]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - include/net/sock.h
Merge remote-tracking branches 'asoc/fix/dpcm', 'asoc/fix/imx', 'asoc/fix/msm8916...
[mirror_ubuntu-artful-kernel.git] / include / net / sock.h
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Definitions for the AF_INET socket handler.
7 *
8 * Version: @(#)sock.h 1.0.4 05/13/93
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche <flla@stud.uni-sb.de>
14 *
15 * Fixes:
16 * Alan Cox : Volatiles in skbuff pointers. See
17 * skbuff comments. May be overdone,
18 * better to prove they can be removed
19 * than the reverse.
20 * Alan Cox : Added a zapped field for tcp to note
21 * a socket is reset and must stay shut up
22 * Alan Cox : New fields for options
23 * Pauline Middelink : identd support
24 * Alan Cox : Eliminate low level recv/recvfrom
25 * David S. Miller : New socket lookup architecture.
26 * Steve Whitehouse: Default routines for sock_ops
27 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made
28 * protinfo be just a void pointer, as the
29 * protocol specific parts were moved to
30 * respective headers and ipv4/v6, etc now
31 * use private slabcaches for its socks
32 * Pedro Hortas : New flags field for socket options
33 *
34 *
35 * This program is free software; you can redistribute it and/or
36 * modify it under the terms of the GNU General Public License
37 * as published by the Free Software Foundation; either version
38 * 2 of the License, or (at your option) any later version.
39 */
40 #ifndef _SOCK_H
41 #define _SOCK_H
42
43 #include <linux/hardirq.h>
44 #include <linux/kernel.h>
45 #include <linux/list.h>
46 #include <linux/list_nulls.h>
47 #include <linux/timer.h>
48 #include <linux/cache.h>
49 #include <linux/bitops.h>
50 #include <linux/lockdep.h>
51 #include <linux/netdevice.h>
52 #include <linux/skbuff.h> /* struct sk_buff */
53 #include <linux/mm.h>
54 #include <linux/security.h>
55 #include <linux/slab.h>
56 #include <linux/uaccess.h>
57 #include <linux/page_counter.h>
58 #include <linux/memcontrol.h>
59 #include <linux/static_key.h>
60 #include <linux/sched.h>
61 #include <linux/wait.h>
62 #include <linux/cgroup-defs.h>
63
64 #include <linux/filter.h>
65 #include <linux/rculist_nulls.h>
66 #include <linux/poll.h>
67
68 #include <linux/atomic.h>
69 #include <linux/refcount.h>
70 #include <net/dst.h>
71 #include <net/checksum.h>
72 #include <net/tcp_states.h>
73 #include <linux/net_tstamp.h>
74 #include <net/smc.h>
75
76 /*
77 * This structure really needs to be cleaned up.
78 * Most of it is for TCP, and not used by any of
79 * the other protocols.
80 */
81
82 /* Define this to get the SOCK_DBG debugging facility. */
83 #define SOCK_DEBUGGING
84 #ifdef SOCK_DEBUGGING
85 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
86 printk(KERN_DEBUG msg); } while (0)
87 #else
88 /* Validate arguments and do nothing */
89 static inline __printf(2, 3)
90 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
91 {
92 }
93 #endif
94
95 /* This is the per-socket lock. The spinlock provides a synchronization
96 * between user contexts and software interrupt processing, whereas the
97 * mini-semaphore synchronizes multiple users amongst themselves.
98 */
99 typedef struct {
100 spinlock_t slock;
101 int owned;
102 wait_queue_head_t wq;
103 /*
104 * We express the mutex-alike socket_lock semantics
105 * to the lock validator by explicitly managing
106 * the slock as a lock variant (in addition to
107 * the slock itself):
108 */
109 #ifdef CONFIG_DEBUG_LOCK_ALLOC
110 struct lockdep_map dep_map;
111 #endif
112 } socket_lock_t;
113
114 struct sock;
115 struct proto;
116 struct net;
117
118 typedef __u32 __bitwise __portpair;
119 typedef __u64 __bitwise __addrpair;
120
121 /**
122 * struct sock_common - minimal network layer representation of sockets
123 * @skc_daddr: Foreign IPv4 addr
124 * @skc_rcv_saddr: Bound local IPv4 addr
125 * @skc_hash: hash value used with various protocol lookup tables
126 * @skc_u16hashes: two u16 hash values used by UDP lookup tables
127 * @skc_dport: placeholder for inet_dport/tw_dport
128 * @skc_num: placeholder for inet_num/tw_num
129 * @skc_family: network address family
130 * @skc_state: Connection state
131 * @skc_reuse: %SO_REUSEADDR setting
132 * @skc_reuseport: %SO_REUSEPORT setting
133 * @skc_bound_dev_if: bound device index if != 0
134 * @skc_bind_node: bind hash linkage for various protocol lookup tables
135 * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
136 * @skc_prot: protocol handlers inside a network family
137 * @skc_net: reference to the network namespace of this socket
138 * @skc_node: main hash linkage for various protocol lookup tables
139 * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
140 * @skc_tx_queue_mapping: tx queue number for this connection
141 * @skc_flags: place holder for sk_flags
142 * %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
143 * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
144 * @skc_incoming_cpu: record/match cpu processing incoming packets
145 * @skc_refcnt: reference count
146 *
147 * This is the minimal network layer representation of sockets, the header
148 * for struct sock and struct inet_timewait_sock.
149 */
150 struct sock_common {
151 /* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned
152 * address on 64bit arches : cf INET_MATCH()
153 */
154 union {
155 __addrpair skc_addrpair;
156 struct {
157 __be32 skc_daddr;
158 __be32 skc_rcv_saddr;
159 };
160 };
161 union {
162 unsigned int skc_hash;
163 __u16 skc_u16hashes[2];
164 };
165 /* skc_dport && skc_num must be grouped as well */
166 union {
167 __portpair skc_portpair;
168 struct {
169 __be16 skc_dport;
170 __u16 skc_num;
171 };
172 };
173
174 unsigned short skc_family;
175 volatile unsigned char skc_state;
176 unsigned char skc_reuse:4;
177 unsigned char skc_reuseport:1;
178 unsigned char skc_ipv6only:1;
179 unsigned char skc_net_refcnt:1;
180 int skc_bound_dev_if;
181 union {
182 struct hlist_node skc_bind_node;
183 struct hlist_node skc_portaddr_node;
184 };
185 struct proto *skc_prot;
186 possible_net_t skc_net;
187
188 #if IS_ENABLED(CONFIG_IPV6)
189 struct in6_addr skc_v6_daddr;
190 struct in6_addr skc_v6_rcv_saddr;
191 #endif
192
193 atomic64_t skc_cookie;
194
195 /* following fields are padding to force
196 * offset(struct sock, sk_refcnt) == 128 on 64bit arches
197 * assuming IPV6 is enabled. We use this padding differently
198 * for different kind of 'sockets'
199 */
200 union {
201 unsigned long skc_flags;
202 struct sock *skc_listener; /* request_sock */
203 struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */
204 };
205 /*
206 * fields between dontcopy_begin/dontcopy_end
207 * are not copied in sock_copy()
208 */
209 /* private: */
210 int skc_dontcopy_begin[0];
211 /* public: */
212 union {
213 struct hlist_node skc_node;
214 struct hlist_nulls_node skc_nulls_node;
215 };
216 int skc_tx_queue_mapping;
217 union {
218 int skc_incoming_cpu;
219 u32 skc_rcv_wnd;
220 u32 skc_tw_rcv_nxt; /* struct tcp_timewait_sock */
221 };
222
223 refcount_t skc_refcnt;
224 /* private: */
225 int skc_dontcopy_end[0];
226 union {
227 u32 skc_rxhash;
228 u32 skc_window_clamp;
229 u32 skc_tw_snd_nxt; /* struct tcp_timewait_sock */
230 };
231 /* public: */
232 };
233
234 /**
235 * struct sock - network layer representation of sockets
236 * @__sk_common: shared layout with inet_timewait_sock
237 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
238 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
239 * @sk_lock: synchronizer
240 * @sk_kern_sock: True if sock is using kernel lock classes
241 * @sk_rcvbuf: size of receive buffer in bytes
242 * @sk_wq: sock wait queue and async head
243 * @sk_rx_dst: receive input route used by early demux
244 * @sk_dst_cache: destination cache
245 * @sk_dst_pending_confirm: need to confirm neighbour
246 * @sk_policy: flow policy
247 * @sk_receive_queue: incoming packets
248 * @sk_wmem_alloc: transmit queue bytes committed
249 * @sk_tsq_flags: TCP Small Queues flags
250 * @sk_write_queue: Packet sending queue
251 * @sk_omem_alloc: "o" is "option" or "other"
252 * @sk_wmem_queued: persistent queue size
253 * @sk_forward_alloc: space allocated forward
254 * @sk_napi_id: id of the last napi context to receive data for sk
255 * @sk_ll_usec: usecs to busypoll when there is no data
256 * @sk_allocation: allocation mode
257 * @sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
258 * @sk_pacing_status: Pacing status (requested, handled by sch_fq)
259 * @sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
260 * @sk_sndbuf: size of send buffer in bytes
261 * @__sk_flags_offset: empty field used to determine location of bitfield
