]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - include/net/sock.h
net: Fix data-races around sysctl_[rw]mem(_offset)?.
[mirror_ubuntu-jammy-kernel.git] / include / net / sock.h
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Definitions for the AF_INET socket handler.
8 *
9 * Version: @(#)sock.h 1.0.4 05/13/93
10 *
11 * Authors: Ross Biro
12 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13 * Corey Minyard <wf-rch!minyard@relay.EU.net>
14 * Florian La Roche <flla@stud.uni-sb.de>
15 *
16 * Fixes:
17 * Alan Cox : Volatiles in skbuff pointers. See
18 * skbuff comments. May be overdone,
19 * better to prove they can be removed
20 * than the reverse.
21 * Alan Cox : Added a zapped field for tcp to note
22 * a socket is reset and must stay shut up
23 * Alan Cox : New fields for options
24 * Pauline Middelink : identd support
25 * Alan Cox : Eliminate low level recv/recvfrom
26 * David S. Miller : New socket lookup architecture.
27 * Steve Whitehouse: Default routines for sock_ops
28 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made
29 * protinfo be just a void pointer, as the
30 * protocol specific parts were moved to
31 * respective headers and ipv4/v6, etc now
32 * use private slabcaches for its socks
33 * Pedro Hortas : New flags field for socket options
34 */
35 #ifndef _SOCK_H
36 #define _SOCK_H
37
38 #include <linux/hardirq.h>
39 #include <linux/kernel.h>
40 #include <linux/list.h>
41 #include <linux/list_nulls.h>
42 #include <linux/timer.h>
43 #include <linux/cache.h>
44 #include <linux/bitops.h>
45 #include <linux/lockdep.h>
46 #include <linux/netdevice.h>
47 #include <linux/skbuff.h> /* struct sk_buff */
48 #include <linux/mm.h>
49 #include <linux/security.h>
50 #include <linux/slab.h>
51 #include <linux/uaccess.h>
52 #include <linux/page_counter.h>
53 #include <linux/memcontrol.h>
54 #include <linux/static_key.h>
55 #include <linux/sched.h>
56 #include <linux/wait.h>
57 #include <linux/cgroup-defs.h>
58 #include <linux/rbtree.h>
59 #include <linux/filter.h>
60 #include <linux/rculist_nulls.h>
61 #include <linux/poll.h>
62 #include <linux/sockptr.h>
63 #include <linux/indirect_call_wrapper.h>
64 #include <linux/atomic.h>
65 #include <linux/refcount.h>
66 #include <net/dst.h>
67 #include <net/checksum.h>
68 #include <net/tcp_states.h>
69 #include <linux/net_tstamp.h>
70 #include <net/l3mdev.h>
71 #include <uapi/linux/socket.h>
72
73 /*
74 * This structure really needs to be cleaned up.
75 * Most of it is for TCP, and not used by any of
76 * the other protocols.
77 */
78
79 /* Define this to get the SOCK_DBG debugging facility. */
80 #define SOCK_DEBUGGING
81 #ifdef SOCK_DEBUGGING
82 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
83 printk(KERN_DEBUG msg); } while (0)
84 #else
85 /* Validate arguments and do nothing */
86 static inline __printf(2, 3)
87 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
88 {
89 }
90 #endif
91
92 /* This is the per-socket lock. The spinlock provides a synchronization
93 * between user contexts and software interrupt processing, whereas the
94 * mini-semaphore synchronizes multiple users amongst themselves.
95 */
96 typedef struct {
97 spinlock_t slock;
98 int owned;
99 wait_queue_head_t wq;
100 /*
101 * We express the mutex-alike socket_lock semantics
102 * to the lock validator by explicitly managing
103 * the slock as a lock variant (in addition to
104 * the slock itself):
105 */
106 #ifdef CONFIG_DEBUG_LOCK_ALLOC
107 struct lockdep_map dep_map;
108 #endif
109 } socket_lock_t;
110
111 struct sock;
112 struct proto;
113 struct net;
114
115 typedef __u32 __bitwise __portpair;
116 typedef __u64 __bitwise __addrpair;
117
118 /**
119 * struct sock_common - minimal network layer representation of sockets
120 * @skc_daddr: Foreign IPv4 addr
121 * @skc_rcv_saddr: Bound local IPv4 addr
122 * @skc_addrpair: 8-byte-aligned __u64 union of @skc_daddr & @skc_rcv_saddr
123 * @skc_hash: hash value used with various protocol lookup tables
124 * @skc_u16hashes: two u16 hash values used by UDP lookup tables
125 * @skc_dport: placeholder for inet_dport/tw_dport
126 * @skc_num: placeholder for inet_num/tw_num
127 * @skc_portpair: __u32 union of @skc_dport & @skc_num
128 * @skc_family: network address family
129 * @skc_state: Connection state
130 * @skc_reuse: %SO_REUSEADDR setting
131 * @skc_reuseport: %SO_REUSEPORT setting
132 * @skc_ipv6only: socket is IPV6 only
133 * @skc_net_refcnt: socket is using net ref counting
134 * @skc_bound_dev_if: bound device index if != 0
135 * @skc_bind_node: bind hash linkage for various protocol lookup tables
136 * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
137 * @skc_prot: protocol handlers inside a network family
138 * @skc_net: reference to the network namespace of this socket
139 * @skc_v6_daddr: IPV6 destination address
140 * @skc_v6_rcv_saddr: IPV6 source address
141 * @skc_cookie: socket's cookie value
142 * @skc_node: main hash linkage for various protocol lookup tables
143 * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
144 * @skc_tx_queue_mapping: tx queue number for this connection
145 * @skc_rx_queue_mapping: rx queue number for this connection
146 * @skc_flags: place holder for sk_flags
147 * %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
148 * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
149 * @skc_listener: connection request listener socket (aka rsk_listener)
150 * [union with @skc_flags]
151 * @skc_tw_dr: (aka tw_dr) ptr to &struct inet_timewait_death_row
152 * [union with @skc_flags]
153 * @skc_incoming_cpu: record/match cpu processing incoming packets
154 * @skc_rcv_wnd: (aka rsk_rcv_wnd) TCP receive window size (possibly scaled)
155 * [union with @skc_incoming_cpu]
156 * @skc_tw_rcv_nxt: (aka tw_rcv_nxt) TCP window next expected seq number
157 * [union with @skc_incoming_cpu]
158 * @skc_refcnt: reference count
159 *
160 * This is the minimal network layer representation of sockets, the header
161 * for struct sock and struct inet_timewait_sock.
162 */
163 struct sock_common {
164 /* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned
165 * address on 64bit arches : cf INET_MATCH()
166 */
167 union {
168 __addrpair skc_addrpair;
169 struct {
170 __be32 skc_daddr;
171 __be32 skc_rcv_saddr;
172 };
173 };
174 union {
175 unsigned int skc_hash;
176 __u16 skc_u16hashes[2];
177 };
178 /* skc_dport && skc_num must be grouped as well */
179 union {
180 __portpair skc_portpair;
181 struct {
182 __be16 skc_dport;
183 __u16 skc_num;
184 };
185 };
186
187 unsigned short skc_family;
188 volatile unsigned char skc_state;
189 unsigned char skc_reuse:4;
190 unsigned char skc_reuseport:1;
191 unsigned char skc_ipv6only:1;
192 unsigned char skc_net_refcnt:1;
193 int skc_bound_dev_if;
194 union {
195 struct hlist_node skc_bind_node;
196 struct hlist_node skc_portaddr_node;
197 };
198 struct proto *skc_prot;
199 possible_net_t skc_net;
200
201 #if IS_ENABLED(CONFIG_IPV6)
202 struct in6_addr skc_v6_daddr;
203 struct in6_addr skc_v6_rcv_saddr;
204 #endif
205
206 atomic64_t skc_cookie;
207
208 /* following fields are padding to force
209 * offset(struct sock, sk_refcnt) == 128 on 64bit arches
210 * assuming IPV6 is enabled. We use this padding differently
211 * for different kind of 'sockets'
212 */
213 union {
214 unsigned long skc_flags;
215 struct sock *skc_listener; /* request_sock */
216 struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */
217 };
218 /*
219 * fields between dontcopy_begin/dontcopy_end
220 * are not copied in sock_copy()
221 */
222 /* private: */
223 int skc_dontcopy_begin[0];
224 /* public: */
225 union {
226 struct hlist_node skc_node;
227 struct hlist_nulls_node skc_nulls_node;
228 };
229 unsigned short skc_tx_queue_mapping;
230 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
231 unsigned short skc_rx_queue_mapping;
232 #endif
233 union {
234 int skc_incoming_cpu;
235 u32 skc_rcv_wnd;
236 u32 skc_tw_rcv_nxt; /* struct tcp_timewait_sock */
237 };
238
239 refcount_t skc_refcnt;
240 /* private: */
241 int skc_dontcopy_end[0];
242 union {
243 u32 skc_rxhash;
244 u32 skc_window_clamp;
245 u32 skc_tw_snd_nxt; /* struct tcp_timewait_sock */
246 };
247 /* public: */
248 };
249
250 struct bpf_local_storage;
251
252 /**
253 * struct sock - network layer representation of sockets
254 * @__sk_common: shared layout with inet_timewait_sock
255 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
256 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
257 * @sk_lock: synchronizer
258 * @sk_kern_sock: True if sock is using kernel lock classes
259 * @sk_rcvbuf: size of receive buffer in bytes
260 * @sk_wq: sock wait queue and async head
261 * @sk_rx_dst: receive input route used by early demux
262 * @sk_rx_dst_ifindex: ifindex for @sk_rx_dst
263 * @sk_rx_dst_cookie: cookie for @sk_rx_dst
264 * @sk_dst_cache: destination cache
265 * @sk_dst_pending_confirm: need to confirm neighbour
266 * @sk_policy: flow policy
267 * @sk_rx_skb_cache: cache copy of recently accessed RX skb
268 * @sk_receive_queue: incoming packets
269 * @sk_wmem_alloc: transmit queue bytes committed
270 * @sk_tsq_flags: TCP Small Queues flags
271 * @sk_write_queue: Packet sending queue
272 * @sk_omem_alloc: "o" is "option" or "other"
273 * @sk_wmem_queued: persistent queue size
274 * @sk_forward_alloc: space allocated forward
275 * @sk_napi_id: id of the last napi context to receive data for sk
276 * @sk_ll_usec: usecs to busypoll when there is no data
277 * @sk_allocation: allocation mode
278 * @sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
279 * @sk_pacing_status: Pacing status (requested, handled by sch_fq)
280 * @sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
281 * @sk_sndbuf: size of send buffer in bytes
282 * @__sk_flags_offset: empty field used to determine location of bitfield
283 * @sk_padding: unused element for alignment
284 * @sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
