled. We use this padding differently
197 * for different kind of 'sockets'
198 */
199 union {
200 unsigned long skc_flags;
201 struct sock *skc_listener; /* request_sock */
202 struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */
203 };
204 /*
205 * fields between dontcopy_begin/dontcopy_end
206 * are not copied in sock_copy()
207 */
208 /* private: */
209 int skc_dontcopy_begin[0];
210 /* public: */
211 union {
212 struct hlist_node skc_node;
213 struct hlist_nulls_node skc_nulls_node;
214 };
215 int skc_tx_queue_mapping;
216 union {
217 int skc_incoming_cpu;
218 u32 skc_rcv_wnd;
219 u32 skc_tw_rcv_nxt; /* struct tcp_timewait_sock */
220 };
221
222 atomic_t skc_refcnt;
223 /* private: */
224 int skc_dontcopy_end[0];
225 union {
226 u32 skc_rxhash;
227 u32 skc_window_clamp;
228 u32 skc_tw_snd_nxt; /* struct tcp_timewait_sock */
229 };
230 /* public: */
231 };
232
233 /**
234 * struct sock - network layer representation of sockets
235 * @__sk_common: shared layout with inet_timewait_sock
236 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
237 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
238 * @sk_lock: synchronizer
239 * @sk_rcvbuf: size of receive buffer in bytes
240 * @sk_wq: sock wait queue and async head
241 * @sk_rx_dst: receive input route used by early demux
242 * @sk_dst_cache: destination cache
243 * @sk_dst_pending_confirm: need to confirm neighbour
244 * @sk_policy: flow policy
245 * @sk_receive_queue: incoming packets
246 * @sk_wmem_alloc: transmit queue bytes committed
247 * @sk_write_queue: Packet sending queue
248 * @sk_omem_alloc: "o" is "option" or "other"
249 * @sk_wmem_queued: persistent queue size
250 * @sk_forward_alloc: space allocated forward
251 * @sk_napi_id: id of the last napi context to receive data for sk
252 * @sk_ll_usec: usecs to busypoll when there is no data
253 * @sk_allocation: allocation mode
254 * @sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
255 * @sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
256 * @sk_sndbuf: size of send buffer in bytes
257 * @sk_padding: unused element for alignment
258 * @sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
259 * @sk_no_check_rx: allow zero checksum in RX packets
260 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
261 * @sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
262 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
263 * @sk_gso_max_size: Maximum GSO segment size to build
264 * @sk_gso_max_segs: Maximum number of GSO segments
265 * @sk_lingertime: %SO_LINGER l_linger setting
266 * @sk_backlog: always used with the per-socket spinlock held
267 * @sk_callback_lock: used with the callbacks in the end of this struct
268 * @sk_error_queue: rarely used
269 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
270 * IPV6_ADDRFORM for instance)
271 * @sk_err: last error
272 * @sk_err_soft: errors that don't cause failure but are the cause of a
273 * persistent failure not just 'timed out'
274 * @sk_drops: raw/udp drops counter
275 * @sk_ack_backlog: current listen backlog
276 * @sk_max_ack_backlog: listen backlog set in listen()
277 * @sk_priority: %SO_PRIORITY setting
278 * @sk_type: socket type (%SOCK_STREAM, etc)
279 * @sk_protocol: which protocol this socket belongs in this network family
280 * @sk_peer_pid: &struct pid for this socket's peer
281 * @sk_peer_cred: %SO_PEERCRED setting
282 * @sk_rcvlowat: %SO_RCVLOWAT setting
283 * @sk_rcvtimeo: %SO_RCVTIMEO setting
284 * @sk_sndtimeo: %SO_SNDTIMEO setting
285 * @sk_txhash: computed flow hash for use on transmit
286 * @sk_filter: socket filtering instructions
287 * @sk_timer: sock cleanup timer
288 * @sk_stamp: time stamp of last packet received
289 * @sk_tsflags: SO_TIMESTAMPING socket options
290 * @sk_tskey: counter to disambiguate concurrent tstamp requests
291 * @sk_socket: Identd and reporting IO signals
292 * @sk_user_data: RPC layer private data
293 * @sk_frag: cached page frag
294 * @sk_peek_off: current peek_offset value
295 * @sk_send_head: front of stuff to transmit
296 * @sk_security: used by security modules
297 * @sk_mark: generic packet mark
298 * @sk_cgrp_data: cgroup data for this cgroup
299 * @sk_memcg: this socket's memory cgroup association
300 * @sk_write_pending: a write to stream socket waits to start
301 * @sk_state_change: callback to indicate change in the state of the sock
302 * @sk_data_ready: callback to indicate there is data to be processed
303 * @sk_write_space: callback to indicate there is bf sending space available
304 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
305 * @sk_backlog_rcv: callback to process the backlog
306 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
307 * @sk_reuseport_cb: reuseport group container
308 * @sk_rcu: used during RCU grace period
309 */
310 struct sock {
311 /*
312 * Now struct inet_timewait_sock also uses sock_common, so please just
313 * don't add nothing before this first member (__sk_common) --acme
314 */
315 struct sock_common __sk_common;
316 #define sk_node __sk_common.skc_node
317 #define sk_nulls_node __sk_common.skc_nulls_node
318 #define sk_refcnt __sk_common.skc_refcnt
319 #define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping
320
321 #define sk_dontcopy_begin __sk_common.skc_dontcopy_begin
322 #define sk_dontcopy_end __sk_common.skc_dontcopy_end
323 #define sk_hash __sk_common.skc_hash
324 #define sk_portpair __sk_common.skc_portpair
325 #define sk_num __sk_common.skc_num
326 #define sk_dport __sk_common.skc_dport
327 #define sk_addrpair __sk_common.skc_addrpair
328 #define sk_daddr __sk_common.skc_daddr
329 #define sk_rcv_saddr __sk_common.skc_rcv_saddr
330 #define sk_family __sk_common.skc_family
331 #define sk_state __sk_common.skc_state
332 #define sk_reuse __sk_common.skc_reuse
333 #define sk_reuseport __sk_common.skc_reuseport
334 #define sk_ipv6only __sk_common.skc_ipv6only
335 #define sk_net_refcnt __sk_common.skc_net_refcnt
336 #define sk_bound_dev_if __sk_common.skc_bound_dev_if
337 #define sk_bind_node __sk_common.skc_bind_node
338 #define sk_prot __sk_common.skc_prot
339 #define sk_net __sk_common.skc_net
340 #define sk_v6_daddr __sk_common.skc_v6_daddr
341 #define sk_v6_rcv_saddr __sk_common.skc_v6_rcv_saddr
342 #define sk_cookie __sk_common.skc_cookie
343 #define sk_incoming_cpu __sk_common.skc_incoming_cpu
344 #define sk_flags __sk_common.skc_flags
345 #define sk_rxhash __sk_common.skc_rxhash
346
347 socket_lock_t sk_lock;
348 atomic_t sk_drops;
349 int sk_rcvlowat;
350 struct sk_buff_head sk_error_queue;
351 struct sk_buff_head sk_receive_queue;
352 /*
353 * The backlog queue is special, it is always used with
354 * the per-socket spinlock held and requires low latency
355 * access. Therefore we special case it's implementation.
356 * Note : rmem_alloc is in this structure to fill a hole
357 * on 64bit arches, not because its logically part of
358 * backlog.
359 */
360 struct {
361 atomic_t rmem_alloc;
362 int len;
363 struct sk_buff *head;
364 struct sk_buff *tail;
365 } sk_backlog;
366 #define sk_rmem_alloc sk_backlog.rmem_alloc
367
368 int sk_forward_alloc;
369 #ifdef CONFIG_NET_RX_BUSY_POLL
370 unsigned int sk_ll_usec;
371 /* ===== mostly read cache line ===== */
372 unsigned int sk_napi_id;
373 #endif
374 int sk_rcvbuf;
375
376 struct sk_filter __rcu *sk_filter;
377 union {
378 struct socket_wq __rcu *sk_wq;
379 struct socket_wq *sk_wq_raw;
380 };
381 #ifdef CONFIG_XFRM
382 struct xfrm_policy __rcu *sk_policy[2];
383 #endif
384 struct dst_entry *sk_rx_dst;
385 struct dst_entry __rcu *sk_dst_cache;
386 atomic_t sk_omem_alloc;
387 int sk_sndbuf;
388
389 /* ===== cache line for TX ===== */
390 int sk_wmem_queued;
391 atomic_t sk_wmem_alloc;
392 unsigned long sk_tsq_flags;
393 struct sk_buff *sk_send_head;
394 struct sk_buff_head sk_write_queue;
395 __s32 sk_peek_off;
396 int sk_write_pending;
397 __u32 sk_dst_pending_confirm;
398 /* Note: 32bit hole on 64bit arches */
399 long sk_sndtimeo;
400 struct timer_list sk_timer;
401 __u32 sk_priority;
402 __u32 sk_mark;
403 u32 sk_pacing_rate; /* bytes per second */
404 u32 sk_max_pacing_rate;
405 struct page_frag sk_frag;
406 netdev_features_t sk_route_caps;
407 netdev_features_t sk_route_nocaps;
408 int sk_gso_type;
409 unsigned int sk_gso_max_size;
410 gfp_t sk_allocation;
411 __u32 sk_txhash;
412
413 /*
414 * Because of non atomicity rules, all
415 * changes are protected by socket lock.
