]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - include/net/sock.h
[NET]: Generalise TSO-specific bits from skb_setup_caps
[mirror_ubuntu-zesty-kernel.git] / include / net / sock.h
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Definitions for the AF_INET socket handler.
7 *
8 * Version: @(#)sock.h 1.0.4 05/13/93
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche <flla@stud.uni-sb.de>
14 *
15 * Fixes:
16 * Alan Cox : Volatiles in skbuff pointers. See
17 * skbuff comments. May be overdone,
18 * better to prove they can be removed
19 * than the reverse.
20 * Alan Cox : Added a zapped field for tcp to note
21 * a socket is reset and must stay shut up
22 * Alan Cox : New fields for options
23 * Pauline Middelink : identd support
24 * Alan Cox : Eliminate low level recv/recvfrom
25 * David S. Miller : New socket lookup architecture.
26 * Steve Whitehouse: Default routines for sock_ops
27 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made
28 * protinfo be just a void pointer, as the
29 * protocol specific parts were moved to
30 * respective headers and ipv4/v6, etc now
31 * use private slabcaches for its socks
32 * Pedro Hortas : New flags field for socket options
33 *
34 *
35 * This program is free software; you can redistribute it and/or
36 * modify it under the terms of the GNU General Public License
37 * as published by the Free Software Foundation; either version
38 * 2 of the License, or (at your option) any later version.
39 */
40 #ifndef _SOCK_H
41 #define _SOCK_H
42
43 #include <linux/list.h>
44 #include <linux/timer.h>
45 #include <linux/cache.h>
46 #include <linux/module.h>
47 #include <linux/netdevice.h>
48 #include <linux/skbuff.h> /* struct sk_buff */
49 #include <linux/security.h>
50
51 #include <linux/filter.h>
52
53 #include <asm/atomic.h>
54 #include <net/dst.h>
55 #include <net/checksum.h>
56
57 /*
58 * This structure really needs to be cleaned up.
59 * Most of it is for TCP, and not used by any of
60 * the other protocols.
61 */
62
63 /* Define this to get the SOCK_DBG debugging facility. */
64 #define SOCK_DEBUGGING
65 #ifdef SOCK_DEBUGGING
66 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
67 printk(KERN_DEBUG msg); } while (0)
68 #else
69 #define SOCK_DEBUG(sk, msg...) do { } while (0)
70 #endif
71
72 /* This is the per-socket lock. The spinlock provides a synchronization
73 * between user contexts and software interrupt processing, whereas the
74 * mini-semaphore synchronizes multiple users amongst themselves.
75 */
76 struct sock_iocb;
77 typedef struct {
78 spinlock_t slock;
79 struct sock_iocb *owner;
80 wait_queue_head_t wq;
81 } socket_lock_t;
82
83 #define sock_lock_init(__sk) \
84 do { spin_lock_init(&((__sk)->sk_lock.slock)); \
85 (__sk)->sk_lock.owner = NULL; \
86 init_waitqueue_head(&((__sk)->sk_lock.wq)); \
87 } while(0)
88
89 struct sock;
90 struct proto;
91
92 /**
93 * struct sock_common - minimal network layer representation of sockets
94 * @skc_family: network address family
95 * @skc_state: Connection state
96 * @skc_reuse: %SO_REUSEADDR setting
97 * @skc_bound_dev_if: bound device index if != 0
98 * @skc_node: main hash linkage for various protocol lookup tables
99 * @skc_bind_node: bind hash linkage for various protocol lookup tables
100 * @skc_refcnt: reference count
101 * @skc_hash: hash value used with various protocol lookup tables
102 * @skc_prot: protocol handlers inside a network family
103 *
104 * This is the minimal network layer representation of sockets, the header
105 * for struct sock and struct inet_timewait_sock.
106 */
107 struct sock_common {
108 unsigned short skc_family;
109 volatile unsigned char skc_state;
110 unsigned char skc_reuse;
111 int skc_bound_dev_if;
112 struct hlist_node skc_node;
113 struct hlist_node skc_bind_node;
114 atomic_t skc_refcnt;
115 unsigned int skc_hash;
116 struct proto *skc_prot;
117 };
118
119 /**
120 * struct sock - network layer representation of sockets
121 * @__sk_common: shared layout with inet_timewait_sock
122 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
123 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
124 * @sk_lock: synchronizer
125 * @sk_rcvbuf: size of receive buffer in bytes
126 * @sk_sleep: sock wait queue
127 * @sk_dst_cache: destination cache
128 * @sk_dst_lock: destination cache lock
129 * @sk_policy: flow policy
130 * @sk_rmem_alloc: receive queue bytes committed
131 * @sk_receive_queue: incoming packets
132 * @sk_wmem_alloc: transmit queue bytes committed
133 * @sk_write_queue: Packet sending queue
134 * @sk_async_wait_queue: DMA copied packets
135 * @sk_omem_alloc: "o" is "option" or "other"
136 * @sk_wmem_queued: persistent queue size
137 * @sk_forward_alloc: space allocated forward
138 * @sk_allocation: allocation mode
139 * @sk_sndbuf: size of send buffer in bytes
140 * @sk_flags: %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE, %SO_OOBINLINE settings
141 * @sk_no_check: %SO_NO_CHECK setting, wether or not checkup packets
142 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
143 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
144 * @sk_lingertime: %SO_LINGER l_linger setting
145 * @sk_backlog: always used with the per-socket spinlock held
146 * @sk_callback_lock: used with the callbacks in the end of this struct
147 * @sk_error_queue: rarely used
148 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt, IPV6_ADDRFORM for instance)
149 * @sk_err: last error