285 * @sk_no_check_rx: allow zero checksum in RX packets
286 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
287 * @sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
288 * @sk_route_forced_caps: static, forced route capabilities
289 * (set in tcp_init_sock())
290 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
291 * @sk_gso_max_size: Maximum GSO segment size to build
292 * @sk_gso_max_segs: Maximum number of GSO segments
293 * @sk_pacing_shift: scaling factor for TCP Small Queues
294 * @sk_lingertime: %SO_LINGER l_linger setting
295 * @sk_backlog: always used with the per-socket spinlock held
296 * @sk_callback_lock: used with the callbacks in the end of this struct
297 * @sk_error_queue: rarely used
298 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
299 * IPV6_ADDRFORM for instance)
300 * @sk_err: last error
301 * @sk_err_soft: errors that don't cause failure but are the cause of a
302 * persistent failure not just 'timed out'
303 * @sk_drops: raw/udp drops counter
304 * @sk_ack_backlog: current listen backlog
305 * @sk_max_ack_backlog: listen backlog set in listen()
306 * @sk_uid: user id of owner
307 * @sk_prefer_busy_poll: prefer busypolling over softirq processing
308 * @sk_busy_poll_budget: napi processing budget when busypolling
309 * @sk_priority: %SO_PRIORITY setting
310 * @sk_type: socket type (%SOCK_STREAM, etc)
311 * @sk_protocol: which protocol this socket belongs in this network family
312 * @sk_peer_lock: lock protecting @sk_peer_pid and @sk_peer_cred
313 * @sk_peer_pid: &struct pid for this socket's peer
314 * @sk_peer_cred: %SO_PEERCRED setting
315 * @sk_rcvlowat: %SO_RCVLOWAT setting
316 * @sk_rcvtimeo: %SO_RCVTIMEO setting
317 * @sk_sndtimeo: %SO_SNDTIMEO setting
318 * @sk_txhash: computed flow hash for use on transmit
319 * @sk_filter: socket filtering instructions
320 * @sk_timer: sock cleanup timer
321 * @sk_stamp: time stamp of last packet received
322 * @sk_stamp_seq: lock for accessing sk_stamp on 32 bit architectures only
323 * @sk_tsflags: SO_TIMESTAMPING flags
324 * @sk_bind_phc: SO_TIMESTAMPING bind PHC index of PTP virtual clock
325 * for timestamping
326 * @sk_tskey: counter to disambiguate concurrent tstamp requests
327 * @sk_zckey: counter to order MSG_ZEROCOPY notifications
328 * @sk_socket: Identd and reporting IO signals
329 * @sk_user_data: RPC layer private data
330 * @sk_frag: cached page frag
331 * @sk_peek_off: current peek_offset value
332 * @sk_send_head: front of stuff to transmit
333 * @tcp_rtx_queue: TCP re-transmit queue [union with @sk_send_head]
334 * @sk_tx_skb_cache: cache copy of recently accessed TX skb
335 * @sk_security: used by security modules
336 * @sk_mark: generic packet mark
337 * @sk_cgrp_data: cgroup data for this cgroup
338 * @sk_memcg: this socket's memory cgroup association
339 * @sk_write_pending: a write to stream socket waits to start
340 * @sk_state_change: callback to indicate change in the state of the sock
341 * @sk_data_ready: callback to indicate there is data to be processed
342 * @sk_write_space: callback to indicate there is bf sending space available
343 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
344 * @sk_backlog_rcv: callback to process the backlog
345 * @sk_validate_xmit_skb: ptr to an optional validate function
346 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
347 * @sk_reuseport_cb: reuseport group container
348 * @sk_bpf_storage: ptr to cache and control for bpf_sk_storage
349 * @sk_rcu: used during RCU grace period
350 * @sk_clockid: clockid used by time-based scheduling (SO_TXTIME)
351 * @sk_txtime_deadline_mode: set deadline mode for SO_TXTIME
352 * @sk_txtime_report_errors: set report errors mode for SO_TXTIME
353 * @sk_txtime_unused: unused txtime flags
354 */
355 struct sock {
356 /*
357 * Now struct inet_timewait_sock also uses sock_common, so please just
358 * don't add nothing before this first member (__sk_common) --acme
359 */
360 struct sock_common __sk_common;
361 #define sk_node __sk_common.skc_node
362 #define sk_nulls_node __sk_common.skc_nulls_node
363 #define sk_refcnt __sk_common.skc_refcnt
364 #define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping
365 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
366 #define sk_rx_queue_mapping __sk_common.skc_rx_queue_mapping
367 #endif
368
369 #define sk_dontcopy_begin __sk_common.skc_dontcopy_begin
370 #define sk_dontcopy_end __sk_common.skc_dontcopy_end
371 #define sk_hash __sk_common.skc_hash
372 #define sk_portpair __sk_common.skc_portpair
373 #define sk_num __sk_common.skc_num
374 #define sk_dport __sk_common.skc_dport
375 #define sk_addrpair __sk_common.skc_addrpair
376 #define sk_daddr __sk_common.skc_daddr
377 #define sk_rcv_saddr __sk_common.skc_rcv_saddr
378 #define sk_family __sk_common.skc_family
379 #define sk_state __sk_common.skc_state
380 #define sk_reuse __sk_common.skc_reuse
381 #define sk_reuseport __sk_common.skc_reuseport
382 #define sk_ipv6only __sk_common.skc_ipv6only
383 #define sk_net_refcnt __sk_common.skc_net_refcnt
384 #define sk_bound_dev_if __sk_common.skc_bound_dev_if
385 #define sk_bind_node __sk_common.skc_bind_node
386 #define sk_prot __sk_common.skc_prot
387 #define sk_net __sk_common.skc_net
388 #define sk_v6_daddr __sk_common.skc_v6_daddr
389 #define sk_v6_rcv_saddr __sk_common.skc_v6_rcv_saddr
390 #define sk_cookie __sk_common.skc_cookie
391 #define sk_incoming_cpu __sk_common.skc_incoming_cpu
392 #define sk_flags __sk_common.skc_flags
393 #define sk_rxhash __sk_common.skc_rxhash
394
395 socket_lock_t sk_lock;
396 atomic_t sk_drops;
397 int sk_rcvlowat;
398 struct sk_buff_head sk_error_queue;
399 struct sk_buff *sk_rx_skb_cache;
400 struct sk_buff_head sk_receive_queue;
401 /*
402 * The backlog queue is special, it is always used with
403 * the per-socket spinlock held and requires low latency
404 * access. Therefore we special case it's implementation.
405 * Note : rmem_alloc is in this structure to fill a hole
406 * on 64bit arches, not because its logically part of
407 * backlog.
408 */
409 struct {
410 atomic_t rmem_alloc;
411 int len;
412 struct sk_buff *head;
413 struct sk_buff *tail;
414 } sk_backlog;
415 #define sk_rmem_alloc sk_backlog.rmem_alloc
416
417 int sk_forward_alloc;
418 #ifdef CONFIG_NET_RX_BUSY_POLL
419 unsigned int sk_ll_usec;
420 /* ===== mostly read cache line ===== */
421 unsigned int sk_napi_id;
422 #endif
423 int sk_rcvbuf;
424
425 struct sk_filter __rcu *sk_filter;
426 union {
427 struct socket_wq __rcu *sk_wq;
428 /* private: */
429 struct socket_wq *sk_wq_raw;
430 /* public: */
431 };
432 #ifdef CONFIG_XFRM
433 struct xfrm_policy __rcu *sk_policy[2];
434 #endif
435 struct dst_entry __rcu *sk_rx_dst;
436 int sk_rx_dst_ifindex;
437 u32 sk_rx_dst_cookie;
438
439 struct dst_entry __rcu *sk_dst_cache;
440 atomic_t sk_omem_alloc;
441 int sk_sndbuf;
442
443 /* ===== cache line for TX ===== */
444 int sk_wmem_queued;
445 refcount_t sk_wmem_alloc;
446 unsigned long sk_tsq_flags;
447 union {
448 struct sk_buff *sk_send_head;
449 struct rb_root tcp_rtx_queue;
450 };
451 struct sk_buff *sk_tx_skb_cache;
452 struct sk_buff_head sk_write_queue;
453 __s32 sk_peek_off;
454 int sk_write_pending;
455 __u32 sk_dst_pending_confirm;
456 u32 sk_pacing_status; /* see enum sk_pacing */
457 long sk_sndtimeo;
458 struct timer_list sk_timer;
459 __u32 sk_priority;
460 __u32 sk_mark;
461 unsigned long sk_pacing_rate; /* bytes per second */
462 unsigned long sk_max_pacing_rate;
463 struct page_frag sk_frag;
464 netdev_features_t sk_route_caps;
465 netdev_features_t sk_route_nocaps;
466 netdev_features_t sk_route_forced_caps;
467 int sk_gso_type;
468 unsigned int sk_gso_max_size;
469 gfp_t sk_allocation;
470 __u32 sk_txhash;
471
472 /*
473 * Because of non atomicity rules, all
474 * changes are protected by socket lock.
475 */
476 u8 sk_padding : 1,
477 sk_kern_sock : 1,
478 sk_no_check_tx : 1,
479 sk_no_check_rx : 1,
480 sk_userlocks : 4;
481 u8 sk_pacing_shift;
482 u16 sk_type;
483 u16 sk_protocol;
484 u16 sk_gso_max_segs;
485 unsigned long sk_lingertime;
486 struct proto *sk_prot_creator;
487 rwlock_t sk_callback_lock;
488 int sk_err,
489 sk_err_soft;
490 u32 sk_ack_backlog;
491 u32 sk_max_ack_backlog;
492 kuid_t sk_uid;
493 #ifdef CONFIG_NET_RX_BUSY_POLL
494 u8 sk_prefer_busy_poll;
495 u16 sk_busy_poll_budget;
496 #endif
497 spinlock_t sk_peer_lock;
498 struct pid *sk_peer_pid;
499 const struct cred *sk_peer_cred;
500
501 long sk_rcvtimeo;
502 ktime_t sk_stamp;
503 #if BITS_PER_LONG==32
504 seqlock_t sk_stamp_seq;
505 #endif
506 u16 sk_tsflags;
507 int sk_bind_phc;
508 u8 sk_shutdown;
509 atomic_t sk_tskey;
510 atomic_t sk_zckey;
511
512 u8 sk_clockid;
513 u8 sk_txtime_deadline_mode : 1,
514 sk_txtime_report_errors : 1,
515 sk_txtime_unused : 6;
516
517 struct socket *sk_socket;
518 void *sk_user_data;
519 #ifdef CONFIG_SECURITY
520 void *sk_security;
521 #endif
522 struct sock_cgroup_data sk_cgrp_data;
523 struct mem_cgroup *sk_memcg;
524 void (*sk_state_change)(struct sock *sk);
525 void (*sk_data_ready)(struct sock *sk);
526 void (*sk_write_space)(struct sock *sk);
527 void (*sk_error_report)(struct sock *sk);
528 int (*sk_backlog_rcv)(struct sock *sk,
529 struct sk_buff *skb);
530 #ifdef CONFIG_SOCK_VALIDATE_XMIT
531 struct sk_buff* (*sk_validate_xmit_skb)(struct sock *sk,
532 struct net_device *dev,
533 struct sk_buff *skb);
534 #endif
535 void (*sk_destruct)(struct sock *sk);
536 struct sock_reuseport __rcu *sk_reuseport_cb;
537 #ifdef CONFIG_BPF_SYSCALL
538 struct bpf_local_storage __rcu *sk_bpf_storage;
539 #endif
540 struct rcu_head sk_rcu;
541 };
542
543 enum sk_pacing {
544 SK_PACING_NONE = 0,
545 SK_PACING_NEEDED = 1,
546 SK_PACING_FQ = 2,
547 };
548
549 /* Pointer stored in sk_user_data might not be suitable for copying
550 * when cloning the socket. For instance, it can point to a reference
551 * counted object. sk_user_data bottom bit is set if pointer must not
552 * be copied.
