]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - include/net/sock.h
tcp/dccp: fix possible race __inet_lookup_established()
[mirror_ubuntu-bionic-kernel.git] / include / net / sock.h
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Definitions for the AF_INET socket handler.
7 *
8 * Version: @(#)sock.h 1.0.4 05/13/93
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche <flla@stud.uni-sb.de>
14 *
15 * Fixes:
16 * Alan Cox : Volatiles in skbuff pointers. See
17 * skbuff comments. May be overdone,
18 * better to prove they can be removed
19 * than the reverse.
20 * Alan Cox : Added a zapped field for tcp to note
21 * a socket is reset and must stay shut up
22 * Alan Cox : New fields for options
23 * Pauline Middelink : identd support
24 * Alan Cox : Eliminate low level recv/recvfrom
25 * David S. Miller : New socket lookup architecture.
26 * Steve Whitehouse: Default routines for sock_ops
27 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made
28 * protinfo be just a void pointer, as the
29 * protocol specific parts were moved to
30 * respective headers and ipv4/v6, etc now
31 * use private slabcaches for its socks
32 * Pedro Hortas : New flags field for socket options
33 *
34 *
35 * This program is free software; you can redistribute it and/or
36 * modify it under the terms of the GNU General Public License
37 * as published by the Free Software Foundation; either version
38 * 2 of the License, or (at your option) any later version.
39 */
40 #ifndef _SOCK_H
41 #define _SOCK_H
42
43 #include <linux/hardirq.h>
44 #include <linux/kernel.h>
45 #include <linux/list.h>
46 #include <linux/list_nulls.h>
47 #include <linux/timer.h>
48 #include <linux/cache.h>
49 #include <linux/bitops.h>
50 #include <linux/lockdep.h>
51 #include <linux/netdevice.h>
52 #include <linux/skbuff.h> /* struct sk_buff */
53 #include <linux/mm.h>
54 #include <linux/security.h>
55 #include <linux/slab.h>
56 #include <linux/uaccess.h>
57 #include <linux/page_counter.h>
58 #include <linux/memcontrol.h>
59 #include <linux/static_key.h>
60 #include <linux/sched.h>
61 #include <linux/wait.h>
62 #include <linux/cgroup-defs.h>
63 #include <linux/rbtree.h>
64 #include <linux/filter.h>
65 #include <linux/rculist_nulls.h>
66 #include <linux/poll.h>
67
68 #include <linux/atomic.h>
69 #include <linux/refcount.h>
70 #include <net/dst.h>
71 #include <net/checksum.h>
72 #include <net/tcp_states.h>
73 #include <linux/net_tstamp.h>
74 #include <net/smc.h>
75
76 /*
77 * This structure really needs to be cleaned up.
78 * Most of it is for TCP, and not used by any of
79 * the other protocols.
80 */
81
82 /* Define this to get the SOCK_DBG debugging facility. */
83 #define SOCK_DEBUGGING
84 #ifdef SOCK_DEBUGGING
85 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
86 printk(KERN_DEBUG msg); } while (0)
87 #else
88 /* Validate arguments and do nothing */
89 static inline __printf(2, 3)
90 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
91 {
92 }
93 #endif
94
95 /* This is the per-socket lock. The spinlock provides a synchronization
96 * between user contexts and software interrupt processing, whereas the
97 * mini-semaphore synchronizes multiple users amongst themselves.
98 */
99 typedef struct {
100 spinlock_t slock;
101 int owned;
102 wait_queue_head_t wq;
103 /*
104 * We express the mutex-alike socket_lock semantics
105 * to the lock validator by explicitly managing
106 * the slock as a lock variant (in addition to
107 * the slock itself):
108 */
109 #ifdef CONFIG_DEBUG_LOCK_ALLOC
110 struct lockdep_map dep_map;
111 #endif
112 } socket_lock_t;
113
114 struct sock;
115 struct proto;
116 struct net;
117
118 typedef __u32 __bitwise __portpair;
119 typedef __u64 __bitwise __addrpair;
120
121 /**
122 * struct sock_common - minimal network layer representation of sockets
123 * @skc_daddr: Foreign IPv4 addr
124 * @skc_rcv_saddr: Bound local IPv4 addr
125 * @skc_hash: hash value used with various protocol lookup tables
126 * @skc_u16hashes: two u16 hash values used by UDP lookup tables
127 * @skc_dport: placeholder for inet_dport/tw_dport
128 * @skc_num: placeholder for inet_num/tw_num
129 * @skc_family: network address family
130 * @skc_state: Connection state
131 * @skc_reuse: %SO_REUSEADDR setting
132 * @skc_reuseport: %SO_REUSEPORT setting
133 * @skc_bound_dev_if: bound device index if != 0
134 * @skc_bind_node: bind hash linkage for various protocol lookup tables
135 * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
136 * @skc_prot: protocol handlers inside a network family
137 * @skc_net: reference to the network namespace of this socket
138 * @skc_node: main hash linkage for various protocol lookup tables
139 * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
140 * @skc_tx_queue_mapping: tx queue number for this connection
141 * @skc_flags: place holder for sk_flags
142 * %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
143 * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
144 * @skc_incoming_cpu: record/match cpu processing incoming packets
145 * @skc_refcnt: reference count
146 *
147 * This is the minimal network layer representation of sockets, the header
148 * for struct sock and struct inet_timewait_sock.
149 */
150 struct sock_common {
151 /* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned
152 * address on 64bit arches : cf INET_MATCH()
153 */
154 union {
155 __addrpair skc_addrpair;
156 struct {
157 __be32 skc_daddr;
158 __be32 skc_rcv_saddr;
159 };
160 };
161 union {
162 unsigned int skc_hash;
163 __u16 skc_u16hashes[2];
164 };
165 /* skc_dport && skc_num must be grouped as well */
166 union {
167 __portpair skc_portpair;
168 struct {
169 __be16 skc_dport;
170 __u16 skc_num;
171 };
172 };
173
174 unsigned short skc_family;
175 volatile unsigned char skc_state;
176 unsigned char skc_reuse:4;
177 unsigned char skc_reuseport:1;
178 unsigned char skc_ipv6only:1;
179 unsigned char skc_net_refcnt:1;
180 int skc_bound_dev_if;
181 union {
182 struct hlist_node skc_bind_node;
183 struct hlist_node skc_portaddr_node;
184 };
185 struct proto *skc_prot;
186 possible_net_t skc_net;
187
188 #if IS_ENABLED(CONFIG_IPV6)
189 struct in6_addr skc_v6_daddr;
190 struct in6_addr skc_v6_rcv_saddr;
191 #endif
192
193 atomic64_t skc_cookie;
194
195 /* following fields are padding to force
196 * offset(struct sock, sk_refcnt) == 128 on 64bit arches
197 * assuming IPV6 is enabled. We use this padding differently
198 * for different kind of 'sockets'
199 */
200 union {
201 unsigned long skc_flags;
202 struct sock *skc_listener; /* request_sock */
203 struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */
204 };
205 /*
206 * fields between dontcopy_begin/dontcopy_end
207 * are not copied in sock_copy()
208 */
209 /* private: */
210 int skc_dontcopy_begin[0];
211 /* public: */
212 union {
213 struct hlist_node skc_node;
214 struct hlist_nulls_node skc_nulls_node;
215 };
216 int skc_tx_queue_mapping;
217 union {
218 int skc_incoming_cpu;
219 u32 skc_rcv_wnd;
220 u32 skc_tw_rcv_nxt; /* struct tcp_timewait_sock */
221 };
222
223 refcount_t skc_refcnt;
224 /* private: */
225 int skc_dontcopy_end[0];
226 union {
227 u32 skc_rxhash;
228 u32 skc_window_clamp;
229 u32 skc_tw_snd_nxt; /* struct tcp_timewait_sock */
230 };
231 /* public: */
232 };
233
234 /**
235 * struct sock - network layer representation of sockets
236 * @__sk_common: shared layout with inet_timewait_sock
237 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
238 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
239 * @sk_lock: synchronizer
240 * @sk_kern_sock: True if sock is using kernel lock classes
241 * @sk_rcvbuf: size of receive buffer in bytes
242 * @sk_wq: sock wait queue and async head
243 * @sk_rx_dst: receive input route used by early demux
244 * @sk_dst_cache: destination cache
245 * @sk_dst_pending_confirm: need to confirm neighbour
246 * @sk_policy: flow policy
247 * @sk_receive_queue: incoming packets
248 * @sk_wmem_alloc: transmit queue bytes committed
249 * @sk_tsq_flags: TCP Small Queues flags
250 * @sk_write_queue: Packet sending queue
251 * @sk_omem_alloc: "o" is "option" or "other"
252 * @sk_wmem_queued: persistent queue size
253 * @sk_forward_alloc: space allocated forward
254 * @sk_napi_id: id of the last napi context to receive data for sk
255 * @sk_ll_usec: usecs to busypoll when there is no data
256 * @sk_allocation: allocation mode
257 * @sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
258 * @sk_pacing_status: Pacing status (requested, handled by sch_fq)
259 * @sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
260 * @sk_sndbuf: size of send buffer in bytes
261 * @__sk_flags_offset: empty field used to determine location of bitfield
262 * @sk_padding: unused element for alignment
263 * @sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