262 * @sk_padding: unused element for alignment
263 * @sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
264 * @sk_no_check_rx: allow zero checksum in RX packets
265 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
266 * @sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
267 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
268 * @sk_gso_max_size: Maximum GSO segment size to build
269 * @sk_gso_max_segs: Maximum number of GSO segments
270 * @sk_lingertime: %SO_LINGER l_linger setting
271 * @sk_backlog: always used with the per-socket spinlock held
272 * @sk_callback_lock: used with the callbacks in the end of this struct
273 * @sk_error_queue: rarely used
274 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
275 * IPV6_ADDRFORM for instance)
276 * @sk_err: last error
277 * @sk_err_soft: errors that don't cause failure but are the cause of a
278 * persistent failure not just 'timed out'
279 * @sk_drops: raw/udp drops counter
280 * @sk_ack_backlog: current listen backlog
281 * @sk_max_ack_backlog: listen backlog set in listen()
282 * @sk_uid: user id of owner
283 * @sk_priority: %SO_PRIORITY setting
284 * @sk_type: socket type (%SOCK_STREAM, etc)
285 * @sk_protocol: which protocol this socket belongs in this network family
286 * @sk_peer_pid: &struct pid for this socket's peer
287 * @sk_peer_cred: %SO_PEERCRED setting
288 * @sk_rcvlowat: %SO_RCVLOWAT setting
289 * @sk_rcvtimeo: %SO_RCVTIMEO setting
290 * @sk_sndtimeo: %SO_SNDTIMEO setting
291 * @sk_txhash: computed flow hash for use on transmit
292 * @sk_filter: socket filtering instructions
293 * @sk_timer: sock cleanup timer
294 * @sk_stamp: time stamp of last packet received
295 * @sk_tsflags: SO_TIMESTAMPING socket options
296 * @sk_tskey: counter to disambiguate concurrent tstamp requests
297 * @sk_socket: Identd and reporting IO signals
298 * @sk_user_data: RPC layer private data
299 * @sk_frag: cached page frag
300 * @sk_peek_off: current peek_offset value
301 * @sk_send_head: front of stuff to transmit
302 * @sk_security: used by security modules
303 * @sk_mark: generic packet mark
304 * @sk_cgrp_data: cgroup data for this cgroup
305 * @sk_memcg: this socket's memory cgroup association
306 * @sk_write_pending: a write to stream socket waits to start
307 * @sk_state_change: callback to indicate change in the state of the sock
308 * @sk_data_ready: callback to indicate there is data to be processed
309 * @sk_write_space: callback to indicate there is bf sending space available
310 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
311 * @sk_backlog_rcv: callback to process the backlog
312 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
313 * @sk_reuseport_cb: reuseport group container
314 * @sk_rcu: used during RCU grace period
315 */
316 struct sock {
317 /*
318 * Now struct inet_timewait_sock also uses sock_common, so please just
319 * don't add nothing before this first member (__sk_common) --acme
320 */
321 struct sock_common __sk_common;
322 #define sk_node __sk_common.skc_node
323 #define sk_nulls_node __sk_common.skc_nulls_node
324 #define sk_refcnt __sk_common.skc_refcnt
325 #define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping
326
327 #define sk_dontcopy_begin __sk_common.skc_dontcopy_begin
328 #define sk_dontcopy_end __sk_common.skc_dontcopy_end
329 #define sk_hash __sk_common.skc_hash
330 #define sk_portpair __sk_common.skc_portpair
331 #define sk_num __sk_common.skc_num
332 #define sk_dport __sk_common.skc_dport
333 #define sk_addrpair __sk_common.skc_addrpair
334 #define sk_daddr __sk_common.skc_daddr
335 #define sk_rcv_saddr __sk_common.skc_rcv_saddr
336 #define sk_family __sk_common.skc_family
337 #define sk_state __sk_common.skc_state
338 #define sk_reuse __sk_common.skc_reuse
339 #define sk_reuseport __sk_common.skc_reuseport
340 #define sk_ipv6only __sk_common.skc_ipv6only
341 #define sk_net_refcnt __sk_common.skc_net_refcnt
342 #define sk_bound_dev_if __sk_common.skc_bound_dev_if
343 #define sk_bind_node __sk_common.skc_bind_node
344 #define sk_prot __sk_common.skc_prot
345 #define sk_net __sk_common.skc_net
346 #define sk_v6_daddr __sk_common.skc_v6_daddr
347 #define sk_v6_rcv_saddr __sk_common.skc_v6_rcv_saddr
348 #define sk_cookie __sk_common.skc_cookie
349 #define sk_incoming_cpu __sk_common.skc_incoming_cpu
350 #define sk_flags __sk_common.skc_flags
351 #define sk_rxhash __sk_common.skc_rxhash
352
353 socket_lock_t sk_lock;
354 atomic_t sk_drops;
355 int sk_rcvlowat;
356 struct sk_buff_head sk_error_queue;
357 struct sk_buff_head sk_receive_queue;
358 /*
359 * The backlog queue is special, it is always used with
360 * the per-socket spinlock held and requires low latency
361 * access. Therefore we special case it's implementation.
362 * Note : rmem_alloc is in this structure to fill a hole
363 * on 64bit arches, not because its logically part of
364 * backlog.
365 */
366 struct {
367 atomic_t rmem_alloc;
368 int len;
369 struct sk_buff *head;
370 struct sk_buff *tail;
371 } sk_backlog;
372 #define sk_rmem_alloc sk_backlog.rmem_alloc
373
374 int sk_forward_alloc;
375 #ifdef CONFIG_NET_RX_BUSY_POLL
376 unsigned int sk_ll_usec;
377 /* ===== mostly read cache line ===== */
378 unsigned int sk_napi_id;
379 #endif
380 int sk_rcvbuf;
381
382 struct sk_filter __rcu *sk_filter;
383 union {
384 struct socket_wq __rcu *sk_wq;
385 struct socket_wq *sk_wq_raw;
386 };
387 #ifdef CONFIG_XFRM
388 struct xfrm_policy __rcu *sk_policy[2];
389 #endif
390 struct dst_entry *sk_rx_dst;
391 struct dst_entry __rcu *sk_dst_cache;
392 atomic_t sk_omem_alloc;
393 int sk_sndbuf;
394
395 /* ===== cache line for TX ===== */
396 int sk_wmem_queued;
397 refcount_t sk_wmem_alloc;
398 unsigned long sk_tsq_flags;
399 struct sk_buff *sk_send_head;
400 struct sk_buff_head sk_write_queue;
401 __s32 sk_peek_off;
402 int sk_write_pending;
403 __u32 sk_dst_pending_confirm;
404 u32 sk_pacing_status; /* see enum sk_pacing */
405 long sk_sndtimeo;
406 struct timer_list sk_timer;
407 __u32 sk_priority;
408 __u32 sk_mark;
409 u32 sk_pacing_rate; /* bytes per second */
410 u32 sk_max_pacing_rate;
411 struct page_frag sk_frag;
412 netdev_features_t sk_route_caps;
413 netdev_features_t sk_route_nocaps;
414 int sk_gso_type;
415 unsigned int sk_gso_max_size;
416 gfp_t sk_allocation;
417 __u32 sk_txhash;
418
419 /*
420 * Because of non atomicity rules, all
421 * changes are protected by socket lock.
422 */
423 unsigned int __sk_flags_offset[0];
424 #ifdef __BIG_ENDIAN_BITFIELD
425 #define SK_FL_PROTO_SHIFT 16
426 #define SK_FL_PROTO_MASK 0x00ff0000
427
428 #define SK_FL_TYPE_SHIFT 0
429 #define SK_FL_TYPE_MASK 0x0000ffff
430 #else
431 #define SK_FL_PROTO_SHIFT 8
432 #define SK_FL_PROTO_MASK 0x0000ff00
433
434 #define SK_FL_TYPE_SHIFT 16
435 #define SK_FL_TYPE_MASK 0xffff0000
436 #endif
437
438 kmemcheck_bitfield_begin(flags);
439 unsigned int sk_padding : 1,
440 sk_kern_sock : 1,
441 sk_no_check_tx : 1,
442 sk_no_check_rx : 1,
443 sk_userlocks : 4,
444 sk_protocol : 8,
445 sk_type : 16;
446 #define SK_PROTOCOL_MAX U8_MAX
447 kmemcheck_bitfield_end(flags);
448
449 u16 sk_gso_max_segs;
450 unsigned long sk_lingertime;
451 struct proto *sk_prot_creator;
452 rwlock_t sk_callback_lock;
453 int sk_err,
454 sk_err_soft;
455 u32 sk_ack_backlog;
456 u32 sk_max_ack_backlog;
457 kuid_t sk_uid;
458 struct pid *sk_peer_pid;
459 const struct cred *sk_peer_cred;
460 long sk_rcvtimeo;
461 ktime_t sk_stamp;
462 u16 sk_tsflags;
463 u8 sk_shutdown;
464 u32 sk_tskey;
465 struct socket *sk_socket;
466 void *sk_user_data;
467 #ifdef CONFIG_SECURITY
468 void *sk_security;
469 #endif
470 struct sock_cgroup_data sk_cgrp_data;
471 struct mem_cgroup *sk_memcg;
472 void (*sk_state_change)(struct sock *sk);
473 void (*sk_data_ready)(struct sock *sk);
474 void (*sk_write_space)(struct sock *sk);
475 void (*sk_error_report)(struct sock *sk);
476 int (*sk_backlog_rcv)(struct sock *sk,
477 struct sk_buff *skb);
478 void (*sk_destruct)(struct sock *sk);
479 struct sock_reuseport __rcu *sk_reuseport_cb;
480 struct rcu_head sk_rcu;
481 };
482
483 enum sk_pacing {
484 SK_PACING_NONE = 0,
485 SK_PACING_NEEDED = 1,
486 SK_PACING_FQ = 2,
487 };
488
489 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
490
491 #define rcu_dereference_sk_user_data(sk) rcu_dereference(__sk_user_data((sk)))
492 #define rcu_assign_sk_user_data(sk, ptr) rcu_assign_pointer(__sk_user_data((sk)), ptr)
493
494 /*
495 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
496 * or not whether his port will be reused by someone else. SK_FORCE_REUSE
497 * on a socket means that the socket will reuse everybody else's port
498 * without looking at the other's sk_reuse value.
