]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - include/net/sock.h
[NET]: Add ECN support for TSO
[mirror_ubuntu-zesty-kernel.git] / include / net / sock.h
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Definitions for the AF_INET socket handler.
7 *
8 * Version: @(#)sock.h 1.0.4 05/13/93
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche <flla@stud.uni-sb.de>
14 *
15 * Fixes:
16 * Alan Cox : Volatiles in skbuff pointers. See
17 * skbuff comments. May be overdone,
18 * better to prove they can be removed
19 * than the reverse.
20 * Alan Cox : Added a zapped field for tcp to note
21 * a socket is reset and must stay shut up
22 * Alan Cox : New fields for options
23 * Pauline Middelink : identd support
24 * Alan Cox : Eliminate low level recv/recvfrom
25 * David S. Miller : New socket lookup architecture.
26 * Steve Whitehouse: Default routines for sock_ops
27 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made
28 * protinfo be just a void pointer, as the
29 * protocol specific parts were moved to
30 * respective headers and ipv4/v6, etc now
31 * use private slabcaches for its socks
32 * Pedro Hortas : New flags field for socket options
33 *
34 *
35 * This program is free software; you can redistribute it and/or
36 * modify it under the terms of the GNU General Public License
37 * as published by the Free Software Foundation; either version
38 * 2 of the License, or (at your option) any later version.
39 */
40 #ifndef _SOCK_H
41 #define _SOCK_H
42
43 #include <linux/list.h>
44 #include <linux/timer.h>
45 #include <linux/cache.h>
46 #include <linux/module.h>
47 #include <linux/netdevice.h>
48 #include <linux/skbuff.h> /* struct sk_buff */
49 #include <linux/security.h>
50
51 #include <linux/filter.h>
52
53 #include <asm/atomic.h>
54 #include <net/dst.h>
55 #include <net/checksum.h>
56
57 /*
58 * This structure really needs to be cleaned up.
59 * Most of it is for TCP, and not used by any of
60 * the other protocols.
61 */
62
63 /* Define this to get the SOCK_DBG debugging facility. */
64 #define SOCK_DEBUGGING
65 #ifdef SOCK_DEBUGGING
66 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
67 printk(KERN_DEBUG msg); } while (0)
68 #else
69 #define SOCK_DEBUG(sk, msg...) do { } while (0)
70 #endif
71
72 /* This is the per-socket lock. The spinlock provides a synchronization
73 * between user contexts and software interrupt processing, whereas the
74 * mini-semaphore synchronizes multiple users amongst themselves.
75 */
76 struct sock_iocb;
77 typedef struct {
78 spinlock_t slock;
79 struct sock_iocb *owner;
80 wait_queue_head_t wq;
81 } socket_lock_t;
82
83 #define sock_lock_init(__sk) \
84 do { spin_lock_init(&((__sk)->sk_lock.slock)); \
85 (__sk)->sk_lock.owner = NULL; \
86 init_waitqueue_head(&((__sk)->sk_lock.wq)); \
87 } while(0)
88
89 struct sock;
90 struct proto;
91
92 /**
93 * struct sock_common - minimal network layer representation of sockets
94 * @skc_family: network address family
95 * @skc_state: Connection state
96 * @skc_reuse: %SO_REUSEADDR setting
97 * @skc_bound_dev_if: bound device index if != 0
98 * @skc_node: main hash linkage for various protocol lookup tables
99 * @skc_bind_node: bind hash linkage for various protocol lookup tables
100 * @skc_refcnt: reference count
101 * @skc_hash: hash value used with various protocol lookup tables
102 * @skc_prot: protocol handlers inside a network family
103 *
104 * This is the minimal network layer representation of sockets, the header
105 * for struct sock and struct inet_timewait_sock.
106 */
107 struct sock_common {
108 unsigned short skc_family;
109 volatile unsigned char skc_state;
110 unsigned char skc_reuse;
111 int skc_bound_dev_if;
112 struct hlist_node skc_node;
113 struct hlist_node skc_bind_node;
114 atomic_t skc_refcnt;
115 unsigned int skc_hash;
116 struct proto *skc_prot;
117 };
118
119 /**
120 * struct sock - network layer representation of sockets
121 * @__sk_common: shared layout with inet_timewait_sock
122 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
123 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
124 * @sk_lock: synchronizer
125 * @sk_rcvbuf: size of receive buffer in bytes
126 * @sk_sleep: sock wait queue
127 * @sk_dst_cache: destination cache
128 * @sk_dst_lock: destination cache lock
129 * @sk_policy: flow policy
130 * @sk_rmem_alloc: receive queue bytes committed
131 * @sk_receive_queue: incoming packets
132 * @sk_wmem_alloc: transmit queue bytes committed
133 * @sk_write_queue: Packet sending queue
134 * @sk_async_wait_queue: DMA copied packets
135 * @sk_omem_alloc: "o" is "option" or "other"
136 * @sk_wmem_queued: persistent queue size
137 * @sk_forward_alloc: space allocated forward
138 * @sk_allocation: allocation mode
139 * @sk_sndbuf: size of send buffer in bytes
140 * @sk_flags: %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE, %SO_OOBINLINE settings
141 * @sk_no_check: %SO_NO_CHECK setting, wether or not checkup packets
142 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
143 * @sk_lingertime: %SO_LINGER l_linger setting
144 * @sk_backlog: always used with the per-socket spinlock held
145 * @sk_callback_lock: used with the callbacks in the end of this struct
146 * @sk_error_queue: rarely used
147 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt, IPV6_ADDRFORM for instance)
148 * @sk_err: last error
149 * @sk_err_soft: errors that don't cause failure but are the cause of a persistent failure not just 'timed out'
150 * @sk_ack_backlog: current listen backlog