264 * @sk_no_check_rx: allow zero checksum in RX packets
265 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
266 * @sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
267 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
268 * @sk_gso_max_size: Maximum GSO segment size to build
269 * @sk_gso_max_segs: Maximum number of GSO segments
270 * @sk_pacing_shift: scaling factor for TCP Small Queues
271 * @sk_lingertime: %SO_LINGER l_linger setting
272 * @sk_backlog: always used with the per-socket spinlock held
273 * @sk_callback_lock: used with the callbacks in the end of this struct
274 * @sk_error_queue: rarely used
275 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
276 * IPV6_ADDRFORM for instance)
277 * @sk_err: last error
278 * @sk_err_soft: errors that don't cause failure but are the cause of a
279 * persistent failure not just 'timed out'
280 * @sk_drops: raw/udp drops counter
281 * @sk_ack_backlog: current listen backlog
282 * @sk_max_ack_backlog: listen backlog set in listen()
283 * @sk_uid: user id of owner
284 * @sk_priority: %SO_PRIORITY setting
285 * @sk_type: socket type (%SOCK_STREAM, etc)
286 * @sk_protocol: which protocol this socket belongs in this network family
287 * @sk_peer_pid: &struct pid for this socket's peer
288 * @sk_peer_cred: %SO_PEERCRED setting
289 * @sk_rcvlowat: %SO_RCVLOWAT setting
290 * @sk_rcvtimeo: %SO_RCVTIMEO setting
291 * @sk_sndtimeo: %SO_SNDTIMEO setting
292 * @sk_txhash: computed flow hash for use on transmit
293 * @sk_filter: socket filtering instructions
294 * @sk_timer: sock cleanup timer
295 * @sk_stamp: time stamp of last packet received
296 * @sk_stamp_seq: lock for accessing sk_stamp on 32 bit architectures only
297 * @sk_tsflags: SO_TIMESTAMPING socket options
298 * @sk_tskey: counter to disambiguate concurrent tstamp requests
299 * @sk_zckey: counter to order MSG_ZEROCOPY notifications
300 * @sk_socket: Identd and reporting IO signals
301 * @sk_user_data: RPC layer private data
302 * @sk_frag: cached page frag
303 * @sk_peek_off: current peek_offset value
304 * @sk_send_head: front of stuff to transmit
305 * @sk_security: used by security modules
306 * @sk_mark: generic packet mark
307 * @sk_cgrp_data: cgroup data for this cgroup
308 * @sk_memcg: this socket's memory cgroup association
309 * @sk_write_pending: a write to stream socket waits to start
310 * @sk_state_change: callback to indicate change in the state of the sock
311 * @sk_data_ready: callback to indicate there is data to be processed
312 * @sk_write_space: callback to indicate there is bf sending space available
313 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
314 * @sk_backlog_rcv: callback to process the backlog
315 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
316 * @sk_reuseport_cb: reuseport group container
317 * @sk_rcu: used during RCU grace period
318 */
319 struct sock {
320 /*
321 * Now struct inet_timewait_sock also uses sock_common, so please just
322 * don't add nothing before this first member (__sk_common) --acme
323 */
324 struct sock_common __sk_common;
325 #define sk_node __sk_common.skc_node
326 #define sk_nulls_node __sk_common.skc_nulls_node
327 #define sk_refcnt __sk_common.skc_refcnt
328 #define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping
329
330 #define sk_dontcopy_begin __sk_common.skc_dontcopy_begin
331 #define sk_dontcopy_end __sk_common.skc_dontcopy_end
332 #define sk_hash __sk_common.skc_hash
333 #define sk_portpair __sk_common.skc_portpair
334 #define sk_num __sk_common.skc_num
335 #define sk_dport __sk_common.skc_dport
336 #define sk_addrpair __sk_common.skc_addrpair
337 #define sk_daddr __sk_common.skc_daddr
338 #define sk_rcv_saddr __sk_common.skc_rcv_saddr
339 #define sk_family __sk_common.skc_family
340 #define sk_state __sk_common.skc_state
341 #define sk_reuse __sk_common.skc_reuse
342 #define sk_reuseport __sk_common.skc_reuseport
343 #define sk_ipv6only __sk_common.skc_ipv6only
344 #define sk_net_refcnt __sk_common.skc_net_refcnt
345 #define sk_bound_dev_if __sk_common.skc_bound_dev_if
346 #define sk_bind_node __sk_common.skc_bind_node
347 #define sk_prot __sk_common.skc_prot
348 #define sk_net __sk_common.skc_net
349 #define sk_v6_daddr __sk_common.skc_v6_daddr
350 #define sk_v6_rcv_saddr __sk_common.skc_v6_rcv_saddr
351 #define sk_cookie __sk_common.skc_cookie
352 #define sk_incoming_cpu __sk_common.skc_incoming_cpu
353 #define sk_flags __sk_common.skc_flags
354 #define sk_rxhash __sk_common.skc_rxhash
355
356 socket_lock_t sk_lock;
357 atomic_t sk_drops;
358 int sk_rcvlowat;
359 struct sk_buff_head sk_error_queue;
360 struct sk_buff_head sk_receive_queue;
361 /*
362 * The backlog queue is special, it is always used with
363 * the per-socket spinlock held and requires low latency
364 * access. Therefore we special case it's implementation.
365 * Note : rmem_alloc is in this structure to fill a hole
366 * on 64bit arches, not because its logically part of
367 * backlog.
368 */
369 struct {
370 atomic_t rmem_alloc;
371 int len;
372 struct sk_buff *head;
373 struct sk_buff *tail;
374 } sk_backlog;
375 #define sk_rmem_alloc sk_backlog.rmem_alloc
376
377 int sk_forward_alloc;
378 #ifdef CONFIG_NET_RX_BUSY_POLL
379 unsigned int sk_ll_usec;
380 /* ===== mostly read cache line ===== */
381 unsigned int sk_napi_id;
382 #endif
383 int sk_rcvbuf;
384
385 struct sk_filter __rcu *sk_filter;
386 union {
387 struct socket_wq __rcu *sk_wq;
388 struct socket_wq *sk_wq_raw;
389 };
390 #ifdef CONFIG_XFRM
391 struct xfrm_policy __rcu *sk_policy[2];
392 #endif
393 struct dst_entry *sk_rx_dst;
394 struct dst_entry __rcu *sk_dst_cache;
395 atomic_t sk_omem_alloc;
396 int sk_sndbuf;
397
398 /* ===== cache line for TX ===== */
399 int sk_wmem_queued;
400 refcount_t sk_wmem_alloc;
401 unsigned long sk_tsq_flags;
402 union {
403 struct sk_buff *sk_send_head;
404 struct rb_root tcp_rtx_queue;
405 };
406 struct sk_buff_head sk_write_queue;
407 __s32 sk_peek_off;
408 int sk_write_pending;
409 __u32 sk_dst_pending_confirm;
410 u32 sk_pacing_status; /* see enum sk_pacing */
411 long sk_sndtimeo;
412 struct timer_list sk_timer;
413 __u32 sk_priority;
414 __u32 sk_mark;
415 u32 sk_pacing_rate; /* bytes per second */
416 u32 sk_max_pacing_rate;
417 struct page_frag sk_frag;
418 netdev_features_t sk_route_caps;
419 netdev_features_t sk_route_nocaps;
420 int sk_gso_type;
421 unsigned int sk_gso_max_size;
422 gfp_t sk_allocation;
423 __u32 sk_txhash;
424
425 /*
426 * Because of non atomicity rules, all
427 * changes are protected by socket lock.
428 */
429 unsigned int __sk_flags_offset[0];
430 #ifdef __BIG_ENDIAN_BITFIELD
431 #define SK_FL_PROTO_SHIFT 16
432 #define SK_FL_PROTO_MASK 0x00ff0000
433
434 #define SK_FL_TYPE_SHIFT 0
435 #define SK_FL_TYPE_MASK 0x0000ffff
436 #else
437 #define SK_FL_PROTO_SHIFT 8
438 #define SK_FL_PROTO_MASK 0x0000ff00
439
440 #define SK_FL_TYPE_SHIFT 16
441 #define SK_FL_TYPE_MASK 0xffff0000
442 #endif
443
444 unsigned int sk_padding : 1,
445 sk_kern_sock : 1,
446 sk_no_check_tx : 1,
447 sk_no_check_rx : 1,
448 sk_userlocks : 4,
449 sk_protocol : 8,
450 sk_type : 16;
451 #define SK_PROTOCOL_MAX U8_MAX
452 u16 sk_gso_max_segs;
453 u8 sk_pacing_shift;
454 unsigned long sk_lingertime;
455 struct proto *sk_prot_creator;
456 rwlock_t sk_callback_lock;
457 int sk_err,
458 sk_err_soft;
459 u32 sk_ack_backlog;
460 u32 sk_max_ack_backlog;
461 kuid_t sk_uid;
462 struct pid *sk_peer_pid;
463 const struct cred *sk_peer_cred;
464 long sk_rcvtimeo;
465 ktime_t sk_stamp;
466 #if BITS_PER_LONG==32
467 seqlock_t sk_stamp_seq;
468 #endif
469 u16 sk_tsflags;
470 u8 sk_shutdown;
471 u32 sk_tskey;
472 atomic_t sk_zckey;
473 struct socket *sk_socket;
474 void *sk_user_data;
475 #ifdef CONFIG_SECURITY
476 void *sk_security;
477 #endif
478 struct sock_cgroup_data sk_cgrp_data;
479 struct mem_cgroup *sk_memcg;
480 void (*sk_state_change)(struct sock *sk);
481 void (*sk_data_ready)(struct sock *sk);
482 void (*sk_write_space)(struct sock *sk);
483 void (*sk_error_report)(struct sock *sk);
484 int (*sk_backlog_rcv)(struct sock *sk,
485 struct sk_buff *skb);
486 void (*sk_destruct)(struct sock *sk);
487 struct sock_reuseport __rcu *sk_reuseport_cb;
488 struct rcu_head sk_rcu;
489 };
490
491 enum sk_pacing {
492 SK_PACING_NONE = 0,
493 SK_PACING_NEEDED = 1,
494 SK_PACING_FQ = 2,
495 };
496
497 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
498
499 #define rcu_dereference_sk_user_data(sk) rcu_dereference(__sk_user_data((sk)))
500 #define rcu_assign_sk_user_data(sk, ptr) rcu_assign_pointer(__sk_user_data((sk)), ptr)
501
502 /*
503 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
504 * or not whether his port will be reused by someone else. SK_FORCE_REUSE
505 * on a socket means that the socket will reuse everybody else's port
506 * without looking at the other's sk_reuse value.