499 */
500
501 #define SK_NO_REUSE 0
502 #define SK_CAN_REUSE 1
503 #define SK_FORCE_REUSE 2
504
505 int sk_set_peek_off(struct sock *sk, int val);
506
507 static inline int sk_peek_offset(struct sock *sk, int flags)
508 {
509 if (unlikely(flags & MSG_PEEK)) {
510 s32 off = READ_ONCE(sk->sk_peek_off);
511 if (off >= 0)
512 return off;
513 }
514
515 return 0;
516 }
517
518 static inline void sk_peek_offset_bwd(struct sock *sk, int val)
519 {
520 s32 off = READ_ONCE(sk->sk_peek_off);
521
522 if (unlikely(off >= 0)) {
523 off = max_t(s32, off - val, 0);
524 WRITE_ONCE(sk->sk_peek_off, off);
525 }
526 }
527
528 static inline void sk_peek_offset_fwd(struct sock *sk, int val)
529 {
530 sk_peek_offset_bwd(sk, -val);
531 }
532
533 /*
534 * Hashed lists helper routines
535 */
536 static inline struct sock *sk_entry(const struct hlist_node *node)
537 {
538 return hlist_entry(node, struct sock, sk_node);
539 }
540
541 static inline struct sock *__sk_head(const struct hlist_head *head)
542 {
543 return hlist_entry(head->first, struct sock, sk_node);
544 }
545
546 static inline struct sock *sk_head(const struct hlist_head *head)
547 {
548 return hlist_empty(head) ? NULL : __sk_head(head);
549 }
550
551 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
552 {
553 return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
554 }
555
556 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
557 {
558 return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
559 }
560
561 static inline struct sock *sk_next(const struct sock *sk)
562 {
563 return hlist_entry_safe(sk->sk_node.next, struct sock, sk_node);
564 }
565
566 static inline struct sock *sk_nulls_next(const struct sock *sk)
567 {
568 return (!is_a_nulls(sk->sk_nulls_node.next)) ?
569 hlist_nulls_entry(sk->sk_nulls_node.next,
570 struct sock, sk_nulls_node) :
571 NULL;
572 }
573
574 static inline bool sk_unhashed(const struct sock *sk)
575 {
576 return hlist_unhashed(&sk->sk_node);
577 }
578
579 static inline bool sk_hashed(const struct sock *sk)
580 {
581 return !sk_unhashed(sk);
582 }
583
584 static inline void sk_node_init(struct hlist_node *node)
585 {
586 node->pprev = NULL;
587 }
588
589 static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
590 {
591 node->pprev = NULL;
592 }
593
594 static inline void __sk_del_node(struct sock *sk)
595 {
596 __hlist_del(&sk->sk_node);
597 }
598
599 /* NB: equivalent to hlist_del_init_rcu */
600 static inline bool __sk_del_node_init(struct sock *sk)
601 {
602 if (sk_hashed(sk)) {
603 __sk_del_node(sk);
604 sk_node_init(&sk->sk_node);
605 return true;
606 }
607 return false;
608 }
609
610 /* Grab socket reference count. This operation is valid only
611 when sk is ALREADY grabbed f.e. it is found in hash table
612 or a list and the lookup is made under lock preventing hash table
613 modifications.
614 */
615
616 static __always_inline void sock_hold(struct sock *sk)
617 {
618 refcount_inc(&sk->sk_refcnt);
619 }
620
621 /* Ungrab socket in the context, which assumes that socket refcnt
622 cannot hit zero, f.e. it is true in context of any socketcall.
623 */
624 static __always_inline void __sock_put(struct sock *sk)
625 {
626 refcount_dec(&sk->sk_refcnt);
627 }
628
629 static inline bool sk_del_node_init(struct sock *sk)
630 {
631 bool rc = __sk_del_node_init(sk);
632
633 if (rc) {
634 /* paranoid for a while -acme */
635 WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
636 __sock_put(sk);
637 }
638 return rc;
639 }
640 #define sk_del_node_init_rcu(sk) sk_del_node_init(sk)
641
642 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
643 {
644 if (sk_hashed(sk)) {
645 hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
646 return true;
647 }
648 return false;
649 }
650
651 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
652 {
653 bool rc = __sk_nulls_del_node_init_rcu(sk);
654
655 if (rc) {
656 /* paranoid for a while -acme */
657 WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
658 __sock_put(sk);
659 }
660 return rc;
661 }
662
663 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
664 {
665 hlist_add_head(&sk->sk_node, list);
666 }
667
668 static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
669 {
670 sock_hold(sk);
671 __sk_add_node(sk, list);
672 }
673
674 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
675 {
676 sock_hold(sk);
677 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
678 sk->sk_family == AF_INET6)
679 hlist_add_tail_rcu(&sk->sk_node, list);
680 else
681 hlist_add_head_rcu(&sk->sk_node, list);
682 }
683
684 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
685 {
686 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
687 sk->sk_family == AF_INET6)
688 hlist_nulls_add_tail_rcu(&sk->sk_nulls_node, list);
689 else
690 hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
691 }
692
693 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
694 {
695 sock_hold(sk);
696 __sk_nulls_add_node_rcu(sk, list);
697 }
698
699 static inline void __sk_del_bind_node(struct sock *sk)
700 {
701 __hlist_del(&sk->sk_bind_node);
702 }
703
704 static inline void sk_add_bind_node(struct sock *sk,
705 struct hlist_head *list)
706 {
707 hlist_add_head(&sk->sk_bind_node, list);
708 }
709
710 #define sk_for_each(__sk, list) \
711 hlist_for_each_entry(__sk, list, sk_node)
712 #define sk_for_each_rcu(__sk, list) \
713 hlist_for_each_entry_rcu(__sk, list, sk_node)
714 #define sk_nulls_for_each(__sk, node, list) \
715 hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
716 #define sk_nulls_for_each_rcu(__sk, node, list) \
717 hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
718 #define sk_for_each_from(__sk) \
719 hlist_for_each_entry_from(__sk, sk_node)
720 #define sk_nulls_for_each_from(__sk, node) \
721 if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
722 hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
723 #define sk_for_each_safe(__sk, tmp, list) \
724 hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
725 #define sk_for_each_bound(__sk, list) \
726 hlist_for_each_entry(__sk, list, sk_bind_node)
727
728 /**
729 * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset
730 * @tpos: the type * to use as a loop cursor.
731 * @pos: the &struct hlist_node to use as a loop cursor.
732 * @head: the head for your list.
733 * @offset: offset of hlist_node within the struct.
734 *
735 */
736 #define sk_for_each_entry_offset_rcu(tpos, pos, head, offset) \
737 for (pos = rcu_dereference((head)->first); \
738 pos != NULL && \
739 ({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;}); \
740 pos = rcu_dereference(pos->next))
741
742 static inline struct user_namespace *sk_user_ns(struct sock *sk)
743 {
744 /* Careful only use this in a context where these parameters
745 * can not change and must all be valid, such as recvmsg from
746 * userspace.
747 */
748 return sk->sk_socket->file->f_cred->user_ns;
749 }
750
751 /* Sock flags */
752 enum sock_flags {
753 SOCK_DEAD,
754 SOCK_DONE,
755 SOCK_URGINLINE,
756 SOCK_KEEPOPEN,
757 SOCK_LINGER,
758 SOCK_DESTROY,
759 SOCK_BROADCAST,
760 SOCK_TIMESTAMP,
761 SOCK_ZAPPED,
762 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
763 SOCK_DBG, /* %SO_DEBUG setting */
764 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
765 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
766 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
767 SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
768 SOCK_MEMALLOC, /* VM depends on this socket for swapping */
769 SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */
770 SOCK_FASYNC, /* fasync() active */
771 SOCK_RXQ_OVFL,
772 SOCK_ZEROCOPY, /* buffers from userspace */
773 SOCK_WIFI_STATUS, /* push wifi status to userspace */
774 SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
775 * Will use last 4 bytes of packet sent from
776 * user-space instead.
777 */
778 SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
779 SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
780 SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */
781 };
782
783 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
784
785 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
786 {
787 nsk->sk_flags = osk->sk_flags;
788 }
789
790 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
791 {
792 __set_bit(flag, &sk->sk_flags);
793 }
794
795 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
796 {
797 __clear_bit(flag, &sk->sk_flags);
798 }
799
800 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
801 {
802 return test_bit(flag, &sk->sk_flags);
803 }
804
805 #ifdef CONFIG_NET
806 extern struct static_key memalloc_socks;
807 static inline int sk_memalloc_socks(void)
808 {
809 return static_key_false(&memalloc_socks);
810 }
811 #else
812
813 static inline int sk_memalloc_socks(void)
814 {
815 return 0;
816 }
817
818 #endif
819
820 static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask)
821 {
822 return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC);
823 }
824
825 static inline void sk_acceptq_removed(struct sock *sk)
826 {
827 sk->sk_ack_backlog--;
828 }
829
830 static inline void sk_acceptq_added(struct sock *sk)
831 {
832 sk->sk_ack_backlog++;
833 }
834
835 static inline bool sk_acceptq_is_full(const struct sock *sk)
836 {
837 return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
838 }
839
840 /*
841 * Compute minimal free write space needed to queue new packets.
842 */
843 static inline int sk_stream_min_wspace(const struct sock *sk)
844 {
845 return sk->sk_wmem_queued >> 1;
846 }
847
848 static inline int sk_stream_wspace(const struct sock *sk)
849 {
850 return sk->sk_sndbuf - sk->sk_wmem_queued;
851 }
852
853 void sk_stream_write_space(struct sock *sk);
854
855 /* OOB backlog add */
856 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
857 {
858 /* dont let skb dst not refcounted, we are going to leave rcu lock */
859 skb_dst_force_safe(skb);
860
861 if (!sk->sk_backlog.tail)
862 sk->sk_backlog.head = skb;
863 else
864 sk->sk_backlog.tail->next = skb;
865
866 sk->sk_backlog.tail = skb;
867 skb->next = NULL;
868 }
869
870 /*
871 * Take into account size of receive queue and backlog queue
872 * Do not take into account this skb truesize,
873 * to allow even a single big packet to come.