416 */
417 unsigned int __sk_flags_offset[0];
418 #ifdef __BIG_ENDIAN_BITFIELD
419 #define SK_FL_PROTO_SHIFT 16
420 #define SK_FL_PROTO_MASK 0x00ff0000
421
422 #define SK_FL_TYPE_SHIFT 0
423 #define SK_FL_TYPE_MASK 0x0000ffff
424 #else
425 #define SK_FL_PROTO_SHIFT 8
426 #define SK_FL_PROTO_MASK 0x0000ff00
427
428 #define SK_FL_TYPE_SHIFT 16
429 #define SK_FL_TYPE_MASK 0xffff0000
430 #endif
431
432 kmemcheck_bitfield_begin(flags);
433 unsigned int sk_padding : 2,
434 sk_no_check_tx : 1,
435 sk_no_check_rx : 1,
436 sk_userlocks : 4,
437 sk_protocol : 8,
438 sk_type : 16;
439 #define SK_PROTOCOL_MAX U8_MAX
440 kmemcheck_bitfield_end(flags);
441
442 u16 sk_gso_max_segs;
443 unsigned long sk_lingertime;
444 struct proto *sk_prot_creator;
445 rwlock_t sk_callback_lock;
446 int sk_err,
447 sk_err_soft;
448 u32 sk_ack_backlog;
449 u32 sk_max_ack_backlog;
450 kuid_t sk_uid;
451 struct pid *sk_peer_pid;
452 const struct cred *sk_peer_cred;
453 long sk_rcvtimeo;
454 ktime_t sk_stamp;
455 u16 sk_tsflags;
456 u8 sk_shutdown;
457 u32 sk_tskey;
458 struct socket *sk_socket;
459 void *sk_user_data;
460 #ifdef CONFIG_SECURITY
461 void *sk_security;
462 #endif
463 struct sock_cgroup_data sk_cgrp_data;
464 struct mem_cgroup *sk_memcg;
465 void (*sk_state_change)(struct sock *sk);
466 void (*sk_data_ready)(struct sock *sk);
467 void (*sk_write_space)(struct sock *sk);
468 void (*sk_error_report)(struct sock *sk);
469 int (*sk_backlog_rcv)(struct sock *sk,
470 struct sk_buff *skb);
471 void (*sk_destruct)(struct sock *sk);
472 struct sock_reuseport __rcu *sk_reuseport_cb;
473 struct rcu_head sk_rcu;
474 };
475
476 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
477
478 #define rcu_dereference_sk_user_data(sk) rcu_dereference(__sk_user_data((sk)))
479 #define rcu_assign_sk_user_data(sk, ptr) rcu_assign_pointer(__sk_user_data((sk)), ptr)
480
481 /*
482 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
483 * or not whether his port will be reused by someone else. SK_FORCE_REUSE
484 * on a socket means that the socket will reuse everybody else's port
485 * without looking at the other's sk_reuse value.
486 */
487
488 #define SK_NO_REUSE 0
489 #define SK_CAN_REUSE 1
490 #define SK_FORCE_REUSE 2
491
492 int sk_set_peek_off(struct sock *sk, int val);
493
494 static inline int sk_peek_offset(struct sock *sk, int flags)
495 {
496 if (unlikely(flags & MSG_PEEK)) {
497 s32 off = READ_ONCE(sk->sk_peek_off);
498 if (off >= 0)
499 return off;
500 }
501
502 return 0;
503 }
504
505 static inline void sk_peek_offset_bwd(struct sock *sk, int val)
506 {
507 s32 off = READ_ONCE(sk->sk_peek_off);
508
509 if (unlikely(off >= 0)) {
510 off = max_t(s32, off - val, 0);
511 WRITE_ONCE(sk->sk_peek_off, off);
512 }
513 }
514
515 static inline void sk_peek_offset_fwd(struct sock *sk, int val)
516 {
517 sk_peek_offset_bwd(sk, -val);
518 }
519
520 /*
521 * Hashed lists helper routines
522 */
523 static inline struct sock *sk_entry(const struct hlist_node *node)
524 {
525 return hlist_entry(node, struct sock, sk_node);
526 }
527
528 static inline struct sock *__sk_head(const struct hlist_head *head)
529 {
530 return hlist_entry(head->first, struct sock, sk_node);
531 }
532
533 static inline struct sock *sk_head(const struct hlist_head *head)
534 {
535 return hlist_empty(head) ? NULL : __sk_head(head);
536 }
537
538 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
539 {
540 return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
541 }
542
543 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
544 {
545 return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
546 }
547
548 static inline struct sock *sk_next(const struct sock *sk)
549 {
550 return hlist_entry_safe(sk->sk_node.next, struct sock, sk_node);
551 }
552
553 static inline struct sock *sk_nulls_next(const struct sock *sk)
554 {
555 return (!is_a_nulls(sk->sk_nulls_node.next)) ?
556 hlist_nulls_entry(sk->sk_nulls_node.next,
557 struct sock, sk_nulls_node) :
558 NULL;
559 }
560
561 static inline bool sk_unhashed(const struct sock *sk)
562 {
563 return hlist_unhashed(&sk->sk_node);
564 }
565
566 static inline bool sk_hashed(const struct sock *sk)
567 {
568 return !sk_unhashed(sk);
569 }
570
571 static inline void sk_node_init(struct hlist_node *node)
572 {
573 node->pprev = NULL;
574 }
575
576 static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
577 {
578 node->pprev = NULL;
579 }
580
581 static inline void __sk_del_node(struct sock *sk)
582 {
583 __hlist_del(&sk->sk_node);
584 }
585
586 /* NB: equivalent to hlist_del_init_rcu */
587 static inline bool __sk_del_node_init(struct sock *sk)
588 {
589 if (sk_hashed(sk)) {
590 __sk_del_node(sk);
591 sk_node_init(&sk->sk_node);
592 return true;
593 }
594 return false;
595 }
596
597 /* Grab socket reference count. This operation is valid only
598 when sk is ALREADY grabbed f.e. it is found in hash table
599 or a list and the lookup is made under lock preventing hash table
600 modifications.
601 */
602
603 static __always_inline void sock_hold(struct sock *sk)
604 {
605 atomic_inc(&sk->sk_refcnt);
606 }
607
608 /* Ungrab socket in the context, which assumes that socket refcnt
609 cannot hit zero, f.e. it is true in context of any socketcall.
610 */
611 static __always_inline void __sock_put(struct sock *sk)
612 {
613 atomic_dec(&sk->sk_refcnt);
614 }
615
616 static inline bool sk_del_node_init(struct sock *sk)
617 {
618 bool rc = __sk_del_node_init(sk);
619
620 if (rc) {
621 /* paranoid for a while -acme */
622 WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
623 __sock_put(sk);
624 }
625 return rc;
626 }
627 #define sk_del_node_init_rcu(sk) sk_del_node_init(sk)
628
629 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
630 {
631 if (sk_hashed(sk)) {
632 hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
633 return true;
634 }
635 return false;
636 }
637
638 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
639 {
640 bool rc = __sk_nulls_del_node_init_rcu(sk);
641
642 if (rc) {
643 /* paranoid for a while -acme */
644 WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
645 __sock_put(sk);
646 }
647 return rc;
648 }
649
650 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
651 {
652 hlist_add_head(&sk->sk_node, list);
653 }
654
655 static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
656 {
657 sock_hold(sk);
658 __sk_add_node(sk, list);
659 }
660
661 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
662 {
663 sock_hold(sk);
664 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
665 sk->sk_family == AF_INET6)
666 hlist_add_tail_rcu(&sk->sk_node, list);
667 else
668 hlist_add_head_rcu(&sk->sk_node, list);
669 }
670
671 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
672 {
673 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
674 sk->sk_family == AF_INET6)
675 hlist_nulls_add_tail_rcu(&sk->sk_nulls_node, list);
676 else
677 hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
678 }
679
680 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
681 {
682 sock_hold(sk);
683 __sk_nulls_add_node_rcu(sk, list);
684 }
685
686 static inline void __sk_del_bind_node(struct sock *sk)
687 {
688 __hlist_del(&sk->sk_bind_node);
689 }
690
691 static inline void sk_add_bind_node(struct sock *sk,
692 struct hlist_head *list)
693 {
694 hlist_add_head(&sk->sk_bind_node, list);
695 }
696
697 #define sk_for_each(__sk, list) \
698 hlist_for_each_entry(__sk, list, sk_node)
699 #define sk_for_each_rcu(__sk, list) \
700 hlist_for_each_entry_rcu(__sk, list, sk_node)
701 #define sk_nulls_for_each(__sk, node, list) \
702 hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
703 #define sk_nulls_for_each_rcu(__sk, node, list) \
704 hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
705 #define sk_for_each_from(__sk) \
706 hlist_for_each_entry_from(__sk, sk_node)
707 #define sk_nulls_for_each_from(__sk, node) \
708 if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
709 hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
710 #define sk_for_each_safe(__sk, tmp, list) \
711 hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
712 #define sk_for_each_bound(__sk, list) \
713 hlist_for_each_entry(__sk, list, sk_bind_node)
714
715 /**
716 * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset
717 * @tpos: the type * to use as a loop cursor.