507 */
508
509 #define SK_NO_REUSE 0
510 #define SK_CAN_REUSE 1
511 #define SK_FORCE_REUSE 2
512
513 int sk_set_peek_off(struct sock *sk, int val);
514
515 static inline int sk_peek_offset(struct sock *sk, int flags)
516 {
517 if (unlikely(flags & MSG_PEEK)) {
518 return READ_ONCE(sk->sk_peek_off);
519 }
520
521 return 0;
522 }
523
524 static inline void sk_peek_offset_bwd(struct sock *sk, int val)
525 {
526 s32 off = READ_ONCE(sk->sk_peek_off);
527
528 if (unlikely(off >= 0)) {
529 off = max_t(s32, off - val, 0);
530 WRITE_ONCE(sk->sk_peek_off, off);
531 }
532 }
533
534 static inline void sk_peek_offset_fwd(struct sock *sk, int val)
535 {
536 sk_peek_offset_bwd(sk, -val);
537 }
538
539 /*
540 * Hashed lists helper routines
541 */
542 static inline struct sock *sk_entry(const struct hlist_node *node)
543 {
544 return hlist_entry(node, struct sock, sk_node);
545 }
546
547 static inline struct sock *__sk_head(const struct hlist_head *head)
548 {
549 return hlist_entry(head->first, struct sock, sk_node);
550 }
551
552 static inline struct sock *sk_head(const struct hlist_head *head)
553 {
554 return hlist_empty(head) ? NULL : __sk_head(head);
555 }
556
557 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
558 {
559 return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
560 }
561
562 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
563 {
564 return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
565 }
566
567 static inline struct sock *sk_next(const struct sock *sk)
568 {
569 return hlist_entry_safe(sk->sk_node.next, struct sock, sk_node);
570 }
571
572 static inline struct sock *sk_nulls_next(const struct sock *sk)
573 {
574 return (!is_a_nulls(sk->sk_nulls_node.next)) ?
575 hlist_nulls_entry(sk->sk_nulls_node.next,
576 struct sock, sk_nulls_node) :
577 NULL;
578 }
579
580 static inline bool sk_unhashed(const struct sock *sk)
581 {
582 return hlist_unhashed(&sk->sk_node);
583 }
584
585 static inline bool sk_hashed(const struct sock *sk)
586 {
587 return !sk_unhashed(sk);
588 }
589
590 static inline void sk_node_init(struct hlist_node *node)
591 {
592 node->pprev = NULL;
593 }
594
595 static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
596 {
597 node->pprev = NULL;
598 }
599
600 static inline void __sk_del_node(struct sock *sk)
601 {
602 __hlist_del(&sk->sk_node);
603 }
604
605 /* NB: equivalent to hlist_del_init_rcu */
606 static inline bool __sk_del_node_init(struct sock *sk)
607 {
608 if (sk_hashed(sk)) {
609 __sk_del_node(sk);
610 sk_node_init(&sk->sk_node);
611 return true;
612 }
613 return false;
614 }
615
616 /* Grab socket reference count. This operation is valid only
617 when sk is ALREADY grabbed f.e. it is found in hash table
618 or a list and the lookup is made under lock preventing hash table
619 modifications.
620 */
621
622 static __always_inline void sock_hold(struct sock *sk)
623 {
624 refcount_inc(&sk->sk_refcnt);
625 }
626
627 /* Ungrab socket in the context, which assumes that socket refcnt
628 cannot hit zero, f.e. it is true in context of any socketcall.
629 */
630 static __always_inline void __sock_put(struct sock *sk)
631 {
632 refcount_dec(&sk->sk_refcnt);
633 }
634
635 static inline bool sk_del_node_init(struct sock *sk)
636 {
637 bool rc = __sk_del_node_init(sk);
638
639 if (rc) {
640 /* paranoid for a while -acme */
641 WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
642 __sock_put(sk);
643 }
644 return rc;
645 }
646 #define sk_del_node_init_rcu(sk) sk_del_node_init(sk)
647
648 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
649 {
650 if (sk_hashed(sk)) {
651 hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
652 return true;
653 }
654 return false;
655 }
656
657 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
658 {
659 bool rc = __sk_nulls_del_node_init_rcu(sk);
660
661 if (rc) {
662 /* paranoid for a while -acme */
663 WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
664 __sock_put(sk);
665 }
666 return rc;
667 }
668
669 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
670 {
671 hlist_add_head(&sk->sk_node, list);
672 }
673
674 static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
675 {
676 sock_hold(sk);
677 __sk_add_node(sk, list);
678 }
679
680 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
681 {
682 sock_hold(sk);
683 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
684 sk->sk_family == AF_INET6)
685 hlist_add_tail_rcu(&sk->sk_node, list);
686 else
687 hlist_add_head_rcu(&sk->sk_node, list);
688 }
689
690 static inline void sk_add_node_tail_rcu(struct sock *sk, struct hlist_head *list)
691 {
692 sock_hold(sk);
693 hlist_add_tail_rcu(&sk->sk_node, list);
694 }
695
696 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
697 {
698 hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
699 }
700
701 static inline void __sk_nulls_add_node_tail_rcu(struct sock *sk, struct hlist_nulls_head *list)
702 {
703 hlist_nulls_add_tail_rcu(&sk->sk_nulls_node, list);
704 }
705
706 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
707 {
708 sock_hold(sk);
709 __sk_nulls_add_node_rcu(sk, list);
710 }
711
712 static inline void __sk_del_bind_node(struct sock *sk)
713 {
714 __hlist_del(&sk->sk_bind_node);
715 }
716
717 static inline void sk_add_bind_node(struct sock *sk,
718 struct hlist_head *list)
719 {
720 hlist_add_head(&sk->sk_bind_node, list);
721 }
722
723 #define sk_for_each(__sk, list) \
724 hlist_for_each_entry(__sk, list, sk_node)
725 #define sk_for_each_rcu(__sk, list) \
726 hlist_for_each_entry_rcu(__sk, list, sk_node)
727 #define sk_nulls_for_each(__sk, node, list) \
728 hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
729 #define sk_nulls_for_each_rcu(__sk, node, list) \
730 hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
731 #define sk_for_each_from(__sk) \
732 hlist_for_each_entry_from(__sk, sk_node)
733 #define sk_nulls_for_each_from(__sk, node) \
734 if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
735 hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
736 #define sk_for_each_safe(__sk, tmp, list) \
737 hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
738 #define sk_for_each_bound(__sk, list) \
739 hlist_for_each_entry(__sk, list, sk_bind_node)
740
741 /**
742 * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset
743 * @tpos: the type * to use as a loop cursor.
744 * @pos: the &struct hlist_node to use as a loop cursor.
745 * @head: the head for your list.
746 * @offset: offset of hlist_node within the struct.
747 *
748 */
749 #define sk_for_each_entry_offset_rcu(tpos, pos, head, offset) \
750 for (pos = rcu_dereference(hlist_first_rcu(head)); \
751 pos != NULL && \
752 ({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;}); \
753 pos = rcu_dereference(hlist_next_rcu(pos)))
754
755 static inline struct user_namespace *sk_user_ns(struct sock *sk)
756 {
757 /* Careful only use this in a context where these parameters
758 * can not change and must all be valid, such as recvmsg from
759 * userspace.
760 */
761 return sk->sk_socket->file->f_cred->user_ns;
762 }
763
764 /* Sock flags */
765 enum sock_flags {
766 SOCK_DEAD,
767 SOCK_DONE,
768 SOCK_URGINLINE,
769 SOCK_KEEPOPEN,
770 SOCK_LINGER,
771 SOCK_DESTROY,
772 SOCK_BROADCAST,
773 SOCK_TIMESTAMP,
774 SOCK_ZAPPED,
775 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
776 SOCK_DBG, /* %SO_DEBUG setting */
777 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
778 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
779 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
780 SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
781 SOCK_MEMALLOC, /* VM depends on this socket for swapping */
782 SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */
783 SOCK_FASYNC, /* fasync() active */
784 SOCK_RXQ_OVFL,
785 SOCK_ZEROCOPY, /* buffers from userspace */
786 SOCK_WIFI_STATUS, /* push wifi status to userspace */
787 SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
788 * Will use last 4 bytes of packet sent from
789 * user-space instead.
790 */
791 SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
792 SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
793 SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */
794 };
795
796 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
797
798 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
799 {
800 nsk->sk_flags = osk->sk_flags;
801 }
802
803 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
804 {
805 __set_bit(flag, &sk->sk_flags);
806 }
807
808 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
809 {
810 __clear_bit(flag, &sk->sk_flags);
811 }
812
813 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
814 {
815 return test_bit(flag, &sk->sk_flags);
816 }
817
818 #ifdef CONFIG_NET
819 extern struct static_key memalloc_socks;
820 static inline int sk_memalloc_socks(void)
821 {
822 return static_key_false(&memalloc_socks);
823 }
824 #else
825
826 static inline int sk_memalloc_socks(void)
827 {
828 return 0;
829 }
830
831 #endif
832
833 static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask)
834 {
835 return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC);
836 }
837
838 static inline void sk_acceptq_removed(struct sock *sk)
839 {
840 sk->sk_ack_backlog--;
841 }
842
843 static inline void sk_acceptq_added(struct sock *sk)
844 {
845 sk->sk_ack_backlog++;
846 }
847
848 static inline bool sk_acceptq_is_full(const struct sock *sk)
849 {
850 return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
851 }
852
853 /*
854 * Compute minimal free write space needed to queue new packets.
855 */
856 static inline int sk_stream_min_wspace(const struct sock *sk)
857 {
858 return sk->sk_wmem_queued >> 1;
859 }
860
861 static inline int sk_stream_wspace(const struct sock *sk)
862 {
863 return sk->sk_sndbuf - sk->sk_wmem_queued;
864 }
865
866 void sk_stream_write_space(struct sock *sk);
867
868 /* OOB backlog add */
869 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
870 {
871 /* dont let skb dst not refcounted, we are going to leave rcu lock */
872 skb_dst_force(skb);
873
874 if (!sk->sk_backlog.tail)
875 sk->sk_backlog.head = skb;
876 else
877 sk->sk_backlog.tail->next = skb;
878
879 sk->sk_backlog.tail = skb;
880 skb->next = NULL;
881 }
882
883 /*
884 * Take into account size of receive queue and backlog queue
885 * Do not take into account this skb truesize,
886 * to allow even a single big packet to come.