874 */
875 static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
876 {
877 unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
878
879 return qsize > limit;
880 }
881
882 /* The per-socket spinlock must be held here. */
883 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
884 unsigned int limit)
885 {
886 if (sk_rcvqueues_full(sk, limit))
887 return -ENOBUFS;
888
889 /*
890 * If the skb was allocated from pfmemalloc reserves, only
891 * allow SOCK_MEMALLOC sockets to use it as this socket is
892 * helping free memory
893 */
894 if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
895 return -ENOMEM;
896
897 __sk_add_backlog(sk, skb);
898 sk->sk_backlog.len += skb->truesize;
899 return 0;
900 }
901
902 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
903
904 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
905 {
906 if (sk_memalloc_socks() && skb_pfmemalloc(skb))
907 return __sk_backlog_rcv(sk, skb);
908
909 return sk->sk_backlog_rcv(sk, skb);
910 }
911
912 static inline void sk_incoming_cpu_update(struct sock *sk)
913 {
914 int cpu = raw_smp_processor_id();
915
916 if (unlikely(sk->sk_incoming_cpu != cpu))
917 sk->sk_incoming_cpu = cpu;
918 }
919
920 static inline void sock_rps_record_flow_hash(__u32 hash)
921 {
922 #ifdef CONFIG_RPS
923 struct rps_sock_flow_table *sock_flow_table;
924
925 rcu_read_lock();
926 sock_flow_table = rcu_dereference(rps_sock_flow_table);
927 rps_record_sock_flow(sock_flow_table, hash);
928 rcu_read_unlock();
929 #endif
930 }
931
932 static inline void sock_rps_record_flow(const struct sock *sk)
933 {
934 #ifdef CONFIG_RPS
935 if (static_key_false(&rfs_needed)) {
936 /* Reading sk->sk_rxhash might incur an expensive cache line
937 * miss.
938 *
939 * TCP_ESTABLISHED does cover almost all states where RFS
940 * might be useful, and is cheaper [1] than testing :
941 * IPv4: inet_sk(sk)->inet_daddr
942 * IPv6: ipv6_addr_any(&sk->sk_v6_daddr)
943 * OR an additional socket flag
944 * [1] : sk_state and sk_prot are in the same cache line.
945 */
946 if (sk->sk_state == TCP_ESTABLISHED)
947 sock_rps_record_flow_hash(sk->sk_rxhash);
948 }
949 #endif
950 }
951
952 static inline void sock_rps_save_rxhash(struct sock *sk,
953 const struct sk_buff *skb)
954 {
955 #ifdef CONFIG_RPS
956 if (unlikely(sk->sk_rxhash != skb->hash))
957 sk->sk_rxhash = skb->hash;
958 #endif
959 }
960
961 static inline void sock_rps_reset_rxhash(struct sock *sk)
962 {
963 #ifdef CONFIG_RPS
964 sk->sk_rxhash = 0;
965 #endif
966 }
967
968 #define sk_wait_event(__sk, __timeo, __condition, __wait) \
969 ({ int __rc; \
970 release_sock(__sk); \
971 __rc = __condition; \
972 if (!__rc) { \
973 *(__timeo) = wait_woken(__wait, \
974 TASK_INTERRUPTIBLE, \
975 *(__timeo)); \
976 } \
977 sched_annotate_sleep(); \
978 lock_sock(__sk); \
979 __rc = __condition; \
980 __rc; \
981 })
982
983 int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
984 int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
985 void sk_stream_wait_close(struct sock *sk, long timeo_p);
986 int sk_stream_error(struct sock *sk, int flags, int err);
987 void sk_stream_kill_queues(struct sock *sk);
988 void sk_set_memalloc(struct sock *sk);
989 void sk_clear_memalloc(struct sock *sk);
990
991 void __sk_flush_backlog(struct sock *sk);
992
993 static inline bool sk_flush_backlog(struct sock *sk)
994 {
995 if (unlikely(READ_ONCE(sk->sk_backlog.tail))) {
996 __sk_flush_backlog(sk);
997 return true;
998 }
999 return false;
1000 }
1001
1002 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb);
1003
1004 struct request_sock_ops;
1005 struct timewait_sock_ops;
1006 struct inet_hashinfo;
1007 struct raw_hashinfo;
1008 struct smc_hashinfo;
1009 struct module;
1010
1011 /*
1012 * caches using SLAB_TYPESAFE_BY_RCU should let .next pointer from nulls nodes
1013 * un-modified. Special care is taken when initializing object to zero.
1014 */
1015 static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1016 {
1017 if (offsetof(struct sock, sk_node.next) != 0)
1018 memset(sk, 0, offsetof(struct sock, sk_node.next));
1019 memset(&sk->sk_node.pprev, 0,
1020 size - offsetof(struct sock, sk_node.pprev));
1021 }
1022
1023 /* Networking protocol blocks we attach to sockets.
1024 * socket layer -> transport layer interface
1025 */
1026 struct proto {
1027 void (*close)(struct sock *sk,
1028 long timeout);
1029 int (*connect)(struct sock *sk,
1030 struct sockaddr *uaddr,
1031 int addr_len);
1032 int (*disconnect)(struct sock *sk, int flags);
1033
1034 struct sock * (*accept)(struct sock *sk, int flags, int *err,
1035 bool kern);
1036
1037 int (*ioctl)(struct sock *sk, int cmd,
1038 unsigned long arg);
1039 int (*init)(struct sock *sk);
1040 void (*destroy)(struct sock *sk);
1041 void (*shutdown)(struct sock *sk, int how);
1042 int (*setsockopt)(struct sock *sk, int level,
1043 int optname, char __user *optval,
1044 unsigned int optlen);
1045 int (*getsockopt)(struct sock *sk, int level,
1046 int optname, char __user *optval,
1047 int __user *option);
1048 void (*keepalive)(struct sock *sk, int valbool);
1049 #ifdef CONFIG_COMPAT
1050 int (*compat_setsockopt)(struct sock *sk,
1051 int level,
1052 int optname, char __user *optval,
1053 unsigned int optlen);
1054 int (*compat_getsockopt)(struct sock *sk,
1055 int level,
1056 int optname, char __user *optval,
1057 int __user *option);
1058 int (*compat_ioctl)(struct sock *sk,
1059 unsigned int cmd, unsigned long arg);
1060 #endif
1061 int (*sendmsg)(struct sock *sk, struct msghdr *msg,
1062 size_t len);
1063 int (*recvmsg)(struct sock *sk, struct msghdr *msg,
1064 size_t len, int noblock, int flags,
1065 int *addr_len);
1066 int (*sendpage)(struct sock *sk, struct page *page,
1067 int offset, size_t size, int flags);
1068 int (*bind)(struct sock *sk,
1069 struct sockaddr *uaddr, int addr_len);
1070
1071 int (*backlog_rcv) (struct sock *sk,
1072 struct sk_buff *skb);
1073
1074 void (*release_cb)(struct sock *sk);
1075
1076 /* Keeping track of sk's, looking them up, and port selection methods. */
1077 int (*hash)(struct sock *sk);
1078 void (*unhash)(struct sock *sk);
1079 void (*rehash)(struct sock *sk);
1080 int (*get_port)(struct sock *sk, unsigned short snum);
1081
1082 /* Keeping track of sockets in use */
1083 #ifdef CONFIG_PROC_FS
1084 unsigned int inuse_idx;
1085 #endif
1086
1087 bool (*stream_memory_free)(const struct sock *sk);
1088 /* Memory pressure */
1089 void (*enter_memory_pressure)(struct sock *sk);
1090 void (*leave_memory_pressure)(struct sock *sk);
1091 atomic_long_t *memory_allocated; /* Current allocated memory. */
1092 struct percpu_counter *sockets_allocated; /* Current number of sockets. */
1093 /*
1094 * Pressure flag: try to collapse.
1095 * Technical note: it is used by multiple contexts non atomically.
1096 * All the __sk_mem_schedule() is of this nature: accounting
1097 * is strict, actions are advisory and have some latency.
1098 */
1099 unsigned long *memory_pressure;
1100 long *sysctl_mem;
1101 int *sysctl_wmem;
1102 int *sysctl_rmem;
1103 int max_header;
1104 bool no_autobind;
1105
1106 struct kmem_cache *slab;
1107 unsigned int obj_size;
1108 int slab_flags;
1109
1110 struct percpu_counter *orphan_count;
1111
1112 struct request_sock_ops *rsk_prot;
1113 struct timewait_sock_ops *twsk_prot;
1114
1115 union {
1116 struct inet_hashinfo *hashinfo;
1117 struct udp_table *udp_table;
1118 struct raw_hashinfo *raw_hash;
1119 struct smc_hashinfo *smc_hash;
1120 } h;
1121
1122 struct module *owner;
1123
1124 char name[32];
1125
1126 struct list_head node;
1127 #ifdef SOCK_REFCNT_DEBUG
1128 atomic_t socks;
1129 #endif
1130 int (*diag_destroy)(struct sock *sk, int err);
1131 } __randomize_layout;
1132
1133 int proto_register(struct proto *prot, int alloc_slab);
1134 void proto_unregister(struct proto *prot);
1135
1136 #ifdef SOCK_REFCNT_DEBUG
1137 static inline void sk_refcnt_debug_inc(struct sock *sk)
1138 {
1139 atomic_inc(&sk->sk_prot->socks);
1140 }
1141
1142 static inline void sk_refcnt_debug_dec(struct sock *sk)
1143 {
1144 atomic_dec(&sk->sk_prot->socks);
1145 printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1146 sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1147 }
1148
1149 static inline void sk_refcnt_debug_release(const struct sock *sk)
1150 {
1151 if (refcount_read(&sk->sk_refcnt) != 1)
1152 printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1153 sk->sk_prot->name, sk, refcount_read(&sk->sk_refcnt));
1154 }
1155 #else /* SOCK_REFCNT_DEBUG */
1156 #define sk_refcnt_debug_inc(sk) do { } while (0)
1157 #define sk_refcnt_debug_dec(sk) do { } while (0)
1158 #define sk_refcnt_debug_release(sk) do { } while (0)
1159 #endif /* SOCK_REFCNT_DEBUG */
1160
1161 static inline bool sk_stream_memory_free(const struct sock *sk)
1162 {
1163 if (sk->sk_wmem_queued >= sk->sk_sndbuf)
1164 return false;
1165
1166 return sk->sk_prot->stream_memory_free ?