553 */
554 #define SK_USER_DATA_NOCOPY 1UL
555 #define SK_USER_DATA_BPF 2UL /* Managed by BPF */
556 #define SK_USER_DATA_PTRMASK ~(SK_USER_DATA_NOCOPY | SK_USER_DATA_BPF)
557
558 /**
559 * sk_user_data_is_nocopy - Test if sk_user_data pointer must not be copied
560 * @sk: socket
561 */
562 static inline bool sk_user_data_is_nocopy(const struct sock *sk)
563 {
564 return ((uintptr_t)sk->sk_user_data & SK_USER_DATA_NOCOPY);
565 }
566
567 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
568
569 #define rcu_dereference_sk_user_data(sk) \
570 ({ \
571 void *__tmp = rcu_dereference(__sk_user_data((sk))); \
572 (void *)((uintptr_t)__tmp & SK_USER_DATA_PTRMASK); \
573 })
574 #define rcu_assign_sk_user_data(sk, ptr) \
575 ({ \
576 uintptr_t __tmp = (uintptr_t)(ptr); \
577 WARN_ON_ONCE(__tmp & ~SK_USER_DATA_PTRMASK); \
578 rcu_assign_pointer(__sk_user_data((sk)), __tmp); \
579 })
580 #define rcu_assign_sk_user_data_nocopy(sk, ptr) \
581 ({ \
582 uintptr_t __tmp = (uintptr_t)(ptr); \
583 WARN_ON_ONCE(__tmp & ~SK_USER_DATA_PTRMASK); \
584 rcu_assign_pointer(__sk_user_data((sk)), \
585 __tmp | SK_USER_DATA_NOCOPY); \
586 })
587
588 /*
589 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
590 * or not whether his port will be reused by someone else. SK_FORCE_REUSE
591 * on a socket means that the socket will reuse everybody else's port
592 * without looking at the other's sk_reuse value.
593 */
594
595 #define SK_NO_REUSE 0
596 #define SK_CAN_REUSE 1
597 #define SK_FORCE_REUSE 2
598
599 int sk_set_peek_off(struct sock *sk, int val);
600
601 static inline int sk_peek_offset(struct sock *sk, int flags)
602 {
603 if (unlikely(flags & MSG_PEEK)) {
604 return READ_ONCE(sk->sk_peek_off);
605 }
606
607 return 0;
608 }
609
610 static inline void sk_peek_offset_bwd(struct sock *sk, int val)
611 {
612 s32 off = READ_ONCE(sk->sk_peek_off);
613
614 if (unlikely(off >= 0)) {
615 off = max_t(s32, off - val, 0);
616 WRITE_ONCE(sk->sk_peek_off, off);
617 }
618 }
619
620 static inline void sk_peek_offset_fwd(struct sock *sk, int val)
621 {
622 sk_peek_offset_bwd(sk, -val);
623 }
624
625 /*
626 * Hashed lists helper routines
627 */
628 static inline struct sock *sk_entry(const struct hlist_node *node)
629 {
630 return hlist_entry(node, struct sock, sk_node);
631 }
632
633 static inline struct sock *__sk_head(const struct hlist_head *head)
634 {
635 return hlist_entry(head->first, struct sock, sk_node);
636 }
637
638 static inline struct sock *sk_head(const struct hlist_head *head)
639 {
640 return hlist_empty(head) ? NULL : __sk_head(head);
641 }
642
643 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
644 {
645 return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
646 }
647
648 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
649 {
650 return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
651 }
652
653 static inline struct sock *sk_next(const struct sock *sk)
654 {
655 return hlist_entry_safe(sk->sk_node.next, struct sock, sk_node);
656 }
657
658 static inline struct sock *sk_nulls_next(const struct sock *sk)
659 {
660 return (!is_a_nulls(sk->sk_nulls_node.next)) ?
661 hlist_nulls_entry(sk->sk_nulls_node.next,
662 struct sock, sk_nulls_node) :
663 NULL;
664 }
665
666 static inline bool sk_unhashed(const struct sock *sk)
667 {
668 return hlist_unhashed(&sk->sk_node);
669 }
670
671 static inline bool sk_hashed(const struct sock *sk)
672 {
673 return !sk_unhashed(sk);
674 }
675
676 static inline void sk_node_init(struct hlist_node *node)
677 {
678 node->pprev = NULL;
679 }
680
681 static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
682 {
683 node->pprev = NULL;
684 }
685
686 static inline void __sk_del_node(struct sock *sk)
687 {
688 __hlist_del(&sk->sk_node);
689 }
690
691 /* NB: equivalent to hlist_del_init_rcu */
692 static inline bool __sk_del_node_init(struct sock *sk)
693 {
694 if (sk_hashed(sk)) {
695 __sk_del_node(sk);
696 sk_node_init(&sk->sk_node);
697 return true;
698 }
699 return false;
700 }
701
702 /* Grab socket reference count. This operation is valid only
703 when sk is ALREADY grabbed f.e. it is found in hash table
704 or a list and the lookup is made under lock preventing hash table
705 modifications.
706 */
707
708 static __always_inline void sock_hold(struct sock *sk)
709 {
710 refcount_inc(&sk->sk_refcnt);
711 }
712
713 /* Ungrab socket in the context, which assumes that socket refcnt
714 cannot hit zero, f.e. it is true in context of any socketcall.
715 */
716 static __always_inline void __sock_put(struct sock *sk)
717 {
718 refcount_dec(&sk->sk_refcnt);
719 }
720
721 static inline bool sk_del_node_init(struct sock *sk)
722 {
723 bool rc = __sk_del_node_init(sk);
724
725 if (rc) {
726 /* paranoid for a while -acme */
727 WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
728 __sock_put(sk);
729 }
730 return rc;
731 }
732 #define sk_del_node_init_rcu(sk) sk_del_node_init(sk)
733
734 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
735 {
736 if (sk_hashed(sk)) {
737 hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
738 return true;
739 }
740 return false;
741 }
742
743 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
744 {
745 bool rc = __sk_nulls_del_node_init_rcu(sk);
746
747 if (rc) {
748 /* paranoid for a while -acme */
749 WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
750 __sock_put(sk);
751 }
752 return rc;
753 }
754
755 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
756 {
757 hlist_add_head(&sk->sk_node, list);
758 }
759
760 static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
761 {
762 sock_hold(sk);
763 __sk_add_node(sk, list);
764 }
765
766 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
767 {
768 sock_hold(sk);
769 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
770 sk->sk_family == AF_INET6)
771 hlist_add_tail_rcu(&sk->sk_node, list);
772 else
773 hlist_add_head_rcu(&sk->sk_node, list);
774 }
775
776 static inline void sk_add_node_tail_rcu(struct sock *sk, struct hlist_head *list)
777 {
778 sock_hold(sk);
779 hlist_add_tail_rcu(&sk->sk_node, list);
780 }
781
782 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
783 {
784 hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
785 }
786
787 static inline void __sk_nulls_add_node_tail_rcu(struct sock *sk, struct hlist_nulls_head *list)
788 {
789 hlist_nulls_add_tail_rcu(&sk->sk_nulls_node, list);
790 }
791
792 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
793 {
794 sock_hold(sk);
795 __sk_nulls_add_node_rcu(sk, list);
796 }
797
798 static inline void __sk_del_bind_node(struct sock *sk)
799 {
800 __hlist_del(&sk->sk_bind_node);
801 }
802
803 static inline void sk_add_bind_node(struct sock *sk,
804 struct hlist_head *list)
805 {
806 hlist_add_head(&sk->sk_bind_node, list);
807 }
808
809 #define sk_for_each(__sk, list) \
810 hlist_for_each_entry(__sk, list, sk_node)
811 #define sk_for_each_rcu(__sk, list) \
812 hlist_for_each_entry_rcu(__sk, list, sk_node)
813 #define sk_nulls_for_each(__sk, node, list) \
814 hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
815 #define sk_nulls_for_each_rcu(__sk, node, list) \
816 hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
817 #define sk_for_each_from(__sk) \
818 hlist_for_each_entry_from(__sk, sk_node)
819 #define sk_nulls_for_each_from(__sk, node) \
820 if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
821 hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
822 #define sk_for_each_safe(__sk, tmp, list) \
823 hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
824 #define sk_for_each_bound(__sk, list) \
825 hlist_for_each_entry(__sk, list, sk_bind_node)
826
827 /**
828 * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset
829 * @tpos: the type * to use as a loop cursor.
830 * @pos: the &struct hlist_node to use as a loop cursor.
831 * @head: the head for your list.
832 * @offset: offset of hlist_node within the struct.
833 *
834 */
835 #define sk_for_each_entry_offset_rcu(tpos, pos, head, offset) \
836 for (pos = rcu_dereference(hlist_first_rcu(head)); \
837 pos != NULL && \
838 ({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;}); \
839 pos = rcu_dereference(hlist_next_rcu(pos)))
840
841 static inline struct user_namespace *sk_user_ns(struct sock *sk)
842 {
843 /* Careful only use this in a context where these parameters
844 * can not change and must all be valid, such as recvmsg from
845 * userspace.