887 */
888 static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
889 {
890 unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
891
892 return qsize > limit;
893 }
894
895 /* The per-socket spinlock must be held here. */
896 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
897 unsigned int limit)
898 {
899 if (sk_rcvqueues_full(sk, limit))
900 return -ENOBUFS;
901
902 /*
903 * If the skb was allocated from pfmemalloc reserves, only
904 * allow SOCK_MEMALLOC sockets to use it as this socket is
905 * helping free memory
906 */
907 if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
908 return -ENOMEM;
909
910 __sk_add_backlog(sk, skb);
911 sk->sk_backlog.len += skb->truesize;
912 return 0;
913 }
914
915 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
916
917 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
918 {
919 if (sk_memalloc_socks() && skb_pfmemalloc(skb))
920 return __sk_backlog_rcv(sk, skb);
921
922 return sk->sk_backlog_rcv(sk, skb);
923 }
924
925 static inline void sk_incoming_cpu_update(struct sock *sk)
926 {
927 int cpu = raw_smp_processor_id();
928
929 if (unlikely(READ_ONCE(sk->sk_incoming_cpu) != cpu))
930 WRITE_ONCE(sk->sk_incoming_cpu, cpu);
931 }
932
933 static inline void sock_rps_record_flow_hash(__u32 hash)
934 {
935 #ifdef CONFIG_RPS
936 struct rps_sock_flow_table *sock_flow_table;
937
938 rcu_read_lock();
939 sock_flow_table = rcu_dereference(rps_sock_flow_table);
940 rps_record_sock_flow(sock_flow_table, hash);
941 rcu_read_unlock();
942 #endif
943 }
944
945 static inline void sock_rps_record_flow(const struct sock *sk)
946 {
947 #ifdef CONFIG_RPS
948 if (static_key_false(&rfs_needed)) {
949 /* Reading sk->sk_rxhash might incur an expensive cache line
950 * miss.
951 *
952 * TCP_ESTABLISHED does cover almost all states where RFS
953 * might be useful, and is cheaper [1] than testing :
954 * IPv4: inet_sk(sk)->inet_daddr
955 * IPv6: ipv6_addr_any(&sk->sk_v6_daddr)
956 * OR an additional socket flag
957 * [1] : sk_state and sk_prot are in the same cache line.
958 */
959 if (sk->sk_state == TCP_ESTABLISHED)
960 sock_rps_record_flow_hash(sk->sk_rxhash);
961 }
962 #endif
963 }
964
965 static inline void sock_rps_save_rxhash(struct sock *sk,
966 const struct sk_buff *skb)
967 {
968 #ifdef CONFIG_RPS
969 if (unlikely(sk->sk_rxhash != skb->hash))
970 sk->sk_rxhash = skb->hash;
971 #endif
972 }
973
974 static inline void sock_rps_reset_rxhash(struct sock *sk)
975 {
976 #ifdef CONFIG_RPS
977 sk->sk_rxhash = 0;
978 #endif
979 }
980
981 #define sk_wait_event(__sk, __timeo, __condition, __wait) \
982 ({ int __rc; \
983 release_sock(__sk); \
984 __rc = __condition; \
985 if (!__rc) { \
986 *(__timeo) = wait_woken(__wait, \
987 TASK_INTERRUPTIBLE, \
988 *(__timeo)); \
989 } \
990 sched_annotate_sleep(); \
991 lock_sock(__sk); \
992 __rc = __condition; \
993 __rc; \
994 })
995
996 int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
997 int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
998 void sk_stream_wait_close(struct sock *sk, long timeo_p);
999 int sk_stream_error(struct sock *sk, int flags, int err);
1000 void sk_stream_kill_queues(struct sock *sk);
1001 void sk_set_memalloc(struct sock *sk);
1002 void sk_clear_memalloc(struct sock *sk);
1003
1004 void __sk_flush_backlog(struct sock *sk);
1005
1006 static inline bool sk_flush_backlog(struct sock *sk)
1007 {
1008 if (unlikely(READ_ONCE(sk->sk_backlog.tail))) {
1009 __sk_flush_backlog(sk);
1010 return true;
1011 }
1012 return false;
1013 }
1014
1015 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb);
1016
1017 struct request_sock_ops;
1018 struct timewait_sock_ops;
1019 struct inet_hashinfo;
1020 struct raw_hashinfo;
1021 struct smc_hashinfo;
1022 struct module;
1023
1024 /*
1025 * caches using SLAB_TYPESAFE_BY_RCU should let .next pointer from nulls nodes
1026 * un-modified. Special care is taken when initializing object to zero.
1027 */
1028 static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1029 {
1030 if (offsetof(struct sock, sk_node.next) != 0)
1031 memset(sk, 0, offsetof(struct sock, sk_node.next));
1032 memset(&sk->sk_node.pprev, 0,
1033 size - offsetof(struct sock, sk_node.pprev));
1034 }
1035
1036 /* Networking protocol blocks we attach to sockets.
1037 * socket layer -> transport layer interface
1038 */
1039 struct proto {
1040 void (*close)(struct sock *sk,
1041 long timeout);
1042 int (*connect)(struct sock *sk,
1043 struct sockaddr *uaddr,
1044 int addr_len);
1045 int (*disconnect)(struct sock *sk, int flags);
1046
1047 struct sock * (*accept)(struct sock *sk, int flags, int *err,
1048 bool kern);
1049
1050 int (*ioctl)(struct sock *sk, int cmd,
1051 unsigned long arg);
1052 int (*init)(struct sock *sk);
1053 void (*destroy)(struct sock *sk);
1054 void (*shutdown)(struct sock *sk, int how);
1055 int (*setsockopt)(struct sock *sk, int level,
1056 int optname, char __user *optval,
1057 unsigned int optlen);
1058 int (*getsockopt)(struct sock *sk, int level,
1059 int optname, char __user *optval,
1060 int __user *option);
1061 void (*keepalive)(struct sock *sk, int valbool);
1062 #ifdef CONFIG_COMPAT
1063 int (*compat_setsockopt)(struct sock *sk,
1064 int level,
1065 int optname, char __user *optval,
1066 unsigned int optlen);
1067 int (*compat_getsockopt)(struct sock *sk,
1068 int level,
1069 int optname, char __user *optval,
1070 int __user *option);
1071 int (*compat_ioctl)(struct sock *sk,
1072 unsigned int cmd, unsigned long arg);
1073 #endif
1074 int (*sendmsg)(struct sock *sk, struct msghdr *msg,
1075 size_t len);
1076 int (*recvmsg)(struct sock *sk, struct msghdr *msg,
1077 size_t len, int noblock, int flags,
1078 int *addr_len);
1079 int (*sendpage)(struct sock *sk, struct page *page,
1080 int offset, size_t size, int flags);
1081 int (*bind)(struct sock *sk,
1082 struct sockaddr *uaddr, int addr_len);
1083
1084 int (*backlog_rcv) (struct sock *sk,
1085 struct sk_buff *skb);
1086
1087 void (*release_cb)(struct sock *sk);
1088
1089 /* Keeping track of sk's, looking them up, and port selection methods. */
1090 int (*hash)(struct sock *sk);
1091 void (*unhash)(struct sock *sk);
1092 void (*rehash)(struct sock *sk);
1093 int (*get_port)(struct sock *sk, unsigned short snum);
1094
1095 /* Keeping track of sockets in use */
1096 #ifdef CONFIG_PROC_FS
1097 unsigned int inuse_idx;
1098 #endif
1099
1100 bool (*stream_memory_free)(const struct sock *sk);
1101 /* Memory pressure */
1102 void (*enter_memory_pressure)(struct sock *sk);
1103 void (*leave_memory_pressure)(struct sock *sk);
1104 atomic_long_t *memory_allocated; /* Current allocated memory. */
1105 struct percpu_counter *sockets_allocated; /* Current number of sockets. */
1106 /*
1107 * Pressure flag: try to collapse.
1108 * Technical note: it is used by multiple contexts non atomically.
1109 * All the __sk_mem_schedule() is of this nature: accounting
1110 * is strict, actions are advisory and have some latency.
1111 */
1112 unsigned long *memory_pressure;
1113 long *sysctl_mem;
1114
1115 int *sysctl_wmem;
1116 int *sysctl_rmem;
1117 u32 sysctl_wmem_offset;
1118 u32 sysctl_rmem_offset;
1119
1120 int max_header;
1121 bool no_autobind;
1122
1123 struct kmem_cache *slab;
1124 unsigned int obj_size;
1125 slab_flags_t slab_flags;
1126
1127 struct percpu_counter *orphan_count;
1128
1129 struct request_sock_ops *rsk_prot;
1130 struct timewait_sock_ops *twsk_prot;
1131
1132 union {
1133 struct inet_hashinfo *hashinfo;
1134 struct udp_table *udp_table;
1135 struct raw_hashinfo *raw_hash;
1136 struct smc_hashinfo *smc_hash;
1137 } h;
1138
1139 struct module *owner;
1140
1141 char name[32];
1142
1143 struct list_head node;
1144 #ifdef SOCK_REFCNT_DEBUG
1145 atomic_t socks;
1146 #endif
1147 int (*diag_destroy)(struct sock *sk, int err);
1148 } __randomize_layout;
1149
1150 int proto_register(struct proto *prot, int alloc_slab);
1151 void proto_unregister(struct proto *prot);
1152
1153 #ifdef SOCK_REFCNT_DEBUG
1154 static inline void sk_refcnt_debug_inc(struct sock *sk)
1155 {
1156 atomic_inc(&sk->sk_prot->socks);
1157 }
1158
1159 static inline void sk_refcnt_debug_dec(struct sock *sk)
1160 {
1161 atomic_dec(&sk->sk_prot->socks);
1162 printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1163 sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1164 }
1165
1166 static inline void sk_refcnt_debug_release(const struct sock *sk)
1167 {
1168 if (refcount_read(&sk->sk_refcnt) != 1)
1169 printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1170 sk->sk_prot->name, sk, refcount_read(&sk->sk_refcnt));
1171 }
1172 #else /* SOCK_REFCNT_DEBUG */
1173 #define sk_refcnt_debug_inc(sk) do { } while (0)
1174 #define sk_refcnt_debug_dec(sk) do { } while (0)
1175 #define sk_refcnt_debug_release(sk) do { } while (0)
1176 #endif /* SOCK_REFCNT_DEBUG */
1177
1178 static inline bool sk_stream_memory_free(const struct sock *sk)
1179 {
1180 if (sk->sk_wmem_queued >= sk->sk_sndbuf)
1181 return false;
1182
1183 return sk->sk_prot->stream_memory_free ?