1167 sk->sk_prot->stream_memory_free(sk) : true;
1168 }
1169
1170 static inline bool sk_stream_is_writeable(const struct sock *sk)
1171 {
1172 return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1173 sk_stream_memory_free(sk);
1174 }
1175
1176 static inline int sk_under_cgroup_hierarchy(struct sock *sk,
1177 struct cgroup *ancestor)
1178 {
1179 #ifdef CONFIG_SOCK_CGROUP_DATA
1180 return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data),
1181 ancestor);
1182 #else
1183 return -ENOTSUPP;
1184 #endif
1185 }
1186
1187 static inline bool sk_has_memory_pressure(const struct sock *sk)
1188 {
1189 return sk->sk_prot->memory_pressure != NULL;
1190 }
1191
1192 static inline bool sk_under_memory_pressure(const struct sock *sk)
1193 {
1194 if (!sk->sk_prot->memory_pressure)
1195 return false;
1196
1197 if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
1198 mem_cgroup_under_socket_pressure(sk->sk_memcg))
1199 return true;
1200
1201 return !!*sk->sk_prot->memory_pressure;
1202 }
1203
1204 static inline long
1205 sk_memory_allocated(const struct sock *sk)
1206 {
1207 return atomic_long_read(sk->sk_prot->memory_allocated);
1208 }
1209
1210 static inline long
1211 sk_memory_allocated_add(struct sock *sk, int amt)
1212 {
1213 return atomic_long_add_return(amt, sk->sk_prot->memory_allocated);
1214 }
1215
1216 static inline void
1217 sk_memory_allocated_sub(struct sock *sk, int amt)
1218 {
1219 atomic_long_sub(amt, sk->sk_prot->memory_allocated);
1220 }
1221
1222 static inline void sk_sockets_allocated_dec(struct sock *sk)
1223 {
1224 percpu_counter_dec(sk->sk_prot->sockets_allocated);
1225 }
1226
1227 static inline void sk_sockets_allocated_inc(struct sock *sk)
1228 {
1229 percpu_counter_inc(sk->sk_prot->sockets_allocated);
1230 }
1231
1232 static inline int
1233 sk_sockets_allocated_read_positive(struct sock *sk)
1234 {
1235 return percpu_counter_read_positive(sk->sk_prot->sockets_allocated);
1236 }
1237
1238 static inline int
1239 proto_sockets_allocated_sum_positive(struct proto *prot)
1240 {
1241 return percpu_counter_sum_positive(prot->sockets_allocated);
1242 }
1243
1244 static inline long
1245 proto_memory_allocated(struct proto *prot)
1246 {
1247 return atomic_long_read(prot->memory_allocated);
1248 }
1249
1250 static inline bool
1251 proto_memory_pressure(struct proto *prot)
1252 {
1253 if (!prot->memory_pressure)
1254 return false;
1255 return !!*prot->memory_pressure;
1256 }
1257
1258
1259 #ifdef CONFIG_PROC_FS
1260 /* Called with local bh disabled */
1261 void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
1262 int sock_prot_inuse_get(struct net *net, struct proto *proto);
1263 #else
1264 static inline void sock_prot_inuse_add(struct net *net, struct proto *prot,
1265 int inc)
1266 {
1267 }
1268 #endif
1269
1270
1271 /* With per-bucket locks this operation is not-atomic, so that
1272 * this version is not worse.
1273 */
1274 static inline int __sk_prot_rehash(struct sock *sk)
1275 {
1276 sk->sk_prot->unhash(sk);
1277 return sk->sk_prot->hash(sk);
1278 }
1279
1280 /* About 10 seconds */
1281 #define SOCK_DESTROY_TIME (10*HZ)
1282
1283 /* Sockets 0-1023 can't be bound to unless you are superuser */
1284 #define PROT_SOCK 1024
1285
1286 #define SHUTDOWN_MASK 3
1287 #define RCV_SHUTDOWN 1
1288 #define SEND_SHUTDOWN 2
1289
1290 #define SOCK_SNDBUF_LOCK 1
1291 #define SOCK_RCVBUF_LOCK 2
1292 #define SOCK_BINDADDR_LOCK 4
1293 #define SOCK_BINDPORT_LOCK 8
1294
1295 struct socket_alloc {
1296 struct socket socket;
1297 struct inode vfs_inode;
1298 };
1299
1300 static inline struct socket *SOCKET_I(struct inode *inode)
1301 {
1302 return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1303 }
1304
1305 static inline struct inode *SOCK_INODE(struct socket *socket)
1306 {
1307 return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1308 }
1309
1310 /*
1311 * Functions for memory accounting
1312 */
1313 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind);
1314 int __sk_mem_schedule(struct sock *sk, int size, int kind);
1315 void __sk_mem_reduce_allocated(struct sock *sk, int amount);
1316 void __sk_mem_reclaim(struct sock *sk, int amount);
1317
1318 /* We used to have PAGE_SIZE here, but systems with 64KB pages
1319 * do not necessarily have 16x time more memory than 4KB ones.
1320 */
1321 #define SK_MEM_QUANTUM 4096
1322 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1323 #define SK_MEM_SEND 0
1324 #define SK_MEM_RECV 1
1325
1326 /* sysctl_mem values are in pages, we convert them in SK_MEM_QUANTUM units */
1327 static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1328 {
1329 long val = sk->sk_prot->sysctl_mem[index];
1330
1331 #if PAGE_SIZE > SK_MEM_QUANTUM
1332 val <<= PAGE_SHIFT - SK_MEM_QUANTUM_SHIFT;
1333 #elif PAGE_SIZE < SK_MEM_QUANTUM
1334 val >>= SK_MEM_QUANTUM_SHIFT - PAGE_SHIFT;
1335 #endif
1336 return val;
1337 }
1338
1339 static inline int sk_mem_pages(int amt)
1340 {
1341 return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1342 }
1343
1344 static inline bool sk_has_account(struct sock *sk)
1345 {
1346 /* return true if protocol supports memory accounting */
1347 return !!sk->sk_prot->memory_allocated;
1348 }
1349
1350 static inline bool sk_wmem_schedule(struct sock *sk, int size)
1351 {
1352 if (!sk_has_account(sk))
1353 return true;
1354 return size <= sk->sk_forward_alloc ||
1355 __sk_mem_schedule(sk, size, SK_MEM_SEND);
1356 }
1357
1358 static inline bool
1359 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1360 {
1361 if (!sk_has_account(sk))
1362 return true;
1363 return size<= sk->sk_forward_alloc ||
1364 __sk_mem_schedule(sk, size, SK_MEM_RECV) ||
1365 skb_pfmemalloc(skb);
1366 }
1367
1368 static inline void sk_mem_reclaim(struct sock *sk)
1369 {
1370 if (!sk_has_account(sk))
1371 return;
1372 if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
1373 __sk_mem_reclaim(sk, sk->sk_forward_alloc);
1374 }
1375
1376 static inline void sk_mem_reclaim_partial(struct sock *sk)
1377 {
1378 if (!sk_has_account(sk))
1379 return;
1380 if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
1381 __sk_mem_reclaim(sk, sk->sk_forward_alloc - 1);
1382 }
1383
1384 static inline void sk_mem_charge(struct sock *sk, int size)
1385 {
1386 if (!sk_has_account(sk))
1387 return;
1388 sk->sk_forward_alloc -= size;
1389 }
1390
1391 static inline void sk_mem_uncharge(struct sock *sk, int size)
1392 {
1393 if (!sk_has_account(sk))
1394 return;
1395 sk->sk_forward_alloc += size;
1396
1397 /* Avoid a possible overflow.
1398 * TCP send queues can make this happen, if sk_mem_reclaim()
1399 * is not called and more than 2 GBytes are released at once.
1400 *
1401 * If we reach 2 MBytes, reclaim 1 MBytes right now, there is
1402 * no need to hold that much forward allocation anyway.
1403 */
1404 if (unlikely(sk->sk_forward_alloc >= 1 << 21))
1405 __sk_mem_reclaim(sk, 1 << 20);
1406 }
1407
1408 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1409 {
1410 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1411 sk->sk_wmem_queued -= skb->truesize;
1412 sk_mem_uncharge(sk, skb->truesize);
1413 __kfree_skb(skb);
1414 }
1415
1416 static inline void sock_release_ownership(struct sock *sk)
1417 {
1418 if (sk->sk_lock.owned) {
1419 sk->sk_lock.owned = 0;
1420
1421 /* The sk_lock has mutex_unlock() semantics: */
1422 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
1423 }
1424 }
1425
1426 /*
1427 * Macro so as to not evaluate some arguments when
1428 * lockdep is not enabled.
1429 *
1430 * Mark both the sk_lock and the sk_lock.slock as a
1431 * per-address-family lock class.
1432 */
1433 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) \
1434 do { \
1435 sk->sk_lock.owned = 0; \
1436 init_waitqueue_head(&sk->sk_lock.wq); \
1437 spin_lock_init(&(sk)->sk_lock.slock); \
1438 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \
1439 sizeof((sk)->sk_lock)); \
1440 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \
1441 (skey), (sname)); \
1442 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \
1443 } while (0)
1444
1445 #ifdef CONFIG_LOCKDEP
1446 static inline bool lockdep_sock_is_held(const struct sock *csk)
1447 {
1448 struct sock *sk = (struct sock *)csk;
1449
1450 return lockdep_is_held(&sk->sk_lock) ||
1451 lockdep_is_held(&sk->sk_lock.slock);
1452 }
1453 #endif
1454
1455 void lock_sock_nested(struct sock *sk, int subclass);
1456
1457 static inline void lock_sock(struct sock *sk)
1458 {
1459 lock_sock_nested(sk, 0);
1460 }
1461
1462 void release_sock(struct sock *sk);
1463
1464 /* BH context may only use the following locking interface. */
1465 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock))
1466 #define bh_lock_sock_nested(__sk) \
1467 spin_lock_nested(&((__sk)->sk_lock.slock), \
1468 SINGLE_DEPTH_NESTING)
1469 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock))
1470
1471 bool lock_sock_fast(struct sock *sk);
1472 /**
1473 * unlock_sock_fast - complement of lock_sock_fast
1474 * @sk: socket
1475 * @slow: slow mode
1476 *
1477 * fast unlock socket for user context.