150 * @sk_err_soft: errors that don't cause failure but are the cause of a persistent failure not just 'timed out'
151 * @sk_ack_backlog: current listen backlog
152 * @sk_max_ack_backlog: listen backlog set in listen()
153 * @sk_priority: %SO_PRIORITY setting
154 * @sk_type: socket type (%SOCK_STREAM, etc)
155 * @sk_protocol: which protocol this socket belongs in this network family
156 * @sk_peercred: %SO_PEERCRED setting
157 * @sk_rcvlowat: %SO_RCVLOWAT setting
158 * @sk_rcvtimeo: %SO_RCVTIMEO setting
159 * @sk_sndtimeo: %SO_SNDTIMEO setting
160 * @sk_filter: socket filtering instructions
161 * @sk_protinfo: private area, net family specific, when not using slab
162 * @sk_timer: sock cleanup timer
163 * @sk_stamp: time stamp of last packet received
164 * @sk_socket: Identd and reporting IO signals
165 * @sk_user_data: RPC layer private data
166 * @sk_sndmsg_page: cached page for sendmsg
167 * @sk_sndmsg_off: cached offset for sendmsg
168 * @sk_send_head: front of stuff to transmit
169 * @sk_security: used by security modules
170 * @sk_write_pending: a write to stream socket waits to start
171 * @sk_state_change: callback to indicate change in the state of the sock
172 * @sk_data_ready: callback to indicate there is data to be processed
173 * @sk_write_space: callback to indicate there is bf sending space available
174 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
175 * @sk_backlog_rcv: callback to process the backlog
176 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
177 */
178 struct sock {
179 /*
180 * Now struct inet_timewait_sock also uses sock_common, so please just
181 * don't add nothing before this first member (__sk_common) --acme
182 */
183 struct sock_common __sk_common;
184 #define sk_family __sk_common.skc_family
185 #define sk_state __sk_common.skc_state
186 #define sk_reuse __sk_common.skc_reuse
187 #define sk_bound_dev_if __sk_common.skc_bound_dev_if
188 #define sk_node __sk_common.skc_node
189 #define sk_bind_node __sk_common.skc_bind_node
190 #define sk_refcnt __sk_common.skc_refcnt
191 #define sk_hash __sk_common.skc_hash
192 #define sk_prot __sk_common.skc_prot
193 unsigned char sk_shutdown : 2,
194 sk_no_check : 2,
195 sk_userlocks : 4;
196 unsigned char sk_protocol;
197 unsigned short sk_type;
198 int sk_rcvbuf;
199 socket_lock_t sk_lock;
200 wait_queue_head_t *sk_sleep;
201 struct dst_entry *sk_dst_cache;
202 struct xfrm_policy *sk_policy[2];
203 rwlock_t sk_dst_lock;
204 atomic_t sk_rmem_alloc;
205 atomic_t sk_wmem_alloc;
206 atomic_t sk_omem_alloc;
207 struct sk_buff_head sk_receive_queue;
208 struct sk_buff_head sk_write_queue;
209 struct sk_buff_head sk_async_wait_queue;
210 int sk_wmem_queued;
211 int sk_forward_alloc;
212 gfp_t sk_allocation;
213 int sk_sndbuf;
214 int sk_route_caps;
215 int sk_gso_type;
216 int sk_rcvlowat;
217 unsigned long sk_flags;
218 unsigned long sk_lingertime;
219 /*
220 * The backlog queue is special, it is always used with
221 * the per-socket spinlock held and requires low latency
222 * access. Therefore we special case it's implementation.
223 */
224 struct {
225 struct sk_buff *head;
226 struct sk_buff *tail;
227 } sk_backlog;
228 struct sk_buff_head sk_error_queue;
229 struct proto *sk_prot_creator;
230 rwlock_t sk_callback_lock;
231 int sk_err,
232 sk_err_soft;
233 unsigned short sk_ack_backlog;
234 unsigned short sk_max_ack_backlog;
235 __u32 sk_priority;
236 struct ucred sk_peercred;
237 long sk_rcvtimeo;
238 long sk_sndtimeo;
239 struct sk_filter *sk_filter;
240 void *sk_protinfo;
241 struct timer_list sk_timer;
242 struct timeval sk_stamp;
243 struct socket *sk_socket;
244 void *sk_user_data;
245 struct page *sk_sndmsg_page;
246 struct sk_buff *sk_send_head;
247 __u32 sk_sndmsg_off;
248 int sk_write_pending;
249 void *sk_security;
250 void (*sk_state_change)(struct sock *sk);
251 void (*sk_data_ready)(struct sock *sk, int bytes);
252 void (*sk_write_space)(struct sock *sk);
253 void (*sk_error_report)(struct sock *sk);
254 int (*sk_backlog_rcv)(struct sock *sk,
255 struct sk_buff *skb);
256 void (*sk_destruct)(struct sock *sk);
257 };
258
259 /*
260 * Hashed lists helper routines
261 */
262 static inline struct sock *__sk_head(const struct hlist_head *head)
263 {
264 return hlist_entry(head->first, struct sock, sk_node);
265 }
266
267 static inline struct sock *sk_head(const struct hlist_head *head)
268 {
269 return hlist_empty(head) ? NULL : __sk_head(head);
270 }
271
272 static inline struct sock *sk_next(const struct sock *sk)
273 {
274 return sk->sk_node.next ?
275 hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL;
276 }
277
278 static inline int sk_unhashed(const struct sock *sk)
279 {
280 return hlist_unhashed(&sk->sk_node);
281 }
282
283 static inline int sk_hashed(const struct sock *sk)
284 {
285 return !sk_unhashed(sk);
286 }
287
288 static __inline__ void sk_node_init(struct hlist_node *node)
289 {
290 node->pprev = NULL;
291 }
292
293 static __inline__ void __sk_del_node(struct sock *sk)
294 {
295 __hlist_del(&sk->sk_node);
296 }
297
298 static __inline__ int __sk_del_node_init(struct sock *sk)
299 {
300 if (sk_hashed(sk)) {
301 __sk_del_node(sk);
302 sk_node_init(&sk->sk_node);
303 return 1;
304 }
305 return 0;
306 }
307
308 /* Grab socket reference count. This operation is valid only
309 when sk is ALREADY grabbed f.e. it is found in hash table
310 or a list and the lookup is made under lock preventing hash table
311 modifications.