718 * @pos: the &struct hlist_node to use as a loop cursor.
719 * @head: the head for your list.
720 * @offset: offset of hlist_node within the struct.
721 *
722 */
723 #define sk_for_each_entry_offset_rcu(tpos, pos, head, offset) \
724 for (pos = rcu_dereference((head)->first); \
725 pos != NULL && \
726 ({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;}); \
727 pos = rcu_dereference(pos->next))
728
729 static inline struct user_namespace *sk_user_ns(struct sock *sk)
730 {
731 /* Careful only use this in a context where these parameters
732 * can not change and must all be valid, such as recvmsg from
733 * userspace.
734 */
735 return sk->sk_socket->file->f_cred->user_ns;
736 }
737
738 /* Sock flags */
739 enum sock_flags {
740 SOCK_DEAD,
741 SOCK_DONE,
742 SOCK_URGINLINE,
743 SOCK_KEEPOPEN,
744 SOCK_LINGER,
745 SOCK_DESTROY,
746 SOCK_BROADCAST,
747 SOCK_TIMESTAMP,
748 SOCK_ZAPPED,
749 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
750 SOCK_DBG, /* %SO_DEBUG setting */
751 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
752 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
753 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
754 SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
755 SOCK_MEMALLOC, /* VM depends on this socket for swapping */
756 SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */
757 SOCK_FASYNC, /* fasync() active */
758 SOCK_RXQ_OVFL,
759 SOCK_ZEROCOPY, /* buffers from userspace */
760 SOCK_WIFI_STATUS, /* push wifi status to userspace */
761 SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
762 * Will use last 4 bytes of packet sent from
763 * user-space instead.
764 */
765 SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
766 SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
767 SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */
768 };
769
770 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
771
772 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
773 {
774 nsk->sk_flags = osk->sk_flags;
775 }
776
777 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
778 {
779 __set_bit(flag, &sk->sk_flags);
780 }
781
782 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
783 {
784 __clear_bit(flag, &sk->sk_flags);
785 }
786
787 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
788 {
789 return test_bit(flag, &sk->sk_flags);
790 }
791
792 #ifdef CONFIG_NET
793 extern struct static_key memalloc_socks;
794 static inline int sk_memalloc_socks(void)
795 {
796 return static_key_false(&memalloc_socks);
797 }
798 #else
799
800 static inline int sk_memalloc_socks(void)
801 {
802 return 0;
803 }
804
805 #endif
806
807 static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask)
808 {
809 return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC);
810 }
811
812 static inline void sk_acceptq_removed(struct sock *sk)
813 {
814 sk->sk_ack_backlog--;
815 }
816
817 static inline void sk_acceptq_added(struct sock *sk)
818 {
819 sk->sk_ack_backlog++;
820 }
821
822 static inline bool sk_acceptq_is_full(const struct sock *sk)
823 {
824 return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
825 }
826
827 /*
828 * Compute minimal free write space needed to queue new packets.
829 */
830 static inline int sk_stream_min_wspace(const struct sock *sk)
831 {
832 return sk->sk_wmem_queued >> 1;
833 }
834
835 static inline int sk_stream_wspace(const struct sock *sk)
836 {
837 return sk->sk_sndbuf - sk->sk_wmem_queued;
838 }
839
840 void sk_stream_write_space(struct sock *sk);
841
842 /* OOB backlog add */
843 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
844 {
845 /* dont let skb dst not refcounted, we are going to leave rcu lock */
846 skb_dst_force_safe(skb);
847
848 if (!sk->sk_backlog.tail)
849 sk->sk_backlog.head = skb;
850 else
851 sk->sk_backlog.tail->next = skb;
852
853 sk->sk_backlog.tail = skb;
854 skb->next = NULL;
855 }
856
857 /*
858 * Take into account size of receive queue and backlog queue
859 * Do not take into account this skb truesize,
860 * to allow even a single big packet to come.
861 */
862 static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
863 {
864 unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
865
866 return qsize > limit;
867 }
868
869 /* The per-socket spinlock must be held here. */
870 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
871 unsigned int limit)
872 {
873 if (sk_rcvqueues_full(sk, limit))
874 return -ENOBUFS;
875
876 /*
877 * If the skb was allocated from pfmemalloc reserves, only
878 * allow SOCK_MEMALLOC sockets to use it as this socket is
879 * helping free memory
880 */
881 if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
882 return -ENOMEM;
883
884 __sk_add_backlog(sk, skb);
885 sk->sk_backlog.len += skb->truesize;
886 return 0;
887 }
888
889 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
890
891 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
892 {
893 if (sk_memalloc_socks() && skb_pfmemalloc(skb))
894 return __sk_backlog_rcv(sk, skb);
895
896 return sk->sk_backlog_rcv(sk, skb);
897 }
898
899 static inline void sk_incoming_cpu_update(struct sock *sk)
900 {
901 sk->sk_incoming_cpu = raw_smp_processor_id();
902 }
903
904 static inline void sock_rps_record_flow_hash(__u32 hash)
905 {
906 #ifdef CONFIG_RPS
907 struct rps_sock_flow_table *sock_flow_table;
908
909 rcu_read_lock();
910 sock_flow_table = rcu_dereference(rps_sock_flow_table);
911 rps_record_sock_flow(sock_flow_table, hash);
912 rcu_read_unlock();
913 #endif
914 }
915
916 static inline void sock_rps_record_flow(const struct sock *sk)
917 {
918 #ifdef CONFIG_RPS
919 if (static_key_false(&rfs_needed)) {
920 /* Reading sk->sk_rxhash might incur an expensive cache line
921 * miss.
922 *
923 * TCP_ESTABLISHED does cover almost all states where RFS
924 * might be useful, and is cheaper [1] than testing :
925 * IPv4: inet_sk(sk)->inet_daddr
926 * IPv6: ipv6_addr_any(&sk->sk_v6_daddr)
927 * OR an additional socket flag
928 * [1] : sk_state and sk_prot are in the same cache line.
929 */
930 if (sk->sk_state == TCP_ESTABLISHED)
931 sock_rps_record_flow_hash(sk->sk_rxhash);
932 }
933 #endif
934 }
935
936 static inline void sock_rps_save_rxhash(struct sock *sk,
937 const struct sk_buff *skb)
938 {
939 #ifdef CONFIG_RPS
940 if (unlikely(sk->sk_rxhash != skb->hash))
941 sk->sk_rxhash = skb->hash;
942 #endif
943 }
944
945 static inline void sock_rps_reset_rxhash(struct sock *sk)
946 {
947 #ifdef CONFIG_RPS
948 sk->sk_rxhash = 0;
949 #endif
950 }
951
952 #define sk_wait_event(__sk, __timeo, __condition, __wait) \
953 ({ int __rc; \
954 release_sock(__sk); \
955 __rc = __condition; \
956 if (!__rc) { \
957 *(__timeo) = wait_woken(__wait, \
958 TASK_INTERRUPTIBLE, \
959 *(__timeo)); \
960 } \
961 sched_annotate_sleep(); \
962 lock_sock(__sk); \
963 __rc = __condition; \
964 __rc; \
965 })
966
967 int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
968 int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
969 void sk_stream_wait_close(struct sock *sk, long timeo_p);
970 int sk_stream_error(struct sock *sk, int flags, int err);
971 void sk_stream_kill_queues(struct sock *sk);
972 void sk_set_memalloc(struct sock *sk);
973 void sk_clear_memalloc(struct sock *sk);
974
975 void __sk_flush_backlog(struct sock *sk);
976
977 static inline bool sk_flush_backlog(struct sock *sk)
978 {
979 if (unlikely(READ_ONCE(sk->sk_backlog.tail))) {
980 __sk_flush_backlog(sk);
981 return true;
982 }
983 return false;
984 }
985
986 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb);
987
988 struct request_sock_ops;
989 struct timewait_sock_ops;
990 struct inet_hashinfo;
991 struct raw_hashinfo;
992 struct smc_hashinfo;
993 struct module;
994
995 /*
996 * caches using SLAB_DESTROY_BY_RCU should let .next pointer from nulls nodes
997 * un-modified. Special care is taken when initializing object to zero.
998 */
999 static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1000 {
1001 if (offsetof(struct sock, sk_node.next) != 0)
1002 memset(sk, 0, offsetof(struct sock, sk_node.next));
1003 memset(&sk->sk_node.pprev, 0,
1004 size - offsetof(struct sock, sk_node.pprev));
1005 }
1006
1007 /* Networking protocol blocks we attach to sockets.