1184 sk->sk_prot->stream_memory_free(sk) : true;
1185 }
1186
1187 static inline bool sk_stream_is_writeable(const struct sock *sk)
1188 {
1189 return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1190 sk_stream_memory_free(sk);
1191 }
1192
1193 static inline int sk_under_cgroup_hierarchy(struct sock *sk,
1194 struct cgroup *ancestor)
1195 {
1196 #ifdef CONFIG_SOCK_CGROUP_DATA
1197 return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data),
1198 ancestor);
1199 #else
1200 return -ENOTSUPP;
1201 #endif
1202 }
1203
1204 static inline bool sk_has_memory_pressure(const struct sock *sk)
1205 {
1206 return sk->sk_prot->memory_pressure != NULL;
1207 }
1208
1209 static inline bool sk_under_memory_pressure(const struct sock *sk)
1210 {
1211 if (!sk->sk_prot->memory_pressure)
1212 return false;
1213
1214 if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
1215 mem_cgroup_under_socket_pressure(sk->sk_memcg))
1216 return true;
1217
1218 return !!*sk->sk_prot->memory_pressure;
1219 }
1220
1221 static inline long
1222 sk_memory_allocated(const struct sock *sk)
1223 {
1224 return atomic_long_read(sk->sk_prot->memory_allocated);
1225 }
1226
1227 static inline long
1228 sk_memory_allocated_add(struct sock *sk, int amt)
1229 {
1230 return atomic_long_add_return(amt, sk->sk_prot->memory_allocated);
1231 }
1232
1233 static inline void
1234 sk_memory_allocated_sub(struct sock *sk, int amt)
1235 {
1236 atomic_long_sub(amt, sk->sk_prot->memory_allocated);
1237 }
1238
1239 static inline void sk_sockets_allocated_dec(struct sock *sk)
1240 {
1241 percpu_counter_dec(sk->sk_prot->sockets_allocated);
1242 }
1243
1244 static inline void sk_sockets_allocated_inc(struct sock *sk)
1245 {
1246 percpu_counter_inc(sk->sk_prot->sockets_allocated);
1247 }
1248
1249 static inline u64
1250 sk_sockets_allocated_read_positive(struct sock *sk)
1251 {
1252 return percpu_counter_read_positive(sk->sk_prot->sockets_allocated);
1253 }
1254
1255 static inline int
1256 proto_sockets_allocated_sum_positive(struct proto *prot)
1257 {
1258 return percpu_counter_sum_positive(prot->sockets_allocated);
1259 }
1260
1261 static inline long
1262 proto_memory_allocated(struct proto *prot)
1263 {
1264 return atomic_long_read(prot->memory_allocated);
1265 }
1266
1267 static inline bool
1268 proto_memory_pressure(struct proto *prot)
1269 {
1270 if (!prot->memory_pressure)
1271 return false;
1272 return !!*prot->memory_pressure;
1273 }
1274
1275
1276 #ifdef CONFIG_PROC_FS
1277 /* Called with local bh disabled */
1278 void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
1279 int sock_prot_inuse_get(struct net *net, struct proto *proto);
1280 #else
1281 static inline void sock_prot_inuse_add(struct net *net, struct proto *prot,
1282 int inc)
1283 {
1284 }
1285 #endif
1286
1287
1288 /* With per-bucket locks this operation is not-atomic, so that
1289 * this version is not worse.
1290 */
1291 static inline int __sk_prot_rehash(struct sock *sk)
1292 {
1293 sk->sk_prot->unhash(sk);
1294 return sk->sk_prot->hash(sk);
1295 }
1296
1297 /* About 10 seconds */
1298 #define SOCK_DESTROY_TIME (10*HZ)
1299
1300 /* Sockets 0-1023 can't be bound to unless you are superuser */
1301 #define PROT_SOCK 1024
1302
1303 #define SHUTDOWN_MASK 3
1304 #define RCV_SHUTDOWN 1
1305 #define SEND_SHUTDOWN 2
1306
1307 #define SOCK_SNDBUF_LOCK 1
1308 #define SOCK_RCVBUF_LOCK 2
1309 #define SOCK_BINDADDR_LOCK 4
1310 #define SOCK_BINDPORT_LOCK 8
1311
1312 struct socket_alloc {
1313 struct socket socket;
1314 struct inode vfs_inode;
1315 };
1316
1317 static inline struct socket *SOCKET_I(struct inode *inode)
1318 {
1319 return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1320 }
1321
1322 static inline struct inode *SOCK_INODE(struct socket *socket)
1323 {
1324 return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1325 }
1326
1327 /*
1328 * Functions for memory accounting
1329 */
1330 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind);
1331 int __sk_mem_schedule(struct sock *sk, int size, int kind);
1332 void __sk_mem_reduce_allocated(struct sock *sk, int amount);
1333 void __sk_mem_reclaim(struct sock *sk, int amount);
1334
1335 /* We used to have PAGE_SIZE here, but systems with 64KB pages
1336 * do not necessarily have 16x time more memory than 4KB ones.
1337 */
1338 #define SK_MEM_QUANTUM 4096
1339 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1340 #define SK_MEM_SEND 0
1341 #define SK_MEM_RECV 1
1342
1343 /* sysctl_mem values are in pages, we convert them in SK_MEM_QUANTUM units */
1344 static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1345 {
1346 long val = sk->sk_prot->sysctl_mem[index];
1347
1348 #if PAGE_SIZE > SK_MEM_QUANTUM
1349 val <<= PAGE_SHIFT - SK_MEM_QUANTUM_SHIFT;
1350 #elif PAGE_SIZE < SK_MEM_QUANTUM
1351 val >>= SK_MEM_QUANTUM_SHIFT - PAGE_SHIFT;
1352 #endif
1353 return val;
1354 }
1355
1356 static inline int sk_mem_pages(int amt)
1357 {
1358 return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1359 }
1360
1361 static inline bool sk_has_account(struct sock *sk)
1362 {
1363 /* return true if protocol supports memory accounting */
1364 return !!sk->sk_prot->memory_allocated;
1365 }
1366
1367 static inline bool sk_wmem_schedule(struct sock *sk, int size)
1368 {
1369 if (!sk_has_account(sk))
1370 return true;
1371 return size <= sk->sk_forward_alloc ||
1372 __sk_mem_schedule(sk, size, SK_MEM_SEND);
1373 }
1374
1375 static inline bool
1376 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1377 {
1378 if (!sk_has_account(sk))
1379 return true;
1380 return size<= sk->sk_forward_alloc ||
1381 __sk_mem_schedule(sk, size, SK_MEM_RECV) ||
1382 skb_pfmemalloc(skb);
1383 }
1384
1385 static inline void sk_mem_reclaim(struct sock *sk)
1386 {
1387 if (!sk_has_account(sk))
1388 return;
1389 if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
1390 __sk_mem_reclaim(sk, sk->sk_forward_alloc);
1391 }
1392
1393 static inline void sk_mem_reclaim_partial(struct sock *sk)
1394 {
1395 if (!sk_has_account(sk))
1396 return;
1397 if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
1398 __sk_mem_reclaim(sk, sk->sk_forward_alloc - 1);
1399 }
1400
1401 static inline void sk_mem_charge(struct sock *sk, int size)
1402 {
1403 if (!sk_has_account(sk))
1404 return;
1405 sk->sk_forward_alloc -= size;
1406 }
1407
1408 static inline void sk_mem_uncharge(struct sock *sk, int size)
1409 {
1410 if (!sk_has_account(sk))
1411 return;
1412 sk->sk_forward_alloc += size;
1413
1414 /* Avoid a possible overflow.
1415 * TCP send queues can make this happen, if sk_mem_reclaim()
1416 * is not called and more than 2 GBytes are released at once.
1417 *
1418 * If we reach 2 MBytes, reclaim 1 MBytes right now, there is
1419 * no need to hold that much forward allocation anyway.
1420 */
1421 if (unlikely(sk->sk_forward_alloc >= 1 << 21))
1422 __sk_mem_reclaim(sk, 1 << 20);
1423 }
1424
1425 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1426 {
1427 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1428 sk->sk_wmem_queued -= skb->truesize;
1429 sk_mem_uncharge(sk, skb->truesize);
1430 __kfree_skb(skb);
1431 }
1432
1433 static inline void sock_release_ownership(struct sock *sk)
1434 {
1435 if (sk->sk_lock.owned) {
1436 sk->sk_lock.owned = 0;
1437
1438 /* The sk_lock has mutex_unlock() semantics: */
1439 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
1440 }
1441 }
1442
1443 /*
1444 * Macro so as to not evaluate some arguments when
1445 * lockdep is not enabled.
1446 *
1447 * Mark both the sk_lock and the sk_lock.slock as a
1448 * per-address-family lock class.
1449 */
1450 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) \
1451 do { \
1452 sk->sk_lock.owned = 0; \
1453 init_waitqueue_head(&sk->sk_lock.wq); \
1454 spin_lock_init(&(sk)->sk_lock.slock); \
1455 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \
1456 sizeof((sk)->sk_lock)); \
1457 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \
1458 (skey), (sname)); \
1459 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \
1460 } while (0)
1461
1462 #ifdef CONFIG_LOCKDEP
1463 static inline bool lockdep_sock_is_held(const struct sock *csk)
1464 {
1465 struct sock *sk = (struct sock *)csk;
1466
1467 return lockdep_is_held(&sk->sk_lock) ||
1468 lockdep_is_held(&sk->sk_lock.slock);
1469 }
1470 #endif
1471
1472 void lock_sock_nested(struct sock *sk, int subclass);
1473
1474 static inline void lock_sock(struct sock *sk)
1475 {
1476 lock_sock_nested(sk, 0);
1477 }
1478
1479 void __release_sock(struct sock *sk);
1480 void release_sock(struct sock *sk);
1481
1482 /* BH context may only use the following locking interface. */
1483 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock))
1484 #define bh_lock_sock_nested(__sk) \
1485 spin_lock_nested(&((__sk)->sk_lock.slock), \
1486 SINGLE_DEPTH_NESTING)
1487 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock))
1488
1489 bool lock_sock_fast(struct sock *sk);
1490 /**
1491 * unlock_sock_fast - complement of lock_sock_fast
1492 * @sk: socket
1493 * @slow: slow mode
1494 *
1495 * fast unlock socket for user context.
1496 * If slow mode is on, we call regular release_sock()
1497 */
1498 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1499 {
1500 if (slow)
1501 release_sock(sk);
1502 else
1503 spin_unlock_bh(&sk->sk_lock.slock);
1504 }
1505
1506 /* Used by processes to "lock" a socket state, so that
1507 * interrupts and bottom half handlers won't change it
1508 * from under us. It essentially blocks any incoming
1509 * packets, so that we won't get any new data or any
1510 * packets that change the state of the socket.