1478 * If slow mode is on, we call regular release_sock()
1479 */
1480 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1481 {
1482 if (slow)
1483 release_sock(sk);
1484 else
1485 spin_unlock_bh(&sk->sk_lock.slock);
1486 }
1487
1488 /* Used by processes to "lock" a socket state, so that
1489 * interrupts and bottom half handlers won't change it
1490 * from under us. It essentially blocks any incoming
1491 * packets, so that we won't get any new data or any
1492 * packets that change the state of the socket.
1493 *
1494 * While locked, BH processing will add new packets to
1495 * the backlog queue. This queue is processed by the
1496 * owner of the socket lock right before it is released.
1497 *
1498 * Since ~2.3.5 it is also exclusive sleep lock serializing
1499 * accesses from user process context.
1500 */
1501
1502 static inline void sock_owned_by_me(const struct sock *sk)
1503 {
1504 #ifdef CONFIG_LOCKDEP
1505 WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks);
1506 #endif
1507 }
1508
1509 static inline bool sock_owned_by_user(const struct sock *sk)
1510 {
1511 sock_owned_by_me(sk);
1512 return sk->sk_lock.owned;
1513 }
1514
1515 /* no reclassification while locks are held */
1516 static inline bool sock_allow_reclassification(const struct sock *csk)
1517 {
1518 struct sock *sk = (struct sock *)csk;
1519
1520 return !sk->sk_lock.owned && !spin_is_locked(&sk->sk_lock.slock);
1521 }
1522
1523 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1524 struct proto *prot, int kern);
1525 void sk_free(struct sock *sk);
1526 void sk_destruct(struct sock *sk);
1527 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1528 void sk_free_unlock_clone(struct sock *sk);
1529
1530 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1531 gfp_t priority);
1532 void __sock_wfree(struct sk_buff *skb);
1533 void sock_wfree(struct sk_buff *skb);
1534 void skb_orphan_partial(struct sk_buff *skb);
1535 void sock_rfree(struct sk_buff *skb);
1536 void sock_efree(struct sk_buff *skb);
1537 #ifdef CONFIG_INET
1538 void sock_edemux(struct sk_buff *skb);
1539 #else
1540 #define sock_edemux sock_efree
1541 #endif
1542
1543 int sock_setsockopt(struct socket *sock, int level, int op,
1544 char __user *optval, unsigned int optlen);
1545
1546 int sock_getsockopt(struct socket *sock, int level, int op,
1547 char __user *optval, int __user *optlen);
1548 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1549 int noblock, int *errcode);
1550 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1551 unsigned long data_len, int noblock,
1552 int *errcode, int max_page_order);
1553 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1554 void sock_kfree_s(struct sock *sk, void *mem, int size);
1555 void sock_kzfree_s(struct sock *sk, void *mem, int size);
1556 void sk_send_sigurg(struct sock *sk);
1557
1558 struct sockcm_cookie {
1559 u32 mark;
1560 u16 tsflags;
1561 };
1562
1563 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
1564 struct sockcm_cookie *sockc);
1565 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1566 struct sockcm_cookie *sockc);
1567
1568 /*
1569 * Functions to fill in entries in struct proto_ops when a protocol
1570 * does not implement a particular function.
1571 */
1572 int sock_no_bind(struct socket *, struct sockaddr *, int);
1573 int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1574 int sock_no_socketpair(struct socket *, struct socket *);
1575 int sock_no_accept(struct socket *, struct socket *, int, bool);
1576 int sock_no_getname(struct socket *, struct sockaddr *, int *, int);
1577 unsigned int sock_no_poll(struct file *, struct socket *,
1578 struct poll_table_struct *);
1579 int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1580 int sock_no_listen(struct socket *, int);
1581 int sock_no_shutdown(struct socket *, int);
1582 int sock_no_getsockopt(struct socket *, int , int, char __user *, int __user *);
1583 int sock_no_setsockopt(struct socket *, int, int, char __user *, unsigned int);
1584 int sock_no_sendmsg(struct socket *, struct msghdr *, size_t);
1585 int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int);
1586 int sock_no_mmap(struct file *file, struct socket *sock,
1587 struct vm_area_struct *vma);
1588 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset,
1589 size_t size, int flags);
1590
1591 /*
1592 * Functions to fill in entries in struct proto_ops when a protocol
1593 * uses the inet style.
1594 */
1595 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1596 char __user *optval, int __user *optlen);
1597 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1598 int flags);
1599 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1600 char __user *optval, unsigned int optlen);
1601 int compat_sock_common_getsockopt(struct socket *sock, int level,
1602 int optname, char __user *optval, int __user *optlen);
1603 int compat_sock_common_setsockopt(struct socket *sock, int level,
1604 int optname, char __user *optval, unsigned int optlen);
1605
1606 void sk_common_release(struct sock *sk);
1607
1608 /*
1609 * Default socket callbacks and setup code
1610 */
1611
1612 /* Initialise core socket variables */
1613 void sock_init_data(struct socket *sock, struct sock *sk);
1614
1615 /*
1616 * Socket reference counting postulates.
1617 *
1618 * * Each user of socket SHOULD hold a reference count.
1619 * * Each access point to socket (an hash table bucket, reference from a list,
1620 * running timer, skb in flight MUST hold a reference count.
1621 * * When reference count hits 0, it means it will never increase back.
1622 * * When reference count hits 0, it means that no references from
1623 * outside exist to this socket and current process on current CPU
1624 * is last user and may/should destroy this socket.
1625 * * sk_free is called from any context: process, BH, IRQ. When
1626 * it is called, socket has no references from outside -> sk_free
1627 * may release descendant resources allocated by the socket, but
1628 * to the time when it is called, socket is NOT referenced by any
1629 * hash tables, lists etc.
1630 * * Packets, delivered from outside (from network or from another process)
1631 * and enqueued on receive/error queues SHOULD NOT grab reference count,
1632 * when they sit in queue. Otherwise, packets will leak to hole, when
1633 * socket is looked up by one cpu and unhasing is made by another CPU.
1634 * It is true for udp/raw, netlink (leak to receive and error queues), tcp
1635 * (leak to backlog). Packet socket does all the processing inside
1636 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1637 * use separate SMP lock, so that they are prone too.
1638 */
1639
1640 /* Ungrab socket and destroy it, if it was the last reference. */
1641 static inline void sock_put(struct sock *sk)
1642 {
1643 if (refcount_dec_and_test(&sk->sk_refcnt))
1644 sk_free(sk);
1645 }
1646 /* Generic version of sock_put(), dealing with all sockets
1647 * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...)
1648 */
1649 void sock_gen_put(struct sock *sk);
1650
1651 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested,
1652 unsigned int trim_cap, bool refcounted);
1653 static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1654 const int nested)
1655 {
1656 return __sk_receive_skb(sk, skb, nested, 1, true);
1657 }
1658
1659 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1660 {
1661 sk->sk_tx_queue_mapping = tx_queue;
1662 }
1663
1664 static inline void sk_tx_queue_clear(struct sock *sk)
1665 {
1666 sk->sk_tx_queue_mapping = -1;
1667 }
1668
1669 static inline int sk_tx_queue_get(const struct sock *sk)
1670 {
1671 return sk ? sk->sk_tx_queue_mapping : -1;
1672 }
1673
1674 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1675 {
1676 sk_tx_queue_clear(sk);
1677 sk->sk_socket = sock;
1678 }
1679
1680 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1681 {
1682 BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1683 return &rcu_dereference_raw(sk->sk_wq)->wait;
1684 }
1685 /* Detach socket from process context.
1686 * Announce socket dead, detach it from wait queue and inode.
1687 * Note that parent inode held reference count on this struct sock,
1688 * we do not release it in this function, because protocol
1689 * probably wants some additional cleanups or even continuing
1690 * to work with this socket (TCP).
