]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - include/net/sock.h
tcp: do not release socket ownership in tcp_close()
[mirror_ubuntu-jammy-kernel.git] / include / net / sock.h
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Definitions for the AF_INET socket handler.
7 *
8 * Version: @(#)sock.h 1.0.4 05/13/93
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche <flla@stud.uni-sb.de>
14 *
15 * Fixes:
16 * Alan Cox : Volatiles in skbuff pointers. See
17 * skbuff comments. May be overdone,
18 * better to prove they can be removed
19 * than the reverse.
20 * Alan Cox : Added a zapped field for tcp to note
21 * a socket is reset and must stay shut up
22 * Alan Cox : New fields for options
23 * Pauline Middelink : identd support
24 * Alan Cox : Eliminate low level recv/recvfrom
25 * David S. Miller : New socket lookup architecture.
26 * Steve Whitehouse: Default routines for sock_ops
27 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made
28 * protinfo be just a void pointer, as the
29 * protocol specific parts were moved to
30 * respective headers and ipv4/v6, etc now
31 * use private slabcaches for its socks
32 * Pedro Hortas : New flags field for socket options
33 *
34 *
35 * This program is free software; you can redistribute it and/or
36 * modify it under the terms of the GNU General Public License
37 * as published by the Free Software Foundation; either version
38 * 2 of the License, or (at your option) any later version.
39 */
40 #ifndef _SOCK_H
41 #define _SOCK_H
42
43 #include <linux/hardirq.h>
44 #include <linux/kernel.h>
45 #include <linux/list.h>
46 #include <linux/list_nulls.h>
47 #include <linux/timer.h>
48 #include <linux/cache.h>
49 #include <linux/bitops.h>
50 #include <linux/lockdep.h>
51 #include <linux/netdevice.h>
52 #include <linux/skbuff.h> /* struct sk_buff */
53 #include <linux/mm.h>
54 #include <linux/security.h>
55 #include <linux/slab.h>
56 #include <linux/uaccess.h>
57 #include <linux/page_counter.h>
58 #include <linux/memcontrol.h>
59 #include <linux/static_key.h>
60 #include <linux/sched.h>
61 #include <linux/wait.h>
62 #include <linux/cgroup-defs.h>
63 #include <linux/rbtree.h>
64 #include <linux/filter.h>
65 #include <linux/rculist_nulls.h>
66 #include <linux/poll.h>
67
68 #include <linux/atomic.h>
69 #include <linux/refcount.h>
70 #include <net/dst.h>
71 #include <net/checksum.h>
72 #include <net/tcp_states.h>
73 #include <linux/net_tstamp.h>
74 #include <net/smc.h>
75 #include <net/l3mdev.h>
76
77 /*
78 * This structure really needs to be cleaned up.
79 * Most of it is for TCP, and not used by any of
80 * the other protocols.
81 */
82
83 /* Define this to get the SOCK_DBG debugging facility. */
84 #define SOCK_DEBUGGING
85 #ifdef SOCK_DEBUGGING
86 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
87 printk(KERN_DEBUG msg); } while (0)
88 #else
89 /* Validate arguments and do nothing */
90 static inline __printf(2, 3)
91 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
92 {
93 }
94 #endif
95
96 /* This is the per-socket lock. The spinlock provides a synchronization
97 * between user contexts and software interrupt processing, whereas the
98 * mini-semaphore synchronizes multiple users amongst themselves.
99 */
100 typedef struct {
101 spinlock_t slock;
102 int owned;
103 wait_queue_head_t wq;
104 /*
105 * We express the mutex-alike socket_lock semantics
106 * to the lock validator by explicitly managing
107 * the slock as a lock variant (in addition to
108 * the slock itself):
109 */
110 #ifdef CONFIG_DEBUG_LOCK_ALLOC
111 struct lockdep_map dep_map;
112 #endif
113 } socket_lock_t;
114
115 struct sock;
116 struct proto;
117 struct net;
118
119 typedef __u32 __bitwise __portpair;
120 typedef __u64 __bitwise __addrpair;
121
122 /**
123 * struct sock_common - minimal network layer representation of sockets
124 * @skc_daddr: Foreign IPv4 addr
125 * @skc_rcv_saddr: Bound local IPv4 addr
126 * @skc_hash: hash value used with various protocol lookup tables
127 * @skc_u16hashes: two u16 hash values used by UDP lookup tables
128 * @skc_dport: placeholder for inet_dport/tw_dport
129 * @skc_num: placeholder for inet_num/tw_num
130 * @skc_family: network address family
131 * @skc_state: Connection state
132 * @skc_reuse: %SO_REUSEADDR setting
133 * @skc_reuseport: %SO_REUSEPORT setting
134 * @skc_bound_dev_if: bound device index if != 0
135 * @skc_bind_node: bind hash linkage for various protocol lookup tables
136 * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
137 * @skc_prot: protocol handlers inside a network family
138 * @skc_net: reference to the network namespace of this socket
139 * @skc_node: main hash linkage for various protocol lookup tables
140 * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
141 * @skc_tx_queue_mapping: tx queue number for this connection
142 * @skc_rx_queue_mapping: rx queue number for this connection
143 * @skc_flags: place holder for sk_flags
144 * %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
145 * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
146 * @skc_incoming_cpu: record/match cpu processing incoming packets
147 * @skc_refcnt: reference count
148 *
149 * This is the minimal network layer representation of sockets, the header
150 * for struct sock and struct inet_timewait_sock.
151 */
152 struct sock_common {
153 /* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned
154 * address on 64bit arches : cf INET_MATCH()
155 */
156 union {
157 __addrpair skc_addrpair;
158 struct {
159 __be32 skc_daddr;
160 __be32 skc_rcv_saddr;
161 };
162 };
163 union {
164 unsigned int skc_hash;
165 __u16 skc_u16hashes[2];
166 };
167 /* skc_dport && skc_num must be grouped as well */
168 union {
169 __portpair skc_portpair;
170 struct {
171 __be16 skc_dport;
172 __u16 skc_num;
173 };
174 };
175
176 unsigned short skc_family;
177 volatile unsigned char skc_state;
178 unsigned char skc_reuse:4;
179 unsigned char skc_reuseport:1;
180 unsigned char skc_ipv6only:1;
181 unsigned char skc_net_refcnt:1;
182 int skc_bound_dev_if;
183 union {
184 struct hlist_node skc_bind_node;
185 struct hlist_node skc_portaddr_node;
186 };
187 struct proto *skc_prot;
188 possible_net_t skc_net;
189
190 #if IS_ENABLED(CONFIG_IPV6)
191 struct in6_addr skc_v6_daddr;
192 struct in6_addr skc_v6_rcv_saddr;
193 #endif
194
195 atomic64_t skc_cookie;
196
197 /* following fields are padding to force
198 * offset(struct sock, sk_refcnt) == 128 on 64bit arches
199 * assuming IPV6 is enabled. We use this padding differently
200 * for different kind of 'sockets'
201 */
202 union {
203 unsigned long skc_flags;
204 struct sock *skc_listener; /* request_sock */
205 struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */
206 };
207 /*
208 * fields between dontcopy_begin/dontcopy_end
209 * are not copied in sock_copy()
210 */
211 /* private: */
212 int skc_dontcopy_begin[0];
213 /* public: */
214 union {
215 struct hlist_node skc_node;
216 struct hlist_nulls_node skc_nulls_node;
217 };
218 unsigned short skc_tx_queue_mapping;
219 #ifdef CONFIG_XPS
220 unsigned short skc_rx_queue_mapping;
221 #endif
222 union {
223 int skc_incoming_cpu;
224 u32 skc_rcv_wnd;
225 u32 skc_tw_rcv_nxt; /* struct tcp_timewait_sock */
226 };
227
228 refcount_t skc_refcnt;
229 /* private: */
230 int skc_dontcopy_end[0];
231 union {
232 u32 skc_rxhash;
233 u32 skc_window_clamp;
234 u32 skc_tw_snd_nxt; /* struct tcp_timewait_sock */
235 };
236 /* public: */
237 };
238
239 /**
240 * struct sock - network layer representation of sockets
241 * @__sk_common: shared layout with inet_timewait_sock
242 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
243 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
244 * @sk_lock: synchronizer
245 * @sk_kern_sock: True if sock is using kernel lock classes
246 * @sk_rcvbuf: size of receive buffer in bytes
247 * @sk_wq: sock wait queue and async head
248 * @sk_rx_dst: receive input route used by early demux
249 * @sk_dst_cache: destination cache
250 * @sk_dst_pending_confirm: need to confirm neighbour
251 * @sk_policy: flow policy
252 * @sk_receive_queue: incoming packets
253 * @sk_wmem_alloc: transmit queue bytes committed
254 * @sk_tsq_flags: TCP Small Queues flags
255 * @sk_write_queue: Packet sending queue
256 * @sk_omem_alloc: "o" is "option" or "other"
257 * @sk_wmem_queued: persistent queue size
258 * @sk_forward_alloc: space allocated forward
259 * @sk_napi_id: id of the last napi context to receive data for sk
260 * @sk_ll_usec: usecs to busypoll when there is no data
261 * @sk_allocation: allocation mode
262 * @sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
263 * @sk_pacing_status: Pacing status (requested, handled by sch_fq)
264 * @sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
265 * @sk_sndbuf: size of send buffer in bytes
266 * @__sk_flags_offset: empty field used to determine location of bitfield
267 * @sk_padding: unused element for alignment
268 * @sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
269 * @sk_no_check_rx: allow zero checksum in RX packets
270 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
271 * @sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