312 */
313
314 static inline void sock_hold(struct sock *sk)
315 {
316 atomic_inc(&sk->sk_refcnt);
317 }
318
319 /* Ungrab socket in the context, which assumes that socket refcnt
320 cannot hit zero, f.e. it is true in context of any socketcall.
321 */
322 static inline void __sock_put(struct sock *sk)
323 {
324 atomic_dec(&sk->sk_refcnt);
325 }
326
327 static __inline__ int sk_del_node_init(struct sock *sk)
328 {
329 int rc = __sk_del_node_init(sk);
330
331 if (rc) {
332 /* paranoid for a while -acme */
333 WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
334 __sock_put(sk);
335 }
336 return rc;
337 }
338
339 static __inline__ void __sk_add_node(struct sock *sk, struct hlist_head *list)
340 {
341 hlist_add_head(&sk->sk_node, list);
342 }
343
344 static __inline__ void sk_add_node(struct sock *sk, struct hlist_head *list)
345 {
346 sock_hold(sk);
347 __sk_add_node(sk, list);
348 }
349
350 static __inline__ void __sk_del_bind_node(struct sock *sk)
351 {
352 __hlist_del(&sk->sk_bind_node);
353 }
354
355 static __inline__ void sk_add_bind_node(struct sock *sk,
356 struct hlist_head *list)
357 {
358 hlist_add_head(&sk->sk_bind_node, list);
359 }
360
361 #define sk_for_each(__sk, node, list) \
362 hlist_for_each_entry(__sk, node, list, sk_node)
363 #define sk_for_each_from(__sk, node) \
364 if (__sk && ({ node = &(__sk)->sk_node; 1; })) \
365 hlist_for_each_entry_from(__sk, node, sk_node)
366 #define sk_for_each_continue(__sk, node) \
367 if (__sk && ({ node = &(__sk)->sk_node; 1; })) \
368 hlist_for_each_entry_continue(__sk, node, sk_node)
369 #define sk_for_each_safe(__sk, node, tmp, list) \
370 hlist_for_each_entry_safe(__sk, node, tmp, list, sk_node)
371 #define sk_for_each_bound(__sk, node, list) \
372 hlist_for_each_entry(__sk, node, list, sk_bind_node)
373
374 /* Sock flags */
375 enum sock_flags {
376 SOCK_DEAD,
377 SOCK_DONE,
378 SOCK_URGINLINE,
379 SOCK_KEEPOPEN,
380 SOCK_LINGER,
381 SOCK_DESTROY,
382 SOCK_BROADCAST,
383 SOCK_TIMESTAMP,
384 SOCK_ZAPPED,
385 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
386 SOCK_DBG, /* %SO_DEBUG setting */
387 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
388 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
389 SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
390 };
391
392 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
393 {
394 nsk->sk_flags = osk->sk_flags;
395 }
396
397 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
398 {
399 __set_bit(flag, &sk->sk_flags);
400 }
401
402 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
403 {
404 __clear_bit(flag, &sk->sk_flags);
405 }
406
407 static inline int sock_flag(struct sock *sk, enum sock_flags flag)
408 {
409 return test_bit(flag, &sk->sk_flags);
410 }
411
412 static inline void sk_acceptq_removed(struct sock *sk)
413 {
414 sk->sk_ack_backlog--;
415 }
416
417 static inline void sk_acceptq_added(struct sock *sk)
418 {
419 sk->sk_ack_backlog++;
420 }
421
422 static inline int sk_acceptq_is_full(struct sock *sk)
423 {
424 return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
425 }
426
427 /*
428 * Compute minimal free write space needed to queue new packets.
429 */
430 static inline int sk_stream_min_wspace(struct sock *sk)
431 {
432 return sk->sk_wmem_queued / 2;
433 }
434
435 static inline int sk_stream_wspace(struct sock *sk)
436 {
437 return sk->sk_sndbuf - sk->sk_wmem_queued;
438 }
439
440 extern void sk_stream_write_space(struct sock *sk);
441
442 static inline int sk_stream_memory_free(struct sock *sk)
443 {
444 return sk->sk_wmem_queued < sk->sk_sndbuf;
445 }
446
447 extern void sk_stream_rfree(struct sk_buff *skb);
448
449 static inline void sk_stream_set_owner_r(struct sk_buff *skb, struct sock *sk)
450 {
451 skb->sk = sk;
452 skb->destructor = sk_stream_rfree;
453 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
454 sk->sk_forward_alloc -= skb->truesize;
455 }
456
457 static inline void sk_stream_free_skb(struct sock *sk, struct sk_buff *skb)
458 {
459 skb_truesize_check(skb);
460 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
461 sk->sk_wmem_queued -= skb->truesize;
462 sk->sk_forward_alloc += skb->truesize;
463 __kfree_skb(skb);
464 }
465
466 /* The per-socket spinlock must be held here. */
467 static inline void sk_add_backlog(struct sock *sk, struct sk_buff *skb)
468 {
469 if (!sk->sk_backlog.tail) {
470 sk->sk_backlog.head = sk->sk_backlog.tail = skb;
471 } else {
472 sk->sk_backlog.tail->next = skb;
473 sk->sk_backlog.tail = skb;
474 }
475 skb->next = NULL;
476 }
477
478 #define sk_wait_event(__sk, __timeo, __condition) \
479 ({ int rc; \
480 release_sock(__sk); \
481 rc = __condition; \
482 if (!rc) { \
483 *(__timeo) = schedule_timeout(*(__timeo)); \
484 } \
485 lock_sock(__sk); \
486 rc = __condition; \
487 rc; \
488 })
489
490 extern int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
491 extern int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
492 extern void sk_stream_wait_close(struct sock *sk, long timeo_p);
493 extern int sk_stream_error(struct sock *sk, int flags, int err);
494 extern void sk_stream_kill_queues(struct sock *sk);
495
496 extern int sk_wait_data(struct sock *sk, long *timeo);
497
498 struct request_sock_ops;
499 struct timewait_sock_ops;
500
501 /* Networking protocol blocks we attach to sockets.