151 * @sk_max_ack_backlog: listen backlog set in listen()
152 * @sk_priority: %SO_PRIORITY setting
153 * @sk_type: socket type (%SOCK_STREAM, etc)
154 * @sk_protocol: which protocol this socket belongs in this network family
155 * @sk_peercred: %SO_PEERCRED setting
156 * @sk_rcvlowat: %SO_RCVLOWAT setting
157 * @sk_rcvtimeo: %SO_RCVTIMEO setting
158 * @sk_sndtimeo: %SO_SNDTIMEO setting
159 * @sk_filter: socket filtering instructions
160 * @sk_protinfo: private area, net family specific, when not using slab
161 * @sk_timer: sock cleanup timer
162 * @sk_stamp: time stamp of last packet received
163 * @sk_socket: Identd and reporting IO signals
164 * @sk_user_data: RPC layer private data
165 * @sk_sndmsg_page: cached page for sendmsg
166 * @sk_sndmsg_off: cached offset for sendmsg
167 * @sk_send_head: front of stuff to transmit
168 * @sk_security: used by security modules
169 * @sk_write_pending: a write to stream socket waits to start
170 * @sk_state_change: callback to indicate change in the state of the sock
171 * @sk_data_ready: callback to indicate there is data to be processed
172 * @sk_write_space: callback to indicate there is bf sending space available
173 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
174 * @sk_backlog_rcv: callback to process the backlog
175 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
176 */
177 struct sock {
178 /*
179 * Now struct inet_timewait_sock also uses sock_common, so please just
180 * don't add nothing before this first member (__sk_common) --acme
181 */
182 struct sock_common __sk_common;
183 #define sk_family __sk_common.skc_family
184 #define sk_state __sk_common.skc_state
185 #define sk_reuse __sk_common.skc_reuse
186 #define sk_bound_dev_if __sk_common.skc_bound_dev_if
187 #define sk_node __sk_common.skc_node
188 #define sk_bind_node __sk_common.skc_bind_node
189 #define sk_refcnt __sk_common.skc_refcnt
190 #define sk_hash __sk_common.skc_hash
191 #define sk_prot __sk_common.skc_prot
192 unsigned char sk_shutdown : 2,
193 sk_no_check : 2,
194 sk_userlocks : 4;
195 unsigned char sk_protocol;
196 unsigned short sk_type;
197 int sk_rcvbuf;
198 socket_lock_t sk_lock;
199 wait_queue_head_t *sk_sleep;
200 struct dst_entry *sk_dst_cache;
201 struct xfrm_policy *sk_policy[2];
202 rwlock_t sk_dst_lock;
203 atomic_t sk_rmem_alloc;
204 atomic_t sk_wmem_alloc;
205 atomic_t sk_omem_alloc;
206 struct sk_buff_head sk_receive_queue;
207 struct sk_buff_head sk_write_queue;
208 struct sk_buff_head sk_async_wait_queue;
209 int sk_wmem_queued;
210 int sk_forward_alloc;
211 gfp_t sk_allocation;
212 int sk_sndbuf;
213 int sk_route_caps;
214 int sk_rcvlowat;
215 unsigned long sk_flags;
216 unsigned long sk_lingertime;
217 /*
218 * The backlog queue is special, it is always used with
219 * the per-socket spinlock held and requires low latency
220 * access. Therefore we special case it's implementation.
221 */
222 struct {
223 struct sk_buff *head;
224 struct sk_buff *tail;
225 } sk_backlog;
226 struct sk_buff_head sk_error_queue;
227 struct proto *sk_prot_creator;
228 rwlock_t sk_callback_lock;
229 int sk_err,
230 sk_err_soft;
231 unsigned short sk_ack_backlog;
232 unsigned short sk_max_ack_backlog;
233 __u32 sk_priority;
234 struct ucred sk_peercred;
235 long sk_rcvtimeo;
236 long sk_sndtimeo;
237 struct sk_filter *sk_filter;
238 void *sk_protinfo;
239 struct timer_list sk_timer;
240 struct timeval sk_stamp;
241 struct socket *sk_socket;
242 void *sk_user_data;
243 struct page *sk_sndmsg_page;
244 struct sk_buff *sk_send_head;
245 __u32 sk_sndmsg_off;
246 int sk_write_pending;
247 void *sk_security;
248 void (*sk_state_change)(struct sock *sk);
249 void (*sk_data_ready)(struct sock *sk, int bytes);
250 void (*sk_write_space)(struct sock *sk);
251 void (*sk_error_report)(struct sock *sk);
252 int (*sk_backlog_rcv)(struct sock *sk,
253 struct sk_buff *skb);
254 void (*sk_destruct)(struct sock *sk);
255 };
256
257 /*
258 * Hashed lists helper routines
259 */
260 static inline struct sock *__sk_head(const struct hlist_head *head)
261 {
262 return hlist_entry(head->first, struct sock, sk_node);
263 }
264
265 static inline struct sock *sk_head(const struct hlist_head *head)
266 {
267 return hlist_empty(head) ? NULL : __sk_head(head);
268 }
269
270 static inline struct sock *sk_next(const struct sock *sk)
271 {
272 return sk->sk_node.next ?
273 hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL;
274 }
275
276 static inline int sk_unhashed(const struct sock *sk)
277 {
278 return hlist_unhashed(&sk->sk_node);
279 }
280
281 static inline int sk_hashed(const struct sock *sk)
282 {
283 return !sk_unhashed(sk);
284 }
285
286 static __inline__ void sk_node_init(struct hlist_node *node)
287 {
288 node->pprev = NULL;
289 }
290
291 static __inline__ void __sk_del_node(struct sock *sk)
292 {
293 __hlist_del(&sk->sk_node);
294 }
295
296 static __inline__ int __sk_del_node_init(struct sock *sk)
297 {
298 if (sk_hashed(sk)) {
299 __sk_del_node(sk);
300 sk_node_init(&sk->sk_node);
301 return 1;
302 }
303 return 0;
304 }
305
306 /* Grab socket reference count. This operation is valid only
307 when sk is ALREADY grabbed f.e. it is found in hash table
308 or a list and the lookup is made under lock preventing hash table
309 modifications.
310 */
311
312 static inline void sock_hold(struct sock *sk)
313 {
314 atomic_inc(&sk->sk_refcnt);
315 }
316
317 /* Ungrab socket in the context, which assumes that socket refcnt
318 cannot hit zero, f.e. it is true in context of any socketcall.