272 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
273 * @sk_gso_max_size: Maximum GSO segment size to build
274 * @sk_gso_max_segs: Maximum number of GSO segments
275 * @sk_pacing_shift: scaling factor for TCP Small Queues
276 * @sk_lingertime: %SO_LINGER l_linger setting
277 * @sk_backlog: always used with the per-socket spinlock held
278 * @sk_callback_lock: used with the callbacks in the end of this struct
279 * @sk_error_queue: rarely used
280 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
281 * IPV6_ADDRFORM for instance)
282 * @sk_err: last error
283 * @sk_err_soft: errors that don't cause failure but are the cause of a
284 * persistent failure not just 'timed out'
285 * @sk_drops: raw/udp drops counter
286 * @sk_ack_backlog: current listen backlog
287 * @sk_max_ack_backlog: listen backlog set in listen()
288 * @sk_uid: user id of owner
289 * @sk_priority: %SO_PRIORITY setting
290 * @sk_type: socket type (%SOCK_STREAM, etc)
291 * @sk_protocol: which protocol this socket belongs in this network family
292 * @sk_peer_pid: &struct pid for this socket's peer
293 * @sk_peer_cred: %SO_PEERCRED setting
294 * @sk_rcvlowat: %SO_RCVLOWAT setting
295 * @sk_rcvtimeo: %SO_RCVTIMEO setting
296 * @sk_sndtimeo: %SO_SNDTIMEO setting
297 * @sk_txhash: computed flow hash for use on transmit
298 * @sk_filter: socket filtering instructions
299 * @sk_timer: sock cleanup timer
300 * @sk_stamp: time stamp of last packet received
301 * @sk_tsflags: SO_TIMESTAMPING socket options
302 * @sk_tskey: counter to disambiguate concurrent tstamp requests
303 * @sk_zckey: counter to order MSG_ZEROCOPY notifications
304 * @sk_socket: Identd and reporting IO signals
305 * @sk_user_data: RPC layer private data
306 * @sk_frag: cached page frag
307 * @sk_peek_off: current peek_offset value
308 * @sk_send_head: front of stuff to transmit
309 * @sk_security: used by security modules
310 * @sk_mark: generic packet mark
311 * @sk_cgrp_data: cgroup data for this cgroup
312 * @sk_memcg: this socket's memory cgroup association
313 * @sk_write_pending: a write to stream socket waits to start
314 * @sk_state_change: callback to indicate change in the state of the sock
315 * @sk_data_ready: callback to indicate there is data to be processed
316 * @sk_write_space: callback to indicate there is bf sending space available
317 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
318 * @sk_backlog_rcv: callback to process the backlog
319 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
320 * @sk_reuseport_cb: reuseport group container
321 * @sk_rcu: used during RCU grace period
322 * @sk_clockid: clockid used by time-based scheduling (SO_TXTIME)
323 * @sk_txtime_deadline_mode: set deadline mode for SO_TXTIME
324 * @sk_txtime_unused: unused txtime flags
325 */
326 struct sock {
327 /*
328 * Now struct inet_timewait_sock also uses sock_common, so please just
329 * don't add nothing before this first member (__sk_common) --acme
330 */
331 struct sock_common __sk_common;
332 #define sk_node __sk_common.skc_node
333 #define sk_nulls_node __sk_common.skc_nulls_node
334 #define sk_refcnt __sk_common.skc_refcnt
335 #define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping
336 #ifdef CONFIG_XPS
337 #define sk_rx_queue_mapping __sk_common.skc_rx_queue_mapping
338 #endif
339
340 #define sk_dontcopy_begin __sk_common.skc_dontcopy_begin
341 #define sk_dontcopy_end __sk_common.skc_dontcopy_end
342 #define sk_hash __sk_common.skc_hash
343 #define sk_portpair __sk_common.skc_portpair
344 #define sk_num __sk_common.skc_num
345 #define sk_dport __sk_common.skc_dport
346 #define sk_addrpair __sk_common.skc_addrpair
347 #define sk_daddr __sk_common.skc_daddr
348 #define sk_rcv_saddr __sk_common.skc_rcv_saddr
349 #define sk_family __sk_common.skc_family
350 #define sk_state __sk_common.skc_state
351 #define sk_reuse __sk_common.skc_reuse
352 #define sk_reuseport __sk_common.skc_reuseport
353 #define sk_ipv6only __sk_common.skc_ipv6only
354 #define sk_net_refcnt __sk_common.skc_net_refcnt
355 #define sk_bound_dev_if __sk_common.skc_bound_dev_if
356 #define sk_bind_node __sk_common.skc_bind_node
357 #define sk_prot __sk_common.skc_prot
358 #define sk_net __sk_common.skc_net
359 #define sk_v6_daddr __sk_common.skc_v6_daddr
360 #define sk_v6_rcv_saddr __sk_common.skc_v6_rcv_saddr
361 #define sk_cookie __sk_common.skc_cookie
362 #define sk_incoming_cpu __sk_common.skc_incoming_cpu
363 #define sk_flags __sk_common.skc_flags
364 #define sk_rxhash __sk_common.skc_rxhash
365
366 socket_lock_t sk_lock;
367 atomic_t sk_drops;
368 int sk_rcvlowat;
369 struct sk_buff_head sk_error_queue;
370 struct sk_buff_head sk_receive_queue;
371 /*
372 * The backlog queue is special, it is always used with
373 * the per-socket spinlock held and requires low latency
374 * access. Therefore we special case it's implementation.
375 * Note : rmem_alloc is in this structure to fill a hole
376 * on 64bit arches, not because its logically part of
377 * backlog.
378 */
379 struct {
380 atomic_t rmem_alloc;
381 int len;
382 struct sk_buff *head;
383 struct sk_buff *tail;
384 } sk_backlog;
385 #define sk_rmem_alloc sk_backlog.rmem_alloc
386
387 int sk_forward_alloc;
388 #ifdef CONFIG_NET_RX_BUSY_POLL
389 unsigned int sk_ll_usec;
390 /* ===== mostly read cache line ===== */
391 unsigned int sk_napi_id;
392 #endif
393 int sk_rcvbuf;
394
395 struct sk_filter __rcu *sk_filter;
396 union {
397 struct socket_wq __rcu *sk_wq;
398 struct socket_wq *sk_wq_raw;
399 };
400 #ifdef CONFIG_XFRM
401 struct xfrm_policy __rcu *sk_policy[2];
402 #endif
403 struct dst_entry *sk_rx_dst;
404 struct dst_entry __rcu *sk_dst_cache;
405 atomic_t sk_omem_alloc;
406 int sk_sndbuf;
407
408 /* ===== cache line for TX ===== */
409 int sk_wmem_queued;
410 refcount_t sk_wmem_alloc;
411 unsigned long sk_tsq_flags;
412 union {
413 struct sk_buff *sk_send_head;
414 struct rb_root tcp_rtx_queue;
415 };
416 struct sk_buff_head sk_write_queue;
417 __s32 sk_peek_off;
418 int sk_write_pending;
419 __u32 sk_dst_pending_confirm;
420 u32 sk_pacing_status; /* see enum sk_pacing */
421 long sk_sndtimeo;
422 struct timer_list sk_timer;
423 __u32 sk_priority;
424 __u32 sk_mark;
425 u32 sk_pacing_rate; /* bytes per second */
426 u32 sk_max_pacing_rate;
427 struct page_frag sk_frag;
428 netdev_features_t sk_route_caps;
429 netdev_features_t sk_route_nocaps;
430 netdev_features_t sk_route_forced_caps;
431 int sk_gso_type;
432 unsigned int sk_gso_max_size;
433 gfp_t sk_allocation;
434 __u32 sk_txhash;
435
436 /*
437 * Because of non atomicity rules, all
438 * changes are protected by socket lock.
439 */
440 unsigned int __sk_flags_offset[0];
441 #ifdef __BIG_ENDIAN_BITFIELD
442 #define SK_FL_PROTO_SHIFT 16
443 #define SK_FL_PROTO_MASK 0x00ff0000
444
445 #define SK_FL_TYPE_SHIFT 0
446 #define SK_FL_TYPE_MASK 0x0000ffff
447 #else
448 #define SK_FL_PROTO_SHIFT 8
449 #define SK_FL_PROTO_MASK 0x0000ff00
450
451 #define SK_FL_TYPE_SHIFT 16
452 #define SK_FL_TYPE_MASK 0xffff0000
453 #endif
454
455 unsigned int sk_padding : 1,
456 sk_kern_sock : 1,
457 sk_no_check_tx : 1,
458 sk_no_check_rx : 1,
459 sk_userlocks : 4,
460 sk_protocol : 8,
461 sk_type : 16;
462 #define SK_PROTOCOL_MAX U8_MAX
463 u16 sk_gso_max_segs;
464 u8 sk_pacing_shift;
465 unsigned long sk_lingertime;
466 struct proto *sk_prot_creator;
467 rwlock_t sk_callback_lock;
468 int sk_err,
469 sk_err_soft;
470 u32 sk_ack_backlog;
471 u32 sk_max_ack_backlog;
472 kuid_t sk_uid;
473 struct pid *sk_peer_pid;
474 const struct cred *sk_peer_cred;
475 long sk_rcvtimeo;
476 ktime_t sk_stamp;
477 u16 sk_tsflags;
478 u8 sk_shutdown;
479 u32 sk_tskey;
480 atomic_t sk_zckey;
481
482 u8 sk_clockid;
483 u8 sk_txtime_deadline_mode : 1,
484 sk_txtime_report_errors : 1,
485 sk_txtime_unused : 6;
486
487 struct socket *sk_socket;
488 void *sk_user_data;
489 #ifdef CONFIG_SECURITY
490 void *sk_security;
491 #endif
492 struct sock_cgroup_data sk_cgrp_data;
493 struct mem_cgroup *sk_memcg;
494 void (*sk_state_change)(struct sock *sk);
495 void (*sk_data_ready)(struct sock *sk);
496 void (*sk_write_space)(struct sock *sk);
497 void (*sk_error_report)(struct sock *sk);
498 int (*sk_backlog_rcv)(struct sock *sk,
499 struct sk_buff *skb);
500 #ifdef CONFIG_SOCK_VALIDATE_XMIT
501 struct sk_buff* (*sk_validate_xmit_skb)(struct sock *sk,
502 struct net_device *dev,
503 struct sk_buff *skb);
504 #endif
505 void (*sk_destruct)(struct sock *sk);
506 struct sock_reuseport __rcu *sk_reuseport_cb;
507 struct rcu_head sk_rcu;
508 };
509
510 enum sk_pacing {
511 SK_PACING_NONE = 0,
512 SK_PACING_NEEDED = 1,
513 SK_PACING_FQ = 2,
514 };
515
516 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
517
518 #define rcu_dereference_sk_user_data(sk) rcu_dereference(__sk_user_data((sk)))
519 #define rcu_assign_sk_user_data(sk, ptr) rcu_assign_pointer(__sk_user_data((sk)), ptr)
520
521 /*
522 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
523 * or not whether his port will be reused by someone else. SK_FORCE_REUSE
524 * on a socket means that the socket will reuse everybody else's port
525 * without looking at the other's sk_reuse value.