502 * socket layer -> transport layer interface
503 * transport -> network interface is defined by struct inet_proto
504 */
505 struct proto {
506 void (*close)(struct sock *sk,
507 long timeout);
508 int (*connect)(struct sock *sk,
509 struct sockaddr *uaddr,
510 int addr_len);
511 int (*disconnect)(struct sock *sk, int flags);
512
513 struct sock * (*accept) (struct sock *sk, int flags, int *err);
514
515 int (*ioctl)(struct sock *sk, int cmd,
516 unsigned long arg);
517 int (*init)(struct sock *sk);
518 int (*destroy)(struct sock *sk);
519 void (*shutdown)(struct sock *sk, int how);
520 int (*setsockopt)(struct sock *sk, int level,
521 int optname, char __user *optval,
522 int optlen);
523 int (*getsockopt)(struct sock *sk, int level,
524 int optname, char __user *optval,
525 int __user *option);
526 int (*compat_setsockopt)(struct sock *sk,
527 int level,
528 int optname, char __user *optval,
529 int optlen);
530 int (*compat_getsockopt)(struct sock *sk,
531 int level,
532 int optname, char __user *optval,
533 int __user *option);
534 int (*sendmsg)(struct kiocb *iocb, struct sock *sk,
535 struct msghdr *msg, size_t len);
536 int (*recvmsg)(struct kiocb *iocb, struct sock *sk,
537 struct msghdr *msg,
538 size_t len, int noblock, int flags,
539 int *addr_len);
540 int (*sendpage)(struct sock *sk, struct page *page,
541 int offset, size_t size, int flags);
542 int (*bind)(struct sock *sk,
543 struct sockaddr *uaddr, int addr_len);
544
545 int (*backlog_rcv) (struct sock *sk,
546 struct sk_buff *skb);
547
548 /* Keeping track of sk's, looking them up, and port selection methods. */
549 void (*hash)(struct sock *sk);
550 void (*unhash)(struct sock *sk);
551 int (*get_port)(struct sock *sk, unsigned short snum);
552
553 /* Memory pressure */
554 void (*enter_memory_pressure)(void);
555 atomic_t *memory_allocated; /* Current allocated memory. */
556 atomic_t *sockets_allocated; /* Current number of sockets. */
557 /*
558 * Pressure flag: try to collapse.
559 * Technical note: it is used by multiple contexts non atomically.
560 * All the sk_stream_mem_schedule() is of this nature: accounting
561 * is strict, actions are advisory and have some latency.
562 */
563 int *memory_pressure;
564 int *sysctl_mem;
565 int *sysctl_wmem;
566 int *sysctl_rmem;
567 int max_header;
568
569 kmem_cache_t *slab;
570 unsigned int obj_size;
571
572 atomic_t *orphan_count;
573
574 struct request_sock_ops *rsk_prot;
575 struct timewait_sock_ops *twsk_prot;
576
577 struct module *owner;
578
579 char name[32];
580
581 struct list_head node;
582 #ifdef SOCK_REFCNT_DEBUG
583 atomic_t socks;
584 #endif
585 struct {
586 int inuse;
587 u8 __pad[SMP_CACHE_BYTES - sizeof(int)];
588 } stats[NR_CPUS];
589 };
590
591 extern int proto_register(struct proto *prot, int alloc_slab);
592 extern void proto_unregister(struct proto *prot);
593
594 #ifdef SOCK_REFCNT_DEBUG
595 static inline void sk_refcnt_debug_inc(struct sock *sk)
596 {
597 atomic_inc(&sk->sk_prot->socks);
598 }
599
600 static inline void sk_refcnt_debug_dec(struct sock *sk)
601 {
602 atomic_dec(&sk->sk_prot->socks);
603 printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
604 sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
605 }
606
607 static inline void sk_refcnt_debug_release(const struct sock *sk)
608 {
609 if (atomic_read(&sk->sk_refcnt) != 1)
610 printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
611 sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt));
612 }
613 #else /* SOCK_REFCNT_DEBUG */
614 #define sk_refcnt_debug_inc(sk) do { } while (0)
615 #define sk_refcnt_debug_dec(sk) do { } while (0)
616 #define sk_refcnt_debug_release(sk) do { } while (0)
617 #endif /* SOCK_REFCNT_DEBUG */
618
619 /* Called with local bh disabled */
620 static __inline__ void sock_prot_inc_use(struct proto *prot)
621 {
622 prot->stats[smp_processor_id()].inuse++;
623 }
624
625 static __inline__ void sock_prot_dec_use(struct proto *prot)
626 {
627 prot->stats[smp_processor_id()].inuse--;
628 }
629
630 /* With per-bucket locks this operation is not-atomic, so that
631 * this version is not worse.