1691 */
1692 static inline void sock_orphan(struct sock *sk)
1693 {
1694 write_lock_bh(&sk->sk_callback_lock);
1695 sock_set_flag(sk, SOCK_DEAD);
1696 sk_set_socket(sk, NULL);
1697 sk->sk_wq = NULL;
1698 write_unlock_bh(&sk->sk_callback_lock);
1699 }
1700
1701 static inline void sock_graft(struct sock *sk, struct socket *parent)
1702 {
1703 WARN_ON(parent->sk);
1704 write_lock_bh(&sk->sk_callback_lock);
1705 sk->sk_wq = parent->wq;
1706 parent->sk = sk;
1707 sk_set_socket(sk, parent);
1708 sk->sk_uid = SOCK_INODE(parent)->i_uid;
1709 security_sock_graft(sk, parent);
1710 write_unlock_bh(&sk->sk_callback_lock);
1711 }
1712
1713 kuid_t sock_i_uid(struct sock *sk);
1714 unsigned long sock_i_ino(struct sock *sk);
1715
1716 static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk)
1717 {
1718 return sk ? sk->sk_uid : make_kuid(net->user_ns, 0);
1719 }
1720
1721 static inline u32 net_tx_rndhash(void)
1722 {
1723 u32 v = prandom_u32();
1724
1725 return v ?: 1;
1726 }
1727
1728 static inline void sk_set_txhash(struct sock *sk)
1729 {
1730 sk->sk_txhash = net_tx_rndhash();
1731 }
1732
1733 static inline void sk_rethink_txhash(struct sock *sk)
1734 {
1735 if (sk->sk_txhash)
1736 sk_set_txhash(sk);
1737 }
1738
1739 static inline struct dst_entry *
1740 __sk_dst_get(struct sock *sk)
1741 {
1742 return rcu_dereference_check(sk->sk_dst_cache,
1743 lockdep_sock_is_held(sk));
1744 }
1745
1746 static inline struct dst_entry *
1747 sk_dst_get(struct sock *sk)
1748 {
1749 struct dst_entry *dst;
1750
1751 rcu_read_lock();
1752 dst = rcu_dereference(sk->sk_dst_cache);
1753 if (dst && !atomic_inc_not_zero(&dst->__refcnt))
1754 dst = NULL;
1755 rcu_read_unlock();
1756 return dst;
1757 }
1758
1759 static inline void dst_negative_advice(struct sock *sk)
1760 {
1761 struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1762
1763 sk_rethink_txhash(sk);
1764
1765 if (dst && dst->ops->negative_advice) {
1766 ndst = dst->ops->negative_advice(dst);
1767
1768 if (ndst != dst) {
1769 rcu_assign_pointer(sk->sk_dst_cache, ndst);
1770 sk_tx_queue_clear(sk);
1771 sk->sk_dst_pending_confirm = 0;
1772 }
1773 }
1774 }
1775
1776 static inline void
1777 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
1778 {
1779 struct dst_entry *old_dst;
1780
1781 sk_tx_queue_clear(sk);
1782 sk->sk_dst_pending_confirm = 0;
1783 old_dst = rcu_dereference_protected(sk->sk_dst_cache,
1784 lockdep_sock_is_held(sk));
1785 rcu_assign_pointer(sk->sk_dst_cache, dst);
1786 dst_release(old_dst);
1787 }
1788
1789 static inline void
1790 sk_dst_set(struct sock *sk, struct dst_entry *dst)
1791 {
1792 struct dst_entry *old_dst;
1793
1794 sk_tx_queue_clear(sk);
1795 sk->sk_dst_pending_confirm = 0;
1796 old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst);
1797 dst_release(old_dst);
1798 }
1799
1800 static inline void
1801 __sk_dst_reset(struct sock *sk)
1802 {
1803 __sk_dst_set(sk, NULL);
1804 }
1805
1806 static inline void
1807 sk_dst_reset(struct sock *sk)
1808 {
1809 sk_dst_set(sk, NULL);
1810 }
1811
1812 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1813
1814 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1815
1816 static inline void sk_dst_confirm(struct sock *sk)
1817 {
1818 if (!sk->sk_dst_pending_confirm)
1819 sk->sk_dst_pending_confirm = 1;
1820 }
1821
1822 static inline void sock_confirm_neigh(struct sk_buff *skb, struct neighbour *n)
1823 {
1824 if (skb_get_dst_pending_confirm(skb)) {
1825 struct sock *sk = skb->sk;
1826 unsigned long now = jiffies;
1827
1828 /* avoid dirtying neighbour */
1829 if (n->confirmed != now)
1830 n->confirmed = now;
1831 if (sk && sk->sk_dst_pending_confirm)
1832 sk->sk_dst_pending_confirm = 0;
1833 }
1834 }
1835
1836 bool sk_mc_loop(struct sock *sk);
1837
1838 static inline bool sk_can_gso(const struct sock *sk)
1839 {
1840 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1841 }
1842
1843 void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
1844
1845 static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
1846 {
1847 sk->sk_route_nocaps |= flags;
1848 sk->sk_route_caps &= ~flags;
1849 }
1850
1851 static inline bool sk_check_csum_caps(struct sock *sk)
1852 {
1853 return (sk->sk_route_caps & NETIF_F_HW_CSUM) ||
1854 (sk->sk_family == PF_INET &&
1855 (sk->sk_route_caps & NETIF_F_IP_CSUM)) ||
1856 (sk->sk_family == PF_INET6 &&
1857 (sk->sk_route_caps & NETIF_F_IPV6_CSUM));
1858 }
1859
1860 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
1861 struct iov_iter *from, char *to,
1862 int copy, int offset)
1863 {
1864 if (skb->ip_summed == CHECKSUM_NONE) {
1865 __wsum csum = 0;
1866 if (!csum_and_copy_from_iter_full(to, copy, &csum, from))
1867 return -EFAULT;
1868 skb->csum = csum_block_add(skb->csum, csum, offset);
1869 } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1870 if (!copy_from_iter_full_nocache(to, copy, from))
1871 return -EFAULT;
1872 } else if (!copy_from_iter_full(to, copy, from))
1873 return -EFAULT;
1874
1875 return 0;
1876 }
1877
1878 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
1879 struct iov_iter *from, int copy)
1880 {
1881 int err, offset = skb->len;
1882
1883 err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
1884 copy, offset);
1885 if (err)
1886 __skb_trim(skb, offset);
1887
1888 return err;
1889 }
1890
1891 static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from,
1892 struct sk_buff *skb,
1893 struct page *page,
1894 int off, int copy)
1895 {
1896 int err;
1897
1898 err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
1899 copy, skb->len);
1900 if (err)
1901 return err;
1902
1903 skb->len += copy;
1904 skb->data_len += copy;
1905 skb->truesize += copy;
1906 sk->sk_wmem_queued += copy;
1907 sk_mem_charge(sk, copy);
1908 return 0;
1909 }
1910
1911 /**
1912 * sk_wmem_alloc_get - returns write allocations
1913 * @sk: socket
1914 *
1915 * Returns sk_wmem_alloc minus initial offset of one
1916 */
1917 static inline int sk_wmem_alloc_get(const struct sock *sk)
1918 {
1919 return refcount_read(&sk->sk_wmem_alloc) - 1;
1920 }
1921
1922 /**
1923 * sk_rmem_alloc_get - returns read allocations
1924 * @sk: socket
1925 *
1926 * Returns sk_rmem_alloc
1927 */
1928 static inline int sk_rmem_alloc_get(const struct sock *sk)
1929 {
1930 return atomic_read(&sk->sk_rmem_alloc);
1931 }
1932
1933 /**
1934 * sk_has_allocations - check if allocations are outstanding
1935 * @sk: socket
1936 *
1937 * Returns true if socket has write or read allocations
1938 */
1939 static inline bool sk_has_allocations(const struct sock *sk)
1940 {
1941 return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
1942 }
1943
1944 /**
1945 * skwq_has_sleeper - check if there are any waiting processes
1946 * @wq: struct socket_wq
1947 *
1948 * Returns true if socket_wq has waiting processes
1949 *
1950 * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory
1951 * barrier call. They were added due to the race found within the tcp code.
1952 *
1953 * Consider following tcp code paths::
1954 *
1955 * CPU1 CPU2
1956 * sys_select receive packet
1957 * ... ...
1958 * __add_wait_queue update tp->rcv_nxt
1959 * ... ...
1960 * tp->rcv_nxt check sock_def_readable
1961 * ... {
1962 * schedule rcu_read_lock();
1963 * wq = rcu_dereference(sk->sk_wq);
1964 * if (wq && waitqueue_active(&wq->wait))
1965 * wake_up_interruptible(&wq->wait)
1966 * ...
1967 * }
1968 *
1969 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
1970 * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1
1971 * could then endup calling schedule and sleep forever if there are no more
1972 * data on the socket.
1973 *
1974 */
1975 static inline bool skwq_has_sleeper(struct socket_wq *wq)
1976 {
1977 return wq && wq_has_sleeper(&wq->wait);
1978 }
1979
1980 /**
1981 * sock_poll_wait - place memory barrier behind the poll_wait call.
1982 * @filp: file
1983 * @wait_address: socket wait queue
1984 * @p: poll_table
1985 *
1986 * See the comments in the wq_has_sleeper function.
1987 */
1988 static inline void sock_poll_wait(struct file *filp,
1989 wait_queue_head_t *wait_address, poll_table *p)
1990 {
1991 if (!poll_does_not_wait(p) && wait_address) {
1992 poll_wait(filp, wait_address, p);
1993 /* We need to be sure we are in sync with the
1994 * socket flags modification.
1995 *
1996 * This memory barrier is paired in the wq_has_sleeper.
1997 */
1998 smp_mb();
1999 }
2000 }
2001
2002 static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
2003 {
2004 if (sk->sk_txhash) {
2005 skb->l4_hash = 1;
2006 skb->hash = sk->sk_txhash;
2007 }
2008 }
2009
2010 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk);
2011
2012 /*
2013 * Queue a received datagram if it will fit. Stream and sequenced
2014 * protocols can't normally use this as they need to fit buffers in
2015 * and play with them.
2016 *
2017 * Inlined as it's very short and called for pretty much every
2018 * packet ever received.
2019 */
2020 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
2021 {
2022 skb_orphan(skb);
2023 skb->sk = sk;
2024 skb->destructor = sock_rfree;
2025 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
2026 sk_mem_charge(sk, skb->truesize);
2027 }
2028
2029 void sk_reset_timer(struct sock *sk, struct timer_list *timer,
2030 unsigned long expires);
2031
2032 void sk_stop_timer(struct sock *sk, struct timer_list *timer);
2033
2034 int __sk_queue_drop_skb(struct sock *sk, struct sk_buff_head *sk_queue,
2035 struct sk_buff *skb, unsigned int flags,
2036 void (*destructor)(struct sock *sk,
2037 struct sk_buff *skb));
2038 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2039 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2040
2041 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
2042 struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
2043
2044 /*
2045 * Recover an error report and clear atomically
2046 */
2047
2048 static inline int sock_error(struct sock *sk)
2049 {
2050 int err;
2051 if (likely(!sk->sk_err))
2052 return 0;
2053 err = xchg(&sk->sk_err, 0);
2054 return -err;
2055 }
2056
2057 static inline unsigned long sock_wspace(struct sock *sk)
2058 {
2059 int amt = 0;
2060
2061 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2062 amt = sk->sk_sndbuf - refcount_read(&sk->sk_wmem_alloc);
2063 if (amt < 0)
2064 amt = 0;
2065 }
2066 return amt;
2067 }
2068
2069 /* Note:
2070 * We use sk->sk_wq_raw, from contexts knowing this
2071 * pointer is not NULL and cannot disappear/change.