526 */
527
528 #define SK_NO_REUSE 0
529 #define SK_CAN_REUSE 1
530 #define SK_FORCE_REUSE 2
531
532 int sk_set_peek_off(struct sock *sk, int val);
533
534 static inline int sk_peek_offset(struct sock *sk, int flags)
535 {
536 if (unlikely(flags & MSG_PEEK)) {
537 return READ_ONCE(sk->sk_peek_off);
538 }
539
540 return 0;
541 }
542
543 static inline void sk_peek_offset_bwd(struct sock *sk, int val)
544 {
545 s32 off = READ_ONCE(sk->sk_peek_off);
546
547 if (unlikely(off >= 0)) {
548 off = max_t(s32, off - val, 0);
549 WRITE_ONCE(sk->sk_peek_off, off);
550 }
551 }
552
553 static inline void sk_peek_offset_fwd(struct sock *sk, int val)
554 {
555 sk_peek_offset_bwd(sk, -val);
556 }
557
558 /*
559 * Hashed lists helper routines
560 */
561 static inline struct sock *sk_entry(const struct hlist_node *node)
562 {
563 return hlist_entry(node, struct sock, sk_node);
564 }
565
566 static inline struct sock *__sk_head(const struct hlist_head *head)
567 {
568 return hlist_entry(head->first, struct sock, sk_node);
569 }
570
571 static inline struct sock *sk_head(const struct hlist_head *head)
572 {
573 return hlist_empty(head) ? NULL : __sk_head(head);
574 }
575
576 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
577 {
578 return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
579 }
580
581 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
582 {
583 return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
584 }
585
586 static inline struct sock *sk_next(const struct sock *sk)
587 {
588 return hlist_entry_safe(sk->sk_node.next, struct sock, sk_node);
589 }
590
591 static inline struct sock *sk_nulls_next(const struct sock *sk)
592 {
593 return (!is_a_nulls(sk->sk_nulls_node.next)) ?
594 hlist_nulls_entry(sk->sk_nulls_node.next,
595 struct sock, sk_nulls_node) :
596 NULL;
597 }
598
599 static inline bool sk_unhashed(const struct sock *sk)
600 {
601 return hlist_unhashed(&sk->sk_node);
602 }
603
604 static inline bool sk_hashed(const struct sock *sk)
605 {
606 return !sk_unhashed(sk);
607 }
608
609 static inline void sk_node_init(struct hlist_node *node)
610 {
611 node->pprev = NULL;
612 }
613
614 static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
615 {
616 node->pprev = NULL;
617 }
618
619 static inline void __sk_del_node(struct sock *sk)
620 {
621 __hlist_del(&sk->sk_node);
622 }
623
624 /* NB: equivalent to hlist_del_init_rcu */
625 static inline bool __sk_del_node_init(struct sock *sk)
626 {
627 if (sk_hashed(sk)) {
628 __sk_del_node(sk);
629 sk_node_init(&sk->sk_node);
630 return true;
631 }
632 return false;
633 }
634
635 /* Grab socket reference count. This operation is valid only
636 when sk is ALREADY grabbed f.e. it is found in hash table
637 or a list and the lookup is made under lock preventing hash table
638 modifications.
639 */
640
641 static __always_inline void sock_hold(struct sock *sk)
642 {
643 refcount_inc(&sk->sk_refcnt);
644 }
645
646 /* Ungrab socket in the context, which assumes that socket refcnt
647 cannot hit zero, f.e. it is true in context of any socketcall.
648 */
649 static __always_inline void __sock_put(struct sock *sk)
650 {
651 refcount_dec(&sk->sk_refcnt);
652 }
653
654 static inline bool sk_del_node_init(struct sock *sk)
655 {
656 bool rc = __sk_del_node_init(sk);
657
658 if (rc) {
659 /* paranoid for a while -acme */
660 WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
661 __sock_put(sk);
662 }
663 return rc;
664 }
665 #define sk_del_node_init_rcu(sk) sk_del_node_init(sk)
666
667 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
668 {
669 if (sk_hashed(sk)) {
670 hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
671 return true;
672 }
673 return false;
674 }
675
676 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
677 {
678 bool rc = __sk_nulls_del_node_init_rcu(sk);
679
680 if (rc) {
681 /* paranoid for a while -acme */
682 WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
683 __sock_put(sk);
684 }
685 return rc;
686 }
687
688 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
689 {
690 hlist_add_head(&sk->sk_node, list);
691 }
692
693 static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
694 {
695 sock_hold(sk);
696 __sk_add_node(sk, list);
697 }
698
699 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
700 {
701 sock_hold(sk);
702 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
703 sk->sk_family == AF_INET6)
704 hlist_add_tail_rcu(&sk->sk_node, list);
705 else
706 hlist_add_head_rcu(&sk->sk_node, list);
707 }
708
709 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
710 {
711 hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
712 }
713
714 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
715 {
716 sock_hold(sk);
717 __sk_nulls_add_node_rcu(sk, list);
718 }
719
720 static inline void __sk_del_bind_node(struct sock *sk)
721 {
722 __hlist_del(&sk->sk_bind_node);
723 }
724
725 static inline void sk_add_bind_node(struct sock *sk,
726 struct hlist_head *list)
727 {
728 hlist_add_head(&sk->sk_bind_node, list);
729 }
730
731 #define sk_for_each(__sk, list) \
732 hlist_for_each_entry(__sk, list, sk_node)
733 #define sk_for_each_rcu(__sk, list) \
734 hlist_for_each_entry_rcu(__sk, list, sk_node)
735 #define sk_nulls_for_each(__sk, node, list) \
736 hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
737 #define sk_nulls_for_each_rcu(__sk, node, list) \
738 hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
739 #define sk_for_each_from(__sk) \
740 hlist_for_each_entry_from(__sk, sk_node)
741 #define sk_nulls_for_each_from(__sk, node) \
742 if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
743 hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
744 #define sk_for_each_safe(__sk, tmp, list) \
745 hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
746 #define sk_for_each_bound(__sk, list) \
747 hlist_for_each_entry(__sk, list, sk_bind_node)
748
749 /**
750 * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset
751 * @tpos: the type * to use as a loop cursor.
752 * @pos: the &struct hlist_node to use as a loop cursor.
753 * @head: the head for your list.
754 * @offset: offset of hlist_node within the struct.
755 *
756 */
757 #define sk_for_each_entry_offset_rcu(tpos, pos, head, offset) \
758 for (pos = rcu_dereference(hlist_first_rcu(head)); \
759 pos != NULL && \
760 ({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;}); \
761 pos = rcu_dereference(hlist_next_rcu(pos)))
762
763 static inline struct user_namespace *sk_user_ns(struct sock *sk)
764 {
765 /* Careful only use this in a context where these parameters
766 * can not change and must all be valid, such as recvmsg from
767 * userspace.
768 */
769 return sk->sk_socket->file->f_cred->user_ns;
770 }
771
772 /* Sock flags */
773 enum sock_flags {
774 SOCK_DEAD,
775 SOCK_DONE,
776 SOCK_URGINLINE,
777 SOCK_KEEPOPEN,
778 SOCK_LINGER,
779 SOCK_DESTROY,
780 SOCK_BROADCAST,
781 SOCK_TIMESTAMP,
782 SOCK_ZAPPED,
783 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
784 SOCK_DBG, /* %SO_DEBUG setting */
785 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
786 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
787 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
788 SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
789 SOCK_MEMALLOC, /* VM depends on this socket for swapping */
790 SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */
791 SOCK_FASYNC, /* fasync() active */
792 SOCK_RXQ_OVFL,
793 SOCK_ZEROCOPY, /* buffers from userspace */
794 SOCK_WIFI_STATUS, /* push wifi status to userspace */
795 SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
796 * Will use last 4 bytes of packet sent from
797 * user-space instead.
798 */
799 SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
800 SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
801 SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */
802 SOCK_TXTIME,
803 SOCK_XDP, /* XDP is attached */
804 };
805
806 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
807
808 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
809 {
810 nsk->sk_flags = osk->sk_flags;
811 }
812
813 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
814 {
815 __set_bit(flag, &sk->sk_flags);
816 }
817
818 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
819 {
820 __clear_bit(flag, &sk->sk_flags);
821 }
822
823 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
824 {
825 return test_bit(flag, &sk->sk_flags);
826 }
827
828 #ifdef CONFIG_NET
829 DECLARE_STATIC_KEY_FALSE(memalloc_socks_key);
830 static inline int sk_memalloc_socks(void)
831 {
832 return static_branch_unlikely(&memalloc_socks_key);
833 }
834 #else
835
836 static inline int sk_memalloc_socks(void)
837 {
838 return 0;
839 }
840
841 #endif
842
843 static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask)
844 {
845 return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC);
846 }
847
848 static inline void sk_acceptq_removed(struct sock *sk)
849 {
850 sk->sk_ack_backlog--;
851 }
852
853 static inline void sk_acceptq_added(struct sock *sk)
854 {
855 sk->sk_ack_backlog++;
856 }
857
858 static inline bool sk_acceptq_is_full(const struct sock *sk)
859 {
860 return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
861 }
862
863 /*
864 * Compute minimal free write space needed to queue new packets.
865 */
866 static inline int sk_stream_min_wspace(const struct sock *sk)
867 {
868 return sk->sk_wmem_queued >> 1;
869 }
870
871 static inline int sk_stream_wspace(const struct sock *sk)
872 {
873 return sk->sk_sndbuf - sk->sk_wmem_queued;
874 }
875
876 void sk_stream_write_space(struct sock *sk);
877
878 /* OOB backlog add */
879 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
880 {
881 /* dont let skb dst not refcounted, we are going to leave rcu lock */
882 skb_dst_force(skb);
883
884 if (!sk->sk_backlog.tail)
885 sk->sk_backlog.head = skb;
886 else
887 sk->sk_backlog.tail->next = skb;
888
889 sk->sk_backlog.tail = skb;
890 skb->next = NULL;
891 }
892
893 /*
894 * Take into account size of receive queue and backlog queue
895 * Do not take into account this skb truesize,
896 * to allow even a single big packet to come.
897 */
898 static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
899 {
900 unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
901
902 return qsize > limit;
903 }
904
905 /* The per-socket spinlock must be held here. */
906 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
907 unsigned int limit)
908 {
909 if (sk_rcvqueues_full(sk, limit))
910 return -ENOBUFS;
911
912 /*
913 * If the skb was allocated from pfmemalloc reserves, only
914 * allow SOCK_MEMALLOC sockets to use it as this socket is
915 * helping free memory
916 */
917 if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
918 return -ENOMEM;
919
920 __sk_add_backlog(sk, skb);
921 sk->sk_backlog.len += skb->truesize;
922 return 0;
923 }
924
925 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
926
927 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
928 {
929 if (sk_memalloc_socks() && skb_pfmemalloc(skb))
930 return __sk_backlog_rcv(sk, skb);
931
932 return sk->sk_backlog_rcv(sk, skb);
933 }
934
935 static inline void sk_incoming_cpu_update(struct sock *sk)
936 {
937 int cpu = raw_smp_processor_id();
938
939 if (unlikely(sk->sk_incoming_cpu != cpu))
940 sk->sk_incoming_cpu = cpu;
941 }
942
943 static inline void sock_rps_record_flow_hash(__u32 hash)
944 {
945 #ifdef CONFIG_RPS
946 struct rps_sock_flow_table *sock_flow_table;
947
948 rcu_read_lock();
949 sock_flow_table = rcu_dereference(rps_sock_flow_table);
950 rps_record_sock_flow(sock_flow_table, hash);
951 rcu_read_unlock();
952 #endif
953 }
954
955 static inline void sock_rps_record_flow(const struct sock *sk)
956 {
957 #ifdef CONFIG_RPS
958 if (static_key_false(&rfs_needed)) {
959 /* Reading sk->sk_rxhash might incur an expensive cache line
960 * miss.