1008 * socket layer -> transport layer interface
1009 */
1010 struct proto {
1011 void (*close)(struct sock *sk,
1012 long timeout);
1013 int (*connect)(struct sock *sk,
1014 struct sockaddr *uaddr,
1015 int addr_len);
1016 int (*disconnect)(struct sock *sk, int flags);
1017
1018 struct sock * (*accept)(struct sock *sk, int flags, int *err);
1019
1020 int (*ioctl)(struct sock *sk, int cmd,
1021 unsigned long arg);
1022 int (*init)(struct sock *sk);
1023 void (*destroy)(struct sock *sk);
1024 void (*shutdown)(struct sock *sk, int how);
1025 int (*setsockopt)(struct sock *sk, int level,
1026 int optname, char __user *optval,
1027 unsigned int optlen);
1028 int (*getsockopt)(struct sock *sk, int level,
1029 int optname, char __user *optval,
1030 int __user *option);
1031 void (*keepalive)(struct sock *sk, int valbool);
1032 #ifdef CONFIG_COMPAT
1033 int (*compat_setsockopt)(struct sock *sk,
1034 int level,
1035 int optname, char __user *optval,
1036 unsigned int optlen);
1037 int (*compat_getsockopt)(struct sock *sk,
1038 int level,
1039 int optname, char __user *optval,
1040 int __user *option);
1041 int (*compat_ioctl)(struct sock *sk,
1042 unsigned int cmd, unsigned long arg);
1043 #endif
1044 int (*sendmsg)(struct sock *sk, struct msghdr *msg,
1045 size_t len);
1046 int (*recvmsg)(struct sock *sk, struct msghdr *msg,
1047 size_t len, int noblock, int flags,
1048 int *addr_len);
1049 int (*sendpage)(struct sock *sk, struct page *page,
1050 int offset, size_t size, int flags);
1051 int (*bind)(struct sock *sk,
1052 struct sockaddr *uaddr, int addr_len);
1053
1054 int (*backlog_rcv) (struct sock *sk,
1055 struct sk_buff *skb);
1056
1057 void (*release_cb)(struct sock *sk);
1058
1059 /* Keeping track of sk's, looking them up, and port selection methods. */
1060 int (*hash)(struct sock *sk);
1061 void (*unhash)(struct sock *sk);
1062 void (*rehash)(struct sock *sk);
1063 int (*get_port)(struct sock *sk, unsigned short snum);
1064
1065 /* Keeping track of sockets in use */
1066 #ifdef CONFIG_PROC_FS
1067 unsigned int inuse_idx;
1068 #endif
1069
1070 bool (*stream_memory_free)(const struct sock *sk);
1071 /* Memory pressure */
1072 void (*enter_memory_pressure)(struct sock *sk);
1073 atomic_long_t *memory_allocated; /* Current allocated memory. */
1074 struct percpu_counter *sockets_allocated; /* Current number of sockets. */
1075 /*
1076 * Pressure flag: try to collapse.
1077 * Technical note: it is used by multiple contexts non atomically.
1078 * All the __sk_mem_schedule() is of this nature: accounting
1079 * is strict, actions are advisory and have some latency.
1080 */
1081 int *memory_pressure;
1082 long *sysctl_mem;
1083 int *sysctl_wmem;
1084 int *sysctl_rmem;
1085 int max_header;
1086 bool no_autobind;
1087
1088 struct kmem_cache *slab;
1089 unsigned int obj_size;
1090 int slab_flags;
1091
1092 struct percpu_counter *orphan_count;
1093
1094 struct request_sock_ops *rsk_prot;
1095 struct timewait_sock_ops *twsk_prot;
1096
1097 union {
1098 struct inet_hashinfo *hashinfo;
1099 struct udp_table *udp_table;
1100 struct raw_hashinfo *raw_hash;
1101 struct smc_hashinfo *smc_hash;
1102 } h;
1103
1104 struct module *owner;
1105
1106 char name[32];
1107
1108 struct list_head node;
1109 #ifdef SOCK_REFCNT_DEBUG
1110 atomic_t socks;
1111 #endif
1112 int (*diag_destroy)(struct sock *sk, int err);
1113 };
1114
1115 int proto_register(struct proto *prot, int alloc_slab);
1116 void proto_unregister(struct proto *prot);
1117
1118 #ifdef SOCK_REFCNT_DEBUG
1119 static inline void sk_refcnt_debug_inc(struct sock *sk)
1120 {
1121 atomic_inc(&sk->sk_prot->socks);
1122 }
1123
1124 static inline void sk_refcnt_debug_dec(struct sock *sk)
1125 {
1126 atomic_dec(&sk->sk_prot->socks);
1127 printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1128 sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1129 }
1130
1131 static inline void sk_refcnt_debug_release(const struct sock *sk)
1132 {
1133 if (atomic_read(&sk->sk_refcnt) != 1)
1134 printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1135 sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt));
1136 }
1137 #else /* SOCK_REFCNT_DEBUG */
1138 #define sk_refcnt_debug_inc(sk) do { } while (0)
1139 #define sk_refcnt_debug_dec(sk) do { } while (0)
1140 #define sk_refcnt_debug_release(sk) do { } while (0)
1141 #endif /* SOCK_REFCNT_DEBUG */
1142
1143 static inline bool sk_stream_memory_free(const struct sock *sk)
1144 {
1145 if (sk->sk_wmem_queued >= sk->sk_sndbuf)
1146 return false;
1147
1148 return sk->sk_prot->stream_memory_free ?
1149 sk->sk_prot->stream_memory_free(sk) : true;
1150 }
1151
1152 static inline bool sk_stream_is_writeable(const struct sock *sk)
1153 {
1154 return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1155 sk_stream_memory_free(sk);
1156 }
1157
1158 static inline int sk_under_cgroup_hierarchy(struct sock *sk,
1159 struct cgroup *ancestor)
1160 {
1161 #ifdef CONFIG_SOCK_CGROUP_DATA
1162 return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data),
1163 ancestor);
1164 #else
1165 return -ENOTSUPP;
1166 #endif
1167 }
1168
1169 static inline bool sk_has_memory_pressure(const struct sock *sk)
1170 {
1171 return sk->sk_prot->memory_pressure != NULL;
1172 }
1173
1174 static inline bool sk_under_memory_pressure(const struct sock *sk)
1175 {
1176 if (!sk->sk_prot->memory_pressure)
1177 return false;
1178
1179 if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
1180 mem_cgroup_under_socket_pressure(sk->sk_memcg))
1181 return true;
1182
1183 return !!*sk->sk_prot->memory_pressure;
1184 }
1185
1186 static inline void sk_leave_memory_pressure(struct sock *sk)
1187 {
1188 int *memory_pressure = sk->sk_prot->memory_pressure;
1189
1190 if (!memory_pressure)
1191 return;
1192
1193 if (*memory_pressure)
1194 *memory_pressure = 0;
1195 }
1196
1197 static inline void sk_enter_memory_pressure(struct sock *sk)
1198 {
1199 if (!sk->sk_prot->enter_memory_pressure)
1200 return;
1201
1202 sk->sk_prot->enter_memory_pressure(sk);
1203 }
1204
1205 static inline long
1206 sk_memory_allocated(const struct sock *sk)
1207 {
1208 return atomic_long_read(sk->sk_prot->memory_allocated);
1209 }
1210
1211 static inline long
1212 sk_memory_allocated_add(struct sock *sk, int amt)
1213 {
1214 return atomic_long_add_return(amt, sk->sk_prot->memory_allocated);
1215 }
1216
1217 static inline void
1218 sk_memory_allocated_sub(struct sock *sk, int amt)
1219 {
1220 atomic_long_sub(amt, sk->sk_prot->memory_allocated);
1221 }
1222
1223 static inline void sk_sockets_allocated_dec(struct sock *sk)
1224 {
1225 percpu_counter_dec(sk->sk_prot->sockets_allocated);
1226 }
1227
1228 static inline void sk_sockets_allocated_inc(struct sock *sk)
1229 {
1230 percpu_counter_inc(sk->sk_prot->sockets_allocated);
1231 }
1232
1233 static inline int
1234 sk_sockets_allocated_read_positive(struct sock *sk)
1235 {
1236 return percpu_counter_read_positive(sk->sk_prot->sockets_allocated);
1237 }
1238
1239 static inline int
1240 proto_sockets_allocated_sum_positive(struct proto *prot)
1241 {
1242 return percpu_counter_sum_positive(prot->sockets_allocated);
1243 }
1244
1245 static inline long
1246 proto_memory_allocated(struct proto *prot)
1247 {
1248 return atomic_long_read(prot->memory_allocated);
1249 }
1250
1251 static inline bool
1252 proto_memory_pressure(struct proto *prot)
1253 {
1254 if (!prot->memory_pressure)
1255 return false;
1256 return !!*prot->memory_pressure;
1257 }
1258
1259
1260 #ifdef CONFIG_PROC_FS
1261 /* Called with local bh disabled */
1262 void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
1263 int sock_prot_inuse_get(struct net *net, struct proto *proto);
1264 #else
1265 static inline void sock_prot_inuse_add(struct net *net, struct proto *prot,
1266 int inc)
1267 {
1268 }
1269 #endif
1270
1271
1272 /* With per-bucket locks this operation is not-atomic, so that
1273 * this version is not worse.