846 */
847 return sk->sk_socket->file->f_cred->user_ns;
848 }
849
850 /* Sock flags */
851 enum sock_flags {
852 SOCK_DEAD,
853 SOCK_DONE,
854 SOCK_URGINLINE,
855 SOCK_KEEPOPEN,
856 SOCK_LINGER,
857 SOCK_DESTROY,
858 SOCK_BROADCAST,
859 SOCK_TIMESTAMP,
860 SOCK_ZAPPED,
861 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
862 SOCK_DBG, /* %SO_DEBUG setting */
863 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
864 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
865 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
866 SOCK_MEMALLOC, /* VM depends on this socket for swapping */
867 SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */
868 SOCK_FASYNC, /* fasync() active */
869 SOCK_RXQ_OVFL,
870 SOCK_ZEROCOPY, /* buffers from userspace */
871 SOCK_WIFI_STATUS, /* push wifi status to userspace */
872 SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
873 * Will use last 4 bytes of packet sent from
874 * user-space instead.
875 */
876 SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
877 SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
878 SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */
879 SOCK_TXTIME,
880 SOCK_XDP, /* XDP is attached */
881 SOCK_TSTAMP_NEW, /* Indicates 64 bit timestamps always */
882 };
883
884 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
885
886 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
887 {
888 nsk->sk_flags = osk->sk_flags;
889 }
890
891 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
892 {
893 __set_bit(flag, &sk->sk_flags);
894 }
895
896 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
897 {
898 __clear_bit(flag, &sk->sk_flags);
899 }
900
901 static inline void sock_valbool_flag(struct sock *sk, enum sock_flags bit,
902 int valbool)
903 {
904 if (valbool)
905 sock_set_flag(sk, bit);
906 else
907 sock_reset_flag(sk, bit);
908 }
909
910 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
911 {
912 return test_bit(flag, &sk->sk_flags);
913 }
914
915 #ifdef CONFIG_NET
916 DECLARE_STATIC_KEY_FALSE(memalloc_socks_key);
917 static inline int sk_memalloc_socks(void)
918 {
919 return static_branch_unlikely(&memalloc_socks_key);
920 }
921
922 void __receive_sock(struct file *file);
923 #else
924
925 static inline int sk_memalloc_socks(void)
926 {
927 return 0;
928 }
929
930 static inline void __receive_sock(struct file *file)
931 { }
932 #endif
933
934 static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask)
935 {
936 return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC);
937 }
938
939 static inline void sk_acceptq_removed(struct sock *sk)
940 {
941 WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog - 1);
942 }
943
944 static inline void sk_acceptq_added(struct sock *sk)
945 {
946 WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog + 1);
947 }
948
949 /* Note: If you think the test should be:
950 * return READ_ONCE(sk->sk_ack_backlog) >= READ_ONCE(sk->sk_max_ack_backlog);
951 * Then please take a look at commit 64a146513f8f ("[NET]: Revert incorrect accept queue backlog changes.")
952 */
953 static inline bool sk_acceptq_is_full(const struct sock *sk)
954 {
955 return READ_ONCE(sk->sk_ack_backlog) > READ_ONCE(sk->sk_max_ack_backlog);
956 }
957
958 /*
959 * Compute minimal free write space needed to queue new packets.
960 */
961 static inline int sk_stream_min_wspace(const struct sock *sk)
962 {
963 return READ_ONCE(sk->sk_wmem_queued) >> 1;
964 }
965
966 static inline int sk_stream_wspace(const struct sock *sk)
967 {
968 return READ_ONCE(sk->sk_sndbuf) - READ_ONCE(sk->sk_wmem_queued);
969 }
970
971 static inline void sk_wmem_queued_add(struct sock *sk, int val)
972 {
973 WRITE_ONCE(sk->sk_wmem_queued, sk->sk_wmem_queued + val);
974 }
975
976 void sk_stream_write_space(struct sock *sk);
977
978 /* OOB backlog add */
979 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
980 {
981 /* dont let skb dst not refcounted, we are going to leave rcu lock */
982 skb_dst_force(skb);
983
984 if (!sk->sk_backlog.tail)
985 WRITE_ONCE(sk->sk_backlog.head, skb);
986 else
987 sk->sk_backlog.tail->next = skb;
988
989 WRITE_ONCE(sk->sk_backlog.tail, skb);
990 skb->next = NULL;
991 }
992
993 /*
994 * Take into account size of receive queue and backlog queue
995 * Do not take into account this skb truesize,
996 * to allow even a single big packet to come.
997 */
998 static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
999 {
1000 unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
1001
1002 return qsize > limit;
1003 }
1004
1005 /* The per-socket spinlock must be held here. */
1006 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
1007 unsigned int limit)
1008 {
1009 if (sk_rcvqueues_full(sk, limit))
1010 return -ENOBUFS;
1011
1012 /*
1013 * If the skb was allocated from pfmemalloc reserves, only
1014 * allow SOCK_MEMALLOC sockets to use it as this socket is
1015 * helping free memory
1016 */
1017 if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
1018 return -ENOMEM;
1019
1020 __sk_add_backlog(sk, skb);
1021 sk->sk_backlog.len += skb->truesize;
1022 return 0;
1023 }
1024
1025 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
1026
1027 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
1028 {
1029 if (sk_memalloc_socks() && skb_pfmemalloc(skb))
1030 return __sk_backlog_rcv(sk, skb);
1031
1032 return sk->sk_backlog_rcv(sk, skb);
1033 }
1034
1035 static inline void sk_incoming_cpu_update(struct sock *sk)
1036 {
1037 int cpu = raw_smp_processor_id();
1038
1039 if (unlikely(READ_ONCE(sk->sk_incoming_cpu) != cpu))
1040 WRITE_ONCE(sk->sk_incoming_cpu, cpu);
1041 }
1042
1043 static inline void sock_rps_record_flow_hash(__u32 hash)
1044 {
1045 #ifdef CONFIG_RPS
1046 struct rps_sock_flow_table *sock_flow_table;
1047
1048 rcu_read_lock();
1049 sock_flow_table = rcu_dereference(rps_sock_flow_table);
1050 rps_record_sock_flow(sock_flow_table, hash);
1051 rcu_read_unlock();
1052 #endif
1053 }
1054
1055 static inline void sock_rps_record_flow(const struct sock *sk)
1056 {
1057 #ifdef CONFIG_RPS
1058 if (static_branch_unlikely(&rfs_needed)) {
1059 /* Reading sk->sk_rxhash might incur an expensive cache line
1060 * miss.
1061 *
1062 * TCP_ESTABLISHED does cover almost all states where RFS
1063 * might be useful, and is cheaper [1] than testing :
1064 * IPv4: inet_sk(sk)->inet_daddr
1065 * IPv6: ipv6_addr_any(&sk->sk_v6_daddr)
1066 * OR an additional socket flag
1067 * [1] : sk_state and sk_prot are in the same cache line.
1068 */
1069 if (sk->sk_state == TCP_ESTABLISHED)
1070 sock_rps_record_flow_hash(sk->sk_rxhash);
1071 }
1072 #endif
1073 }
1074
1075 static inline void sock_rps_save_rxhash(struct sock *sk,
1076 const struct sk_buff *skb)
1077 {
1078 #ifdef CONFIG_RPS
1079 if (unlikely(sk->sk_rxhash != skb->hash))
1080 sk->sk_rxhash = skb->hash;
1081 #endif
1082 }
1083
1084 static inline void sock_rps_reset_rxhash(struct sock *sk)
1085 {
1086 #ifdef CONFIG_RPS
1087 sk->sk_rxhash = 0;
1088 #endif
1089 }
1090
1091 #define sk_wait_event(__sk, __timeo, __condition, __wait) \
1092 ({ int __rc; \
1093 release_sock(__sk); \
1094 __rc = __condition; \
1095 if (!__rc) { \
1096 *(__timeo) = wait_woken(__wait, \
1097 TASK_INTERRUPTIBLE, \
1098 *(__timeo)); \
1099 } \
1100 sched_annotate_sleep(); \
1101 lock_sock(__sk); \
1102 __rc = __condition; \
1103 __rc; \
1104 })
1105
1106 int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
1107 int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
1108 void sk_stream_wait_close(struct sock *sk, long timeo_p);
1109 int sk_stream_error(struct sock *sk, int flags, int err);
1110 void sk_stream_kill_queues(struct sock *sk);
1111 void sk_set_memalloc(struct sock *sk);
1112 void sk_clear_memalloc(struct sock *sk);
1113
1114 void __sk_flush_backlog(struct sock *sk);
1115
1116 static inline bool sk_flush_backlog(struct sock *sk)
1117 {
1118 if (unlikely(READ_ONCE(sk->sk_backlog.tail))) {
1119 __sk_flush_backlog(sk);
1120 return true;
1121 }
1122 return false;
1123 }
1124
1125 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb);
1126
1127 struct request_sock_ops;
1128 struct timewait_sock_ops;
1129 struct inet_hashinfo;
1130 struct raw_hashinfo;
1131 struct smc_hashinfo;
1132 struct module;
1133 struct sk_psock;
1134
1135 /*
1136 * caches using SLAB_TYPESAFE_BY_RCU should let .next pointer from nulls nodes
1137 * un-modified. Special care is taken when initializing object to zero.
1138 */
1139 static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1140 {
1141 if (offsetof(struct sock, sk_node.next) != 0)
1142 memset(sk, 0, offsetof(struct sock, sk_node.next));
1143 memset(&sk->sk_node.pprev, 0,
1144 size - offsetof(struct sock, sk_node.pprev));
1145 }
1146
1147 /* Networking protocol blocks we attach to sockets.