319 */
320 static inline void __sock_put(struct sock *sk)
321 {
322 atomic_dec(&sk->sk_refcnt);
323 }
324
325 static __inline__ int sk_del_node_init(struct sock *sk)
326 {
327 int rc = __sk_del_node_init(sk);
328
329 if (rc) {
330 /* paranoid for a while -acme */
331 WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
332 __sock_put(sk);
333 }
334 return rc;
335 }
336
337 static __inline__ void __sk_add_node(struct sock *sk, struct hlist_head *list)
338 {
339 hlist_add_head(&sk->sk_node, list);
340 }
341
342 static __inline__ void sk_add_node(struct sock *sk, struct hlist_head *list)
343 {
344 sock_hold(sk);
345 __sk_add_node(sk, list);
346 }
347
348 static __inline__ void __sk_del_bind_node(struct sock *sk)
349 {
350 __hlist_del(&sk->sk_bind_node);
351 }
352
353 static __inline__ void sk_add_bind_node(struct sock *sk,
354 struct hlist_head *list)
355 {
356 hlist_add_head(&sk->sk_bind_node, list);
357 }
358
359 #define sk_for_each(__sk, node, list) \
360 hlist_for_each_entry(__sk, node, list, sk_node)
361 #define sk_for_each_from(__sk, node) \
362 if (__sk && ({ node = &(__sk)->sk_node; 1; })) \
363 hlist_for_each_entry_from(__sk, node, sk_node)
364 #define sk_for_each_continue(__sk, node) \
365 if (__sk && ({ node = &(__sk)->sk_node; 1; })) \
366 hlist_for_each_entry_continue(__sk, node, sk_node)
367 #define sk_for_each_safe(__sk, node, tmp, list) \
368 hlist_for_each_entry_safe(__sk, node, tmp, list, sk_node)
369 #define sk_for_each_bound(__sk, node, list) \
370 hlist_for_each_entry(__sk, node, list, sk_bind_node)
371
372 /* Sock flags */
373 enum sock_flags {
374 SOCK_DEAD,
375 SOCK_DONE,
376 SOCK_URGINLINE,
377 SOCK_KEEPOPEN,
378 SOCK_LINGER,
379 SOCK_DESTROY,
380 SOCK_BROADCAST,
381 SOCK_TIMESTAMP,
382 SOCK_ZAPPED,
383 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
384 SOCK_DBG, /* %SO_DEBUG setting */
385 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
386 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
387 SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
388 };
389
390 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
391 {
392 nsk->sk_flags = osk->sk_flags;
393 }
394
395 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
396 {
397 __set_bit(flag, &sk->sk_flags);
398 }
399
400 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
401 {
402 __clear_bit(flag, &sk->sk_flags);
403 }
404
405 static inline int sock_flag(struct sock *sk, enum sock_flags flag)
406 {
407 return test_bit(flag, &sk->sk_flags);
408 }
409
410 static inline void sk_acceptq_removed(struct sock *sk)
411 {
412 sk->sk_ack_backlog--;
413 }
414
415 static inline void sk_acceptq_added(struct sock *sk)
416 {
417 sk->sk_ack_backlog++;
418 }
419
420 static inline int sk_acceptq_is_full(struct sock *sk)
421 {
422 return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
423 }
424
425 /*
426 * Compute minimal free write space needed to queue new packets.
427 */
428 static inline int sk_stream_min_wspace(struct sock *sk)
429 {
430 return sk->sk_wmem_queued / 2;
431 }
432
433 static inline int sk_stream_wspace(struct sock *sk)
434 {
435 return sk->sk_sndbuf - sk->sk_wmem_queued;
436 }
437
438 extern void sk_stream_write_space(struct sock *sk);
439
440 static inline int sk_stream_memory_free(struct sock *sk)
441 {
442 return sk->sk_wmem_queued < sk->sk_sndbuf;
443 }
444
445 extern void sk_stream_rfree(struct sk_buff *skb);
446
447 static inline void sk_stream_set_owner_r(struct sk_buff *skb, struct sock *sk)
448 {
449 skb->sk = sk;
450 skb->destructor = sk_stream_rfree;
451 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
452 sk->sk_forward_alloc -= skb->truesize;
453 }
454
455 static inline void sk_stream_free_skb(struct sock *sk, struct sk_buff *skb)
456 {
457 skb_truesize_check(skb);
458 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
459 sk->sk_wmem_queued -= skb->truesize;
460 sk->sk_forward_alloc += skb->truesize;
461 __kfree_skb(skb);
462 }
463
464 /* The per-socket spinlock must be held here. */
465 static inline void sk_add_backlog(struct sock *sk, struct sk_buff *skb)
466 {
467 if (!sk->sk_backlog.tail) {
468 sk->sk_backlog.head = sk->sk_backlog.tail = skb;
469 } else {
470 sk->sk_backlog.tail->next = skb;
471 sk->sk_backlog.tail = skb;
472 }
473 skb->next = NULL;
474 }
475
476 #define sk_wait_event(__sk, __timeo, __condition) \
477 ({ int rc; \
478 release_sock(__sk); \
479 rc = __condition; \
480 if (!rc) { \
481 *(__timeo) = schedule_timeout(*(__timeo)); \
482 } \
483 lock_sock(__sk); \
484 rc = __condition; \
485 rc; \
486 })
487
488 extern int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
489 extern int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
490 extern void sk_stream_wait_close(struct sock *sk, long timeo_p);
491 extern int sk_stream_error(struct sock *sk, int flags, int err);
492 extern void sk_stream_kill_queues(struct sock *sk);
493
494 extern int sk_wait_data(struct sock *sk, long *timeo);
495
496 struct request_sock_ops;
497 struct timewait_sock_ops;
498
499 /* Networking protocol blocks we attach to sockets.