1511 *
1512 * While locked, BH processing will add new packets to
1513 * the backlog queue. This queue is processed by the
1514 * owner of the socket lock right before it is released.
1515 *
1516 * Since ~2.3.5 it is also exclusive sleep lock serializing
1517 * accesses from user process context.
1518 */
1519
1520 static inline void sock_owned_by_me(const struct sock *sk)
1521 {
1522 #ifdef CONFIG_LOCKDEP
1523 WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks);
1524 #endif
1525 }
1526
1527 static inline bool sock_owned_by_user(const struct sock *sk)
1528 {
1529 sock_owned_by_me(sk);
1530 return sk->sk_lock.owned;
1531 }
1532
1533 static inline bool sock_owned_by_user_nocheck(const struct sock *sk)
1534 {
1535 return sk->sk_lock.owned;
1536 }
1537
1538 /* no reclassification while locks are held */
1539 static inline bool sock_allow_reclassification(const struct sock *csk)
1540 {
1541 struct sock *sk = (struct sock *)csk;
1542
1543 return !sk->sk_lock.owned && !spin_is_locked(&sk->sk_lock.slock);
1544 }
1545
1546 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1547 struct proto *prot, int kern);
1548 void sk_free(struct sock *sk);
1549 void sk_destruct(struct sock *sk);
1550 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1551 void sk_free_unlock_clone(struct sock *sk);
1552
1553 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1554 gfp_t priority);
1555 void __sock_wfree(struct sk_buff *skb);
1556 void sock_wfree(struct sk_buff *skb);
1557 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
1558 gfp_t priority);
1559 void skb_orphan_partial(struct sk_buff *skb);
1560 void sock_rfree(struct sk_buff *skb);
1561 void sock_efree(struct sk_buff *skb);
1562 #ifdef CONFIG_INET
1563 void sock_edemux(struct sk_buff *skb);
1564 #else
1565 #define sock_edemux sock_efree
1566 #endif
1567
1568 int sock_setsockopt(struct socket *sock, int level, int op,
1569 char __user *optval, unsigned int optlen);
1570
1571 int sock_getsockopt(struct socket *sock, int level, int op,
1572 char __user *optval, int __user *optlen);
1573 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1574 int noblock, int *errcode);
1575 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1576 unsigned long data_len, int noblock,
1577 int *errcode, int max_page_order);
1578 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1579 void sock_kfree_s(struct sock *sk, void *mem, int size);
1580 void sock_kzfree_s(struct sock *sk, void *mem, int size);
1581 void sk_send_sigurg(struct sock *sk);
1582
1583 struct sockcm_cookie {
1584 u32 mark;
1585 u16 tsflags;
1586 };
1587
1588 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
1589 struct sockcm_cookie *sockc);
1590 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1591 struct sockcm_cookie *sockc);
1592
1593 /*
1594 * Functions to fill in entries in struct proto_ops when a protocol
1595 * does not implement a particular function.
1596 */
1597 int sock_no_bind(struct socket *, struct sockaddr *, int);
1598 int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1599 int sock_no_socketpair(struct socket *, struct socket *);
1600 int sock_no_accept(struct socket *, struct socket *, int, bool);
1601 int sock_no_getname(struct socket *, struct sockaddr *, int *, int);
1602 unsigned int sock_no_poll(struct file *, struct socket *,
1603 struct poll_table_struct *);
1604 int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1605 int sock_no_listen(struct socket *, int);
1606 int sock_no_shutdown(struct socket *, int);
1607 int sock_no_getsockopt(struct socket *, int , int, char __user *, int __user *);
1608 int sock_no_setsockopt(struct socket *, int, int, char __user *, unsigned int);
1609 int sock_no_sendmsg(struct socket *, struct msghdr *, size_t);
1610 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t len);
1611 int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int);
1612 int sock_no_mmap(struct file *file, struct socket *sock,
1613 struct vm_area_struct *vma);
1614 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset,
1615 size_t size, int flags);
1616 ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page,
1617 int offset, size_t size, int flags);
1618
1619 /*
1620 * Functions to fill in entries in struct proto_ops when a protocol
1621 * uses the inet style.
1622 */
1623 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1624 char __user *optval, int __user *optlen);
1625 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1626 int flags);
1627 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1628 char __user *optval, unsigned int optlen);
1629 int compat_sock_common_getsockopt(struct socket *sock, int level,
1630 int optname, char __user *optval, int __user *optlen);
1631 int compat_sock_common_setsockopt(struct socket *sock, int level,
1632 int optname, char __user *optval, unsigned int optlen);
1633
1634 void sk_common_release(struct sock *sk);
1635
1636 /*
1637 * Default socket callbacks and setup code
1638 */
1639
1640 /* Initialise core socket variables */
1641 void sock_init_data(struct socket *sock, struct sock *sk);
1642
1643 /*
1644 * Socket reference counting postulates.
1645 *
1646 * * Each user of socket SHOULD hold a reference count.
1647 * * Each access point to socket (an hash table bucket, reference from a list,
1648 * running timer, skb in flight MUST hold a reference count.
1649 * * When reference count hits 0, it means it will never increase back.
1650 * * When reference count hits 0, it means that no references from
1651 * outside exist to this socket and current process on current CPU
1652 * is last user and may/should destroy this socket.
1653 * * sk_free is called from any context: process, BH, IRQ. When
1654 * it is called, socket has no references from outside -> sk_free
1655 * may release descendant resources allocated by the socket, but
1656 * to the time when it is called, socket is NOT referenced by any
1657 * hash tables, lists etc.
1658 * * Packets, delivered from outside (from network or from another process)
1659 * and enqueued on receive/error queues SHOULD NOT grab reference count,
1660 * when they sit in queue. Otherwise, packets will leak to hole, when
1661 * socket is looked up by one cpu and unhasing is made by another CPU.
1662 * It is true for udp/raw, netlink (leak to receive and error queues), tcp
1663 * (leak to backlog). Packet socket does all the processing inside
1664 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1665 * use separate SMP lock, so that they are prone too.
1666 */
1667
1668 /* Ungrab socket and destroy it, if it was the last reference. */
1669 static inline void sock_put(struct sock *sk)
1670 {
1671 if (refcount_dec_and_test(&sk->sk_refcnt))
1672 sk_free(sk);
1673 }
1674 /* Generic version of sock_put(), dealing with all sockets
1675 * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...)
1676 */
1677 void sock_gen_put(struct sock *sk);
1678
1679 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested,
1680 unsigned int trim_cap, bool refcounted);
1681 static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1682 const int nested)
1683 {
1684 return __sk_receive_skb(sk, skb, nested, 1, true);
1685 }
1686
1687 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1688 {
1689 sk->sk_tx_queue_mapping = tx_queue;
1690 }
1691
1692 static inline void sk_tx_queue_clear(struct sock *sk)
1693 {
1694 sk->sk_tx_queue_mapping = -1;
1695 }
1696
1697 static inline int sk_tx_queue_get(const struct sock *sk)
1698 {
1699 return sk ? sk->sk_tx_queue_mapping : -1;
1700 }
1701
1702 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1703 {
1704 sk_tx_queue_clear(sk);
1705 sk->sk_socket = sock;
1706 }
1707
1708 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1709 {
1710 BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1711 return &rcu_dereference_raw(sk->sk_wq)->wait;
1712 }
1713 /* Detach socket from process context.
1714 * Announce socket dead, detach it from wait queue and inode.
1715 * Note that parent inode held reference count on this struct sock,
1716 * we do not release it in this function, because protocol
1717 * probably wants some additional cleanups or even continuing
1718 * to work with this socket (TCP).