961 *
962 * TCP_ESTABLISHED does cover almost all states where RFS
963 * might be useful, and is cheaper [1] than testing :
964 * IPv4: inet_sk(sk)->inet_daddr
965 * IPv6: ipv6_addr_any(&sk->sk_v6_daddr)
966 * OR an additional socket flag
967 * [1] : sk_state and sk_prot are in the same cache line.
968 */
969 if (sk->sk_state == TCP_ESTABLISHED)
970 sock_rps_record_flow_hash(sk->sk_rxhash);
971 }
972 #endif
973 }
974
975 static inline void sock_rps_save_rxhash(struct sock *sk,
976 const struct sk_buff *skb)
977 {
978 #ifdef CONFIG_RPS
979 if (unlikely(sk->sk_rxhash != skb->hash))
980 sk->sk_rxhash = skb->hash;
981 #endif
982 }
983
984 static inline void sock_rps_reset_rxhash(struct sock *sk)
985 {
986 #ifdef CONFIG_RPS
987 sk->sk_rxhash = 0;
988 #endif
989 }
990
991 #define sk_wait_event(__sk, __timeo, __condition, __wait) \
992 ({ int __rc; \
993 release_sock(__sk); \
994 __rc = __condition; \
995 if (!__rc) { \
996 *(__timeo) = wait_woken(__wait, \
997 TASK_INTERRUPTIBLE, \
998 *(__timeo)); \
999 } \
1000 sched_annotate_sleep(); \
1001 lock_sock(__sk); \
1002 __rc = __condition; \
1003 __rc; \
1004 })
1005
1006 int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
1007 int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
1008 void sk_stream_wait_close(struct sock *sk, long timeo_p);
1009 int sk_stream_error(struct sock *sk, int flags, int err);
1010 void sk_stream_kill_queues(struct sock *sk);
1011 void sk_set_memalloc(struct sock *sk);
1012 void sk_clear_memalloc(struct sock *sk);
1013
1014 void __sk_flush_backlog(struct sock *sk);
1015
1016 static inline bool sk_flush_backlog(struct sock *sk)
1017 {
1018 if (unlikely(READ_ONCE(sk->sk_backlog.tail))) {
1019 __sk_flush_backlog(sk);
1020 return true;
1021 }
1022 return false;
1023 }
1024
1025 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb);
1026
1027 struct request_sock_ops;
1028 struct timewait_sock_ops;
1029 struct inet_hashinfo;
1030 struct raw_hashinfo;
1031 struct smc_hashinfo;
1032 struct module;
1033
1034 /*
1035 * caches using SLAB_TYPESAFE_BY_RCU should let .next pointer from nulls nodes
1036 * un-modified. Special care is taken when initializing object to zero.
1037 */
1038 static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1039 {
1040 if (offsetof(struct sock, sk_node.next) != 0)
1041 memset(sk, 0, offsetof(struct sock, sk_node.next));
1042 memset(&sk->sk_node.pprev, 0,
1043 size - offsetof(struct sock, sk_node.pprev));
1044 }
1045
1046 /* Networking protocol blocks we attach to sockets.
1047 * socket layer -> transport layer interface
1048 */
1049 struct proto {
1050 void (*close)(struct sock *sk,
1051 long timeout);
1052 int (*pre_connect)(struct sock *sk,
1053 struct sockaddr *uaddr,
1054 int addr_len);
1055 int (*connect)(struct sock *sk,
1056 struct sockaddr *uaddr,
1057 int addr_len);
1058 int (*disconnect)(struct sock *sk, int flags);
1059
1060 struct sock * (*accept)(struct sock *sk, int flags, int *err,
1061 bool kern);
1062
1063 int (*ioctl)(struct sock *sk, int cmd,
1064 unsigned long arg);
1065 int (*init)(struct sock *sk);
1066 void (*destroy)(struct sock *sk);
1067 void (*shutdown)(struct sock *sk, int how);
1068 int (*setsockopt)(struct sock *sk, int level,
1069 int optname, char __user *optval,
1070 unsigned int optlen);
1071 int (*getsockopt)(struct sock *sk, int level,
1072 int optname, char __user *optval,
1073 int __user *option);
1074 void (*keepalive)(struct sock *sk, int valbool);
1075 #ifdef CONFIG_COMPAT
1076 int (*compat_setsockopt)(struct sock *sk,
1077 int level,
1078 int optname, char __user *optval,
1079 unsigned int optlen);
1080 int (*compat_getsockopt)(struct sock *sk,
1081 int level,
1082 int optname, char __user *optval,
1083 int __user *option);
1084 int (*compat_ioctl)(struct sock *sk,
1085 unsigned int cmd, unsigned long arg);
1086 #endif
1087 int (*sendmsg)(struct sock *sk, struct msghdr *msg,
1088 size_t len);
1089 int (*recvmsg)(struct sock *sk, struct msghdr *msg,
1090 size_t len, int noblock, int flags,
1091 int *addr_len);
1092 int (*sendpage)(struct sock *sk, struct page *page,
1093 int offset, size_t size, int flags);
1094 int (*bind)(struct sock *sk,
1095 struct sockaddr *uaddr, int addr_len);
1096
1097 int (*backlog_rcv) (struct sock *sk,
1098 struct sk_buff *skb);
1099
1100 void (*release_cb)(struct sock *sk);
1101
1102 /* Keeping track of sk's, looking them up, and port selection methods. */
1103 int (*hash)(struct sock *sk);
1104 void (*unhash)(struct sock *sk);
1105 void (*rehash)(struct sock *sk);
1106 int (*get_port)(struct sock *sk, unsigned short snum);
1107
1108 /* Keeping track of sockets in use */
1109 #ifdef CONFIG_PROC_FS
1110 unsigned int inuse_idx;
1111 #endif
1112
1113 bool (*stream_memory_free)(const struct sock *sk);
1114 bool (*stream_memory_read)(const struct sock *sk);
1115 /* Memory pressure */
1116 void (*enter_memory_pressure)(struct sock *sk);
1117 void (*leave_memory_pressure)(struct sock *sk);
1118 atomic_long_t *memory_allocated; /* Current allocated memory. */
1119 struct percpu_counter *sockets_allocated; /* Current number of sockets. */
1120 /*
1121 * Pressure flag: try to collapse.
1122 * Technical note: it is used by multiple contexts non atomically.
1123 * All the __sk_mem_schedule() is of this nature: accounting
1124 * is strict, actions are advisory and have some latency.
1125 */
1126 unsigned long *memory_pressure;
1127 long *sysctl_mem;
1128
1129 int *sysctl_wmem;
1130 int *sysctl_rmem;
1131 u32 sysctl_wmem_offset;
1132 u32 sysctl_rmem_offset;
1133
1134 int max_header;
1135 bool no_autobind;
1136
1137 struct kmem_cache *slab;
1138 unsigned int obj_size;
1139 slab_flags_t slab_flags;
1140 unsigned int useroffset; /* Usercopy region offset */
1141 unsigned int usersize; /* Usercopy region size */
1142
1143 struct percpu_counter *orphan_count;
1144
1145 struct request_sock_ops *rsk_prot;
1146 struct timewait_sock_ops *twsk_prot;
1147
1148 union {
1149 struct inet_hashinfo *hashinfo;
1150 struct udp_table *udp_table;
1151 struct raw_hashinfo *raw_hash;
1152 struct smc_hashinfo *smc_hash;
1153 } h;
1154
1155 struct module *owner;
1156
1157 char name[32];
1158
1159 struct list_head node;
1160 #ifdef SOCK_REFCNT_DEBUG
1161 atomic_t socks;
1162 #endif
1163 int (*diag_destroy)(struct sock *sk, int err);
1164 } __randomize_layout;
1165
1166 int proto_register(struct proto *prot, int alloc_slab);
1167 void proto_unregister(struct proto *prot);
1168 int sock_load_diag_module(int family, int protocol);
1169
1170 #ifdef SOCK_REFCNT_DEBUG
1171 static inline void sk_refcnt_debug_inc(struct sock *sk)
1172 {
1173 atomic_inc(&sk->sk_prot->socks);
1174 }
1175
1176 static inline void sk_refcnt_debug_dec(struct sock *sk)
1177 {
1178 atomic_dec(&sk->sk_prot->socks);
1179 printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1180 sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1181 }
1182
1183 static inline void sk_refcnt_debug_release(const struct sock *sk)
1184 {
1185 if (refcount_read(&sk->sk_refcnt) != 1)
1186 printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1187 sk->sk_prot->name, sk, refcount_read(&sk->sk_refcnt));
1188 }
1189 #else /* SOCK_REFCNT_DEBUG */
1190 #define sk_refcnt_debug_inc(sk) do { } while (0)
1191 #define sk_refcnt_debug_dec(sk) do { } while (0)
1192 #define sk_refcnt_debug_release(sk) do { } while (0)
1193 #endif /* SOCK_REFCNT_DEBUG */
1194
1195 static inline bool sk_stream_memory_free(const struct sock *sk)
1196 {
1197 if (sk->sk_wmem_queued >= sk->sk_sndbuf)
1198 return false;
1199
1200 return sk->sk_prot->stream_memory_free ?