632 */
633 static inline void __sk_prot_rehash(struct sock *sk)
634 {
635 sk->sk_prot->unhash(sk);
636 sk->sk_prot->hash(sk);
637 }
638
639 /* About 10 seconds */
640 #define SOCK_DESTROY_TIME (10*HZ)
641
642 /* Sockets 0-1023 can't be bound to unless you are superuser */
643 #define PROT_SOCK 1024
644
645 #define SHUTDOWN_MASK 3
646 #define RCV_SHUTDOWN 1
647 #define SEND_SHUTDOWN 2
648
649 #define SOCK_SNDBUF_LOCK 1
650 #define SOCK_RCVBUF_LOCK 2
651 #define SOCK_BINDADDR_LOCK 4
652 #define SOCK_BINDPORT_LOCK 8
653
654 /* sock_iocb: used to kick off async processing of socket ios */
655 struct sock_iocb {
656 struct list_head list;
657
658 int flags;
659 int size;
660 struct socket *sock;
661 struct sock *sk;
662 struct scm_cookie *scm;
663 struct msghdr *msg, async_msg;
664 struct iovec async_iov;
665 struct kiocb *kiocb;
666 };
667
668 static inline struct sock_iocb *kiocb_to_siocb(struct kiocb *iocb)
669 {
670 return (struct sock_iocb *)iocb->private;
671 }
672
673 static inline struct kiocb *siocb_to_kiocb(struct sock_iocb *si)
674 {
675 return si->kiocb;
676 }
677
678 struct socket_alloc {
679 struct socket socket;
680 struct inode vfs_inode;
681 };
682
683 static inline struct socket *SOCKET_I(struct inode *inode)
684 {
685 return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
686 }
687
688 static inline struct inode *SOCK_INODE(struct socket *socket)
689 {
690 return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
691 }
692
693 extern void __sk_stream_mem_reclaim(struct sock *sk);
694 extern int sk_stream_mem_schedule(struct sock *sk, int size, int kind);
695
696 #define SK_STREAM_MEM_QUANTUM ((int)PAGE_SIZE)
697
698 static inline int sk_stream_pages(int amt)
699 {
700 return (amt + SK_STREAM_MEM_QUANTUM - 1) / SK_STREAM_MEM_QUANTUM;
701 }
702
703 static inline void sk_stream_mem_reclaim(struct sock *sk)
704 {
705 if (sk->sk_forward_alloc >= SK_STREAM_MEM_QUANTUM)
706 __sk_stream_mem_reclaim(sk);
707 }
708
709 static inline void sk_stream_writequeue_purge(struct sock *sk)
710 {
711 struct sk_buff *skb;
712
713 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL)
714 sk_stream_free_skb(sk, skb);
715 sk_stream_mem_reclaim(sk);
716 }
717
718 static inline int sk_stream_rmem_schedule(struct sock *sk, struct sk_buff *skb)
719 {
720 return (int)skb->truesize <= sk->sk_forward_alloc ||
721 sk_stream_mem_schedule(sk, skb->truesize, 1);
722 }
723
724 static inline int sk_stream_wmem_schedule(struct sock *sk, int size)
725 {
726 return size <= sk->sk_forward_alloc ||
727 sk_stream_mem_schedule(sk, size, 0);
728 }
729
730 /* Used by processes to "lock" a socket state, so that
731 * interrupts and bottom half handlers won't change it
732 * from under us. It essentially blocks any incoming
733 * packets, so that we won't get any new data or any
734 * packets that change the state of the socket.
735 *
736 * While locked, BH processing will add new packets to
737 * the backlog queue. This queue is processed by the
738 * owner of the socket lock right before it is released.
739 *
740 * Since ~2.3.5 it is also exclusive sleep lock serializing
741 * accesses from user process context.
742 */
743 #define sock_owned_by_user(sk) ((sk)->sk_lock.owner)
744
745 extern void FASTCALL(lock_sock(struct sock *sk));
746 extern void FASTCALL(release_sock(struct sock *sk));
747
748 /* BH context may only use the following locking interface. */
749 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock))
750 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock))
751
752 extern struct sock *sk_alloc(int family,
753 gfp_t priority,
754 struct proto *prot, int zero_it);
755 extern void sk_free(struct sock *sk);
756 extern struct sock *sk_clone(const struct sock *sk,
757 const gfp_t priority);
758
759 extern struct sk_buff *sock_wmalloc(struct sock *sk,
760 unsigned long size, int force,
761 gfp_t priority);
762 extern struct sk_buff *sock_rmalloc(struct sock *sk,
763 unsigned long size, int force,
764 gfp_t priority);
765 extern void sock_wfree(struct sk_buff *skb);
766 extern void sock_rfree(struct sk_buff *skb);
767
768 extern int sock_setsockopt(struct socket *sock, int level,
769 int op, char __user *optval,
770 int optlen);
771
772 extern int sock_getsockopt(struct socket *sock, int level,
773 int op, char __user *optval,
774 int __user *optlen);
775 extern struct sk_buff *sock_alloc_send_skb(struct sock *sk,
776 unsigned long size,
777 int noblock,
778 int *errcode);
779 extern void *sock_kmalloc(struct sock *sk, int size,
780 gfp_t priority);
781 extern void sock_kfree_s(struct sock *sk, void *mem, int size);
782 extern void sk_send_sigurg(struct sock *sk);
783
784 /*
785 * Functions to fill in entries in struct proto_ops when a protocol
786 * does not implement a particular function.
787 */
788 extern int sock_no_bind(struct socket *,
789 struct sockaddr *, int);
790 extern int sock_no_connect(struct socket *,
791 struct sockaddr *, int, int);
792 extern int sock_no_socketpair(struct socket *,
793 struct socket *);
794 extern int sock_no_accept(struct socket *,
795 struct socket *, int);
796 extern int sock_no_getname(struct socket *,
797 struct sockaddr *, int *, int);
798 extern unsigned int sock_no_poll(struct file *, struct socket *,
799 struct poll_table_struct *);
800 extern int sock_no_ioctl(struct socket *, unsigned int,
801 unsigned long);
802 extern int sock_no_listen(struct socket *, int);
803 extern int sock_no_shutdown(struct socket *, int);
804 extern int sock_no_getsockopt(struct socket *, int , int,
805 char __user *, int __user *);
806 extern int sock_no_setsockopt(struct socket *, int, int,
807 char __user *, int);
808 extern int sock_no_sendmsg(struct kiocb *, struct socket *,
809 struct msghdr *, size_t);
810 extern int sock_no_recvmsg(struct kiocb *, struct socket *,
811 struct msghdr *, size_t, int);
812 extern int sock_no_mmap(struct file *file,
813 struct socket *sock,
814 struct vm_area_struct *vma);
815 extern ssize_t sock_no_sendpage(struct socket *sock,
816 struct page *page,
817 int offset, size_t size,
818 int flags);
819
820 /*
821 * Functions to fill in entries in struct proto_ops when a protocol
822 * uses the inet style.
823 */
824 extern int sock_common_getsockopt(struct socket *sock, int level, int optname,
825 char __user *optval, int __user *optlen);
826 extern int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
827 struct msghdr *msg, size_t size, int flags);
828 extern int sock_common_setsockopt(struct socket *sock, int level, int optname,
829 char __user *optval, int optlen);
830 extern int compat_sock_common_getsockopt(struct socket *sock, int level,
831 int optname, char __user *optval, int __user *optlen);
832 extern int compat_sock_common_setsockopt(struct socket *sock, int level,
833 int optname, char __user *optval, int optlen);
834
835 extern void sk_common_release(struct sock *sk);
836
837 /*
838 * Default socket callbacks and setup code
839 */
840
841 /* Initialise core socket variables */
842 extern void sock_init_data(struct socket *sock, struct sock *sk);
843
844 /**
845 * sk_filter - run a packet through a socket filter
846 * @sk: sock associated with &sk_buff
847 * @skb: buffer to filter
848 * @needlock: set to 1 if the sock is not locked by caller.