1148 * socket layer -> transport layer interface
1149 */
1150 struct proto {
1151 void (*close)(struct sock *sk,
1152 long timeout);
1153 int (*pre_connect)(struct sock *sk,
1154 struct sockaddr *uaddr,
1155 int addr_len);
1156 int (*connect)(struct sock *sk,
1157 struct sockaddr *uaddr,
1158 int addr_len);
1159 int (*disconnect)(struct sock *sk, int flags);
1160
1161 struct sock * (*accept)(struct sock *sk, int flags, int *err,
1162 bool kern);
1163
1164 int (*ioctl)(struct sock *sk, int cmd,
1165 unsigned long arg);
1166 int (*init)(struct sock *sk);
1167 void (*destroy)(struct sock *sk);
1168 void (*shutdown)(struct sock *sk, int how);
1169 int (*setsockopt)(struct sock *sk, int level,
1170 int optname, sockptr_t optval,
1171 unsigned int optlen);
1172 int (*getsockopt)(struct sock *sk, int level,
1173 int optname, char __user *optval,
1174 int __user *option);
1175 void (*keepalive)(struct sock *sk, int valbool);
1176 #ifdef CONFIG_COMPAT
1177 int (*compat_ioctl)(struct sock *sk,
1178 unsigned int cmd, unsigned long arg);
1179 #endif
1180 int (*sendmsg)(struct sock *sk, struct msghdr *msg,
1181 size_t len);
1182 int (*recvmsg)(struct sock *sk, struct msghdr *msg,
1183 size_t len, int noblock, int flags,
1184 int *addr_len);
1185 int (*sendpage)(struct sock *sk, struct page *page,
1186 int offset, size_t size, int flags);
1187 int (*bind)(struct sock *sk,
1188 struct sockaddr *addr, int addr_len);
1189 int (*bind_add)(struct sock *sk,
1190 struct sockaddr *addr, int addr_len);
1191
1192 int (*backlog_rcv) (struct sock *sk,
1193 struct sk_buff *skb);
1194 bool (*bpf_bypass_getsockopt)(int level,
1195 int optname);
1196
1197 void (*release_cb)(struct sock *sk);
1198
1199 /* Keeping track of sk's, looking them up, and port selection methods. */
1200 int (*hash)(struct sock *sk);
1201 void (*unhash)(struct sock *sk);
1202 void (*rehash)(struct sock *sk);
1203 int (*get_port)(struct sock *sk, unsigned short snum);
1204 #ifdef CONFIG_BPF_SYSCALL
1205 int (*psock_update_sk_prot)(struct sock *sk,
1206 struct sk_psock *psock,
1207 bool restore);
1208 #endif
1209
1210 /* Keeping track of sockets in use */
1211 #ifdef CONFIG_PROC_FS
1212 unsigned int inuse_idx;
1213 #endif
1214
1215 bool (*stream_memory_free)(const struct sock *sk, int wake);
1216 bool (*sock_is_readable)(struct sock *sk);
1217 /* Memory pressure */
1218 void (*enter_memory_pressure)(struct sock *sk);
1219 void (*leave_memory_pressure)(struct sock *sk);
1220 atomic_long_t *memory_allocated; /* Current allocated memory. */
1221 struct percpu_counter *sockets_allocated; /* Current number of sockets. */
1222 /*
1223 * Pressure flag: try to collapse.
1224 * Technical note: it is used by multiple contexts non atomically.
1225 * All the __sk_mem_schedule() is of this nature: accounting
1226 * is strict, actions are advisory and have some latency.
1227 */
1228 unsigned long *memory_pressure;
1229 long *sysctl_mem;
1230
1231 int *sysctl_wmem;
1232 int *sysctl_rmem;
1233 u32 sysctl_wmem_offset;
1234 u32 sysctl_rmem_offset;
1235
1236 int max_header;
1237 bool no_autobind;
1238
1239 struct kmem_cache *slab;
1240 unsigned int obj_size;
1241 slab_flags_t slab_flags;
1242 unsigned int useroffset; /* Usercopy region offset */
1243 unsigned int usersize; /* Usercopy region size */
1244
1245 unsigned int __percpu *orphan_count;
1246
1247 struct request_sock_ops *rsk_prot;
1248 struct timewait_sock_ops *twsk_prot;
1249
1250 union {
1251 struct inet_hashinfo *hashinfo;
1252 struct udp_table *udp_table;
1253 struct raw_hashinfo *raw_hash;
1254 struct smc_hashinfo *smc_hash;
1255 } h;
1256
1257 struct module *owner;
1258
1259 char name[32];
1260
1261 struct list_head node;
1262 #ifdef SOCK_REFCNT_DEBUG
1263 atomic_t socks;
1264 #endif
1265 int (*diag_destroy)(struct sock *sk, int err);
1266 } __randomize_layout;
1267
1268 int proto_register(struct proto *prot, int alloc_slab);
1269 void proto_unregister(struct proto *prot);
1270 int sock_load_diag_module(int family, int protocol);
1271
1272 #ifdef SOCK_REFCNT_DEBUG
1273 static inline void sk_refcnt_debug_inc(struct sock *sk)
1274 {
1275 atomic_inc(&sk->sk_prot->socks);
1276 }
1277
1278 static inline void sk_refcnt_debug_dec(struct sock *sk)
1279 {
1280 atomic_dec(&sk->sk_prot->socks);
1281 printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1282 sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1283 }
1284
1285 static inline void sk_refcnt_debug_release(const struct sock *sk)
1286 {
1287 if (refcount_read(&sk->sk_refcnt) != 1)
1288 printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1289 sk->sk_prot->name, sk, refcount_read(&sk->sk_refcnt));
1290 }
1291 #else /* SOCK_REFCNT_DEBUG */
1292 #define sk_refcnt_debug_inc(sk) do { } while (0)
1293 #define sk_refcnt_debug_dec(sk) do { } while (0)
1294 #define sk_refcnt_debug_release(sk) do { } while (0)
1295 #endif /* SOCK_REFCNT_DEBUG */
1296
1297 INDIRECT_CALLABLE_DECLARE(bool tcp_stream_memory_free(const struct sock *sk, int wake));
1298
1299 static inline bool __sk_stream_memory_free(const struct sock *sk, int wake)
1300 {
1301 if (READ_ONCE(sk->sk_wmem_queued) >= READ_ONCE(sk->sk_sndbuf))
1302 return false;
1303
1304 #ifdef CONFIG_INET
1305 return sk->sk_prot->stream_memory_free ?
1306 INDIRECT_CALL_1(sk->sk_prot->stream_memory_free,
1307 tcp_stream_memory_free,
1308 sk, wake) : true;
1309 #else
1310 return sk->sk_prot->stream_memory_free ?
1311 sk->sk_prot->stream_memory_free(sk, wake) : true;
1312 #endif
1313 }
1314
1315 static inline bool sk_stream_memory_free(const struct sock *sk)
1316 {
1317 return __sk_stream_memory_free(sk, 0);
1318 }
1319
1320 static inline bool __sk_stream_is_writeable(const struct sock *sk, int wake)
1321 {
1322 return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1323 __sk_stream_memory_free(sk, wake);
1324 }
1325
1326 static inline bool sk_stream_is_writeable(const struct sock *sk)
1327 {
1328 return __sk_stream_is_writeable(sk, 0);
1329 }
1330
1331 static inline int sk_under_cgroup_hierarchy(struct sock *sk,
1332 struct cgroup *ancestor)
1333 {
1334 #ifdef CONFIG_SOCK_CGROUP_DATA
1335 return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data),
1336 ancestor);
1337 #else
1338 return -ENOTSUPP;
1339 #endif
1340 }
1341
1342 static inline bool sk_has_memory_pressure(const struct sock *sk)
1343 {
1344 return sk->sk_prot->memory_pressure != NULL;
1345 }
1346
1347 static inline bool sk_under_memory_pressure(const struct sock *sk)
1348 {
1349 if (!sk->sk_prot->memory_pressure)
1350 return false;
1351
1352 if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
1353 mem_cgroup_under_socket_pressure(sk->sk_memcg))
1354 return true;
1355
1356 return !!*sk->sk_prot->memory_pressure;
1357 }
1358
1359 static inline long
1360 sk_memory_allocated(const struct sock *sk)
1361 {
1362 return atomic_long_read(sk->sk_prot->memory_allocated);
1363 }
1364
1365 static inline long
1366 sk_memory_allocated_add(struct sock *sk, int amt)
1367 {
1368 return atomic_long_add_return(amt, sk->sk_prot->memory_allocated);
1369 }
1370
1371 static inline void
1372 sk_memory_allocated_sub(struct sock *sk, int amt)
1373 {
1374 atomic_long_sub(amt, sk->sk_prot->memory_allocated);
1375 }
1376
1377 #define SK_ALLOC_PERCPU_COUNTER_BATCH 16
1378
1379 static inline void sk_sockets_allocated_dec(struct sock *sk)
1380 {
1381 percpu_counter_add_batch(sk->sk_prot->sockets_allocated, -1,
1382 SK_ALLOC_PERCPU_COUNTER_BATCH);
1383 }
1384
1385 static inline void sk_sockets_allocated_inc(struct sock *sk)
1386 {
1387 percpu_counter_add_batch(sk->sk_prot->sockets_allocated, 1,
1388 SK_ALLOC_PERCPU_COUNTER_BATCH);
1389 }
1390
1391 static inline u64
1392 sk_sockets_allocated_read_positive(struct sock *sk)
1393 {
1394 return percpu_counter_read_positive(sk->sk_prot->sockets_allocated);
1395 }
1396
1397 static inline int
1398 proto_sockets_allocated_sum_positive(struct proto *prot)
1399 {
1400 return percpu_counter_sum_positive(prot->sockets_allocated);
1401 }
1402
1403 static inline long
1404 proto_memory_allocated(struct proto *prot)
1405 {
1406 return atomic_long_read(prot->memory_allocated);
1407 }
1408
1409 static inline bool
1410 proto_memory_pressure(struct proto *prot)
1411 {
1412 if (!prot->memory_pressure)
1413 return false;
1414 return !!*prot->memory_pressure;
1415 }
1416
1417
1418 #ifdef CONFIG_PROC_FS
1419 /* Called with local bh disabled */
1420 void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
1421 int sock_prot_inuse_get(struct net *net, struct proto *proto);
1422 int sock_inuse_get(struct net *net);
1423 #else
1424 static inline void sock_prot_inuse_add(struct net *net, struct proto *prot,
1425 int inc)
1426 {
1427 }
1428 #endif
1429
1430
1431 /* With per-bucket locks this operation is not-atomic, so that
1432 * this version is not worse.
1433 */
1434 static inline int __sk_prot_rehash(struct sock *sk)
1435 {
1436 sk->sk_prot->unhash(sk);
1437 return sk->sk_prot->hash(sk);
1438 }
1439
1440 /* About 10 seconds */
1441 #define SOCK_DESTROY_TIME (10*HZ)
1442
1443 /* Sockets 0-1023 can't be bound to unless you are superuser */
1444 #define PROT_SOCK 1024
1445
1446 #define SHUTDOWN_MASK 3
1447 #define RCV_SHUTDOWN 1
1448 #define SEND_SHUTDOWN 2
1449
1450 #define SOCK_BINDADDR_LOCK 4
1451 #define SOCK_BINDPORT_LOCK 8
1452
1453 struct socket_alloc {
1454 struct socket socket;
1455 struct inode vfs_inode;
1456 };
1457
1458 static inline struct socket *SOCKET_I(struct inode *inode)
1459 {
1460 return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1461 }
1462
1463 static inline struct inode *SOCK_INODE(struct socket *socket)
1464 {
1465 return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1466 }
1467
1468 /*
1469 * Functions for memory accounting
1470 */
1471 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind);
1472 int __sk_mem_schedule(struct sock *sk, int size, int kind);
1473 void __sk_mem_reduce_allocated(struct sock *sk, int amount);
1474 void __sk_mem_reclaim(struct sock *sk, int amount);
1475
1476 /* We used to have PAGE_SIZE here, but systems with 64KB pages
1477 * do not necessarily have 16x time more memory than 4KB ones.