500 * socket layer -> transport layer interface
501 * transport -> network interface is defined by struct inet_proto
502 */
503 struct proto {
504 void (*close)(struct sock *sk,
505 long timeout);
506 int (*connect)(struct sock *sk,
507 struct sockaddr *uaddr,
508 int addr_len);
509 int (*disconnect)(struct sock *sk, int flags);
510
511 struct sock * (*accept) (struct sock *sk, int flags, int *err);
512
513 int (*ioctl)(struct sock *sk, int cmd,
514 unsigned long arg);
515 int (*init)(struct sock *sk);
516 int (*destroy)(struct sock *sk);
517 void (*shutdown)(struct sock *sk, int how);
518 int (*setsockopt)(struct sock *sk, int level,
519 int optname, char __user *optval,
520 int optlen);
521 int (*getsockopt)(struct sock *sk, int level,
522 int optname, char __user *optval,
523 int __user *option);
524 int (*compat_setsockopt)(struct sock *sk,
525 int level,
526 int optname, char __user *optval,
527 int optlen);
528 int (*compat_getsockopt)(struct sock *sk,
529 int level,
530 int optname, char __user *optval,
531 int __user *option);
532 int (*sendmsg)(struct kiocb *iocb, struct sock *sk,
533 struct msghdr *msg, size_t len);
534 int (*recvmsg)(struct kiocb *iocb, struct sock *sk,
535 struct msghdr *msg,
536 size_t len, int noblock, int flags,
537 int *addr_len);
538 int (*sendpage)(struct sock *sk, struct page *page,
539 int offset, size_t size, int flags);
540 int (*bind)(struct sock *sk,
541 struct sockaddr *uaddr, int addr_len);
542
543 int (*backlog_rcv) (struct sock *sk,
544 struct sk_buff *skb);
545
546 /* Keeping track of sk's, looking them up, and port selection methods. */
547 void (*hash)(struct sock *sk);
548 void (*unhash)(struct sock *sk);
549 int (*get_port)(struct sock *sk, unsigned short snum);
550
551 /* Memory pressure */
552 void (*enter_memory_pressure)(void);
553 atomic_t *memory_allocated; /* Current allocated memory. */
554 atomic_t *sockets_allocated; /* Current number of sockets. */
555 /*
556 * Pressure flag: try to collapse.
557 * Technical note: it is used by multiple contexts non atomically.
558 * All the sk_stream_mem_schedule() is of this nature: accounting
559 * is strict, actions are advisory and have some latency.
560 */
561 int *memory_pressure;
562 int *sysctl_mem;
563 int *sysctl_wmem;
564 int *sysctl_rmem;
565 int max_header;
566
567 kmem_cache_t *slab;
568 unsigned int obj_size;
569
570 atomic_t *orphan_count;
571
572 struct request_sock_ops *rsk_prot;
573 struct timewait_sock_ops *twsk_prot;
574
575 struct module *owner;
576
577 char name[32];
578
579 struct list_head node;
580 #ifdef SOCK_REFCNT_DEBUG
581 atomic_t socks;
582 #endif
583 struct {
584 int inuse;
585 u8 __pad[SMP_CACHE_BYTES - sizeof(int)];
586 } stats[NR_CPUS];
587 };
588
589 extern int proto_register(struct proto *prot, int alloc_slab);
590 extern void proto_unregister(struct proto *prot);
591
592 #ifdef SOCK_REFCNT_DEBUG
593 static inline void sk_refcnt_debug_inc(struct sock *sk)
594 {
595 atomic_inc(&sk->sk_prot->socks);
596 }
597
598 static inline void sk_refcnt_debug_dec(struct sock *sk)
599 {
600 atomic_dec(&sk->sk_prot->socks);
601 printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
602 sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
603 }
604
605 static inline void sk_refcnt_debug_release(const struct sock *sk)
606 {
607 if (atomic_read(&sk->sk_refcnt) != 1)
608 printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
609 sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt));
610 }
611 #else /* SOCK_REFCNT_DEBUG */
612 #define sk_refcnt_debug_inc(sk) do { } while (0)
613 #define sk_refcnt_debug_dec(sk) do { } while (0)
614 #define sk_refcnt_debug_release(sk) do { } while (0)
615 #endif /* SOCK_REFCNT_DEBUG */
616
617 /* Called with local bh disabled */
618 static __inline__ void sock_prot_inc_use(struct proto *prot)
619 {
620 prot->stats[smp_processor_id()].inuse++;
621 }
622
623 static __inline__ void sock_prot_dec_use(struct proto *prot)
624 {
625 prot->stats[smp_processor_id()].inuse--;
626 }
627
628 /* With per-bucket locks this operation is not-atomic, so that
629 * this version is not worse.