1201 sk->sk_prot->stream_memory_free(sk) : true;
1202 }
1203
1204 static inline bool sk_stream_is_writeable(const struct sock *sk)
1205 {
1206 return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1207 sk_stream_memory_free(sk);
1208 }
1209
1210 static inline int sk_under_cgroup_hierarchy(struct sock *sk,
1211 struct cgroup *ancestor)
1212 {
1213 #ifdef CONFIG_SOCK_CGROUP_DATA
1214 return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data),
1215 ancestor);
1216 #else
1217 return -ENOTSUPP;
1218 #endif
1219 }
1220
1221 static inline bool sk_has_memory_pressure(const struct sock *sk)
1222 {
1223 return sk->sk_prot->memory_pressure != NULL;
1224 }
1225
1226 static inline bool sk_under_memory_pressure(const struct sock *sk)
1227 {
1228 if (!sk->sk_prot->memory_pressure)
1229 return false;
1230
1231 if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
1232 mem_cgroup_under_socket_pressure(sk->sk_memcg))
1233 return true;
1234
1235 return !!*sk->sk_prot->memory_pressure;
1236 }
1237
1238 static inline long
1239 sk_memory_allocated(const struct sock *sk)
1240 {
1241 return atomic_long_read(sk->sk_prot->memory_allocated);
1242 }
1243
1244 static inline long
1245 sk_memory_allocated_add(struct sock *sk, int amt)
1246 {
1247 return atomic_long_add_return(amt, sk->sk_prot->memory_allocated);
1248 }
1249
1250 static inline void
1251 sk_memory_allocated_sub(struct sock *sk, int amt)
1252 {
1253 atomic_long_sub(amt, sk->sk_prot->memory_allocated);
1254 }
1255
1256 static inline void sk_sockets_allocated_dec(struct sock *sk)
1257 {
1258 percpu_counter_dec(sk->sk_prot->sockets_allocated);
1259 }
1260
1261 static inline void sk_sockets_allocated_inc(struct sock *sk)
1262 {
1263 percpu_counter_inc(sk->sk_prot->sockets_allocated);
1264 }
1265
1266 static inline int
1267 sk_sockets_allocated_read_positive(struct sock *sk)
1268 {
1269 return percpu_counter_read_positive(sk->sk_prot->sockets_allocated);
1270 }
1271
1272 static inline int
1273 proto_sockets_allocated_sum_positive(struct proto *prot)
1274 {
1275 return percpu_counter_sum_positive(prot->sockets_allocated);
1276 }
1277
1278 static inline long
1279 proto_memory_allocated(struct proto *prot)
1280 {
1281 return atomic_long_read(prot->memory_allocated);
1282 }
1283
1284 static inline bool
1285 proto_memory_pressure(struct proto *prot)
1286 {
1287 if (!prot->memory_pressure)
1288 return false;
1289 return !!*prot->memory_pressure;
1290 }
1291
1292
1293 #ifdef CONFIG_PROC_FS
1294 /* Called with local bh disabled */
1295 void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
1296 int sock_prot_inuse_get(struct net *net, struct proto *proto);
1297 int sock_inuse_get(struct net *net);
1298 #else
1299 static inline void sock_prot_inuse_add(struct net *net, struct proto *prot,
1300 int inc)
1301 {
1302 }
1303 #endif
1304
1305
1306 /* With per-bucket locks this operation is not-atomic, so that
1307 * this version is not worse.
1308 */
1309 static inline int __sk_prot_rehash(struct sock *sk)
1310 {
1311 sk->sk_prot->unhash(sk);
1312 return sk->sk_prot->hash(sk);
1313 }
1314
1315 /* About 10 seconds */
1316 #define SOCK_DESTROY_TIME (10*HZ)
1317
1318 /* Sockets 0-1023 can't be bound to unless you are superuser */
1319 #define PROT_SOCK 1024
1320
1321 #define SHUTDOWN_MASK 3
1322 #define RCV_SHUTDOWN 1
1323 #define SEND_SHUTDOWN 2
1324
1325 #define SOCK_SNDBUF_LOCK 1
1326 #define SOCK_RCVBUF_LOCK 2
1327 #define SOCK_BINDADDR_LOCK 4
1328 #define SOCK_BINDPORT_LOCK 8
1329
1330 struct socket_alloc {
1331 struct socket socket;
1332 struct inode vfs_inode;
1333 };
1334
1335 static inline struct socket *SOCKET_I(struct inode *inode)
1336 {
1337 return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1338 }
1339
1340 static inline struct inode *SOCK_INODE(struct socket *socket)
1341 {
1342 return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1343 }
1344
1345 /*
1346 * Functions for memory accounting
1347 */
1348 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind);
1349 int __sk_mem_schedule(struct sock *sk, int size, int kind);
1350 void __sk_mem_reduce_allocated(struct sock *sk, int amount);
1351 void __sk_mem_reclaim(struct sock *sk, int amount);
1352
1353 /* We used to have PAGE_SIZE here, but systems with 64KB pages
1354 * do not necessarily have 16x time more memory than 4KB ones.
1355 */
1356 #define SK_MEM_QUANTUM 4096
1357 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1358 #define SK_MEM_SEND 0
1359 #define SK_MEM_RECV 1
1360
1361 /* sysctl_mem values are in pages, we convert them in SK_MEM_QUANTUM units */
1362 static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1363 {
1364 long val = sk->sk_prot->sysctl_mem[index];
1365
1366 #if PAGE_SIZE > SK_MEM_QUANTUM
1367 val <<= PAGE_SHIFT - SK_MEM_QUANTUM_SHIFT;
1368 #elif PAGE_SIZE < SK_MEM_QUANTUM
1369 val >>= SK_MEM_QUANTUM_SHIFT - PAGE_SHIFT;
1370 #endif
1371 return val;
1372 }
1373
1374 static inline int sk_mem_pages(int amt)
1375 {
1376 return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1377 }
1378
1379 static inline bool sk_has_account(struct sock *sk)
1380 {
1381 /* return true if protocol supports memory accounting */
1382 return !!sk->sk_prot->memory_allocated;
1383 }
1384
1385 static inline bool sk_wmem_schedule(struct sock *sk, int size)
1386 {
1387 if (!sk_has_account(sk))
1388 return true;
1389 return size <= sk->sk_forward_alloc ||
1390 __sk_mem_schedule(sk, size, SK_MEM_SEND);
1391 }
1392
1393 static inline bool
1394 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1395 {
1396 if (!sk_has_account(sk))
1397 return true;
1398 return size<= sk->sk_forward_alloc ||
1399 __sk_mem_schedule(sk, size, SK_MEM_RECV) ||
1400 skb_pfmemalloc(skb);
1401 }
1402
1403 static inline void sk_mem_reclaim(struct sock *sk)
1404 {
1405 if (!sk_has_account(sk))
1406 return;
1407 if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
1408 __sk_mem_reclaim(sk, sk->sk_forward_alloc);
1409 }
1410
1411 static inline void sk_mem_reclaim_partial(struct sock *sk)
1412 {
1413 if (!sk_has_account(sk))
1414 return;
1415 if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
1416 __sk_mem_reclaim(sk, sk->sk_forward_alloc - 1);
1417 }
1418
1419 static inline void sk_mem_charge(struct sock *sk, int size)
1420 {
1421 if (!sk_has_account(sk))
1422 return;
1423 sk->sk_forward_alloc -= size;
1424 }
1425
1426 static inline void sk_mem_uncharge(struct sock *sk, int size)
1427 {
1428 if (!sk_has_account(sk))
1429 return;
1430 sk->sk_forward_alloc += size;
1431
1432 /* Avoid a possible overflow.
1433 * TCP send queues can make this happen, if sk_mem_reclaim()
1434 * is not called and more than 2 GBytes are released at once.
1435 *
1436 * If we reach 2 MBytes, reclaim 1 MBytes right now, there is
1437 * no need to hold that much forward allocation anyway.
1438 */
1439 if (unlikely(sk->sk_forward_alloc >= 1 << 21))
1440 __sk_mem_reclaim(sk, 1 << 20);
1441 }
1442
1443 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1444 {
1445 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1446 sk->sk_wmem_queued -= skb->truesize;
1447 sk_mem_uncharge(sk, skb->truesize);
1448 __kfree_skb(skb);
1449 }
1450
1451 static inline void sock_release_ownership(struct sock *sk)
1452 {
1453 if (sk->sk_lock.owned) {
1454 sk->sk_lock.owned = 0;
1455
1456 /* The sk_lock has mutex_unlock() semantics: */
1457 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
1458 }
1459 }
1460
1461 /*
1462 * Macro so as to not evaluate some arguments when
1463 * lockdep is not enabled.
1464 *
1465 * Mark both the sk_lock and the sk_lock.slock as a
1466 * per-address-family lock class.
1467 */
1468 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) \
1469 do { \
1470 sk->sk_lock.owned = 0; \
1471 init_waitqueue_head(&sk->sk_lock.wq); \
1472 spin_lock_init(&(sk)->sk_lock.slock); \
1473 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \
1474 sizeof((sk)->sk_lock)); \
1475 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \
1476 (skey), (sname)); \
1477 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \
1478 } while (0)
1479
1480 #ifdef CONFIG_LOCKDEP
1481 static inline bool lockdep_sock_is_held(const struct sock *sk)
1482 {
1483 return lockdep_is_held(&sk->sk_lock) ||
1484 lockdep_is_held(&sk->sk_lock.slock);
1485 }
1486 #endif
1487
1488 void lock_sock_nested(struct sock *sk, int subclass);
1489
1490 static inline void lock_sock(struct sock *sk)
1491 {
1492 lock_sock_nested(sk, 0);
1493 }
1494
1495 void __release_sock(struct sock *sk);
1496 void release_sock(struct sock *sk);
1497
1498 /* BH context may only use the following locking interface. */
1499 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock))
1500 #define bh_lock_sock_nested(__sk) \
1501 spin_lock_nested(&((__sk)->sk_lock.slock), \
1502 SINGLE_DEPTH_NESTING)
1503 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock))
1504
1505 bool lock_sock_fast(struct sock *sk);
1506 /**
1507 * unlock_sock_fast - complement of lock_sock_fast
1508 * @sk: socket
1509 * @slow: slow mode
1510 *
1511 * fast unlock socket for user context.
1512 * If slow mode is on, we call regular release_sock()
1513 */
1514 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1515 {
1516 if (slow)
1517 release_sock(sk);
1518 else
1519 spin_unlock_bh(&sk->sk_lock.slock);
1520 }
1521
1522 /* Used by processes to "lock" a socket state, so that
1523 * interrupts and bottom half handlers won't change it
1524 * from under us. It essentially blocks any incoming
1525 * packets, so that we won't get any new data or any
1526 * packets that change the state of the socket.
1527 *
1528 * While locked, BH processing will add new packets to
1529 * the backlog queue. This queue is processed by the
1530 * owner of the socket lock right before it is released.
1531 *
1532 * Since ~2.3.5 it is also exclusive sleep lock serializing
1533 * accesses from user process context.