1719 */
1720 static inline void sock_orphan(struct sock *sk)
1721 {
1722 write_lock_bh(&sk->sk_callback_lock);
1723 sock_set_flag(sk, SOCK_DEAD);
1724 sk_set_socket(sk, NULL);
1725 sk->sk_wq = NULL;
1726 write_unlock_bh(&sk->sk_callback_lock);
1727 }
1728
1729 static inline void sock_graft(struct sock *sk, struct socket *parent)
1730 {
1731 WARN_ON(parent->sk);
1732 write_lock_bh(&sk->sk_callback_lock);
1733 sk->sk_wq = parent->wq;
1734 parent->sk = sk;
1735 sk_set_socket(sk, parent);
1736 sk->sk_uid = SOCK_INODE(parent)->i_uid;
1737 security_sock_graft(sk, parent);
1738 write_unlock_bh(&sk->sk_callback_lock);
1739 }
1740
1741 kuid_t sock_i_uid(struct sock *sk);
1742 unsigned long sock_i_ino(struct sock *sk);
1743
1744 static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk)
1745 {
1746 return sk ? sk->sk_uid : make_kuid(net->user_ns, 0);
1747 }
1748
1749 static inline u32 net_tx_rndhash(void)
1750 {
1751 u32 v = prandom_u32();
1752
1753 return v ?: 1;
1754 }
1755
1756 static inline void sk_set_txhash(struct sock *sk)
1757 {
1758 sk->sk_txhash = net_tx_rndhash();
1759 }
1760
1761 static inline void sk_rethink_txhash(struct sock *sk)
1762 {
1763 if (sk->sk_txhash)
1764 sk_set_txhash(sk);
1765 }
1766
1767 static inline struct dst_entry *
1768 __sk_dst_get(struct sock *sk)
1769 {
1770 return rcu_dereference_check(sk->sk_dst_cache,
1771 lockdep_sock_is_held(sk));
1772 }
1773
1774 static inline struct dst_entry *
1775 sk_dst_get(struct sock *sk)
1776 {
1777 struct dst_entry *dst;
1778
1779 rcu_read_lock();
1780 dst = rcu_dereference(sk->sk_dst_cache);
1781 if (dst && !atomic_inc_not_zero(&dst->__refcnt))
1782 dst = NULL;
1783 rcu_read_unlock();
1784 return dst;
1785 }
1786
1787 static inline void dst_negative_advice(struct sock *sk)
1788 {
1789 struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1790
1791 sk_rethink_txhash(sk);
1792
1793 if (dst && dst->ops->negative_advice) {
1794 ndst = dst->ops->negative_advice(dst);
1795
1796 if (ndst != dst) {
1797 rcu_assign_pointer(sk->sk_dst_cache, ndst);
1798 sk_tx_queue_clear(sk);
1799 sk->sk_dst_pending_confirm = 0;
1800 }
1801 }
1802 }
1803
1804 static inline void
1805 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
1806 {
1807 struct dst_entry *old_dst;
1808
1809 sk_tx_queue_clear(sk);
1810 sk->sk_dst_pending_confirm = 0;
1811 old_dst = rcu_dereference_protected(sk->sk_dst_cache,
1812 lockdep_sock_is_held(sk));
1813 rcu_assign_pointer(sk->sk_dst_cache, dst);
1814 dst_release(old_dst);
1815 }
1816
1817 static inline void
1818 sk_dst_set(struct sock *sk, struct dst_entry *dst)
1819 {
1820 struct dst_entry *old_dst;
1821
1822 sk_tx_queue_clear(sk);
1823 sk->sk_dst_pending_confirm = 0;
1824 old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst);
1825 dst_release(old_dst);
1826 }
1827
1828 static inline void
1829 __sk_dst_reset(struct sock *sk)
1830 {
1831 __sk_dst_set(sk, NULL);
1832 }
1833
1834 static inline void
1835 sk_dst_reset(struct sock *sk)
1836 {
1837 sk_dst_set(sk, NULL);
1838 }
1839
1840 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1841
1842 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1843
1844 static inline void sk_dst_confirm(struct sock *sk)
1845 {
1846 if (!sk->sk_dst_pending_confirm)
1847 sk->sk_dst_pending_confirm = 1;
1848 }
1849
1850 static inline void sock_confirm_neigh(struct sk_buff *skb, struct neighbour *n)
1851 {
1852 if (skb_get_dst_pending_confirm(skb)) {
1853 struct sock *sk = skb->sk;
1854 unsigned long now = jiffies;
1855
1856 /* avoid dirtying neighbour */
1857 if (n->confirmed != now)
1858 n->confirmed = now;
1859 if (sk && sk->sk_dst_pending_confirm)
1860 sk->sk_dst_pending_confirm = 0;
1861 }
1862 }
1863
1864 bool sk_mc_loop(struct sock *sk);
1865
1866 static inline bool sk_can_gso(const struct sock *sk)
1867 {
1868 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1869 }
1870
1871 void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
1872
1873 static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
1874 {
1875 sk->sk_route_nocaps |= flags;
1876 sk->sk_route_caps &= ~flags;
1877 }
1878
1879 static inline bool sk_check_csum_caps(struct sock *sk)
1880 {
1881 return (sk->sk_route_caps & NETIF_F_HW_CSUM) ||
1882 (sk->sk_family == PF_INET &&
1883 (sk->sk_route_caps & NETIF_F_IP_CSUM)) ||
1884 (sk->sk_family == PF_INET6 &&
1885 (sk->sk_route_caps & NETIF_F_IPV6_CSUM));
1886 }
1887
1888 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
1889 struct iov_iter *from, char *to,
1890 int copy, int offset)
1891 {
1892 if (skb->ip_summed == CHECKSUM_NONE) {
1893 __wsum csum = 0;
1894 if (!csum_and_copy_from_iter_full(to, copy, &csum, from))
1895 return -EFAULT;
1896 skb->csum = csum_block_add(skb->csum, csum, offset);
1897 } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1898 if (!copy_from_iter_full_nocache(to, copy, from))
1899 return -EFAULT;
1900 } else if (!copy_from_iter_full(to, copy, from))
1901 return -EFAULT;
1902
1903 return 0;
1904 }
1905
1906 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
1907 struct iov_iter *from, int copy)
1908 {
1909 int err, offset = skb->len;
1910
1911 err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
1912 copy, offset);
1913 if (err)
1914 __skb_trim(skb, offset);
1915
1916 return err;
1917 }
1918
1919 static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from,
1920 struct sk_buff *skb,
1921 struct page *page,
1922 int off, int copy)
1923 {
1924 int err;
1925
1926 err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
1927 copy, skb->len);
1928 if (err)
1929 return err;
1930
1931 skb->len += copy;
1932 skb->data_len += copy;
1933 skb->truesize += copy;
1934 sk->sk_wmem_queued += copy;
1935 sk_mem_charge(sk, copy);
1936 return 0;
1937 }
1938
1939 /**
1940 * sk_wmem_alloc_get - returns write allocations
1941 * @sk: socket
1942 *
1943 * Returns sk_wmem_alloc minus initial offset of one
1944 */
1945 static inline int sk_wmem_alloc_get(const struct sock *sk)
1946 {
1947 return refcount_read(&sk->sk_wmem_alloc) - 1;
1948 }
1949
1950 /**
1951 * sk_rmem_alloc_get - returns read allocations
1952 * @sk: socket
1953 *
1954 * Returns sk_rmem_alloc
1955 */
1956 static inline int sk_rmem_alloc_get(const struct sock *sk)
1957 {
1958 return atomic_read(&sk->sk_rmem_alloc);
1959 }
1960
1961 /**
1962 * sk_has_allocations - check if allocations are outstanding
1963 * @sk: socket
1964 *
1965 * Returns true if socket has write or read allocations
1966 */
1967 static inline bool sk_has_allocations(const struct sock *sk)
1968 {
1969 return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
1970 }
1971
1972 /**
1973 * skwq_has_sleeper - check if there are any waiting processes
1974 * @wq: struct socket_wq
1975 *
1976 * Returns true if socket_wq has waiting processes
1977 *
1978 * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory
1979 * barrier call. They were added due to the race found within the tcp code.
1980 *
1981 * Consider following tcp code paths::
1982 *
1983 * CPU1 CPU2
1984 * sys_select receive packet
1985 * ... ...
1986 * __add_wait_queue update tp->rcv_nxt
1987 * ... ...
1988 * tp->rcv_nxt check sock_def_readable
1989 * ... {
1990 * schedule rcu_read_lock();
1991 * wq = rcu_dereference(sk->sk_wq);
1992 * if (wq && waitqueue_active(&wq->wait))
1993 * wake_up_interruptible(&wq->wait)
1994 * ...
1995 * }
1996 *
1997 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
1998 * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1
1999 * could then endup calling schedule and sleep forever if there are no more
2000 * data on the socket.
2001 *
2002 */
2003 static inline bool skwq_has_sleeper(struct socket_wq *wq)
2004 {
2005 return wq && wq_has_sleeper(&wq->wait);
2006 }
2007
2008 /**
2009 * sock_poll_wait - place memory barrier behind the poll_wait call.
2010 * @filp: file
2011 * @wait_address: socket wait queue
2012 * @p: poll_table
2013 *
2014 * See the comments in the wq_has_sleeper function.
2015 */
2016 static inline void sock_poll_wait(struct file *filp,
2017 wait_queue_head_t *wait_address, poll_table *p)
2018 {
2019 if (!poll_does_not_wait(p) && wait_address) {
2020 poll_wait(filp, wait_address, p);
2021 /* We need to be sure we are in sync with the
2022 * socket flags modification.
2023 *
2024 * This memory barrier is paired in the wq_has_sleeper.
2025 */
2026 smp_mb();
2027 }
2028 }
2029
2030 static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
2031 {
2032 if (sk->sk_txhash) {
2033 skb->l4_hash = 1;
2034 skb->hash = sk->sk_txhash;
2035 }
2036 }
2037
2038 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk);
2039
2040 /*
2041 * Queue a received datagram if it will fit. Stream and sequenced
2042 * protocols can't normally use this as they need to fit buffers in
2043 * and play with them.
2044 *
2045 * Inlined as it's very short and called for pretty much every
2046 * packet ever received.
2047 */
2048 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
2049 {
2050 skb_orphan(skb);
2051 skb->sk = sk;
2052 skb->destructor = sock_rfree;
2053 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
2054 sk_mem_charge(sk, skb->truesize);
2055 }
2056
2057 void sk_reset_timer(struct sock *sk, struct timer_list *timer,
2058 unsigned long expires);
2059
2060 void sk_stop_timer(struct sock *sk, struct timer_list *timer);
2061
2062 int __sk_queue_drop_skb(struct sock *sk, struct sk_buff_head *sk_queue,
2063 struct sk_buff *skb, unsigned int flags,
2064 void (*destructor)(struct sock *sk,
2065 struct sk_buff *skb));
2066 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2067 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2068
2069 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
2070 struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
2071
2072 /*
2073 * Recover an error report and clear atomically
2074 */
2075
2076 static inline int sock_error(struct sock *sk)
2077 {
2078 int err;
2079 if (likely(!sk->sk_err))
2080 return 0;
2081 err = xchg(&sk->sk_err, 0);
2082 return -err;
2083 }
2084
2085 static inline unsigned long sock_wspace(struct sock *sk)
2086 {
2087 int amt = 0;
2088
2089 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2090 amt = sk->sk_sndbuf - refcount_read(&sk->sk_wmem_alloc);
2091 if (amt < 0)
2092 amt = 0;
2093 }
2094 return amt;
2095 }
2096
2097 /* Note:
2098 * We use sk->sk_wq_raw, from contexts knowing this
2099 * pointer is not NULL and cannot disappear/change.
2100 */
2101 static inline void sk_set_bit(int nr, struct sock *sk)
2102 {
2103 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2104 !sock_flag(sk, SOCK_FASYNC))
2105 return;
2106
2107 set_bit(nr, &sk->sk_wq_raw->flags);
2108 }
2109
2110 static inline void sk_clear_bit(int nr, struct sock *sk)
2111 {
2112 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2113 !sock_flag(sk, SOCK_FASYNC))
2114 return;
2115
2116 clear_bit(nr, &sk->sk_wq_raw->flags);
2117 }
2118
2119 static inline void sk_wake_async(const struct sock *sk, int how, int band)
2120 {
2121 if (sock_flag(sk, SOCK_FASYNC)) {
2122 rcu_read_lock();
2123 sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
2124 rcu_read_unlock();
2125 }
2126 }
2127
2128 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2129 * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2130 * Note: for send buffers, TCP works better if we can build two skbs at
2131 * minimum.
2132 */
2133 #define TCP_SKB_MIN_TRUESIZE (2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2134
2135 #define SOCK_MIN_SNDBUF (TCP_SKB_MIN_TRUESIZE * 2)
2136 #define SOCK_MIN_RCVBUF TCP_SKB_MIN_TRUESIZE
2137
2138 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2139 {
2140 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
2141 sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2142 sk->sk_sndbuf = max_t(u32, sk->sk_sndbuf, SOCK_MIN_SNDBUF);
2143 }
2144 }
2145
2146 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
2147 bool force_schedule);
2148
2149 /**
2150 * sk_page_frag - return an appropriate page_frag
2151 * @sk: socket
2152 *
2153 * Use the per task page_frag instead of the per socket one for
2154 * optimization when we know that we're in the normal context and owns
2155 * everything that's associated with %current.