1274 */
1275 static inline int __sk_prot_rehash(struct sock *sk)
1276 {
1277 sk->sk_prot->unhash(sk);
1278 return sk->sk_prot->hash(sk);
1279 }
1280
1281 /* About 10 seconds */
1282 #define SOCK_DESTROY_TIME (10*HZ)
1283
1284 /* Sockets 0-1023 can't be bound to unless you are superuser */
1285 #define PROT_SOCK 1024
1286
1287 #define SHUTDOWN_MASK 3
1288 #define RCV_SHUTDOWN 1
1289 #define SEND_SHUTDOWN 2
1290
1291 #define SOCK_SNDBUF_LOCK 1
1292 #define SOCK_RCVBUF_LOCK 2
1293 #define SOCK_BINDADDR_LOCK 4
1294 #define SOCK_BINDPORT_LOCK 8
1295
1296 struct socket_alloc {
1297 struct socket socket;
1298 struct inode vfs_inode;
1299 };
1300
1301 static inline struct socket *SOCKET_I(struct inode *inode)
1302 {
1303 return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1304 }
1305
1306 static inline struct inode *SOCK_INODE(struct socket *socket)
1307 {
1308 return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1309 }
1310
1311 /*
1312 * Functions for memory accounting
1313 */
1314 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind);
1315 int __sk_mem_schedule(struct sock *sk, int size, int kind);
1316 void __sk_mem_reduce_allocated(struct sock *sk, int amount);
1317 void __sk_mem_reclaim(struct sock *sk, int amount);
1318
1319 /* We used to have PAGE_SIZE here, but systems with 64KB pages
1320 * do not necessarily have 16x time more memory than 4KB ones.
1321 */
1322 #define SK_MEM_QUANTUM 4096
1323 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1324 #define SK_MEM_SEND 0
1325 #define SK_MEM_RECV 1
1326
1327 /* sysctl_mem values are in pages, we convert them in SK_MEM_QUANTUM units */
1328 static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1329 {
1330 long val = sk->sk_prot->sysctl_mem[index];
1331
1332 #if PAGE_SIZE > SK_MEM_QUANTUM
1333 val <<= PAGE_SHIFT - SK_MEM_QUANTUM_SHIFT;
1334 #elif PAGE_SIZE < SK_MEM_QUANTUM
1335 val >>= SK_MEM_QUANTUM_SHIFT - PAGE_SHIFT;
1336 #endif
1337 return val;
1338 }
1339
1340 static inline int sk_mem_pages(int amt)
1341 {
1342 return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1343 }
1344
1345 static inline bool sk_has_account(struct sock *sk)
1346 {
1347 /* return true if protocol supports memory accounting */
1348 return !!sk->sk_prot->memory_allocated;
1349 }
1350
1351 static inline bool sk_wmem_schedule(struct sock *sk, int size)
1352 {
1353 if (!sk_has_account(sk))
1354 return true;
1355 return size <= sk->sk_forward_alloc ||
1356 __sk_mem_schedule(sk, size, SK_MEM_SEND);
1357 }
1358
1359 static inline bool
1360 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1361 {
1362 if (!sk_has_account(sk))
1363 return true;
1364 return size<= sk->sk_forward_alloc ||
1365 __sk_mem_schedule(sk, size, SK_MEM_RECV) ||
1366 skb_pfmemalloc(skb);
1367 }
1368
1369 static inline void sk_mem_reclaim(struct sock *sk)
1370 {
1371 if (!sk_has_account(sk))
1372 return;
1373 if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
1374 __sk_mem_reclaim(sk, sk->sk_forward_alloc);
1375 }
1376
1377 static inline void sk_mem_reclaim_partial(struct sock *sk)
1378 {
1379 if (!sk_has_account(sk))
1380 return;
1381 if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
1382 __sk_mem_reclaim(sk, sk->sk_forward_alloc - 1);
1383 }
1384
1385 static inline void sk_mem_charge(struct sock *sk, int size)
1386 {
1387 if (!sk_has_account(sk))
1388 return;
1389 sk->sk_forward_alloc -= size;
1390 }
1391
1392 static inline void sk_mem_uncharge(struct sock *sk, int size)
1393 {
1394 if (!sk_has_account(sk))
1395 return;
1396 sk->sk_forward_alloc += size;
1397
1398 /* Avoid a possible overflow.
1399 * TCP send queues can make this happen, if sk_mem_reclaim()
1400 * is not called and more than 2 GBytes are released at once.
1401 *
1402 * If we reach 2 MBytes, reclaim 1 MBytes right now, there is
1403 * no need to hold that much forward allocation anyway.
1404 */
1405 if (unlikely(sk->sk_forward_alloc >= 1 << 21))
1406 __sk_mem_reclaim(sk, 1 << 20);
1407 }
1408
1409 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1410 {
1411 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1412 sk->sk_wmem_queued -= skb->truesize;
1413 sk_mem_uncharge(sk, skb->truesize);
1414 __kfree_skb(skb);
1415 }
1416
1417 static inline void sock_release_ownership(struct sock *sk)
1418 {
1419 if (sk->sk_lock.owned) {
1420 sk->sk_lock.owned = 0;
1421
1422 /* The sk_lock has mutex_unlock() semantics: */
1423 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
1424 }
1425 }
1426
1427 /*
1428 * Macro so as to not evaluate some arguments when
1429 * lockdep is not enabled.
1430 *
1431 * Mark both the sk_lock and the sk_lock.slock as a
1432 * per-address-family lock class.
1433 */
1434 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) \
1435 do { \
1436 sk->sk_lock.owned = 0; \
1437 init_waitqueue_head(&sk->sk_lock.wq); \
1438 spin_lock_init(&(sk)->sk_lock.slock); \
1439 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \
1440 sizeof((sk)->sk_lock)); \
1441 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \
1442 (skey), (sname)); \
1443 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \
1444 } while (0)
1445
1446 #ifdef CONFIG_LOCKDEP
1447 static inline bool lockdep_sock_is_held(const struct sock *csk)
1448 {
1449 struct sock *sk = (struct sock *)csk;
1450
1451 return lockdep_is_held(&sk->sk_lock) ||
1452 lockdep_is_held(&sk->sk_lock.slock);
1453 }
1454 #endif
1455
1456 void lock_sock_nested(struct sock *sk, int subclass);
1457
1458 static inline void lock_sock(struct sock *sk)
1459 {
1460 lock_sock_nested(sk, 0);
1461 }
1462
1463 void release_sock(struct sock *sk);
1464
1465 /* BH context may only use the following locking interface. */
1466 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock))
1467 #define bh_lock_sock_nested(__sk) \
1468 spin_lock_nested(&((__sk)->sk_lock.slock), \
1469 SINGLE_DEPTH_NESTING)
1470 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock))
1471
1472 bool lock_sock_fast(struct sock *sk);
1473 /**
1474 * unlock_sock_fast - complement of lock_sock_fast
1475 * @sk: socket
1476 * @slow: slow mode
1477 *
1478 * fast unlock socket for user context.
1479 * If slow mode is on, we call regular release_sock()
1480 */
1481 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1482 {
1483 if (slow)
1484 release_sock(sk);
1485 else
1486 spin_unlock_bh(&sk->sk_lock.slock);
1487 }
1488
1489 /* Used by processes to "lock" a socket state, so that
1490 * interrupts and bottom half handlers won't change it
1491 * from under us. It essentially blocks any incoming
1492 * packets, so that we won't get any new data or any
1493 * packets that change the state of the socket.
1494 *
1495 * While locked, BH processing will add new packets to
1496 * the backlog queue. This queue is processed by the
1497 * owner of the socket lock right before it is released.
1498 *
1499 * Since ~2.3.5 it is also exclusive sleep lock serializing
1500 * accesses from user process context.