1534 */
1535
1536 static inline void sock_owned_by_me(const struct sock *sk)
1537 {
1538 #ifdef CONFIG_LOCKDEP
1539 WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks);
1540 #endif
1541 }
1542
1543 static inline bool sock_owned_by_user(const struct sock *sk)
1544 {
1545 sock_owned_by_me(sk);
1546 return sk->sk_lock.owned;
1547 }
1548
1549 static inline bool sock_owned_by_user_nocheck(const struct sock *sk)
1550 {
1551 return sk->sk_lock.owned;
1552 }
1553
1554 /* no reclassification while locks are held */
1555 static inline bool sock_allow_reclassification(const struct sock *csk)
1556 {
1557 struct sock *sk = (struct sock *)csk;
1558
1559 return !sk->sk_lock.owned && !spin_is_locked(&sk->sk_lock.slock);
1560 }
1561
1562 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1563 struct proto *prot, int kern);
1564 void sk_free(struct sock *sk);
1565 void sk_destruct(struct sock *sk);
1566 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1567 void sk_free_unlock_clone(struct sock *sk);
1568
1569 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1570 gfp_t priority);
1571 void __sock_wfree(struct sk_buff *skb);
1572 void sock_wfree(struct sk_buff *skb);
1573 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
1574 gfp_t priority);
1575 void skb_orphan_partial(struct sk_buff *skb);
1576 void sock_rfree(struct sk_buff *skb);
1577 void sock_efree(struct sk_buff *skb);
1578 #ifdef CONFIG_INET
1579 void sock_edemux(struct sk_buff *skb);
1580 #else
1581 #define sock_edemux sock_efree
1582 #endif
1583
1584 int sock_setsockopt(struct socket *sock, int level, int op,
1585 char __user *optval, unsigned int optlen);
1586
1587 int sock_getsockopt(struct socket *sock, int level, int op,
1588 char __user *optval, int __user *optlen);
1589 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1590 int noblock, int *errcode);
1591 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1592 unsigned long data_len, int noblock,
1593 int *errcode, int max_page_order);
1594 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1595 void sock_kfree_s(struct sock *sk, void *mem, int size);
1596 void sock_kzfree_s(struct sock *sk, void *mem, int size);
1597 void sk_send_sigurg(struct sock *sk);
1598
1599 struct sockcm_cookie {
1600 u64 transmit_time;
1601 u32 mark;
1602 u16 tsflags;
1603 };
1604
1605 static inline void sockcm_init(struct sockcm_cookie *sockc,
1606 const struct sock *sk)
1607 {
1608 *sockc = (struct sockcm_cookie) { .tsflags = sk->sk_tsflags };
1609 }
1610
1611 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
1612 struct sockcm_cookie *sockc);
1613 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1614 struct sockcm_cookie *sockc);
1615
1616 /*
1617 * Functions to fill in entries in struct proto_ops when a protocol
1618 * does not implement a particular function.
1619 */
1620 int sock_no_bind(struct socket *, struct sockaddr *, int);
1621 int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1622 int sock_no_socketpair(struct socket *, struct socket *);
1623 int sock_no_accept(struct socket *, struct socket *, int, bool);
1624 int sock_no_getname(struct socket *, struct sockaddr *, int);
1625 int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1626 int sock_no_listen(struct socket *, int);
1627 int sock_no_shutdown(struct socket *, int);
1628 int sock_no_getsockopt(struct socket *, int , int, char __user *, int __user *);
1629 int sock_no_setsockopt(struct socket *, int, int, char __user *, unsigned int);
1630 int sock_no_sendmsg(struct socket *, struct msghdr *, size_t);
1631 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t len);
1632 int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int);
1633 int sock_no_mmap(struct file *file, struct socket *sock,
1634 struct vm_area_struct *vma);
1635 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset,
1636 size_t size, int flags);
1637 ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page,
1638 int offset, size_t size, int flags);
1639
1640 /*
1641 * Functions to fill in entries in struct proto_ops when a protocol
1642 * uses the inet style.
1643 */
1644 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1645 char __user *optval, int __user *optlen);
1646 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1647 int flags);
1648 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1649 char __user *optval, unsigned int optlen);
1650 int compat_sock_common_getsockopt(struct socket *sock, int level,
1651 int optname, char __user *optval, int __user *optlen);
1652 int compat_sock_common_setsockopt(struct socket *sock, int level,
1653 int optname, char __user *optval, unsigned int optlen);
1654
1655 void sk_common_release(struct sock *sk);
1656
1657 /*
1658 * Default socket callbacks and setup code
1659 */
1660
1661 /* Initialise core socket variables */
1662 void sock_init_data(struct socket *sock, struct sock *sk);
1663
1664 /*
1665 * Socket reference counting postulates.
1666 *
1667 * * Each user of socket SHOULD hold a reference count.
1668 * * Each access point to socket (an hash table bucket, reference from a list,
1669 * running timer, skb in flight MUST hold a reference count.
1670 * * When reference count hits 0, it means it will never increase back.
1671 * * When reference count hits 0, it means that no references from
1672 * outside exist to this socket and current process on current CPU
1673 * is last user and may/should destroy this socket.
1674 * * sk_free is called from any context: process, BH, IRQ. When
1675 * it is called, socket has no references from outside -> sk_free
1676 * may release descendant resources allocated by the socket, but
1677 * to the time when it is called, socket is NOT referenced by any
1678 * hash tables, lists etc.
1679 * * Packets, delivered from outside (from network or from another process)
1680 * and enqueued on receive/error queues SHOULD NOT grab reference count,
1681 * when they sit in queue. Otherwise, packets will leak to hole, when
1682 * socket is looked up by one cpu and unhasing is made by another CPU.
1683 * It is true for udp/raw, netlink (leak to receive and error queues), tcp
1684 * (leak to backlog). Packet socket does all the processing inside
1685 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1686 * use separate SMP lock, so that they are prone too.
1687 */
1688
1689 /* Ungrab socket and destroy it, if it was the last reference. */
1690 static inline void sock_put(struct sock *sk)
1691 {
1692 if (refcount_dec_and_test(&sk->sk_refcnt))
1693 sk_free(sk);
1694 }
1695 /* Generic version of sock_put(), dealing with all sockets
1696 * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...)
1697 */
1698 void sock_gen_put(struct sock *sk);
1699
1700 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested,
1701 unsigned int trim_cap, bool refcounted);
1702 static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1703 const int nested)
1704 {
1705 return __sk_receive_skb(sk, skb, nested, 1, true);
1706 }
1707
1708 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1709 {
1710 /* sk_tx_queue_mapping accept only upto a 16-bit value */
1711 if (WARN_ON_ONCE((unsigned short)tx_queue >= USHRT_MAX))
1712 return;
1713 sk->sk_tx_queue_mapping = tx_queue;
1714 }
1715
1716 #define NO_QUEUE_MAPPING USHRT_MAX
1717
1718 static inline void sk_tx_queue_clear(struct sock *sk)
1719 {
1720 sk->sk_tx_queue_mapping = NO_QUEUE_MAPPING;
1721 }
1722
1723 static inline int sk_tx_queue_get(const struct sock *sk)
1724 {
1725 if (sk && sk->sk_tx_queue_mapping != NO_QUEUE_MAPPING)
1726 return sk->sk_tx_queue_mapping;
1727
1728 return -1;
1729 }
1730
1731 static inline void sk_rx_queue_set(struct sock *sk, const struct sk_buff *skb)
1732 {
1733 #ifdef CONFIG_XPS
1734 if (skb_rx_queue_recorded(skb)) {
1735 u16 rx_queue = skb_get_rx_queue(skb);
1736
1737 if (WARN_ON_ONCE(rx_queue == NO_QUEUE_MAPPING))
1738 return;
1739
1740 sk->sk_rx_queue_mapping = rx_queue;
1741 }
1742 #endif
1743 }
1744
1745 static inline void sk_rx_queue_clear(struct sock *sk)
1746 {
1747 #ifdef CONFIG_XPS
1748 sk->sk_rx_queue_mapping = NO_QUEUE_MAPPING;
1749 #endif
1750 }
1751
1752 #ifdef CONFIG_XPS
1753 static inline int sk_rx_queue_get(const struct sock *sk)
1754 {
1755 if (sk && sk->sk_rx_queue_mapping != NO_QUEUE_MAPPING)
1756 return sk->sk_rx_queue_mapping;
1757
1758 return -1;
1759 }
1760 #endif
1761
1762 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1763 {
1764 sk_tx_queue_clear(sk);
1765 sk->sk_socket = sock;
1766 }
1767
1768 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1769 {
1770 BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1771 return &rcu_dereference_raw(sk->sk_wq)->wait;
1772 }
1773 /* Detach socket from process context.
1774 * Announce socket dead, detach it from wait queue and inode.
1775 * Note that parent inode held reference count on this struct sock,
1776 * we do not release it in this function, because protocol
1777 * probably wants some additional cleanups or even continuing
1778 * to work with this socket (TCP).