1478 */
1479 #define SK_MEM_QUANTUM 4096
1480 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1481 #define SK_MEM_SEND 0
1482 #define SK_MEM_RECV 1
1483
1484 /* sysctl_mem values are in pages, we convert them in SK_MEM_QUANTUM units */
1485 static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1486 {
1487 long val = READ_ONCE(sk->sk_prot->sysctl_mem[index]);
1488
1489 #if PAGE_SIZE > SK_MEM_QUANTUM
1490 val <<= PAGE_SHIFT - SK_MEM_QUANTUM_SHIFT;
1491 #elif PAGE_SIZE < SK_MEM_QUANTUM
1492 val >>= SK_MEM_QUANTUM_SHIFT - PAGE_SHIFT;
1493 #endif
1494 return val;
1495 }
1496
1497 static inline int sk_mem_pages(int amt)
1498 {
1499 return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1500 }
1501
1502 static inline bool sk_has_account(struct sock *sk)
1503 {
1504 /* return true if protocol supports memory accounting */
1505 return !!sk->sk_prot->memory_allocated;
1506 }
1507
1508 static inline bool sk_wmem_schedule(struct sock *sk, int size)
1509 {
1510 if (!sk_has_account(sk))
1511 return true;
1512 return size <= sk->sk_forward_alloc ||
1513 __sk_mem_schedule(sk, size, SK_MEM_SEND);
1514 }
1515
1516 static inline bool
1517 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1518 {
1519 if (!sk_has_account(sk))
1520 return true;
1521 return size <= sk->sk_forward_alloc ||
1522 __sk_mem_schedule(sk, size, SK_MEM_RECV) ||
1523 skb_pfmemalloc(skb);
1524 }
1525
1526 static inline void sk_mem_reclaim(struct sock *sk)
1527 {
1528 if (!sk_has_account(sk))
1529 return;
1530 if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
1531 __sk_mem_reclaim(sk, sk->sk_forward_alloc);
1532 }
1533
1534 static inline void sk_mem_reclaim_partial(struct sock *sk)
1535 {
1536 if (!sk_has_account(sk))
1537 return;
1538 if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
1539 __sk_mem_reclaim(sk, sk->sk_forward_alloc - 1);
1540 }
1541
1542 static inline void sk_mem_charge(struct sock *sk, int size)
1543 {
1544 if (!sk_has_account(sk))
1545 return;
1546 sk->sk_forward_alloc -= size;
1547 }
1548
1549 static inline void sk_mem_uncharge(struct sock *sk, int size)
1550 {
1551 if (!sk_has_account(sk))
1552 return;
1553 sk->sk_forward_alloc += size;
1554
1555 /* Avoid a possible overflow.
1556 * TCP send queues can make this happen, if sk_mem_reclaim()
1557 * is not called and more than 2 GBytes are released at once.
1558 *
1559 * If we reach 2 MBytes, reclaim 1 MBytes right now, there is
1560 * no need to hold that much forward allocation anyway.
1561 */
1562 if (unlikely(sk->sk_forward_alloc >= 1 << 21))
1563 __sk_mem_reclaim(sk, 1 << 20);
1564 }
1565
1566 DECLARE_STATIC_KEY_FALSE(tcp_tx_skb_cache_key);
1567 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1568 {
1569 sk_wmem_queued_add(sk, -skb->truesize);
1570 sk_mem_uncharge(sk, skb->truesize);
1571 if (static_branch_unlikely(&tcp_tx_skb_cache_key) &&
1572 !sk->sk_tx_skb_cache && !skb_cloned(skb)) {
1573 skb_ext_reset(skb);
1574 skb_zcopy_clear(skb, true);
1575 sk->sk_tx_skb_cache = skb;
1576 return;
1577 }
1578 __kfree_skb(skb);
1579 }
1580
1581 static inline void sock_release_ownership(struct sock *sk)
1582 {
1583 if (sk->sk_lock.owned) {
1584 sk->sk_lock.owned = 0;
1585
1586 /* The sk_lock has mutex_unlock() semantics: */
1587 mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
1588 }
1589 }
1590
1591 /*
1592 * Macro so as to not evaluate some arguments when
1593 * lockdep is not enabled.
1594 *
1595 * Mark both the sk_lock and the sk_lock.slock as a
1596 * per-address-family lock class.
1597 */
1598 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) \
1599 do { \
1600 sk->sk_lock.owned = 0; \
1601 init_waitqueue_head(&sk->sk_lock.wq); \
1602 spin_lock_init(&(sk)->sk_lock.slock); \
1603 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \
1604 sizeof((sk)->sk_lock)); \
1605 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \
1606 (skey), (sname)); \
1607 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \
1608 } while (0)
1609
1610 static inline bool lockdep_sock_is_held(const struct sock *sk)
1611 {
1612 return lockdep_is_held(&sk->sk_lock) ||
1613 lockdep_is_held(&sk->sk_lock.slock);
1614 }
1615
1616 void lock_sock_nested(struct sock *sk, int subclass);
1617
1618 static inline void lock_sock(struct sock *sk)
1619 {
1620 lock_sock_nested(sk, 0);
1621 }
1622
1623 void __lock_sock(struct sock *sk);
1624 void __release_sock(struct sock *sk);
1625 void release_sock(struct sock *sk);
1626
1627 /* BH context may only use the following locking interface. */
1628 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock))
1629 #define bh_lock_sock_nested(__sk) \
1630 spin_lock_nested(&((__sk)->sk_lock.slock), \
1631 SINGLE_DEPTH_NESTING)
1632 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock))
1633
1634 bool __lock_sock_fast(struct sock *sk) __acquires(&sk->sk_lock.slock);
1635
1636 /**
1637 * lock_sock_fast - fast version of lock_sock
1638 * @sk: socket
1639 *
1640 * This version should be used for very small section, where process wont block
1641 * return false if fast path is taken:
1642 *
1643 * sk_lock.slock locked, owned = 0, BH disabled
1644 *
1645 * return true if slow path is taken:
1646 *
1647 * sk_lock.slock unlocked, owned = 1, BH enabled
1648 */
1649 static inline bool lock_sock_fast(struct sock *sk)
1650 {
1651 /* The sk_lock has mutex_lock() semantics here. */
1652 mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
1653
1654 return __lock_sock_fast(sk);
1655 }
1656
1657 /* fast socket lock variant for caller already holding a [different] socket lock */
1658 static inline bool lock_sock_fast_nested(struct sock *sk)
1659 {
1660 mutex_acquire(&sk->sk_lock.dep_map, SINGLE_DEPTH_NESTING, 0, _RET_IP_);
1661
1662 return __lock_sock_fast(sk);
1663 }
1664
1665 /**
1666 * unlock_sock_fast - complement of lock_sock_fast
1667 * @sk: socket
1668 * @slow: slow mode
1669 *
1670 * fast unlock socket for user context.
1671 * If slow mode is on, we call regular release_sock()
1672 */
1673 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1674 __releases(&sk->sk_lock.slock)
1675 {
1676 if (slow) {
1677 release_sock(sk);
1678 __release(&sk->sk_lock.slock);
1679 } else {
1680 mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
1681 spin_unlock_bh(&sk->sk_lock.slock);
1682 }
1683 }
1684
1685 /* Used by processes to "lock" a socket state, so that
1686 * interrupts and bottom half handlers won't change it
1687 * from under us. It essentially blocks any incoming
1688 * packets, so that we won't get any new data or any
1689 * packets that change the state of the socket.
1690 *
1691 * While locked, BH processing will add new packets to
1692 * the backlog queue. This queue is processed by the
1693 * owner of the socket lock right before it is released.
1694 *
1695 * Since ~2.3.5 it is also exclusive sleep lock serializing
1696 * accesses from user process context.
1697 */
1698
1699 static inline void sock_owned_by_me(const struct sock *sk)
1700 {
1701 #ifdef CONFIG_LOCKDEP
1702 WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks);
1703 #endif
1704 }
1705
1706 static inline bool sock_owned_by_user(const struct sock *sk)
1707 {
1708 sock_owned_by_me(sk);
1709 return sk->sk_lock.owned;
1710 }
1711
1712 static inline bool sock_owned_by_user_nocheck(const struct sock *sk)
1713 {
1714 return sk->sk_lock.owned;
1715 }
1716
1717 /* no reclassification while locks are held */
1718 static inline bool sock_allow_reclassification(const struct sock *csk)
1719 {
1720 struct sock *sk = (struct sock *)csk;
1721
1722 return !sk->sk_lock.owned && !spin_is_locked(&sk->sk_lock.slock);
1723 }
1724
1725 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1726 struct proto *prot, int kern);
1727 void sk_free(struct sock *sk);
1728 void sk_destruct(struct sock *sk);
1729 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1730 void sk_free_unlock_clone(struct sock *sk);
1731
1732 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1733 gfp_t priority);
1734 void __sock_wfree(struct sk_buff *skb);
1735 void sock_wfree(struct sk_buff *skb);
1736 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
1737 gfp_t priority);
1738 void skb_orphan_partial(struct sk_buff *skb);
1739 void sock_rfree(struct sk_buff *skb);
1740 void sock_efree(struct sk_buff *skb);
1741 #ifdef CONFIG_INET
1742 void sock_edemux(struct sk_buff *skb);
1743 void sock_pfree(struct sk_buff *skb);
1744 #else
1745 #define sock_edemux sock_efree
1746 #endif
1747
1748 int sock_setsockopt(struct socket *sock, int level, int op,
1749 sockptr_t optval, unsigned int optlen);
1750
1751 int sock_getsockopt(struct socket *sock, int level, int op,
1752 char __user *optval, int __user *optlen);
1753 int sock_gettstamp(struct socket *sock, void __user *userstamp,
1754 bool timeval, bool time32);
1755 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1756 int noblock, int *errcode);
1757 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1758 unsigned long data_len, int noblock,
1759 int *errcode, int max_page_order);
1760 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1761 void sock_kfree_s(struct sock *sk, void *mem, int size);
1762 void sock_kzfree_s(struct sock *sk, void *mem, int size);
1763 void sk_send_sigurg(struct sock *sk);
1764
1765 struct sockcm_cookie {
1766 u64 transmit_time;
1767 u32 mark;
1768 u16 tsflags;
1769 };
1770
1771 static inline void sockcm_init(struct sockcm_cookie *sockc,
1772 const struct sock *sk)
1773 {
1774 *sockc = (struct sockcm_cookie) { .tsflags = sk->sk_tsflags };
1775 }
1776
1777 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
1778 struct sockcm_cookie *sockc);
1779 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1780 struct sockcm_cookie *sockc);
1781
1782 /*
1783 * Functions to fill in entries in struct proto_ops when a protocol
1784 * does not implement a particular function.