630 */
631 static inline void __sk_prot_rehash(struct sock *sk)
632 {
633 sk->sk_prot->unhash(sk);
634 sk->sk_prot->hash(sk);
635 }
636
637 /* About 10 seconds */
638 #define SOCK_DESTROY_TIME (10*HZ)
639
640 /* Sockets 0-1023 can't be bound to unless you are superuser */
641 #define PROT_SOCK 1024
642
643 #define SHUTDOWN_MASK 3
644 #define RCV_SHUTDOWN 1
645 #define SEND_SHUTDOWN 2
646
647 #define SOCK_SNDBUF_LOCK 1
648 #define SOCK_RCVBUF_LOCK 2
649 #define SOCK_BINDADDR_LOCK 4
650 #define SOCK_BINDPORT_LOCK 8
651
652 /* sock_iocb: used to kick off async processing of socket ios */
653 struct sock_iocb {
654 struct list_head list;
655
656 int flags;
657 int size;
658 struct socket *sock;
659 struct sock *sk;
660 struct scm_cookie *scm;
661 struct msghdr *msg, async_msg;
662 struct iovec async_iov;
663 struct kiocb *kiocb;
664 };
665
666 static inline struct sock_iocb *kiocb_to_siocb(struct kiocb *iocb)
667 {
668 return (struct sock_iocb *)iocb->private;
669 }
670
671 static inline struct kiocb *siocb_to_kiocb(struct sock_iocb *si)
672 {
673 return si->kiocb;
674 }
675
676 struct socket_alloc {
677 struct socket socket;
678 struct inode vfs_inode;
679 };
680
681 static inline struct socket *SOCKET_I(struct inode *inode)
682 {
683 return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
684 }
685
686 static inline struct inode *SOCK_INODE(struct socket *socket)
687 {
688 return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
689 }
690
691 extern void __sk_stream_mem_reclaim(struct sock *sk);
692 extern int sk_stream_mem_schedule(struct sock *sk, int size, int kind);
693
694 #define SK_STREAM_MEM_QUANTUM ((int)PAGE_SIZE)
695
696 static inline int sk_stream_pages(int amt)
697 {
698 return (amt + SK_STREAM_MEM_QUANTUM - 1) / SK_STREAM_MEM_QUANTUM;
699 }
700
701 static inline void sk_stream_mem_reclaim(struct sock *sk)
702 {
703 if (sk->sk_forward_alloc >= SK_STREAM_MEM_QUANTUM)
704 __sk_stream_mem_reclaim(sk);
705 }
706
707 static inline void sk_stream_writequeue_purge(struct sock *sk)
708 {
709 struct sk_buff *skb;
710
711 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL)
712 sk_stream_free_skb(sk, skb);
713 sk_stream_mem_reclaim(sk);
714 }
715
716 static inline int sk_stream_rmem_schedule(struct sock *sk, struct sk_buff *skb)
717 {
718 return (int)skb->truesize <= sk->sk_forward_alloc ||
719 sk_stream_mem_schedule(sk, skb->truesize, 1);
720 }
721
722 static inline int sk_stream_wmem_schedule(struct sock *sk, int size)
723 {
724 return size <= sk->sk_forward_alloc ||
725 sk_stream_mem_schedule(sk, size, 0);
726 }
727
728 /* Used by processes to "lock" a socket state, so that
729 * interrupts and bottom half handlers won't change it
730 * from under us. It essentially blocks any incoming
731 * packets, so that we won't get any new data or any
732 * packets that change the state of the socket.
733 *
734 * While locked, BH processing will add new packets to
735 * the backlog queue. This queue is processed by the
736 * owner of the socket lock right before it is released.
737 *
738 * Since ~2.3.5 it is also exclusive sleep lock serializing
739 * accesses from user process context.
740 */
741 #define sock_owned_by_user(sk) ((sk)->sk_lock.owner)
742
743 extern void FASTCALL(lock_sock(struct sock *sk));
744 extern void FASTCALL(release_sock(struct sock *sk));
745
746 /* BH context may only use the following locking interface. */
747 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock))
748 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock))
749
750 extern struct sock *sk_alloc(int family,
751 gfp_t priority,
752 struct proto *prot, int zero_it);
753 extern void sk_free(struct sock *sk);
754 extern struct sock *sk_clone(const struct sock *sk,
755 const gfp_t priority);
756
757 extern struct sk_buff *sock_wmalloc(struct sock *sk,
758 unsigned long size, int force,
759 gfp_t priority);
760 extern struct sk_buff *sock_rmalloc(struct sock *sk,
761 unsigned long size, int force,
762 gfp_t priority);
763 extern void sock_wfree(struct sk_buff *skb);
764 extern void sock_rfree(struct sk_buff *skb);
765
766 extern int sock_setsockopt(struct socket *sock, int level,
767 int op, char __user *optval,
768 int optlen);
769
770 extern int sock_getsockopt(struct socket *sock, int level,
771 int op, char __user *optval,
772 int __user *optlen);
773 extern struct sk_buff *sock_alloc_send_skb(struct sock *sk,
774 unsigned long size,
775 int noblock,
776 int *errcode);
777 extern void *sock_kmalloc(struct sock *sk, int size,
778 gfp_t priority);
779 extern void sock_kfree_s(struct sock *sk, void *mem, int size);
780 extern void sk_send_sigurg(struct sock *sk);
781
782 /*
783 * Functions to fill in entries in struct proto_ops when a protocol
784 * does not implement a particular function.
785 */
786 extern int sock_no_bind(struct socket *,
787 struct sockaddr *, int);
788 extern int sock_no_connect(struct socket *,
789 struct sockaddr *, int, int);
790 extern int sock_no_socketpair(struct socket *,
791 struct socket *);
792 extern int sock_no_accept(struct socket *,
793 struct socket *, int);
794 extern int sock_no_getname(struct socket *,
795 struct sockaddr *, int *, int);
796 extern unsigned int sock_no_poll(struct file *, struct socket *,
797 struct poll_table_struct *);
798 extern int sock_no_ioctl(struct socket *, unsigned int,
799 unsigned long);
800 extern int sock_no_listen(struct socket *, int);
801 extern int sock_no_shutdown(struct socket *, int);
802 extern int sock_no_getsockopt(struct socket *, int , int,
803 char __user *, int __user *);
804 extern int sock_no_setsockopt(struct socket *, int, int,
805 char __user *, int);
806 extern int sock_no_sendmsg(struct kiocb *, struct socket *,
807 struct msghdr *, size_t);
808 extern int sock_no_recvmsg(struct kiocb *, struct socket *,
809 struct msghdr *, size_t, int);
810 extern int sock_no_mmap(struct file *file,
811 struct socket *sock,
812 struct vm_area_struct *vma);
813 extern ssize_t sock_no_sendpage(struct socket *sock,
814 struct page *page,
815 int offset, size_t size,
816 int flags);
817
818 /*
819 * Functions to fill in entries in struct proto_ops when a protocol
820 * uses the inet style.
821 */
822 extern int sock_common_getsockopt(struct socket *sock, int level, int optname,
823 char __user *optval, int __user *optlen);
824 extern int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
825 struct msghdr *msg, size_t size, int flags);
826 extern int sock_common_setsockopt(struct socket *sock, int level, int optname,
827 char __user *optval, int optlen);
828 extern int compat_sock_common_getsockopt(struct socket *sock, int level,
829 int optname, char __user *optval, int __user *optlen);
830 extern int compat_sock_common_setsockopt(struct socket *sock, int level,
831 int optname, char __user *optval, int optlen);
832
833 extern void sk_common_release(struct sock *sk);
834
835 /*
836 * Default socket callbacks and setup code
837 */
838
839 /* Initialise core socket variables */
840 extern void sock_init_data(struct socket *sock, struct sock *sk);
841
842 /**
843 * sk_filter - run a packet through a socket filter
844 * @sk: sock associated with &sk_buff
845 * @skb: buffer to filter
846 * @needlock: set to 1 if the sock is not locked by caller.