1779 */
1780 static inline void sock_orphan(struct sock *sk)
1781 {
1782 write_lock_bh(&sk->sk_callback_lock);
1783 sock_set_flag(sk, SOCK_DEAD);
1784 sk_set_socket(sk, NULL);
1785 sk->sk_wq = NULL;
1786 write_unlock_bh(&sk->sk_callback_lock);
1787 }
1788
1789 static inline void sock_graft(struct sock *sk, struct socket *parent)
1790 {
1791 WARN_ON(parent->sk);
1792 write_lock_bh(&sk->sk_callback_lock);
1793 rcu_assign_pointer(sk->sk_wq, parent->wq);
1794 parent->sk = sk;
1795 sk_set_socket(sk, parent);
1796 sk->sk_uid = SOCK_INODE(parent)->i_uid;
1797 security_sock_graft(sk, parent);
1798 write_unlock_bh(&sk->sk_callback_lock);
1799 }
1800
1801 kuid_t sock_i_uid(struct sock *sk);
1802 unsigned long sock_i_ino(struct sock *sk);
1803
1804 static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk)
1805 {
1806 return sk ? sk->sk_uid : make_kuid(net->user_ns, 0);
1807 }
1808
1809 static inline u32 net_tx_rndhash(void)
1810 {
1811 u32 v = prandom_u32();
1812
1813 return v ?: 1;
1814 }
1815
1816 static inline void sk_set_txhash(struct sock *sk)
1817 {
1818 sk->sk_txhash = net_tx_rndhash();
1819 }
1820
1821 static inline void sk_rethink_txhash(struct sock *sk)
1822 {
1823 if (sk->sk_txhash)
1824 sk_set_txhash(sk);
1825 }
1826
1827 static inline struct dst_entry *
1828 __sk_dst_get(struct sock *sk)
1829 {
1830 return rcu_dereference_check(sk->sk_dst_cache,
1831 lockdep_sock_is_held(sk));
1832 }
1833
1834 static inline struct dst_entry *
1835 sk_dst_get(struct sock *sk)
1836 {
1837 struct dst_entry *dst;
1838
1839 rcu_read_lock();
1840 dst = rcu_dereference(sk->sk_dst_cache);
1841 if (dst && !atomic_inc_not_zero(&dst->__refcnt))
1842 dst = NULL;
1843 rcu_read_unlock();
1844 return dst;
1845 }
1846
1847 static inline void dst_negative_advice(struct sock *sk)
1848 {
1849 struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1850
1851 sk_rethink_txhash(sk);
1852
1853 if (dst && dst->ops->negative_advice) {
1854 ndst = dst->ops->negative_advice(dst);
1855
1856 if (ndst != dst) {
1857 rcu_assign_pointer(sk->sk_dst_cache, ndst);
1858 sk_tx_queue_clear(sk);
1859 sk->sk_dst_pending_confirm = 0;
1860 }
1861 }
1862 }
1863
1864 static inline void
1865 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
1866 {
1867 struct dst_entry *old_dst;
1868
1869 sk_tx_queue_clear(sk);
1870 sk->sk_dst_pending_confirm = 0;
1871 old_dst = rcu_dereference_protected(sk->sk_dst_cache,
1872 lockdep_sock_is_held(sk));
1873 rcu_assign_pointer(sk->sk_dst_cache, dst);
1874 dst_release(old_dst);
1875 }
1876
1877 static inline void
1878 sk_dst_set(struct sock *sk, struct dst_entry *dst)
1879 {
1880 struct dst_entry *old_dst;
1881
1882 sk_tx_queue_clear(sk);
1883 sk->sk_dst_pending_confirm = 0;
1884 old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst);
1885 dst_release(old_dst);
1886 }
1887
1888 static inline void
1889 __sk_dst_reset(struct sock *sk)
1890 {
1891 __sk_dst_set(sk, NULL);
1892 }
1893
1894 static inline void
1895 sk_dst_reset(struct sock *sk)
1896 {
1897 sk_dst_set(sk, NULL);
1898 }
1899
1900 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1901
1902 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1903
1904 static inline void sk_dst_confirm(struct sock *sk)
1905 {
1906 if (!sk->sk_dst_pending_confirm)
1907 sk->sk_dst_pending_confirm = 1;
1908 }
1909
1910 static inline void sock_confirm_neigh(struct sk_buff *skb, struct neighbour *n)
1911 {
1912 if (skb_get_dst_pending_confirm(skb)) {
1913 struct sock *sk = skb->sk;
1914 unsigned long now = jiffies;
1915
1916 /* avoid dirtying neighbour */
1917 if (n->confirmed != now)
1918 n->confirmed = now;
1919 if (sk && sk->sk_dst_pending_confirm)
1920 sk->sk_dst_pending_confirm = 0;
1921 }
1922 }
1923
1924 bool sk_mc_loop(struct sock *sk);
1925
1926 static inline bool sk_can_gso(const struct sock *sk)
1927 {
1928 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1929 }
1930
1931 void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
1932
1933 static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
1934 {
1935 sk->sk_route_nocaps |= flags;
1936 sk->sk_route_caps &= ~flags;
1937 }
1938
1939 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
1940 struct iov_iter *from, char *to,
1941 int copy, int offset)
1942 {
1943 if (skb->ip_summed == CHECKSUM_NONE) {
1944 __wsum csum = 0;
1945 if (!csum_and_copy_from_iter_full(to, copy, &csum, from))
1946 return -EFAULT;
1947 skb->csum = csum_block_add(skb->csum, csum, offset);
1948 } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1949 if (!copy_from_iter_full_nocache(to, copy, from))
1950 return -EFAULT;
1951 } else if (!copy_from_iter_full(to, copy, from))
1952 return -EFAULT;
1953
1954 return 0;
1955 }
1956
1957 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
1958 struct iov_iter *from, int copy)
1959 {
1960 int err, offset = skb->len;
1961
1962 err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
1963 copy, offset);
1964 if (err)
1965 __skb_trim(skb, offset);
1966
1967 return err;
1968 }
1969
1970 static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from,
1971 struct sk_buff *skb,
1972 struct page *page,
1973 int off, int copy)
1974 {
1975 int err;
1976
1977 err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
1978 copy, skb->len);
1979 if (err)
1980 return err;
1981
1982 skb->len += copy;
1983 skb->data_len += copy;
1984 skb->truesize += copy;
1985 sk->sk_wmem_queued += copy;
1986 sk_mem_charge(sk, copy);
1987 return 0;
1988 }
1989
1990 /**
1991 * sk_wmem_alloc_get - returns write allocations
1992 * @sk: socket
1993 *
1994 * Returns sk_wmem_alloc minus initial offset of one
1995 */
1996 static inline int sk_wmem_alloc_get(const struct sock *sk)
1997 {
1998 return refcount_read(&sk->sk_wmem_alloc) - 1;
1999 }
2000
2001 /**
2002 * sk_rmem_alloc_get - returns read allocations
2003 * @sk: socket
2004 *
2005 * Returns sk_rmem_alloc
2006 */
2007 static inline int sk_rmem_alloc_get(const struct sock *sk)
2008 {
2009 return atomic_read(&sk->sk_rmem_alloc);
2010 }
2011
2012 /**
2013 * sk_has_allocations - check if allocations are outstanding
2014 * @sk: socket
2015 *
2016 * Returns true if socket has write or read allocations
2017 */
2018 static inline bool sk_has_allocations(const struct sock *sk)
2019 {
2020 return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
2021 }
2022
2023 /**
2024 * skwq_has_sleeper - check if there are any waiting processes
2025 * @wq: struct socket_wq
2026 *
2027 * Returns true if socket_wq has waiting processes
2028 *
2029 * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory
2030 * barrier call. They were added due to the race found within the tcp code.
2031 *
2032 * Consider following tcp code paths::
2033 *
2034 * CPU1 CPU2
2035 * sys_select receive packet
2036 * ... ...
2037 * __add_wait_queue update tp->rcv_nxt
2038 * ... ...
2039 * tp->rcv_nxt check sock_def_readable
2040 * ... {
2041 * schedule rcu_read_lock();
2042 * wq = rcu_dereference(sk->sk_wq);
2043 * if (wq && waitqueue_active(&wq->wait))
2044 * wake_up_interruptible(&wq->wait)
2045 * ...
2046 * }
2047 *
2048 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
2049 * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1
2050 * could then endup calling schedule and sleep forever if there are no more
2051 * data on the socket.
2052 *
2053 */
2054 static inline bool skwq_has_sleeper(struct socket_wq *wq)
2055 {
2056 return wq && wq_has_sleeper(&wq->wait);
2057 }
2058
2059 /**
2060 * sock_poll_wait - place memory barrier behind the poll_wait call.
2061 * @filp: file
2062 * @p: poll_table
2063 *
2064 * See the comments in the wq_has_sleeper function.
2065 */
2066 static inline void sock_poll_wait(struct file *filp, poll_table *p)
2067 {
2068 struct socket *sock = filp->private_data;
2069
2070 if (!poll_does_not_wait(p)) {
2071 poll_wait(filp, &sock->wq->wait, p);
2072 /* We need to be sure we are in sync with the
2073 * socket flags modification.
2074 *
2075 * This memory barrier is paired in the wq_has_sleeper.
2076 */
2077 smp_mb();
2078 }
2079 }
2080
2081 static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
2082 {
2083 if (sk->sk_txhash) {
2084 skb->l4_hash = 1;
2085 skb->hash = sk->sk_txhash;
2086 }
2087 }
2088
2089 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk);
2090
2091 /*
2092 * Queue a received datagram if it will fit. Stream and sequenced
2093 * protocols can't normally use this as they need to fit buffers in
2094 * and play with them.
2095 *
2096 * Inlined as it's very short and called for pretty much every
2097 * packet ever received.
2098 */
2099 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
2100 {
2101 skb_orphan(skb);
2102 skb->sk = sk;
2103 skb->destructor = sock_rfree;
2104 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
2105 sk_mem_charge(sk, skb->truesize);
2106 }
2107
2108 void sk_reset_timer(struct sock *sk, struct timer_list *timer,
2109 unsigned long expires);
2110
2111 void sk_stop_timer(struct sock *sk, struct timer_list *timer);
2112
2113 int __sk_queue_drop_skb(struct sock *sk, struct sk_buff_head *sk_queue,
2114 struct sk_buff *skb, unsigned int flags,
2115 void (*destructor)(struct sock *sk,
2116 struct sk_buff *skb));
2117 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2118 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2119
2120 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
2121 struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
2122
2123 /*
2124 * Recover an error report and clear atomically
2125 */
2126
2127 static inline int sock_error(struct sock *sk)
2128 {
2129 int err;
2130 if (likely(!sk->sk_err))
2131 return 0;
2132 err = xchg(&sk->sk_err, 0);
2133 return -err;
2134 }
2135
2136 static inline unsigned long sock_wspace(struct sock *sk)
2137 {
2138 int amt = 0;
2139
2140 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2141 amt = sk->sk_sndbuf - refcount_read(&sk->sk_wmem_alloc);
2142 if (amt < 0)
2143 amt = 0;
2144 }
2145 return amt;
2146 }
2147
2148 /* Note:
2149 * We use sk->sk_wq_raw, from contexts knowing this
2150 * pointer is not NULL and cannot disappear/change.
2151 */
2152 static inline void sk_set_bit(int nr, struct sock *sk)
2153 {
2154 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2155 !sock_flag(sk, SOCK_FASYNC))
2156 return;
2157
2158 set_bit(nr, &sk->sk_wq_raw->flags);
2159 }
2160
2161 static inline void sk_clear_bit(int nr, struct sock *sk)
2162 {
2163 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2164 !sock_flag(sk, SOCK_FASYNC))
2165 return;
2166
2167 clear_bit(nr, &sk->sk_wq_raw->flags);
2168 }
2169
2170 static inline void sk_wake_async(const struct sock *sk, int how, int band)
2171 {
2172 if (sock_flag(sk, SOCK_FASYNC)) {
2173 rcu_read_lock();
2174 sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
2175 rcu_read_unlock();
2176 }
2177 }
2178
2179 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2180 * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2181 * Note: for send buffers, TCP works better if we can build two skbs at
2182 * minimum.