2156 *
2157 * gfpflags_allow_blocking() isn't enough here as direct reclaim may nest
2158 * inside other socket operations and end up recursing into sk_page_frag()
2159 * while it's already in use.
2160 */
2161 static inline struct page_frag *sk_page_frag(struct sock *sk)
2162 {
2163 if (gfpflags_normal_context(sk->sk_allocation))
2164 return &current->task_frag;
2165
2166 return &sk->sk_frag;
2167 }
2168
2169 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2170
2171 /*
2172 * Default write policy as shown to user space via poll/select/SIGIO
2173 */
2174 static inline bool sock_writeable(const struct sock *sk)
2175 {
2176 return refcount_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1);
2177 }
2178
2179 static inline gfp_t gfp_any(void)
2180 {
2181 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2182 }
2183
2184 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2185 {
2186 return noblock ? 0 : sk->sk_rcvtimeo;
2187 }
2188
2189 static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2190 {
2191 return noblock ? 0 : sk->sk_sndtimeo;
2192 }
2193
2194 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2195 {
2196 return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
2197 }
2198
2199 /* Alas, with timeout socket operations are not restartable.
2200 * Compare this to poll().
2201 */
2202 static inline int sock_intr_errno(long timeo)
2203 {
2204 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2205 }
2206
2207 struct sock_skb_cb {
2208 u32 dropcount;
2209 };
2210
2211 /* Store sock_skb_cb at the end of skb->cb[] so protocol families
2212 * using skb->cb[] would keep using it directly and utilize its
2213 * alignement guarantee.
2214 */
2215 #define SOCK_SKB_CB_OFFSET ((FIELD_SIZEOF(struct sk_buff, cb) - \
2216 sizeof(struct sock_skb_cb)))
2217
2218 #define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \
2219 SOCK_SKB_CB_OFFSET))
2220
2221 #define sock_skb_cb_check_size(size) \
2222 BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET)
2223
2224 static inline void
2225 sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb)
2226 {
2227 SOCK_SKB_CB(skb)->dropcount = sock_flag(sk, SOCK_RXQ_OVFL) ?
2228 atomic_read(&sk->sk_drops) : 0;
2229 }
2230
2231 static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb)
2232 {
2233 int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2234
2235 atomic_add(segs, &sk->sk_drops);
2236 }
2237
2238 static inline ktime_t sock_read_timestamp(struct sock *sk)
2239 {
2240 #if BITS_PER_LONG==32
2241 unsigned int seq;
2242 ktime_t kt;
2243
2244 do {
2245 seq = read_seqbegin(&sk->sk_stamp_seq);
2246 kt = sk->sk_stamp;
2247 } while (read_seqretry(&sk->sk_stamp_seq, seq));
2248
2249 return kt;
2250 #else
2251 return READ_ONCE(sk->sk_stamp);
2252 #endif
2253 }
2254
2255 static inline void sock_write_timestamp(struct sock *sk, ktime_t kt)
2256 {
2257 #if BITS_PER_LONG==32
2258 write_seqlock(&sk->sk_stamp_seq);
2259 sk->sk_stamp = kt;
2260 write_sequnlock(&sk->sk_stamp_seq);
2261 #else
2262 WRITE_ONCE(sk->sk_stamp, kt);
2263 #endif
2264 }
2265
2266 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2267 struct sk_buff *skb);
2268 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2269 struct sk_buff *skb);
2270
2271 static inline void
2272 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2273 {
2274 ktime_t kt = skb->tstamp;
2275 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2276
2277 /*
2278 * generate control messages if
2279 * - receive time stamping in software requested
2280 * - software time stamp available and wanted
2281 * - hardware time stamps available and wanted
2282 */
2283 if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2284 (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2285 (kt && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2286 (hwtstamps->hwtstamp &&
2287 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
2288 __sock_recv_timestamp(msg, sk, skb);
2289 else
2290 sock_write_timestamp(sk, kt);
2291
2292 if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2293 __sock_recv_wifi_status(msg, sk, skb);
2294 }
2295
2296 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2297 struct sk_buff *skb);
2298
2299 #define SK_DEFAULT_STAMP (-1L * NSEC_PER_SEC)
2300 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2301 struct sk_buff *skb)
2302 {
2303 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL) | \
2304 (1UL << SOCK_RCVTSTAMP))
2305 #define TSFLAGS_ANY (SOF_TIMESTAMPING_SOFTWARE | \
2306 SOF_TIMESTAMPING_RAW_HARDWARE)
2307
2308 if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY)
2309 __sock_recv_ts_and_drops(msg, sk, skb);
2310 else if (unlikely(sock_flag(sk, SOCK_TIMESTAMP)))
2311 sock_write_timestamp(sk, skb->tstamp);
2312 else if (unlikely(sk->sk_stamp == SK_DEFAULT_STAMP))
2313 sock_write_timestamp(sk, 0);
2314 }
2315
2316 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags);
2317
2318 /**
2319 * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2320 * @sk: socket sending this packet
2321 * @tsflags: timestamping flags to use
2322 * @tx_flags: completed with instructions for time stamping
2323 *
2324 * Note: callers should take care of initial ``*tx_flags`` value (usually 0)
2325 */
2326 static inline void sock_tx_timestamp(const struct sock *sk, __u16 tsflags,
2327 __u8 *tx_flags)
2328 {
2329 if (unlikely(tsflags))
2330 __sock_tx_timestamp(tsflags, tx_flags);
2331 if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS)))
2332 *tx_flags |= SKBTX_WIFI_STATUS;
2333 }
2334
2335 /**
2336 * sk_eat_skb - Release a skb if it is no longer needed
2337 * @sk: socket to eat this skb from
2338 * @skb: socket buffer to eat
2339 *
2340 * This routine must be called with interrupts disabled or with the socket
2341 * locked so that the sk_buff queue operation is ok.
2342 */
2343 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
2344 {
2345 __skb_unlink(skb, &sk->sk_receive_queue);
2346 __kfree_skb(skb);
2347 }
2348
2349 static inline
2350 struct net *sock_net(const struct sock *sk)
2351 {
2352 return read_pnet(&sk->sk_net);
2353 }
2354
2355 static inline
2356 void sock_net_set(struct sock *sk, struct net *net)
2357 {
2358 write_pnet(&sk->sk_net, net);
2359 }
2360
2361 static inline struct sock *skb_steal_sock(struct sk_buff *skb)
2362 {
2363 if (skb->sk) {
2364 struct sock *sk = skb->sk;
2365
2366 skb->destructor = NULL;
2367 skb->sk = NULL;
2368 return sk;
2369 }
2370 return NULL;
2371 }
2372
2373 /* This helper checks if a socket is a full socket,
2374 * ie _not_ a timewait or request socket.
2375 */
2376 static inline bool sk_fullsock(const struct sock *sk)
2377 {
2378 return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV);
2379 }
2380
2381 /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV
2382 * SYNACK messages can be attached to either ones (depending on SYNCOOKIE)
2383 */
2384 static inline bool sk_listener(const struct sock *sk)
2385 {
2386 return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV);
2387 }
2388
2389 /**
2390 * sk_state_load - read sk->sk_state for lockless contexts
2391 * @sk: socket pointer
2392 *
2393 * Paired with sk_state_store(). Used in places we do not hold socket lock :
2394 * tcp_diag_get_info(), tcp_get_info(), tcp_poll(), get_tcp4_sock() ...
2395 */
2396 static inline int sk_state_load(const struct sock *sk)
2397 {
2398 return smp_load_acquire(&sk->sk_state);
2399 }
2400
2401 /**
2402 * sk_state_store - update sk->sk_state
2403 * @sk: socket pointer
2404 * @newstate: new state
2405 *
2406 * Paired with sk_state_load(). Should be used in contexts where
2407 * state change might impact lockless readers.
2408 */
2409 static inline void sk_state_store(struct sock *sk, int newstate)
2410 {
2411 smp_store_release(&sk->sk_state, newstate);
2412 }
2413
2414 void sock_enable_timestamp(struct sock *sk, int flag);
2415 int sock_get_timestamp(struct sock *, struct timeval __user *);
2416 int sock_get_timestampns(struct sock *, struct timespec __user *);
2417 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2418 int type);
2419
2420 bool sk_ns_capable(const struct sock *sk,
2421 struct user_namespace *user_ns, int cap);
2422 bool sk_capable(const struct sock *sk, int cap);
2423 bool sk_net_capable(const struct sock *sk, int cap);
2424
2425 void sk_get_meminfo(const struct sock *sk, u32 *meminfo);
2426
2427 /* Take into consideration the size of the struct sk_buff overhead in the
2428 * determination of these values, since that is non-constant across
2429 * platforms. This makes socket queueing behavior and performance
2430 * not depend upon such differences.
2431 */
2432 #define _SK_MEM_PACKETS 256
2433 #define _SK_MEM_OVERHEAD SKB_TRUESIZE(256)
2434 #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2435 #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2436
2437 extern __u32 sysctl_wmem_max;
2438 extern __u32 sysctl_rmem_max;
2439
2440 extern int sysctl_tstamp_allow_data;
2441 extern int sysctl_optmem_max;
2442
2443 extern __u32 sysctl_wmem_default;
2444 extern __u32 sysctl_rmem_default;
2445
2446 static inline int sk_get_wmem0(const struct sock *sk, const struct proto *proto)
2447 {
2448 /* Does this proto have per netns sysctl_wmem ? */
2449 if (proto->sysctl_wmem_offset)
2450 return *(int *)((void *)sock_net(sk) + proto->sysctl_wmem_offset);
2451
2452 return *proto->sysctl_wmem;
2453 }
2454
2455 static inline int sk_get_rmem0(const struct sock *sk, const struct proto *proto)
2456 {
2457 /* Does this proto have per netns sysctl_rmem ? */
2458 if (proto->sysctl_rmem_offset)
2459 return *(int *)((void *)sock_net(sk) + proto->sysctl_rmem_offset);
2460
2461 return *proto->sysctl_rmem;
2462 }
2463
2464 #endif /* _SOCK_H */