2072 */
2073 static inline void sk_set_bit(int nr, struct sock *sk)
2074 {
2075 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2076 !sock_flag(sk, SOCK_FASYNC))
2077 return;
2078
2079 set_bit(nr, &sk->sk_wq_raw->flags);
2080 }
2081
2082 static inline void sk_clear_bit(int nr, struct sock *sk)
2083 {
2084 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2085 !sock_flag(sk, SOCK_FASYNC))
2086 return;
2087
2088 clear_bit(nr, &sk->sk_wq_raw->flags);
2089 }
2090
2091 static inline void sk_wake_async(const struct sock *sk, int how, int band)
2092 {
2093 if (sock_flag(sk, SOCK_FASYNC)) {
2094 rcu_read_lock();
2095 sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
2096 rcu_read_unlock();
2097 }
2098 }
2099
2100 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2101 * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2102 * Note: for send buffers, TCP works better if we can build two skbs at
2103 * minimum.
2104 */
2105 #define TCP_SKB_MIN_TRUESIZE (2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2106
2107 #define SOCK_MIN_SNDBUF (TCP_SKB_MIN_TRUESIZE * 2)
2108 #define SOCK_MIN_RCVBUF TCP_SKB_MIN_TRUESIZE
2109
2110 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2111 {
2112 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
2113 sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2114 sk->sk_sndbuf = max_t(u32, sk->sk_sndbuf, SOCK_MIN_SNDBUF);
2115 }
2116 }
2117
2118 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
2119 bool force_schedule);
2120
2121 /**
2122 * sk_page_frag - return an appropriate page_frag
2123 * @sk: socket
2124 *
2125 * If socket allocation mode allows current thread to sleep, it means its
2126 * safe to use the per task page_frag instead of the per socket one.
2127 */
2128 static inline struct page_frag *sk_page_frag(struct sock *sk)
2129 {
2130 if (gfpflags_allow_blocking(sk->sk_allocation))
2131 return &current->task_frag;
2132
2133 return &sk->sk_frag;
2134 }
2135
2136 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2137
2138 /*
2139 * Default write policy as shown to user space via poll/select/SIGIO
2140 */
2141 static inline bool sock_writeable(const struct sock *sk)
2142 {
2143 return refcount_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1);
2144 }
2145
2146 static inline gfp_t gfp_any(void)
2147 {
2148 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2149 }
2150
2151 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2152 {
2153 return noblock ? 0 : sk->sk_rcvtimeo;
2154 }
2155
2156 static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2157 {
2158 return noblock ? 0 : sk->sk_sndtimeo;
2159 }
2160
2161 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2162 {
2163 return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
2164 }
2165
2166 /* Alas, with timeout socket operations are not restartable.
2167 * Compare this to poll().
2168 */
2169 static inline int sock_intr_errno(long timeo)
2170 {
2171 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2172 }
2173
2174 struct sock_skb_cb {
2175 u32 dropcount;
2176 };
2177
2178 /* Store sock_skb_cb at the end of skb->cb[] so protocol families
2179 * using skb->cb[] would keep using it directly and utilize its
2180 * alignement guarantee.
2181 */
2182 #define SOCK_SKB_CB_OFFSET ((FIELD_SIZEOF(struct sk_buff, cb) - \
2183 sizeof(struct sock_skb_cb)))
2184
2185 #define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \
2186 SOCK_SKB_CB_OFFSET))
2187
2188 #define sock_skb_cb_check_size(size) \
2189 BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET)
2190
2191 static inline void
2192 sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb)
2193 {
2194 SOCK_SKB_CB(skb)->dropcount = sock_flag(sk, SOCK_RXQ_OVFL) ?
2195 atomic_read(&sk->sk_drops) : 0;
2196 }
2197
2198 static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb)
2199 {
2200 int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2201
2202 atomic_add(segs, &sk->sk_drops);
2203 }
2204
2205 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2206 struct sk_buff *skb);
2207 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2208 struct sk_buff *skb);
2209
2210 static inline void
2211 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2212 {
2213 ktime_t kt = skb->tstamp;
2214 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2215
2216 /*
2217 * generate control messages if
2218 * - receive time stamping in software requested
2219 * - software time stamp available and wanted
2220 * - hardware time stamps available and wanted
2221 */
2222 if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2223 (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2224 (kt && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2225 (hwtstamps->hwtstamp &&
2226 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
2227 __sock_recv_timestamp(msg, sk, skb);
2228 else
2229 sk->sk_stamp = kt;
2230
2231 if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2232 __sock_recv_wifi_status(msg, sk, skb);
2233 }
2234
2235 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2236 struct sk_buff *skb);
2237
2238 #define SK_DEFAULT_STAMP (-1L * NSEC_PER_SEC)
2239 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2240 struct sk_buff *skb)
2241 {
2242 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL) | \
2243 (1UL << SOCK_RCVTSTAMP))
2244 #define TSFLAGS_ANY (SOF_TIMESTAMPING_SOFTWARE | \
2245 SOF_TIMESTAMPING_RAW_HARDWARE)
2246
2247 if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY)
2248 __sock_recv_ts_and_drops(msg, sk, skb);
2249 else if (unlikely(sock_flag(sk, SOCK_TIMESTAMP)))
2250 sk->sk_stamp = skb->tstamp;
2251 else if (unlikely(sk->sk_stamp == SK_DEFAULT_STAMP))
2252 sk->sk_stamp = 0;
2253 }
2254
2255 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags);
2256
2257 /**
2258 * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2259 * @sk: socket sending this packet
2260 * @tsflags: timestamping flags to use
2261 * @tx_flags: completed with instructions for time stamping
2262 *
2263 * Note: callers should take care of initial ``*tx_flags`` value (usually 0)
2264 */
2265 static inline void sock_tx_timestamp(const struct sock *sk, __u16 tsflags,
2266 __u8 *tx_flags)
2267 {
2268 if (unlikely(tsflags))
2269 __sock_tx_timestamp(tsflags, tx_flags);
2270 if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS)))
2271 *tx_flags |= SKBTX_WIFI_STATUS;
2272 }
2273
2274 /**
2275 * sk_eat_skb - Release a skb if it is no longer needed
2276 * @sk: socket to eat this skb from
2277 * @skb: socket buffer to eat
2278 *
2279 * This routine must be called with interrupts disabled or with the socket
2280 * locked so that the sk_buff queue operation is ok.
2281 */
2282 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
2283 {
2284 __skb_unlink(skb, &sk->sk_receive_queue);
2285 __kfree_skb(skb);
2286 }
2287
2288 static inline
2289 struct net *sock_net(const struct sock *sk)
2290 {
2291 return read_pnet(&sk->sk_net);
2292 }
2293
2294 static inline
2295 void sock_net_set(struct sock *sk, struct net *net)
2296 {
2297 write_pnet(&sk->sk_net, net);
2298 }
2299
2300 static inline struct sock *skb_steal_sock(struct sk_buff *skb)
2301 {
2302 if (skb->sk) {
2303 struct sock *sk = skb->sk;
2304
2305 skb->destructor = NULL;
2306 skb->sk = NULL;
2307 return sk;
2308 }
2309 return NULL;
2310 }
2311
2312 /* This helper checks if a socket is a full socket,
2313 * ie _not_ a timewait or request socket.
2314 */
2315 static inline bool sk_fullsock(const struct sock *sk)
2316 {
2317 return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV);
2318 }
2319
2320 /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV
2321 * SYNACK messages can be attached to either ones (depending on SYNCOOKIE)
2322 */
2323 static inline bool sk_listener(const struct sock *sk)
2324 {
2325 return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV);
2326 }
2327
2328 /**
2329 * sk_state_load - read sk->sk_state for lockless contexts
2330 * @sk: socket pointer
2331 *
2332 * Paired with sk_state_store(). Used in places we do not hold socket lock :
2333 * tcp_diag_get_info(), tcp_get_info(), tcp_poll(), get_tcp4_sock() ...
2334 */
2335 static inline int sk_state_load(const struct sock *sk)
2336 {
2337 return smp_load_acquire(&sk->sk_state);
2338 }
2339
2340 /**
2341 * sk_state_store - update sk->sk_state
2342 * @sk: socket pointer
2343 * @newstate: new state
2344 *
2345 * Paired with sk_state_load(). Should be used in contexts where
2346 * state change might impact lockless readers.
2347 */
2348 static inline void sk_state_store(struct sock *sk, int newstate)
2349 {
2350 smp_store_release(&sk->sk_state, newstate);
2351 }
2352
2353 void sock_enable_timestamp(struct sock *sk, int flag);
2354 int sock_get_timestamp(struct sock *, struct timeval __user *);
2355 int sock_get_timestampns(struct sock *, struct timespec __user *);
2356 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2357 int type);
2358
2359 bool sk_ns_capable(const struct sock *sk,
2360 struct user_namespace *user_ns, int cap);
2361 bool sk_capable(const struct sock *sk, int cap);
2362 bool sk_net_capable(const struct sock *sk, int cap);
2363
2364 void sk_get_meminfo(const struct sock *sk, u32 *meminfo);
2365
2366 extern __u32 sysctl_wmem_max;
2367 extern __u32 sysctl_rmem_max;
2368
2369 extern int sysctl_tstamp_allow_data;
2370 extern int sysctl_optmem_max;
2371
2372 extern __u32 sysctl_wmem_default;
2373 extern __u32 sysctl_rmem_default;
2374
2375 #endif /* _SOCK_H */