849 *
850 * Run the filter code and then cut skb->data to correct size returned by
851 * sk_run_filter. If pkt_len is 0 we toss packet. If skb->len is smaller
852 * than pkt_len we keep whole skb->data. This is the socket level
853 * wrapper to sk_run_filter. It returns 0 if the packet should
854 * be accepted or -EPERM if the packet should be tossed.
855 *
856 */
857
858 static inline int sk_filter(struct sock *sk, struct sk_buff *skb, int needlock)
859 {
860 int err;
861
862 err = security_sock_rcv_skb(sk, skb);
863 if (err)
864 return err;
865
866 if (sk->sk_filter) {
867 struct sk_filter *filter;
868
869 if (needlock)
870 bh_lock_sock(sk);
871
872 filter = sk->sk_filter;
873 if (filter) {
874 unsigned int pkt_len = sk_run_filter(skb, filter->insns,
875 filter->len);
876 err = pkt_len ? pskb_trim(skb, pkt_len) : -EPERM;
877 }
878
879 if (needlock)
880 bh_unlock_sock(sk);
881 }
882 return err;
883 }
884
885 /**
886 * sk_filter_release: Release a socket filter
887 * @sk: socket
888 * @fp: filter to remove
889 *
890 * Remove a filter from a socket and release its resources.
891 */
892
893 static inline void sk_filter_release(struct sock *sk, struct sk_filter *fp)
894 {
895 unsigned int size = sk_filter_len(fp);
896
897 atomic_sub(size, &sk->sk_omem_alloc);
898
899 if (atomic_dec_and_test(&fp->refcnt))
900 kfree(fp);
901 }
902
903 static inline void sk_filter_charge(struct sock *sk, struct sk_filter *fp)
904 {
905 atomic_inc(&fp->refcnt);
906 atomic_add(sk_filter_len(fp), &sk->sk_omem_alloc);
907 }
908
909 /*
910 * Socket reference counting postulates.
911 *
912 * * Each user of socket SHOULD hold a reference count.
913 * * Each access point to socket (an hash table bucket, reference from a list,
914 * running timer, skb in flight MUST hold a reference count.
915 * * When reference count hits 0, it means it will never increase back.
916 * * When reference count hits 0, it means that no references from
917 * outside exist to this socket and current process on current CPU
918 * is last user and may/should destroy this socket.
919 * * sk_free is called from any context: process, BH, IRQ. When
920 * it is called, socket has no references from outside -> sk_free
921 * may release descendant resources allocated by the socket, but
922 * to the time when it is called, socket is NOT referenced by any
923 * hash tables, lists etc.
924 * * Packets, delivered from outside (from network or from another process)
925 * and enqueued on receive/error queues SHOULD NOT grab reference count,
926 * when they sit in queue. Otherwise, packets will leak to hole, when
927 * socket is looked up by one cpu and unhasing is made by another CPU.
928 * It is true for udp/raw, netlink (leak to receive and error queues), tcp
929 * (leak to backlog). Packet socket does all the processing inside
930 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
931 * use separate SMP lock, so that they are prone too.
932 */
933
934 /* Ungrab socket and destroy it, if it was the last reference. */
935 static inline void sock_put(struct sock *sk)
936 {
937 if (atomic_dec_and_test(&sk->sk_refcnt))
938 sk_free(sk);
939 }
940
941 extern int sk_receive_skb(struct sock *sk, struct sk_buff *skb);
942
943 /* Detach socket from process context.
944 * Announce socket dead, detach it from wait queue and inode.
945 * Note that parent inode held reference count on this struct sock,
946 * we do not release it in this function, because protocol
947 * probably wants some additional cleanups or even continuing
948 * to work with this socket (TCP).
949 */
950 static inline void sock_orphan(struct sock *sk)
951 {
952 write_lock_bh(&sk->sk_callback_lock);
953 sock_set_flag(sk, SOCK_DEAD);
954 sk->sk_socket = NULL;
955 sk->sk_sleep = NULL;
956 write_unlock_bh(&sk->sk_callback_lock);
957 }
958
959 static inline void sock_graft(struct sock *sk, struct socket *parent)
960 {
961 write_lock_bh(&sk->sk_callback_lock);
962 sk->sk_sleep = &parent->wait;
963 parent->sk = sk;
964 sk->sk_socket = parent;
965 write_unlock_bh(&sk->sk_callback_lock);
966 }
967
968 extern int sock_i_uid(struct sock *sk);
969 extern unsigned long sock_i_ino(struct sock *sk);
970
971 static inline struct dst_entry *
972 __sk_dst_get(struct sock *sk)
973 {
974 return sk->sk_dst_cache;
975 }
976
977 static inline struct dst_entry *
978 sk_dst_get(struct sock *sk)
979 {
980 struct dst_entry *dst;
981
982 read_lock(&sk->sk_dst_lock);
983 dst = sk->sk_dst_cache;
984 if (dst)
985 dst_hold(dst);
986 read_unlock(&sk->sk_dst_lock);
987 return dst;
988 }
989
990 static inline void
991 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
992 {
993 struct dst_entry *old_dst;
994
995 old_dst = sk->sk_dst_cache;
996 sk->sk_dst_cache = dst;
997 dst_release(old_dst);
998 }
999
1000 static inline void
1001 sk_dst_set(struct sock *sk, struct dst_entry *dst)
1002 {
1003 write_lock(&sk->sk_dst_lock);
1004 __sk_dst_set(sk, dst);
1005 write_unlock(&sk->sk_dst_lock);
1006 }
1007
1008 static inline void
1009 __sk_dst_reset(struct sock *sk)
1010 {
1011 struct dst_entry *old_dst;
1012
1013 old_dst = sk->sk_dst_cache;
1014 sk->sk_dst_cache = NULL;
1015 dst_release(old_dst);
1016 }
1017
1018 static inline void
1019 sk_dst_reset(struct sock *sk)
1020 {
1021 write_lock(&sk->sk_dst_lock);
1022 __sk_dst_reset(sk);
1023 write_unlock(&sk->sk_dst_lock);
1024 }
1025
1026 extern struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1027
1028 extern struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1029
1030 static inline int sk_can_gso(const struct sock *sk)
1031 {
1032 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1033 }
1034
1035 static inline void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1036 {
1037 __sk_dst_set(sk, dst);
1038 sk->sk_route_caps = dst->dev->features;
1039 if (sk->sk_route_caps & NETIF_F_GSO)
1040 sk->sk_route_caps |= NETIF_F_GSO_MASK;
1041 if (sk_can_gso(sk)) {