847 *
848 * Run the filter code and then cut skb->data to correct size returned by
849 * sk_run_filter. If pkt_len is 0 we toss packet. If skb->len is smaller
850 * than pkt_len we keep whole skb->data. This is the socket level
851 * wrapper to sk_run_filter. It returns 0 if the packet should
852 * be accepted or -EPERM if the packet should be tossed.
853 *
854 */
855
856 static inline int sk_filter(struct sock *sk, struct sk_buff *skb, int needlock)
857 {
858 int err;
859
860 err = security_sock_rcv_skb(sk, skb);
861 if (err)
862 return err;
863
864 if (sk->sk_filter) {
865 struct sk_filter *filter;
866
867 if (needlock)
868 bh_lock_sock(sk);
869
870 filter = sk->sk_filter;
871 if (filter) {
872 unsigned int pkt_len = sk_run_filter(skb, filter->insns,
873 filter->len);
874 err = pkt_len ? pskb_trim(skb, pkt_len) : -EPERM;
875 }
876
877 if (needlock)
878 bh_unlock_sock(sk);
879 }
880 return err;
881 }
882
883 /**
884 * sk_filter_release: Release a socket filter
885 * @sk: socket
886 * @fp: filter to remove
887 *
888 * Remove a filter from a socket and release its resources.
889 */
890
891 static inline void sk_filter_release(struct sock *sk, struct sk_filter *fp)
892 {
893 unsigned int size = sk_filter_len(fp);
894
895 atomic_sub(size, &sk->sk_omem_alloc);
896
897 if (atomic_dec_and_test(&fp->refcnt))
898 kfree(fp);
899 }
900
901 static inline void sk_filter_charge(struct sock *sk, struct sk_filter *fp)
902 {
903 atomic_inc(&fp->refcnt);
904 atomic_add(sk_filter_len(fp), &sk->sk_omem_alloc);
905 }
906
907 /*
908 * Socket reference counting postulates.
909 *
910 * * Each user of socket SHOULD hold a reference count.
911 * * Each access point to socket (an hash table bucket, reference from a list,
912 * running timer, skb in flight MUST hold a reference count.
913 * * When reference count hits 0, it means it will never increase back.
914 * * When reference count hits 0, it means that no references from
915 * outside exist to this socket and current process on current CPU
916 * is last user and may/should destroy this socket.
917 * * sk_free is called from any context: process, BH, IRQ. When
918 * it is called, socket has no references from outside -> sk_free
919 * may release descendant resources allocated by the socket, but
920 * to the time when it is called, socket is NOT referenced by any
921 * hash tables, lists etc.
922 * * Packets, delivered from outside (from network or from another process)
923 * and enqueued on receive/error queues SHOULD NOT grab reference count,
924 * when they sit in queue. Otherwise, packets will leak to hole, when
925 * socket is looked up by one cpu and unhasing is made by another CPU.
926 * It is true for udp/raw, netlink (leak to receive and error queues), tcp
927 * (leak to backlog). Packet socket does all the processing inside
928 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
929 * use separate SMP lock, so that they are prone too.
930 */
931
932 /* Ungrab socket and destroy it, if it was the last reference. */
933 static inline void sock_put(struct sock *sk)
934 {
935 if (atomic_dec_and_test(&sk->sk_refcnt))
936 sk_free(sk);
937 }
938
939 extern int sk_receive_skb(struct sock *sk, struct sk_buff *skb);
940
941 /* Detach socket from process context.
942 * Announce socket dead, detach it from wait queue and inode.
943 * Note that parent inode held reference count on this struct sock,
944 * we do not release it in this function, because protocol
945 * probably wants some additional cleanups or even continuing
946 * to work with this socket (TCP).
947 */
948 static inline void sock_orphan(struct sock *sk)
949 {
950 write_lock_bh(&sk->sk_callback_lock);
951 sock_set_flag(sk, SOCK_DEAD);
952 sk->sk_socket = NULL;
953 sk->sk_sleep = NULL;
954 write_unlock_bh(&sk->sk_callback_lock);
955 }
956
957 static inline void sock_graft(struct sock *sk, struct socket *parent)
958 {
959 write_lock_bh(&sk->sk_callback_lock);
960 sk->sk_sleep = &parent->wait;
961 parent->sk = sk;
962 sk->sk_socket = parent;
963 write_unlock_bh(&sk->sk_callback_lock);
964 }
965
966 extern int sock_i_uid(struct sock *sk);
967 extern unsigned long sock_i_ino(struct sock *sk);
968
969 static inline struct dst_entry *
970 __sk_dst_get(struct sock *sk)
971 {
972 return sk->sk_dst_cache;
973 }
974
975 static inline struct dst_entry *
976 sk_dst_get(struct sock *sk)
977 {
978 struct dst_entry *dst;
979
980 read_lock(&sk->sk_dst_lock);
981 dst = sk->sk_dst_cache;
982 if (dst)
983 dst_hold(dst);
984 read_unlock(&sk->sk_dst_lock);
985 return dst;
986 }
987
988 static inline void
989 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
990 {
991 struct dst_entry *old_dst;
992
993 old_dst = sk->sk_dst_cache;
994 sk->sk_dst_cache = dst;
995 dst_release(old_dst);
996 }
997
998 static inline void
999 sk_dst_set(struct sock *sk, struct dst_entry *dst)
1000 {
1001 write_lock(&sk->sk_dst_lock);
1002 __sk_dst_set(sk, dst);
1003 write_unlock(&sk->sk_dst_lock);
1004 }
1005
1006 static inline void
1007 __sk_dst_reset(struct sock *sk)
1008 {
1009 struct dst_entry *old_dst;
1010
1011 old_dst = sk->sk_dst_cache;
1012 sk->sk_dst_cache = NULL;
1013 dst_release(old_dst);
1014 }
1015
1016 static inline void
1017 sk_dst_reset(struct sock *sk)
1018 {
1019 write_lock(&sk->sk_dst_lock);
1020 __sk_dst_reset(sk);
1021 write_unlock(&sk->sk_dst_lock);
1022 }
1023
1024 extern struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1025
1026 extern struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1027
1028 static inline void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1029 {
1030 __sk_dst_set(sk, dst);
1031 sk->sk_route_caps = dst->dev->features;
1032 if (sk->sk_route_caps & NETIF_F_GSO)
1033 sk->sk_route_caps |= NETIF_F_TSO;
1034 if (sk->sk_route_caps & NETIF_F_TSO) {
1035 if (dst->header_len)
1036 sk->sk_route_caps &= ~NETIF_F_TSO;