1785 */
1786 int sock_no_bind(struct socket *, struct sockaddr *, int);
1787 int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1788 int sock_no_socketpair(struct socket *, struct socket *);
1789 int sock_no_accept(struct socket *, struct socket *, int, bool);
1790 int sock_no_getname(struct socket *, struct sockaddr *, int);
1791 int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1792 int sock_no_listen(struct socket *, int);
1793 int sock_no_shutdown(struct socket *, int);
1794 int sock_no_sendmsg(struct socket *, struct msghdr *, size_t);
1795 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t len);
1796 int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int);
1797 int sock_no_mmap(struct file *file, struct socket *sock,
1798 struct vm_area_struct *vma);
1799 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset,
1800 size_t size, int flags);
1801 ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page,
1802 int offset, size_t size, int flags);
1803
1804 /*
1805 * Functions to fill in entries in struct proto_ops when a protocol
1806 * uses the inet style.
1807 */
1808 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1809 char __user *optval, int __user *optlen);
1810 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1811 int flags);
1812 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1813 sockptr_t optval, unsigned int optlen);
1814
1815 void sk_common_release(struct sock *sk);
1816
1817 /*
1818 * Default socket callbacks and setup code
1819 */
1820
1821 /* Initialise core socket variables */
1822 void sock_init_data(struct socket *sock, struct sock *sk);
1823
1824 /*
1825 * Socket reference counting postulates.
1826 *
1827 * * Each user of socket SHOULD hold a reference count.
1828 * * Each access point to socket (an hash table bucket, reference from a list,
1829 * running timer, skb in flight MUST hold a reference count.
1830 * * When reference count hits 0, it means it will never increase back.
1831 * * When reference count hits 0, it means that no references from
1832 * outside exist to this socket and current process on current CPU
1833 * is last user and may/should destroy this socket.
1834 * * sk_free is called from any context: process, BH, IRQ. When
1835 * it is called, socket has no references from outside -> sk_free
1836 * may release descendant resources allocated by the socket, but
1837 * to the time when it is called, socket is NOT referenced by any
1838 * hash tables, lists etc.
1839 * * Packets, delivered from outside (from network or from another process)
1840 * and enqueued on receive/error queues SHOULD NOT grab reference count,
1841 * when they sit in queue. Otherwise, packets will leak to hole, when
1842 * socket is looked up by one cpu and unhasing is made by another CPU.
1843 * It is true for udp/raw, netlink (leak to receive and error queues), tcp
1844 * (leak to backlog). Packet socket does all the processing inside
1845 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1846 * use separate SMP lock, so that they are prone too.
1847 */
1848
1849 /* Ungrab socket and destroy it, if it was the last reference. */
1850 static inline void sock_put(struct sock *sk)
1851 {
1852 if (refcount_dec_and_test(&sk->sk_refcnt))
1853 sk_free(sk);
1854 }
1855 /* Generic version of sock_put(), dealing with all sockets
1856 * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...)
1857 */
1858 void sock_gen_put(struct sock *sk);
1859
1860 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested,
1861 unsigned int trim_cap, bool refcounted);
1862 static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1863 const int nested)
1864 {
1865 return __sk_receive_skb(sk, skb, nested, 1, true);
1866 }
1867
1868 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1869 {
1870 /* sk_tx_queue_mapping accept only upto a 16-bit value */
1871 if (WARN_ON_ONCE((unsigned short)tx_queue >= USHRT_MAX))
1872 return;
1873 sk->sk_tx_queue_mapping = tx_queue;
1874 }
1875
1876 #define NO_QUEUE_MAPPING USHRT_MAX
1877
1878 static inline void sk_tx_queue_clear(struct sock *sk)
1879 {
1880 sk->sk_tx_queue_mapping = NO_QUEUE_MAPPING;
1881 }
1882
1883 static inline int sk_tx_queue_get(const struct sock *sk)
1884 {
1885 if (sk && sk->sk_tx_queue_mapping != NO_QUEUE_MAPPING)
1886 return sk->sk_tx_queue_mapping;
1887
1888 return -1;
1889 }
1890
1891 static inline void sk_rx_queue_set(struct sock *sk, const struct sk_buff *skb)
1892 {
1893 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
1894 if (skb_rx_queue_recorded(skb)) {
1895 u16 rx_queue = skb_get_rx_queue(skb);
1896
1897 if (WARN_ON_ONCE(rx_queue == NO_QUEUE_MAPPING))
1898 return;
1899
1900 sk->sk_rx_queue_mapping = rx_queue;
1901 }
1902 #endif
1903 }
1904
1905 static inline void sk_rx_queue_clear(struct sock *sk)
1906 {
1907 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
1908 sk->sk_rx_queue_mapping = NO_QUEUE_MAPPING;
1909 #endif
1910 }
1911
1912 static inline int sk_rx_queue_get(const struct sock *sk)
1913 {
1914 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
1915 if (sk && sk->sk_rx_queue_mapping != NO_QUEUE_MAPPING)
1916 return sk->sk_rx_queue_mapping;
1917 #endif
1918
1919 return -1;
1920 }
1921
1922 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1923 {
1924 sk->sk_socket = sock;
1925 }
1926
1927 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1928 {
1929 BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1930 return &rcu_dereference_raw(sk->sk_wq)->wait;
1931 }
1932 /* Detach socket from process context.
1933 * Announce socket dead, detach it from wait queue and inode.
1934 * Note that parent inode held reference count on this struct sock,
1935 * we do not release it in this function, because protocol
1936 * probably wants some additional cleanups or even continuing
1937 * to work with this socket (TCP).
1938 */
1939 static inline void sock_orphan(struct sock *sk)
1940 {
1941 write_lock_bh(&sk->sk_callback_lock);
1942 sock_set_flag(sk, SOCK_DEAD);
1943 sk_set_socket(sk, NULL);
1944 sk->sk_wq = NULL;
1945 write_unlock_bh(&sk->sk_callback_lock);
1946 }
1947
1948 static inline void sock_graft(struct sock *sk, struct socket *parent)
1949 {
1950 WARN_ON(parent->sk);
1951 write_lock_bh(&sk->sk_callback_lock);
1952 rcu_assign_pointer(sk->sk_wq, &parent->wq);
1953 parent->sk = sk;
1954 sk_set_socket(sk, parent);
1955 sk->sk_uid = SOCK_INODE(parent)->i_uid;
1956 security_sock_graft(sk, parent);
1957 write_unlock_bh(&sk->sk_callback_lock);
1958 }
1959
1960 kuid_t sock_i_uid(struct sock *sk);
1961 unsigned long sock_i_ino(struct sock *sk);
1962
1963 static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk)
1964 {
1965 return sk ? sk->sk_uid : make_kuid(net->user_ns, 0);
1966 }
1967
1968 static inline u32 net_tx_rndhash(void)
1969 {
1970 u32 v = prandom_u32();
1971
1972 return v ?: 1;
1973 }
1974
1975 static inline void sk_set_txhash(struct sock *sk)
1976 {
1977 /* This pairs with READ_ONCE() in skb_set_hash_from_sk() */
1978 WRITE_ONCE(sk->sk_txhash, net_tx_rndhash());
1979 }
1980
1981 static inline bool sk_rethink_txhash(struct sock *sk)
1982 {
1983 if (sk->sk_txhash) {
1984 sk_set_txhash(sk);
1985 return true;
1986 }
1987 return false;
1988 }
1989
1990 static inline struct dst_entry *
1991 __sk_dst_get(struct sock *sk)
1992 {
1993 return rcu_dereference_check(sk->sk_dst_cache,
1994 lockdep_sock_is_held(sk));
1995 }
1996
1997 static inline struct dst_entry *
1998 sk_dst_get(struct sock *sk)
1999 {
2000 struct dst_entry *dst;
2001
2002 rcu_read_lock();
2003 dst = rcu_dereference(sk->sk_dst_cache);
2004 if (dst && !atomic_inc_not_zero(&dst->__refcnt))
2005 dst = NULL;
2006 rcu_read_unlock();
2007 return dst;
2008 }
2009
2010 static inline void __dst_negative_advice(struct sock *sk)
2011 {
2012 struct dst_entry *ndst, *dst = __sk_dst_get(sk);
2013
2014 if (dst && dst->ops->negative_advice) {
2015 ndst = dst->ops->negative_advice(dst);
2016
2017 if (ndst != dst) {
2018 rcu_assign_pointer(sk->sk_dst_cache, ndst);
2019 sk_tx_queue_clear(sk);
2020 sk->sk_dst_pending_confirm = 0;
2021 }
2022 }
2023 }
2024
2025 static inline void dst_negative_advice(struct sock *sk)
2026 {
2027 sk_rethink_txhash(sk);
2028 __dst_negative_advice(sk);
2029 }
2030
2031 static inline void
2032 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
2033 {
2034 struct dst_entry *old_dst;
2035
2036 sk_tx_queue_clear(sk);
2037 sk->sk_dst_pending_confirm = 0;
2038 old_dst = rcu_dereference_protected(sk->sk_dst_cache,
2039 lockdep_sock_is_held(sk));
2040 rcu_assign_pointer(sk->sk_dst_cache, dst);
2041 dst_release(old_dst);
2042 }
2043
2044 static inline void
2045 sk_dst_set(struct sock *sk, struct dst_entry *dst)
2046 {
2047 struct dst_entry *old_dst;
2048
2049 sk_tx_queue_clear(sk);
2050 sk->sk_dst_pending_confirm = 0;
2051 old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst);
2052 dst_release(old_dst);
2053 }
2054
2055 static inline void
2056 __sk_dst_reset(struct sock *sk)
2057 {
2058 __sk_dst_set(sk, NULL);
2059 }
2060
2061 static inline void
2062 sk_dst_reset(struct sock *sk)
2063 {
2064 sk_dst_set(sk, NULL);
2065 }
2066
2067 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
2068
2069 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
2070
2071 static inline void sk_dst_confirm(struct sock *sk)
2072 {
2073 if (!READ_ONCE(sk->sk_dst_pending_confirm))
2074 WRITE_ONCE(sk->sk_dst_pending_confirm, 1);
2075 }
2076
2077 static inline void sock_confirm_neigh(struct sk_buff *skb, struct neighbour *n)
2078 {
2079 if (skb_get_dst_pending_confirm(skb)) {
2080 struct sock *sk = skb->sk;
2081 unsigned long now = jiffies;
2082
2083 /* avoid dirtying neighbour */
2084 if (READ_ONCE(n->confirmed) != now)
2085 WRITE_ONCE(n->confirmed, now);
2086 if (sk && READ_ONCE(sk->sk_dst_pending_confirm))
2087 WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