1042 if (dst->header_len)
1043 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1044 else
1045 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1046 }
1047 }
1048
1049 static inline void sk_charge_skb(struct sock *sk, struct sk_buff *skb)
1050 {
1051 sk->sk_wmem_queued += skb->truesize;
1052 sk->sk_forward_alloc -= skb->truesize;
1053 }
1054
1055 static inline int skb_copy_to_page(struct sock *sk, char __user *from,
1056 struct sk_buff *skb, struct page *page,
1057 int off, int copy)
1058 {
1059 if (skb->ip_summed == CHECKSUM_NONE) {
1060 int err = 0;
1061 unsigned int csum = csum_and_copy_from_user(from,
1062 page_address(page) + off,
1063 copy, 0, &err);
1064 if (err)
1065 return err;
1066 skb->csum = csum_block_add(skb->csum, csum, skb->len);
1067 } else if (copy_from_user(page_address(page) + off, from, copy))
1068 return -EFAULT;
1069
1070 skb->len += copy;
1071 skb->data_len += copy;
1072 skb->truesize += copy;
1073 sk->sk_wmem_queued += copy;
1074 sk->sk_forward_alloc -= copy;
1075 return 0;
1076 }
1077
1078 /*
1079 * Queue a received datagram if it will fit. Stream and sequenced
1080 * protocols can't normally use this as they need to fit buffers in
1081 * and play with them.
1082 *
1083 * Inlined as it's very short and called for pretty much every
1084 * packet ever received.
1085 */
1086
1087 static inline void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
1088 {
1089 sock_hold(sk);
1090 skb->sk = sk;
1091 skb->destructor = sock_wfree;
1092 atomic_add(skb->truesize, &sk->sk_wmem_alloc);
1093 }
1094
1095 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
1096 {
1097 skb->sk = sk;
1098 skb->destructor = sock_rfree;
1099 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
1100 }
1101
1102 extern void sk_reset_timer(struct sock *sk, struct timer_list* timer,
1103 unsigned long expires);
1104
1105 extern void sk_stop_timer(struct sock *sk, struct timer_list* timer);
1106
1107 extern int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
1108
1109 static inline int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
1110 {
1111 /* Cast skb->rcvbuf to unsigned... It's pointless, but reduces
1112 number of warnings when compiling with -W --ANK
1113 */
1114 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
1115 (unsigned)sk->sk_rcvbuf)
1116 return -ENOMEM;
1117 skb_set_owner_r(skb, sk);
1118 skb_queue_tail(&sk->sk_error_queue, skb);
1119 if (!sock_flag(sk, SOCK_DEAD))
1120 sk->sk_data_ready(sk, skb->len);
1121 return 0;
1122 }
1123
1124 /*
1125 * Recover an error report and clear atomically
1126 */
1127
1128 static inline int sock_error(struct sock *sk)
1129 {
1130 int err;
1131 if (likely(!sk->sk_err))
1132 return 0;
1133 err = xchg(&sk->sk_err, 0);
1134 return -err;
1135 }
1136
1137 static inline unsigned long sock_wspace(struct sock *sk)
1138 {
1139 int amt = 0;
1140
1141 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
1142 amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
1143 if (amt < 0)
1144 amt = 0;
1145 }
1146 return amt;
1147 }
1148
1149 static inline void sk_wake_async(struct sock *sk, int how, int band)
1150 {
1151 if (sk->sk_socket && sk->sk_socket->fasync_list)
1152 sock_wake_async(sk->sk_socket, how, band);
1153 }
1154
1155 #define SOCK_MIN_SNDBUF 2048
1156 #define SOCK_MIN_RCVBUF 256
1157
1158 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
1159 {
1160 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
1161 sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued / 2);
1162 sk->sk_sndbuf = max(sk->sk_sndbuf, SOCK_MIN_SNDBUF);
1163 }
1164 }
1165
1166 static inline struct sk_buff *sk_stream_alloc_pskb(struct sock *sk,
1167 int size, int mem,
1168 gfp_t gfp)
1169 {
1170 struct sk_buff *skb;
1171 int hdr_len;
1172
1173 hdr_len = SKB_DATA_ALIGN(sk->sk_prot->max_header);
1174 skb = alloc_skb_fclone(size + hdr_len, gfp);
1175 if (skb) {
1176 skb->truesize += mem;
1177 if (sk_stream_wmem_schedule(sk, skb->truesize)) {
1178 skb_reserve(skb, hdr_len);
1179 return skb;
1180 }
1181 __kfree_skb(skb);
1182 } else {
1183 sk->sk_prot->enter_memory_pressure();
1184 sk_stream_moderate_sndbuf(sk);
1185 }
1186 return NULL;
1187 }
1188
1189 static inline struct sk_buff *sk_stream_alloc_skb(struct sock *sk,
1190 int size,
1191 gfp_t gfp)
1192 {
1193 return sk_stream_alloc_pskb(sk, size, 0, gfp);
1194 }
1195
1196 static inline struct page *sk_stream_alloc_page(struct sock *sk)
1197 {
1198 struct page *page = NULL;
1199
1200 page = alloc_pages(sk->sk_allocation, 0);
1201 if (!page) {
1202 sk->sk_prot->enter_memory_pressure();
1203 sk_stream_moderate_sndbuf(sk);
1204 }
1205 return page;
1206 }
1207
1208 #define sk_stream_for_retrans_queue(skb, sk) \
1209 for (skb = (sk)->sk_write_queue.next; \
1210 (skb != (sk)->sk_send_head) && \
1211 (skb != (struct sk_buff *)&(sk)->sk_write_queue); \
1212 skb = skb->next)
1213
1214 /*from STCP for fast SACK Process*/
1215 #define sk_stream_for_retrans_queue_from(skb, sk) \
1216 for (; (skb != (sk)->sk_send_head) && \
1217 (skb != (struct sk_buff *)&(sk)->sk_write_queue); \
1218 skb = skb->next)
1219
1220 /*
1221 * Default write policy as shown to user space via poll/select/SIGIO
1222 */
1223 static inline int sock_writeable(const struct sock *sk)
1224 {
1225 return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf / 2);
1226 }
1227
1228 static inline gfp_t gfp_any(void)
1229 {
1230 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
1231 }
1232
1233 static inline long sock_rcvtimeo(const struct sock *sk, int noblock)
1234 {
1235 return noblock ? 0 : sk->sk_rcvtimeo;
1236 }
1237
1238 static inline long sock_sndtimeo(const struct sock *sk, int noblock)
1239 {
1240 return noblock ? 0 : sk->sk_sndtimeo;
1241 }
1242
1243 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
1244 {
1245 return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
1246 }
1247
1248 /* Alas, with timeout socket operations are not restartable.