1037 else
1038 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1039 }
1040 }
1041
1042 static inline void sk_charge_skb(struct sock *sk, struct sk_buff *skb)
1043 {
1044 sk->sk_wmem_queued += skb->truesize;
1045 sk->sk_forward_alloc -= skb->truesize;
1046 }
1047
1048 static inline int skb_copy_to_page(struct sock *sk, char __user *from,
1049 struct sk_buff *skb, struct page *page,
1050 int off, int copy)
1051 {
1052 if (skb->ip_summed == CHECKSUM_NONE) {
1053 int err = 0;
1054 unsigned int csum = csum_and_copy_from_user(from,
1055 page_address(page) + off,
1056 copy, 0, &err);
1057 if (err)
1058 return err;
1059 skb->csum = csum_block_add(skb->csum, csum, skb->len);
1060 } else if (copy_from_user(page_address(page) + off, from, copy))
1061 return -EFAULT;
1062
1063 skb->len += copy;
1064 skb->data_len += copy;
1065 skb->truesize += copy;
1066 sk->sk_wmem_queued += copy;
1067 sk->sk_forward_alloc -= copy;
1068 return 0;
1069 }
1070
1071 /*
1072 * Queue a received datagram if it will fit. Stream and sequenced
1073 * protocols can't normally use this as they need to fit buffers in
1074 * and play with them.
1075 *
1076 * Inlined as it's very short and called for pretty much every
1077 * packet ever received.
1078 */
1079
1080 static inline void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
1081 {
1082 sock_hold(sk);
1083 skb->sk = sk;
1084 skb->destructor = sock_wfree;
1085 atomic_add(skb->truesize, &sk->sk_wmem_alloc);
1086 }
1087
1088 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
1089 {
1090 skb->sk = sk;
1091 skb->destructor = sock_rfree;
1092 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
1093 }
1094
1095 extern void sk_reset_timer(struct sock *sk, struct timer_list* timer,
1096 unsigned long expires);
1097
1098 extern void sk_stop_timer(struct sock *sk, struct timer_list* timer);
1099
1100 extern int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
1101
1102 static inline int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
1103 {
1104 /* Cast skb->rcvbuf to unsigned... It's pointless, but reduces
1105 number of warnings when compiling with -W --ANK
1106 */
1107 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
1108 (unsigned)sk->sk_rcvbuf)
1109 return -ENOMEM;
1110 skb_set_owner_r(skb, sk);
1111 skb_queue_tail(&sk->sk_error_queue, skb);
1112 if (!sock_flag(sk, SOCK_DEAD))
1113 sk->sk_data_ready(sk, skb->len);
1114 return 0;
1115 }
1116
1117 /*
1118 * Recover an error report and clear atomically
1119 */
1120
1121 static inline int sock_error(struct sock *sk)
1122 {
1123 int err;
1124 if (likely(!sk->sk_err))
1125 return 0;
1126 err = xchg(&sk->sk_err, 0);
1127 return -err;
1128 }
1129
1130 static inline unsigned long sock_wspace(struct sock *sk)
1131 {
1132 int amt = 0;
1133
1134 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
1135 amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
1136 if (amt < 0)
1137 amt = 0;
1138 }
1139 return amt;
1140 }
1141
1142 static inline void sk_wake_async(struct sock *sk, int how, int band)
1143 {
1144 if (sk->sk_socket && sk->sk_socket->fasync_list)
1145 sock_wake_async(sk->sk_socket, how, band);
1146 }
1147
1148 #define SOCK_MIN_SNDBUF 2048
1149 #define SOCK_MIN_RCVBUF 256
1150
1151 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
1152 {
1153 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
1154 sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued / 2);
1155 sk->sk_sndbuf = max(sk->sk_sndbuf, SOCK_MIN_SNDBUF);
1156 }
1157 }
1158
1159 static inline struct sk_buff *sk_stream_alloc_pskb(struct sock *sk,
1160 int size, int mem,
1161 gfp_t gfp)
1162 {
1163 struct sk_buff *skb;
1164 int hdr_len;
1165
1166 hdr_len = SKB_DATA_ALIGN(sk->sk_prot->max_header);
1167 skb = alloc_skb_fclone(size + hdr_len, gfp);
1168 if (skb) {
1169 skb->truesize += mem;
1170 if (sk_stream_wmem_schedule(sk, skb->truesize)) {
1171 skb_reserve(skb, hdr_len);
1172 return skb;
1173 }
1174 __kfree_skb(skb);
1175 } else {
1176 sk->sk_prot->enter_memory_pressure();
1177 sk_stream_moderate_sndbuf(sk);
1178 }
1179 return NULL;
1180 }
1181
1182 static inline struct sk_buff *sk_stream_alloc_skb(struct sock *sk,
1183 int size,
1184 gfp_t gfp)
1185 {
1186 return sk_stream_alloc_pskb(sk, size, 0, gfp);
1187 }
1188
1189 static inline struct page *sk_stream_alloc_page(struct sock *sk)
1190 {
1191 struct page *page = NULL;
1192
1193 page = alloc_pages(sk->sk_allocation, 0);
1194 if (!page) {
1195 sk->sk_prot->enter_memory_pressure();
1196 sk_stream_moderate_sndbuf(sk);
1197 }
1198 return page;
1199 }
1200
1201 #define sk_stream_for_retrans_queue(skb, sk) \
1202 for (skb = (sk)->sk_write_queue.next; \
1203 (skb != (sk)->sk_send_head) && \
1204 (skb != (struct sk_buff *)&(sk)->sk_write_queue); \
1205 skb = skb->next)
1206
1207 /*from STCP for fast SACK Process*/
1208 #define sk_stream_for_retrans_queue_from(skb, sk) \
1209 for (; (skb != (sk)->sk_send_head) && \
1210 (skb != (struct sk_buff *)&(sk)->sk_write_queue); \
1211 skb = skb->next)
1212
1213 /*
1214 * Default write policy as shown to user space via poll/select/SIGIO
1215 */
1216 static inline int sock_writeable(const struct sock *sk)
1217 {
1218 return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf / 2);
1219 }
1220
1221 static inline gfp_t gfp_any(void)
1222 {
1223 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
1224 }
1225
1226 static inline long sock_rcvtimeo(const struct sock *sk, int noblock)
1227 {
1228 return noblock ? 0 : sk->sk_rcvtimeo;
1229 }
1230
1231 static inline long sock_sndtimeo(const struct sock *sk, int noblock)
1232 {
1233 return noblock ? 0 : sk->sk_sndtimeo;
1234 }
1235
1236 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
1237 {
1238 return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
1239 }
1240
1241 /* Alas, with timeout socket operations are not restartable.