1501 */
1502
1503 static inline void sock_owned_by_me(const struct sock *sk)
1504 {
1505 #ifdef CONFIG_LOCKDEP
1506 WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks);
1507 #endif
1508 }
1509
1510 static inline bool sock_owned_by_user(const struct sock *sk)
1511 {
1512 sock_owned_by_me(sk);
1513 return sk->sk_lock.owned;
1514 }
1515
1516 /* no reclassification while locks are held */
1517 static inline bool sock_allow_reclassification(const struct sock *csk)
1518 {
1519 struct sock *sk = (struct sock *)csk;
1520
1521 return !sk->sk_lock.owned && !spin_is_locked(&sk->sk_lock.slock);
1522 }
1523
1524 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1525 struct proto *prot, int kern);
1526 void sk_free(struct sock *sk);
1527 void sk_destruct(struct sock *sk);
1528 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1529 void sk_free_unlock_clone(struct sock *sk);
1530
1531 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1532 gfp_t priority);
1533 void __sock_wfree(struct sk_buff *skb);
1534 void sock_wfree(struct sk_buff *skb);
1535 void skb_orphan_partial(struct sk_buff *skb);
1536 void sock_rfree(struct sk_buff *skb);
1537 void sock_efree(struct sk_buff *skb);
1538 #ifdef CONFIG_INET
1539 void sock_edemux(struct sk_buff *skb);
1540 #else
1541 #define sock_edemux sock_efree
1542 #endif
1543
1544 int sock_setsockopt(struct socket *sock, int level, int op,
1545 char __user *optval, unsigned int optlen);
1546
1547 int sock_getsockopt(struct socket *sock, int level, int op,
1548 char __user *optval, int __user *optlen);
1549 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1550 int noblock, int *errcode);
1551 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1552 unsigned long data_len, int noblock,
1553 int *errcode, int max_page_order);
1554 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1555 void sock_kfree_s(struct sock *sk, void *mem, int size);
1556 void sock_kzfree_s(struct sock *sk, void *mem, int size);
1557 void sk_send_sigurg(struct sock *sk);
1558
1559 struct sockcm_cookie {
1560 u32 mark;
1561 u16 tsflags;
1562 };
1563
1564 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
1565 struct sockcm_cookie *sockc);
1566 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1567 struct sockcm_cookie *sockc);
1568
1569 /*
1570 * Functions to fill in entries in struct proto_ops when a protocol
1571 * does not implement a particular function.
1572 */
1573 int sock_no_bind(struct socket *, struct sockaddr *, int);
1574 int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1575 int sock_no_socketpair(struct socket *, struct socket *);
1576 int sock_no_accept(struct socket *, struct socket *, int);
1577 int sock_no_getname(struct socket *, struct sockaddr *, int *, int);
1578 unsigned int sock_no_poll(struct file *, struct socket *,
1579 struct poll_table_struct *);
1580 int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1581 int sock_no_listen(struct socket *, int);
1582 int sock_no_shutdown(struct socket *, int);
1583 int sock_no_getsockopt(struct socket *, int , int, char __user *, int __user *);
1584 int sock_no_setsockopt(struct socket *, int, int, char __user *, unsigned int);
1585 int sock_no_sendmsg(struct socket *, struct msghdr *, size_t);
1586 int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int);
1587 int sock_no_mmap(struct file *file, struct socket *sock,
1588 struct vm_area_struct *vma);
1589 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset,
1590 size_t size, int flags);
1591
1592 /*
1593 * Functions to fill in entries in struct proto_ops when a protocol
1594 * uses the inet style.
1595 */
1596 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1597 char __user *optval, int __user *optlen);
1598 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1599 int flags);
1600 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1601 char __user *optval, unsigned int optlen);
1602 int compat_sock_common_getsockopt(struct socket *sock, int level,
1603 int optname, char __user *optval, int __user *optlen);
1604 int compat_sock_common_setsockopt(struct socket *sock, int level,
1605 int optname, char __user *optval, unsigned int optlen);
1606
1607 void sk_common_release(struct sock *sk);
1608
1609 /*
1610 * Default socket callbacks and setup code
1611 */
1612
1613 /* Initialise core socket variables */
1614 void sock_init_data(struct socket *sock, struct sock *sk);
1615
1616 /*
1617 * Socket reference counting postulates.
1618 *
1619 * * Each user of socket SHOULD hold a reference count.
1620 * * Each access point to socket (an hash table bucket, reference from a list,
1621 * running timer, skb in flight MUST hold a reference count.
1622 * * When reference count hits 0, it means it will never increase back.
1623 * * When reference count hits 0, it means that no references from
1624 * outside exist to this socket and current process on current CPU
1625 * is last user and may/should destroy this socket.
1626 * * sk_free is called from any context: process, BH, IRQ. When
1627 * it is called, socket has no references from outside -> sk_free
1628 * may release descendant resources allocated by the socket, but
1629 * to the time when it is called, socket is NOT referenced by any
1630 * hash tables, lists etc.
1631 * * Packets, delivered from outside (from network or from another process)
1632 * and enqueued on receive/error queues SHOULD NOT grab reference count,
1633 * when they sit in queue. Otherwise, packets will leak to hole, when
1634 * socket is looked up by one cpu and unhasing is made by another CPU.
1635 * It is true for udp/raw, netlink (leak to receive and error queues), tcp
1636 * (leak to backlog). Packet socket does all the processing inside
1637 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1638 * use separate SMP lock, so that they are prone too.
1639 */
1640
1641 /* Ungrab socket and destroy it, if it was the last reference. */
1642 static inline void sock_put(struct sock *sk)
1643 {
1644 if (atomic_dec_and_test(&sk->sk_refcnt))
1645 sk_free(sk);
1646 }
1647 /* Generic version of sock_put(), dealing with all sockets
1648 * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...)
1649 */
1650 void sock_gen_put(struct sock *sk);
1651
1652 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested,
1653 unsigned int trim_cap, bool refcounted);
1654 static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1655 const int nested)
1656 {
1657 return __sk_receive_skb(sk, skb, nested, 1, true);
1658 }
1659
1660 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1661 {
1662 sk->sk_tx_queue_mapping = tx_queue;
1663 }
1664
1665 static inline void sk_tx_queue_clear(struct sock *sk)
1666 {
1667 sk->sk_tx_queue_mapping = -1;
1668 }
1669
1670 static inline int sk_tx_queue_get(const struct sock *sk)
1671 {
1672 return sk ? sk->sk_tx_queue_mapping : -1;
1673 }
1674
1675 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1676 {
1677 sk_tx_queue_clear(sk);
1678 sk->sk_socket = sock;
1679 }
1680
1681 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1682 {
1683 BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1684 return &rcu_dereference_raw(sk->sk_wq)->wait;
1685 }
1686 /* Detach socket from process context.
1687 * Announce socket dead, detach it from wait queue and inode.
1688 * Note that parent inode held reference count on this struct sock,
1689 * we do not release it in this function, because protocol
1690 * probably wants some additional cleanups or even continuing
1691 * to work with this socket (TCP).
1692 */
1693 static inline void sock_orphan(struct sock *sk)
1694 {
1695 write_lock_bh(&sk->sk_callback_lock);
1696 sock_set_flag(sk, SOCK_DEAD);
1697 sk_set_socket(sk, NULL);
1698 sk->sk_wq = NULL;
1699 write_unlock_bh(&sk->sk_callback_lock);
1700 }
1701
1702 static inline void sock_graft(struct sock *sk, struct socket *parent)
1703 {
1704 write_lock_bh(&sk->sk_callback_lock);
1705 sk->sk_wq = parent->wq;
1706 parent->sk = sk;
1707 sk_set_socket(sk, parent);
1708 sk->sk_uid = SOCK_INODE(parent)->i_uid;
1709 security_sock_graft(sk, parent);
1710 write_unlock_bh(&sk->sk_callback_lock);
1711 }
1712
1713 kuid_t sock_i_uid(struct sock *sk);
1714 unsigned long sock_i_ino(struct sock *sk);
1715
1716 static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk)
1717 {
1718 return sk ? sk->sk_uid : make_kuid(net->user_ns, 0);
1719 }
1720
1721 static inline u32 net_tx_rndhash(void)
1722 {
1723 u32 v = prandom_u32();
1724
1725 return v ?: 1;
1726 }
1727
1728 static inline void sk_set_txhash(struct sock *sk)
1729 {
1730 sk->sk_txhash = net_tx_rndhash();
1731 }
1732
1733 static inline void sk_rethink_txhash(struct sock *sk)
1734 {
1735 if (sk->sk_txhash)
1736 sk_set_txhash(sk);
1737 }
1738
1739 static inline struct dst_entry *
1740 __sk_dst_get(struct sock *sk)
1741 {
1742 return rcu_dereference_check(sk->sk_dst_cache,
1743 lockdep_sock_is_held(sk));
1744 }
1745
1746 static inline struct dst_entry *
1747 sk_dst_get(struct sock *sk)
1748 {