1249 * Compare this to poll().
1250 */
1251 static inline int sock_intr_errno(long timeo)
1252 {
1253 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
1254 }
1255
1256 static __inline__ void
1257 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
1258 {
1259 struct timeval stamp;
1260
1261 skb_get_timestamp(skb, &stamp);
1262 if (sock_flag(sk, SOCK_RCVTSTAMP)) {
1263 /* Race occurred between timestamp enabling and packet
1264 receiving. Fill in the current time for now. */
1265 if (stamp.tv_sec == 0)
1266 do_gettimeofday(&stamp);
1267 skb_set_timestamp(skb, &stamp);
1268 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP, sizeof(struct timeval),
1269 &stamp);
1270 } else
1271 sk->sk_stamp = stamp;
1272 }
1273
1274 /**
1275 * sk_eat_skb - Release a skb if it is no longer needed
1276 * @sk: socket to eat this skb from
1277 * @skb: socket buffer to eat
1278 * @copied_early: flag indicating whether DMA operations copied this data early
1279 *
1280 * This routine must be called with interrupts disabled or with the socket
1281 * locked so that the sk_buff queue operation is ok.
1282 */
1283 #ifdef CONFIG_NET_DMA
1284 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, int copied_early)
1285 {
1286 __skb_unlink(skb, &sk->sk_receive_queue);
1287 if (!copied_early)
1288 __kfree_skb(skb);
1289 else
1290 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
1291 }
1292 #else
1293 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, int copied_early)
1294 {
1295 __skb_unlink(skb, &sk->sk_receive_queue);
1296 __kfree_skb(skb);
1297 }
1298 #endif
1299
1300 extern void sock_enable_timestamp(struct sock *sk);
1301 extern int sock_get_timestamp(struct sock *, struct timeval __user *);
1302
1303 /*
1304 * Enable debug/info messages
1305 */
1306
1307 #ifdef CONFIG_NETDEBUG
1308 #define NETDEBUG(fmt, args...) printk(fmt,##args)
1309 #define LIMIT_NETDEBUG(fmt, args...) do { if (net_ratelimit()) printk(fmt,##args); } while(0)
1310 #else
1311 #define NETDEBUG(fmt, args...) do { } while (0)
1312 #define LIMIT_NETDEBUG(fmt, args...) do { } while(0)
1313 #endif
1314
1315 /*
1316 * Macros for sleeping on a socket. Use them like this:
1317 *
1318 * SOCK_SLEEP_PRE(sk)
1319 * if (condition)
1320 * schedule();
1321 * SOCK_SLEEP_POST(sk)
1322 *
1323 * N.B. These are now obsolete and were, afaik, only ever used in DECnet
1324 * and when the last use of them in DECnet has gone, I'm intending to
1325 * remove them.
1326 */
1327
1328 #define SOCK_SLEEP_PRE(sk) { struct task_struct *tsk = current; \
1329 DECLARE_WAITQUEUE(wait, tsk); \
1330 tsk->state = TASK_INTERRUPTIBLE; \
1331 add_wait_queue((sk)->sk_sleep, &wait); \
1332 release_sock(sk);
1333
1334 #define SOCK_SLEEP_POST(sk) tsk->state = TASK_RUNNING; \
1335 remove_wait_queue((sk)->sk_sleep, &wait); \
1336 lock_sock(sk); \
1337 }
1338
1339 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
1340 {
1341 if (valbool)
1342 sock_set_flag(sk, bit);
1343 else
1344 sock_reset_flag(sk, bit);
1345 }
1346
1347 extern __u32 sysctl_wmem_max;
1348 extern __u32 sysctl_rmem_max;
1349
1350 #ifdef CONFIG_NET
1351 int siocdevprivate_ioctl(unsigned int fd, unsigned int cmd, unsigned long arg);
1352 #else
1353 static inline int siocdevprivate_ioctl(unsigned int fd, unsigned int cmd, unsigned long arg)
1354 {
1355 return -ENODEV;
1356 }
1357 #endif
1358
1359 extern void sk_init(void);
1360
1361 #ifdef CONFIG_SYSCTL
1362 extern struct ctl_table core_table[];
1363 #endif
1364
1365 extern int sysctl_optmem_max;
1366
1367 extern __u32 sysctl_wmem_default;
1368 extern __u32 sysctl_rmem_default;
1369
1370 #endif /* _SOCK_H */