1242 * Compare this to poll().
1243 */
1244 static inline int sock_intr_errno(long timeo)
1245 {
1246 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
1247 }
1248
1249 static __inline__ void
1250 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
1251 {
1252 struct timeval stamp;
1253
1254 skb_get_timestamp(skb, &stamp);
1255 if (sock_flag(sk, SOCK_RCVTSTAMP)) {
1256 /* Race occurred between timestamp enabling and packet
1257 receiving. Fill in the current time for now. */
1258 if (stamp.tv_sec == 0)
1259 do_gettimeofday(&stamp);
1260 skb_set_timestamp(skb, &stamp);
1261 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP, sizeof(struct timeval),
1262 &stamp);
1263 } else
1264 sk->sk_stamp = stamp;
1265 }
1266
1267 /**
1268 * sk_eat_skb - Release a skb if it is no longer needed
1269 * @sk: socket to eat this skb from
1270 * @skb: socket buffer to eat
1271 * @copied_early: flag indicating whether DMA operations copied this data early
1272 *
1273 * This routine must be called with interrupts disabled or with the socket
1274 * locked so that the sk_buff queue operation is ok.
1275 */
1276 #ifdef CONFIG_NET_DMA
1277 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, int copied_early)
1278 {
1279 __skb_unlink(skb, &sk->sk_receive_queue);
1280 if (!copied_early)
1281 __kfree_skb(skb);
1282 else
1283 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
1284 }
1285 #else
1286 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, int copied_early)
1287 {
1288 __skb_unlink(skb, &sk->sk_receive_queue);
1289 __kfree_skb(skb);
1290 }
1291 #endif
1292
1293 extern void sock_enable_timestamp(struct sock *sk);
1294 extern int sock_get_timestamp(struct sock *, struct timeval __user *);
1295
1296 /*
1297 * Enable debug/info messages
1298 */
1299
1300 #ifdef CONFIG_NETDEBUG
1301 #define NETDEBUG(fmt, args...) printk(fmt,##args)
1302 #define LIMIT_NETDEBUG(fmt, args...) do { if (net_ratelimit()) printk(fmt,##args); } while(0)
1303 #else
1304 #define NETDEBUG(fmt, args...) do { } while (0)
1305 #define LIMIT_NETDEBUG(fmt, args...) do { } while(0)
1306 #endif
1307
1308 /*
1309 * Macros for sleeping on a socket. Use them like this:
1310 *
1311 * SOCK_SLEEP_PRE(sk)
1312 * if (condition)
1313 * schedule();
1314 * SOCK_SLEEP_POST(sk)
1315 *
1316 * N.B. These are now obsolete and were, afaik, only ever used in DECnet
1317 * and when the last use of them in DECnet has gone, I'm intending to
1318 * remove them.
1319 */
1320
1321 #define SOCK_SLEEP_PRE(sk) { struct task_struct *tsk = current; \
1322 DECLARE_WAITQUEUE(wait, tsk); \
1323 tsk->state = TASK_INTERRUPTIBLE; \
1324 add_wait_queue((sk)->sk_sleep, &wait); \
1325 release_sock(sk);
1326
1327 #define SOCK_SLEEP_POST(sk) tsk->state = TASK_RUNNING; \
1328 remove_wait_queue((sk)->sk_sleep, &wait); \
1329 lock_sock(sk); \
1330 }
1331
1332 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
1333 {
1334 if (valbool)
1335 sock_set_flag(sk, bit);
1336 else
1337 sock_reset_flag(sk, bit);
1338 }
1339
1340 extern __u32 sysctl_wmem_max;
1341 extern __u32 sysctl_rmem_max;
1342
1343 #ifdef CONFIG_NET
1344 int siocdevprivate_ioctl(unsigned int fd, unsigned int cmd, unsigned long arg);
1345 #else
1346 static inline int siocdevprivate_ioctl(unsigned int fd, unsigned int cmd, unsigned long arg)
1347 {
1348 return -ENODEV;
1349 }
1350 #endif
1351
1352 extern void sk_init(void);
1353
1354 #ifdef CONFIG_SYSCTL
1355 extern struct ctl_table core_table[];
1356 #endif
1357
1358 extern int sysctl_optmem_max;
1359
1360 extern __u32 sysctl_wmem_default;
1361 extern __u32 sysctl_rmem_default;
1362
1363 #endif /* _SOCK_H */