1749 struct dst_entry *dst;
1750
1751 rcu_read_lock();
1752 dst = rcu_dereference(sk->sk_dst_cache);
1753 if (dst && !atomic_inc_not_zero(&dst->__refcnt))
1754 dst = NULL;
1755 rcu_read_unlock();
1756 return dst;
1757 }
1758
1759 static inline void dst_negative_advice(struct sock *sk)
1760 {
1761 struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1762
1763 sk_rethink_txhash(sk);
1764
1765 if (dst && dst->ops->negative_advice) {
1766 ndst = dst->ops->negative_advice(dst);
1767
1768 if (ndst != dst) {
1769 rcu_assign_pointer(sk->sk_dst_cache, ndst);
1770 sk_tx_queue_clear(sk);
1771 sk->sk_dst_pending_confirm = 0;
1772 }
1773 }
1774 }
1775
1776 static inline void
1777 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
1778 {
1779 struct dst_entry *old_dst;
1780
1781 sk_tx_queue_clear(sk);
1782 sk->sk_dst_pending_confirm = 0;
1783 /*
1784 * This can be called while sk is owned by the caller only,
1785 * with no state that can be checked in a rcu_dereference_check() cond
1786 */
1787 old_dst = rcu_dereference_raw(sk->sk_dst_cache);
1788 rcu_assign_pointer(sk->sk_dst_cache, dst);
1789 dst_release(old_dst);
1790 }
1791
1792 static inline void
1793 sk_dst_set(struct sock *sk, struct dst_entry *dst)
1794 {
1795 struct dst_entry *old_dst;
1796
1797 sk_tx_queue_clear(sk);
1798 sk->sk_dst_pending_confirm = 0;
1799 old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst);
1800 dst_release(old_dst);
1801 }
1802
1803 static inline void
1804 __sk_dst_reset(struct sock *sk)
1805 {
1806 __sk_dst_set(sk, NULL);
1807 }
1808
1809 static inline void
1810 sk_dst_reset(struct sock *sk)
1811 {
1812 sk_dst_set(sk, NULL);
1813 }
1814
1815 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1816
1817 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1818
1819 static inline void sk_dst_confirm(struct sock *sk)
1820 {
1821 if (!sk->sk_dst_pending_confirm)
1822 sk->sk_dst_pending_confirm = 1;
1823 }
1824
1825 static inline void sock_confirm_neigh(struct sk_buff *skb, struct neighbour *n)
1826 {
1827 if (skb_get_dst_pending_confirm(skb)) {
1828 struct sock *sk = skb->sk;
1829 unsigned long now = jiffies;
1830
1831 /* avoid dirtying neighbour */
1832 if (n->confirmed != now)
1833 n->confirmed = now;
1834 if (sk && sk->sk_dst_pending_confirm)
1835 sk->sk_dst_pending_confirm = 0;
1836 }
1837 }
1838
1839 bool sk_mc_loop(struct sock *sk);
1840
1841 static inline bool sk_can_gso(const struct sock *sk)
1842 {
1843 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1844 }
1845
1846 void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
1847
1848 static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
1849 {
1850 sk->sk_route_nocaps |= flags;
1851 sk->sk_route_caps &= ~flags;
1852 }
1853
1854 static inline bool sk_check_csum_caps(struct sock *sk)
1855 {
1856 return (sk->sk_route_caps & NETIF_F_HW_CSUM) ||
1857 (sk->sk_family == PF_INET &&
1858 (sk->sk_route_caps & NETIF_F_IP_CSUM)) ||
1859 (sk->sk_family == PF_INET6 &&
1860 (sk->sk_route_caps & NETIF_F_IPV6_CSUM));
1861 }
1862
1863 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
1864 struct iov_iter *from, char *to,
1865 int copy, int offset)
1866 {
1867 if (skb->ip_summed == CHECKSUM_NONE) {
1868 __wsum csum = 0;
1869 if (!csum_and_copy_from_iter_full(to, copy, &csum, from))
1870 return -EFAULT;
1871 skb->csum = csum_block_add(skb->csum, csum, offset);
1872 } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1873 if (!copy_from_iter_full_nocache(to, copy, from))
1874 return -EFAULT;
1875 } else if (!copy_from_iter_full(to, copy, from))
1876 return -EFAULT;
1877
1878 return 0;
1879 }
1880
1881 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
1882 struct iov_iter *from, int copy)
1883 {
1884 int err, offset = skb->len;
1885
1886 err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
1887 copy, offset);
1888 if (err)
1889 __skb_trim(skb, offset);
1890
1891 return err;
1892 }
1893
1894 static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from,
1895 struct sk_buff *skb,
1896 struct page *page,
1897 int off, int copy)
1898 {
1899 int err;
1900
1901 err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
1902 copy, skb->len);
1903 if (err)
1904 return err;
1905
1906 skb->len += copy;
1907 skb->data_len += copy;
1908 skb->truesize += copy;
1909 sk->sk_wmem_queued += copy;
1910 sk_mem_charge(sk, copy);
1911 return 0;
1912 }
1913
1914 /**
1915 * sk_wmem_alloc_get - returns write allocations
1916 * @sk: socket
1917 *
1918 * Returns sk_wmem_alloc minus initial offset of one
1919 */
1920 static inline int sk_wmem_alloc_get(const struct sock *sk)
1921 {
1922 return atomic_read(&sk->sk_wmem_alloc) - 1;
1923 }
1924
1925 /**
1926 * sk_rmem_alloc_get - returns read allocations
1927 * @sk: socket
1928 *
1929 * Returns sk_rmem_alloc
1930 */
1931 static inline int sk_rmem_alloc_get(const struct sock *sk)
1932 {
1933 return atomic_read(&sk->sk_rmem_alloc);
1934 }
1935
1936 /**
1937 * sk_has_allocations - check if allocations are outstanding
1938 * @sk: socket
1939 *
1940 * Returns true if socket has write or read allocations
1941 */
1942 static inline bool sk_has_allocations(const struct sock *sk)
1943 {
1944 return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
1945 }
1946
1947 /**
1948 * skwq_has_sleeper - check if there are any waiting processes
1949 * @wq: struct socket_wq
1950 *
1951 * Returns true if socket_wq has waiting processes
1952 *
1953 * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory
1954 * barrier call. They were added due to the race found within the tcp code.
1955 *
1956 * Consider following tcp code paths:
1957 *
1958 * CPU1 CPU2
1959 *
1960 * sys_select receive packet
1961 * ... ...
1962 * __add_wait_queue update tp->rcv_nxt
1963 * ... ...
1964 * tp->rcv_nxt check sock_def_readable
1965 * ... {
1966 * schedule rcu_read_lock();
1967 * wq = rcu_dereference(sk->sk_wq);
1968 * if (wq && waitqueue_active(&wq->wait))
1969 * wake_up_interruptible(&wq->wait)
1970 * ...
1971 * }
1972 *
1973 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
1974 * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1
1975 * could then endup calling schedule and sleep forever if there are no more
1976 * data on the socket.
1977 *
1978 */
1979 static inline bool skwq_has_sleeper(struct socket_wq *wq)
1980 {
1981 return wq && wq_has_sleeper(&wq->wait);
1982 }
1983
1984 /**
1985 * sock_poll_wait - place memory barrier behind the poll_wait call.
1986 * @filp: file
1987 * @wait_address: socket wait queue
1988 * @p: poll_table
1989 *
1990 * See the comments in the wq_has_sleeper function.
1991 */
1992 static inline void sock_poll_wait(struct file *filp,
1993 wait_queue_head_t *wait_address, poll_table *p)
1994 {
1995 if (!poll_does_not_wait(p) && wait_address) {
1996 poll_wait(filp, wait_address, p);
1997 /* We need to be sure we are in sync with the
1998 * socket flags modification.
1999 *
2000 * This memory barrier is paired in the wq_has_sleeper.
2001 */
2002 smp_mb();
2003 }
2004 }
2005
2006 static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
2007 {
2008 if (sk->sk_txhash) {
2009 skb->l4_hash = 1;
2010 skb->hash = sk->sk_txhash;
2011 }
2012 }
2013
2014 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk);
2015
2016 /*
2017 * Queue a received datagram if it will fit. Stream and sequenced
2018 * protocols can't normally use this as they need to fit buffers in
2019 * and play with them.
2020 *
2021 * Inlined as it's very short and called for pretty much every
2022 * packet ever received.
2023 */
2024 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
2025 {
2026 skb_orphan(skb);
2027 skb->sk = sk;
2028 skb->destructor = sock_rfree;
2029 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
2030 sk_mem_charge(sk, skb->truesize);
2031 }
2032
2033 void sk_reset_timer(struct sock *sk, struct timer_list *timer,
2034 unsigned long expires);
2035
2036 void sk_stop_timer(struct sock *sk, struct timer_list *timer);
2037
2038 int __sk_queue_drop_skb(struct sock *sk, struct sk_buff *skb,
2039 unsigned int flags,
2040 void (*destructor)(struct sock *sk,
2041 struct sk_buff *skb));
2042 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2043 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2044
2045 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
2046 struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
2047
2048 /*
2049 * Recover an error report and clear atomically
2050 */
2051
2052 static inline int sock_error(struct sock *sk)
2053 {
2054 int err;
2055 if (likely(!sk->sk_err))
2056 return 0;
2057 err = xchg(&sk->sk_err, 0);
2058 return -err;
2059 }
2060
2061 static inline unsigned long sock_wspace(struct sock *sk)
2062 {
2063 int amt = 0;
2064
2065 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2066 amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
2067 if (amt < 0)
2068 amt = 0;
2069 }
2070 return amt;
2071 }
2072
2073 /* Note:
2074 * We use sk->sk_wq_raw, from contexts knowing this
2075 * pointer is not NULL and cannot disappear/change.