2183 */
2184 #define TCP_SKB_MIN_TRUESIZE (2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2185
2186 #define SOCK_MIN_SNDBUF (TCP_SKB_MIN_TRUESIZE * 2)
2187 #define SOCK_MIN_RCVBUF TCP_SKB_MIN_TRUESIZE
2188
2189 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2190 {
2191 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
2192 sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2193 sk->sk_sndbuf = max_t(u32, sk->sk_sndbuf, SOCK_MIN_SNDBUF);
2194 }
2195 }
2196
2197 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
2198 bool force_schedule);
2199
2200 /**
2201 * sk_page_frag - return an appropriate page_frag
2202 * @sk: socket
2203 *
2204 * If socket allocation mode allows current thread to sleep, it means its
2205 * safe to use the per task page_frag instead of the per socket one.
2206 */
2207 static inline struct page_frag *sk_page_frag(struct sock *sk)
2208 {
2209 if (gfpflags_allow_blocking(sk->sk_allocation))
2210 return &current->task_frag;
2211
2212 return &sk->sk_frag;
2213 }
2214
2215 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2216
2217 int sk_alloc_sg(struct sock *sk, int len, struct scatterlist *sg,
2218 int sg_start, int *sg_curr, unsigned int *sg_size,
2219 int first_coalesce);
2220
2221 /*
2222 * Default write policy as shown to user space via poll/select/SIGIO
2223 */
2224 static inline bool sock_writeable(const struct sock *sk)
2225 {
2226 return refcount_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1);
2227 }
2228
2229 static inline gfp_t gfp_any(void)
2230 {
2231 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2232 }
2233
2234 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2235 {
2236 return noblock ? 0 : sk->sk_rcvtimeo;
2237 }
2238
2239 static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2240 {
2241 return noblock ? 0 : sk->sk_sndtimeo;
2242 }
2243
2244 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2245 {
2246 return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
2247 }
2248
2249 /* Alas, with timeout socket operations are not restartable.
2250 * Compare this to poll().
2251 */
2252 static inline int sock_intr_errno(long timeo)
2253 {
2254 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2255 }
2256
2257 struct sock_skb_cb {
2258 u32 dropcount;
2259 };
2260
2261 /* Store sock_skb_cb at the end of skb->cb[] so protocol families
2262 * using skb->cb[] would keep using it directly and utilize its
2263 * alignement guarantee.
2264 */
2265 #define SOCK_SKB_CB_OFFSET ((FIELD_SIZEOF(struct sk_buff, cb) - \
2266 sizeof(struct sock_skb_cb)))
2267
2268 #define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \
2269 SOCK_SKB_CB_OFFSET))
2270
2271 #define sock_skb_cb_check_size(size) \
2272 BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET)
2273
2274 static inline void
2275 sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb)
2276 {
2277 SOCK_SKB_CB(skb)->dropcount = sock_flag(sk, SOCK_RXQ_OVFL) ?
2278 atomic_read(&sk->sk_drops) : 0;
2279 }
2280
2281 static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb)
2282 {
2283 int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2284
2285 atomic_add(segs, &sk->sk_drops);
2286 }
2287
2288 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2289 struct sk_buff *skb);
2290 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2291 struct sk_buff *skb);
2292
2293 static inline void
2294 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2295 {
2296 ktime_t kt = skb->tstamp;
2297 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2298
2299 /*
2300 * generate control messages if
2301 * - receive time stamping in software requested
2302 * - software time stamp available and wanted
2303 * - hardware time stamps available and wanted
2304 */
2305 if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2306 (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2307 (kt && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2308 (hwtstamps->hwtstamp &&
2309 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
2310 __sock_recv_timestamp(msg, sk, skb);
2311 else
2312 sk->sk_stamp = kt;
2313
2314 if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2315 __sock_recv_wifi_status(msg, sk, skb);
2316 }
2317
2318 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2319 struct sk_buff *skb);
2320
2321 #define SK_DEFAULT_STAMP (-1L * NSEC_PER_SEC)
2322 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2323 struct sk_buff *skb)
2324 {
2325 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL) | \
2326 (1UL << SOCK_RCVTSTAMP))
2327 #define TSFLAGS_ANY (SOF_TIMESTAMPING_SOFTWARE | \
2328 SOF_TIMESTAMPING_RAW_HARDWARE)
2329
2330 if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY)
2331 __sock_recv_ts_and_drops(msg, sk, skb);
2332 else if (unlikely(sock_flag(sk, SOCK_TIMESTAMP)))
2333 sk->sk_stamp = skb->tstamp;
2334 else if (unlikely(sk->sk_stamp == SK_DEFAULT_STAMP))
2335 sk->sk_stamp = 0;
2336 }
2337
2338 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags);
2339
2340 /**
2341 * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2342 * @sk: socket sending this packet
2343 * @tsflags: timestamping flags to use
2344 * @tx_flags: completed with instructions for time stamping
2345 *
2346 * Note: callers should take care of initial ``*tx_flags`` value (usually 0)
2347 */
2348 static inline void sock_tx_timestamp(const struct sock *sk, __u16 tsflags,
2349 __u8 *tx_flags)
2350 {
2351 if (unlikely(tsflags))
2352 __sock_tx_timestamp(tsflags, tx_flags);
2353 if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS)))
2354 *tx_flags |= SKBTX_WIFI_STATUS;
2355 }
2356
2357 /**
2358 * sk_eat_skb - Release a skb if it is no longer needed
2359 * @sk: socket to eat this skb from
2360 * @skb: socket buffer to eat
2361 *
2362 * This routine must be called with interrupts disabled or with the socket
2363 * locked so that the sk_buff queue operation is ok.
2364 */
2365 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
2366 {
2367 __skb_unlink(skb, &sk->sk_receive_queue);
2368 __kfree_skb(skb);
2369 }
2370
2371 static inline
2372 struct net *sock_net(const struct sock *sk)
2373 {
2374 return read_pnet(&sk->sk_net);
2375 }
2376
2377 static inline
2378 void sock_net_set(struct sock *sk, struct net *net)
2379 {
2380 write_pnet(&sk->sk_net, net);
2381 }
2382
2383 static inline struct sock *skb_steal_sock(struct sk_buff *skb)
2384 {
2385 if (skb->sk) {
2386 struct sock *sk = skb->sk;
2387
2388 skb->destructor = NULL;
2389 skb->sk = NULL;
2390 return sk;
2391 }
2392 return NULL;
2393 }
2394
2395 /* This helper checks if a socket is a full socket,
2396 * ie _not_ a timewait or request socket.
2397 */
2398 static inline bool sk_fullsock(const struct sock *sk)
2399 {
2400 return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV);
2401 }
2402
2403 /* Checks if this SKB belongs to an HW offloaded socket
2404 * and whether any SW fallbacks are required based on dev.
2405 */
2406 static inline struct sk_buff *sk_validate_xmit_skb(struct sk_buff *skb,
2407 struct net_device *dev)
2408 {
2409 #ifdef CONFIG_SOCK_VALIDATE_XMIT
2410 struct sock *sk = skb->sk;
2411
2412 if (sk && sk_fullsock(sk) && sk->sk_validate_xmit_skb)
2413 skb = sk->sk_validate_xmit_skb(sk, dev, skb);
2414 #endif
2415
2416 return skb;
2417 }
2418
2419 /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV
2420 * SYNACK messages can be attached to either ones (depending on SYNCOOKIE)
2421 */
2422 static inline bool sk_listener(const struct sock *sk)
2423 {
2424 return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV);
2425 }
2426
2427 void sock_enable_timestamp(struct sock *sk, int flag);
2428 int sock_get_timestamp(struct sock *, struct timeval __user *);
2429 int sock_get_timestampns(struct sock *, struct timespec __user *);
2430 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2431 int type);
2432
2433 bool sk_ns_capable(const struct sock *sk,
2434 struct user_namespace *user_ns, int cap);
2435 bool sk_capable(const struct sock *sk, int cap);
2436 bool sk_net_capable(const struct sock *sk, int cap);
2437
2438 void sk_get_meminfo(const struct sock *sk, u32 *meminfo);
2439
2440 /* Take into consideration the size of the struct sk_buff overhead in the
2441 * determination of these values, since that is non-constant across
2442 * platforms. This makes socket queueing behavior and performance
2443 * not depend upon such differences.
2444 */
2445 #define _SK_MEM_PACKETS 256
2446 #define _SK_MEM_OVERHEAD SKB_TRUESIZE(256)
2447 #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2448 #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2449
2450 extern __u32 sysctl_wmem_max;
2451 extern __u32 sysctl_rmem_max;
2452
2453 extern int sysctl_tstamp_allow_data;
2454 extern int sysctl_optmem_max;
2455
2456 extern __u32 sysctl_wmem_default;
2457 extern __u32 sysctl_rmem_default;
2458
2459 static inline int sk_get_wmem0(const struct sock *sk, const struct proto *proto)
2460 {
2461 /* Does this proto have per netns sysctl_wmem ? */
2462 if (proto->sysctl_wmem_offset)
2463 return *(int *)((void *)sock_net(sk) + proto->sysctl_wmem_offset);
2464
2465 return *proto->sysctl_wmem;
2466 }
2467
2468 static inline int sk_get_rmem0(const struct sock *sk, const struct proto *proto)
2469 {
2470 /* Does this proto have per netns sysctl_rmem ? */
2471 if (proto->sysctl_rmem_offset)
2472 return *(int *)((void *)sock_net(sk) + proto->sysctl_rmem_offset);
2473
2474 return *proto->sysctl_rmem;
2475 }
2476
2477 /* Default TCP Small queue budget is ~1 ms of data (1sec >> 10)
2478 * Some wifi drivers need to tweak it to get more chunks.
2479 * They can use this helper from their ndo_start_xmit()
2480 */
2481 static inline void sk_pacing_shift_update(struct sock *sk, int val)
2482 {
2483 if (!sk || !sk_fullsock(sk) || sk->sk_pacing_shift == val)
2484 return;
2485 sk->sk_pacing_shift = val;
2486 }
2487
2488 /* if a socket is bound to a device, check that the given device
2489 * index is either the same or that the socket is bound to an L3
2490 * master device and the given device index is also enslaved to
2491 * that L3 master
2492 */
2493 static inline bool sk_dev_equal_l3scope(struct sock *sk, int dif)
2494 {
2495 int mdif;
2496
2497 if (!sk->sk_bound_dev_if || sk->sk_bound_dev_if == dif)
2498 return true;
2499
2500 mdif = l3mdev_master_ifindex_by_index(sock_net(sk), dif);
2501 if (mdif && mdif == sk->sk_bound_dev_if)
2502 return true;
2503
2504 return false;
2505 }
2506
2507 #endif /* _SOCK_H */