2076 */
2077 static inline void sk_set_bit(int nr, struct sock *sk)
2078 {
2079 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2080 !sock_flag(sk, SOCK_FASYNC))
2081 return;
2082
2083 set_bit(nr, &sk->sk_wq_raw->flags);
2084 }
2085
2086 static inline void sk_clear_bit(int nr, struct sock *sk)
2087 {
2088 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2089 !sock_flag(sk, SOCK_FASYNC))
2090 return;
2091
2092 clear_bit(nr, &sk->sk_wq_raw->flags);
2093 }
2094
2095 static inline void sk_wake_async(const struct sock *sk, int how, int band)
2096 {
2097 if (sock_flag(sk, SOCK_FASYNC)) {
2098 rcu_read_lock();
2099 sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
2100 rcu_read_unlock();
2101 }
2102 }
2103
2104 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2105 * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2106 * Note: for send buffers, TCP works better if we can build two skbs at
2107 * minimum.
2108 */
2109 #define TCP_SKB_MIN_TRUESIZE (2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2110
2111 #define SOCK_MIN_SNDBUF (TCP_SKB_MIN_TRUESIZE * 2)
2112 #define SOCK_MIN_RCVBUF TCP_SKB_MIN_TRUESIZE
2113
2114 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2115 {
2116 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
2117 sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2118 sk->sk_sndbuf = max_t(u32, sk->sk_sndbuf, SOCK_MIN_SNDBUF);
2119 }
2120 }
2121
2122 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
2123 bool force_schedule);
2124
2125 /**
2126 * sk_page_frag - return an appropriate page_frag
2127 * @sk: socket
2128 *
2129 * If socket allocation mode allows current thread to sleep, it means its
2130 * safe to use the per task page_frag instead of the per socket one.
2131 */
2132 static inline struct page_frag *sk_page_frag(struct sock *sk)
2133 {
2134 if (gfpflags_allow_blocking(sk->sk_allocation))
2135 return &current->task_frag;
2136
2137 return &sk->sk_frag;
2138 }
2139
2140 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2141
2142 /*
2143 * Default write policy as shown to user space via poll/select/SIGIO
2144 */
2145 static inline bool sock_writeable(const struct sock *sk)
2146 {
2147 return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1);
2148 }
2149
2150 static inline gfp_t gfp_any(void)
2151 {
2152 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2153 }
2154
2155 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2156 {
2157 return noblock ? 0 : sk->sk_rcvtimeo;
2158 }
2159
2160 static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2161 {
2162 return noblock ? 0 : sk->sk_sndtimeo;
2163 }
2164
2165 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2166 {
2167 return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
2168 }
2169
2170 /* Alas, with timeout socket operations are not restartable.
2171 * Compare this to poll().
2172 */
2173 static inline int sock_intr_errno(long timeo)
2174 {
2175 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2176 }
2177
2178 struct sock_skb_cb {
2179 u32 dropcount;
2180 };
2181
2182 /* Store sock_skb_cb at the end of skb->cb[] so protocol families
2183 * using skb->cb[] would keep using it directly and utilize its
2184 * alignement guarantee.
2185 */
2186 #define SOCK_SKB_CB_OFFSET ((FIELD_SIZEOF(struct sk_buff, cb) - \
2187 sizeof(struct sock_skb_cb)))
2188
2189 #define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \
2190 SOCK_SKB_CB_OFFSET))
2191
2192 #define sock_skb_cb_check_size(size) \
2193 BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET)
2194
2195 static inline void
2196 sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb)
2197 {
2198 SOCK_SKB_CB(skb)->dropcount = sock_flag(sk, SOCK_RXQ_OVFL) ?
2199 atomic_read(&sk->sk_drops) : 0;
2200 }
2201
2202 static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb)
2203 {
2204 int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2205
2206 atomic_add(segs, &sk->sk_drops);
2207 }
2208
2209 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2210 struct sk_buff *skb);
2211 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2212 struct sk_buff *skb);
2213
2214 static inline void
2215 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2216 {
2217 ktime_t kt = skb->tstamp;
2218 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2219
2220 /*
2221 * generate control messages if
2222 * - receive time stamping in software requested
2223 * - software time stamp available and wanted
2224 * - hardware time stamps available and wanted
2225 */
2226 if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2227 (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2228 (kt && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2229 (hwtstamps->hwtstamp &&
2230 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
2231 __sock_recv_timestamp(msg, sk, skb);
2232 else
2233 sk->sk_stamp = kt;
2234
2235 if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2236 __sock_recv_wifi_status(msg, sk, skb);
2237 }
2238
2239 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2240 struct sk_buff *skb);
2241
2242 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2243 struct sk_buff *skb)
2244 {
2245 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL) | \
2246 (1UL << SOCK_RCVTSTAMP))
2247 #define TSFLAGS_ANY (SOF_TIMESTAMPING_SOFTWARE | \
2248 SOF_TIMESTAMPING_RAW_HARDWARE)
2249
2250 if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY)
2251 __sock_recv_ts_and_drops(msg, sk, skb);
2252 else
2253 sk->sk_stamp = skb->tstamp;
2254 }
2255
2256 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags);
2257
2258 /**
2259 * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2260 * @sk: socket sending this packet
2261 * @tsflags: timestamping flags to use
2262 * @tx_flags: completed with instructions for time stamping
2263 *
2264 * Note : callers should take care of initial *tx_flags value (usually 0)
2265 */
2266 static inline void sock_tx_timestamp(const struct sock *sk, __u16 tsflags,
2267 __u8 *tx_flags)
2268 {
2269 if (unlikely(tsflags))
2270 __sock_tx_timestamp(tsflags, tx_flags);
2271 if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS)))
2272 *tx_flags |= SKBTX_WIFI_STATUS;
2273 }
2274
2275 /**
2276 * sk_eat_skb - Release a skb if it is no longer needed
2277 * @sk: socket to eat this skb from
2278 * @skb: socket buffer to eat
2279 *
2280 * This routine must be called with interrupts disabled or with the socket
2281 * locked so that the sk_buff queue operation is ok.
2282 */
2283 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
2284 {
2285 __skb_unlink(skb, &sk->sk_receive_queue);
2286 __kfree_skb(skb);
2287 }
2288
2289 static inline
2290 struct net *sock_net(const struct sock *sk)
2291 {
2292 return read_pnet(&sk->sk_net);
2293 }
2294
2295 static inline
2296 void sock_net_set(struct sock *sk, struct net *net)
2297 {
2298 write_pnet(&sk->sk_net, net);
2299 }
2300
2301 static inline struct sock *skb_steal_sock(struct sk_buff *skb)
2302 {
2303 if (skb->sk) {
2304 struct sock *sk = skb->sk;
2305
2306 skb->destructor = NULL;
2307 skb->sk = NULL;
2308 return sk;
2309 }
2310 return NULL;
2311 }
2312
2313 /* This helper checks if a socket is a full socket,
2314 * ie _not_ a timewait or request socket.
2315 */
2316 static inline bool sk_fullsock(const struct sock *sk)
2317 {
2318 return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV);
2319 }
2320
2321 /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV
2322 * SYNACK messages can be attached to either ones (depending on SYNCOOKIE)
2323 */
2324 static inline bool sk_listener(const struct sock *sk)
2325 {
2326 return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV);
2327 }
2328
2329 /**
2330 * sk_state_load - read sk->sk_state for lockless contexts
2331 * @sk: socket pointer
2332 *
2333 * Paired with sk_state_store(). Used in places we do not hold socket lock :
2334 * tcp_diag_get_info(), tcp_get_info(), tcp_poll(), get_tcp4_sock() ...
2335 */
2336 static inline int sk_state_load(const struct sock *sk)
2337 {
2338 return smp_load_acquire(&sk->sk_state);
2339 }
2340
2341 /**
2342 * sk_state_store - update sk->sk_state
2343 * @sk: socket pointer
2344 * @newstate: new state
2345 *
2346 * Paired with sk_state_load(). Should be used in contexts where
2347 * state change might impact lockless readers.
2348 */
2349 static inline void sk_state_store(struct sock *sk, int newstate)
2350 {
2351 smp_store_release(&sk->sk_state, newstate);
2352 }
2353
2354 void sock_enable_timestamp(struct sock *sk, int flag);
2355 int sock_get_timestamp(struct sock *, struct timeval __user *);
2356 int sock_get_timestampns(struct sock *, struct timespec __user *);
2357 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2358 int type);
2359
2360 bool sk_ns_capable(const struct sock *sk,
2361 struct user_namespace *user_ns, int cap);
2362 bool sk_capable(const struct sock *sk, int cap);
2363 bool sk_net_capable(const struct sock *sk, int cap);
2364
2365 extern __u32 sysctl_wmem_max;
2366 extern __u32 sysctl_rmem_max;
2367
2368 extern int sysctl_tstamp_allow_data;
2369 extern int sysctl_optmem_max;
2370
2371 extern __u32 sysctl_wmem_default;
2372 extern __u32 sysctl_rmem_default;
2373
2374 #endif /* _SOCK_H */