2088 }
2089 }
2090
2091 bool sk_mc_loop(struct sock *sk);
2092
2093 static inline bool sk_can_gso(const struct sock *sk)
2094 {
2095 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
2096 }
2097
2098 void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
2099
2100 static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
2101 {
2102 sk->sk_route_nocaps |= flags;
2103 sk->sk_route_caps &= ~flags;
2104 }
2105
2106 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
2107 struct iov_iter *from, char *to,
2108 int copy, int offset)
2109 {
2110 if (skb->ip_summed == CHECKSUM_NONE) {
2111 __wsum csum = 0;
2112 if (!csum_and_copy_from_iter_full(to, copy, &csum, from))
2113 return -EFAULT;
2114 skb->csum = csum_block_add(skb->csum, csum, offset);
2115 } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
2116 if (!copy_from_iter_full_nocache(to, copy, from))
2117 return -EFAULT;
2118 } else if (!copy_from_iter_full(to, copy, from))
2119 return -EFAULT;
2120
2121 return 0;
2122 }
2123
2124 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
2125 struct iov_iter *from, int copy)
2126 {
2127 int err, offset = skb->len;
2128
2129 err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
2130 copy, offset);
2131 if (err)
2132 __skb_trim(skb, offset);
2133
2134 return err;
2135 }
2136
2137 static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from,
2138 struct sk_buff *skb,
2139 struct page *page,
2140 int off, int copy)
2141 {
2142 int err;
2143
2144 err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
2145 copy, skb->len);
2146 if (err)
2147 return err;
2148
2149 skb->len += copy;
2150 skb->data_len += copy;
2151 skb->truesize += copy;
2152 sk_wmem_queued_add(sk, copy);
2153 sk_mem_charge(sk, copy);
2154 return 0;
2155 }
2156
2157 /**
2158 * sk_wmem_alloc_get - returns write allocations
2159 * @sk: socket
2160 *
2161 * Return: sk_wmem_alloc minus initial offset of one
2162 */
2163 static inline int sk_wmem_alloc_get(const struct sock *sk)
2164 {
2165 return refcount_read(&sk->sk_wmem_alloc) - 1;
2166 }
2167
2168 /**
2169 * sk_rmem_alloc_get - returns read allocations
2170 * @sk: socket
2171 *
2172 * Return: sk_rmem_alloc
2173 */
2174 static inline int sk_rmem_alloc_get(const struct sock *sk)
2175 {
2176 return atomic_read(&sk->sk_rmem_alloc);
2177 }
2178
2179 /**
2180 * sk_has_allocations - check if allocations are outstanding
2181 * @sk: socket
2182 *
2183 * Return: true if socket has write or read allocations
2184 */
2185 static inline bool sk_has_allocations(const struct sock *sk)
2186 {
2187 return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
2188 }
2189
2190 /**
2191 * skwq_has_sleeper - check if there are any waiting processes
2192 * @wq: struct socket_wq
2193 *
2194 * Return: true if socket_wq has waiting processes
2195 *
2196 * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory
2197 * barrier call. They were added due to the race found within the tcp code.
2198 *
2199 * Consider following tcp code paths::
2200 *
2201 * CPU1 CPU2
2202 * sys_select receive packet
2203 * ... ...
2204 * __add_wait_queue update tp->rcv_nxt
2205 * ... ...
2206 * tp->rcv_nxt check sock_def_readable
2207 * ... {
2208 * schedule rcu_read_lock();
2209 * wq = rcu_dereference(sk->sk_wq);
2210 * if (wq && waitqueue_active(&wq->wait))
2211 * wake_up_interruptible(&wq->wait)
2212 * ...
2213 * }
2214 *
2215 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
2216 * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1
2217 * could then endup calling schedule and sleep forever if there are no more
2218 * data on the socket.
2219 *
2220 */
2221 static inline bool skwq_has_sleeper(struct socket_wq *wq)
2222 {
2223 return wq && wq_has_sleeper(&wq->wait);
2224 }
2225
2226 /**
2227 * sock_poll_wait - place memory barrier behind the poll_wait call.
2228 * @filp: file
2229 * @sock: socket to wait on
2230 * @p: poll_table
2231 *
2232 * See the comments in the wq_has_sleeper function.
2233 */
2234 static inline void sock_poll_wait(struct file *filp, struct socket *sock,
2235 poll_table *p)
2236 {
2237 if (!poll_does_not_wait(p)) {
2238 poll_wait(filp, &sock->wq.wait, p);
2239 /* We need to be sure we are in sync with the
2240 * socket flags modification.
2241 *
2242 * This memory barrier is paired in the wq_has_sleeper.
2243 */
2244 smp_mb();
2245 }
2246 }
2247
2248 static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
2249 {
2250 /* This pairs with WRITE_ONCE() in sk_set_txhash() */
2251 u32 txhash = READ_ONCE(sk->sk_txhash);
2252
2253 if (txhash) {
2254 skb->l4_hash = 1;
2255 skb->hash = txhash;
2256 }
2257 }
2258
2259 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk);
2260
2261 /*
2262 * Queue a received datagram if it will fit. Stream and sequenced
2263 * protocols can't normally use this as they need to fit buffers in
2264 * and play with them.
2265 *
2266 * Inlined as it's very short and called for pretty much every
2267 * packet ever received.
2268 */
2269 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
2270 {
2271 skb_orphan(skb);
2272 skb->sk = sk;
2273 skb->destructor = sock_rfree;
2274 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
2275 sk_mem_charge(sk, skb->truesize);
2276 }
2277
2278 static inline __must_check bool skb_set_owner_sk_safe(struct sk_buff *skb, struct sock *sk)
2279 {
2280 if (sk && refcount_inc_not_zero(&sk->sk_refcnt)) {
2281 skb_orphan(skb);
2282 skb->destructor = sock_efree;
2283 skb->sk = sk;
2284 return true;
2285 }
2286 return false;
2287 }
2288
2289 static inline void skb_prepare_for_gro(struct sk_buff *skb)
2290 {
2291 if (skb->destructor != sock_wfree) {
2292 skb_orphan(skb);
2293 return;
2294 }
2295 skb->slow_gro = 1;
2296 }
2297
2298 void sk_reset_timer(struct sock *sk, struct timer_list *timer,
2299 unsigned long expires);
2300
2301 void sk_stop_timer(struct sock *sk, struct timer_list *timer);
2302
2303 void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer);
2304
2305 int __sk_queue_drop_skb(struct sock *sk, struct sk_buff_head *sk_queue,
2306 struct sk_buff *skb, unsigned int flags,
2307 void (*destructor)(struct sock *sk,
2308 struct sk_buff *skb));
2309 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2310 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2311
2312 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
2313 struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
2314
2315 /*
2316 * Recover an error report and clear atomically
2317 */
2318
2319 static inline int sock_error(struct sock *sk)
2320 {
2321 int err;
2322
2323 /* Avoid an atomic operation for the common case.
2324 * This is racy since another cpu/thread can change sk_err under us.
2325 */
2326 if (likely(data_race(!sk->sk_err)))
2327 return 0;
2328
2329 err = xchg(&sk->sk_err, 0);
2330 return -err;
2331 }
2332
2333 void sk_error_report(struct sock *sk);
2334
2335 static inline unsigned long sock_wspace(struct sock *sk)
2336 {
2337 int amt = 0;
2338
2339 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2340 amt = sk->sk_sndbuf - refcount_read(&sk->sk_wmem_alloc);
2341 if (amt < 0)
2342 amt = 0;
2343 }
2344 return amt;
2345 }
2346
2347 /* Note:
2348 * We use sk->sk_wq_raw, from contexts knowing this
2349 * pointer is not NULL and cannot disappear/change.
2350 */
2351 static inline void sk_set_bit(int nr, struct sock *sk)
2352 {
2353 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2354 !sock_flag(sk, SOCK_FASYNC))
2355 return;
2356
2357 set_bit(nr, &sk->sk_wq_raw->flags);
2358 }
2359
2360 static inline void sk_clear_bit(int nr, struct sock *sk)
2361 {
2362 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2363 !sock_flag(sk, SOCK_FASYNC))
2364 return;
2365
2366 clear_bit(nr, &sk->sk_wq_raw->flags);
2367 }
2368
2369 static inline void sk_wake_async(const struct sock *sk, int how, int band)
2370 {
2371 if (sock_flag(sk, SOCK_FASYNC)) {
2372 rcu_read_lock();
2373 sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
2374 rcu_read_unlock();
2375 }
2376 }
2377
2378 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2379 * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2380 * Note: for send buffers, TCP works better if we can build two skbs at
2381 * minimum.
2382 */
2383 #define TCP_SKB_MIN_TRUESIZE (2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2384
2385 #define SOCK_MIN_SNDBUF (TCP_SKB_MIN_TRUESIZE * 2)
2386 #define SOCK_MIN_RCVBUF TCP_SKB_MIN_TRUESIZE
2387
2388 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2389 {
2390 u32 val;
2391
2392 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
2393 return;
2394
2395 val = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2396
2397 WRITE_ONCE(sk->sk_sndbuf, max_t(u32, val, SOCK_MIN_SNDBUF));
2398 }
2399
2400 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
2401 bool force_schedule);
2402
2403 /**
2404 * sk_page_frag - return an appropriate page_frag
2405 * @sk: socket
2406 *
2407 * Use the per task page_frag instead of the per socket one for
2408 * optimization when we know that we're in process context and own
2409 * everything that's associated with %current.
2410 *
2411 * Both direct reclaim and page faults can nest inside other
2412 * socket operations and end up recursing into sk_page_frag()
2413 * while it's already in use: explicitly avoid task page_frag
2414 * usage if the caller is potentially doing any of them.
2415 * This assumes that page fault handlers use the GFP_NOFS flags.
2416 *
2417 * Return: a per task page_frag if context allows that,
2418 * otherwise a per socket one.
2419 */
2420 static inline struct page_frag *sk_page_frag(struct sock *sk)
2421 {
2422 if ((sk->sk_allocation & (__GFP_DIRECT_RECLAIM | __GFP_MEMALLOC | __GFP_FS)) ==
2423 (__GFP_DIRECT_RECLAIM | __GFP_FS))
2424 return &current->task_frag;
2425
2426 return &sk->sk_frag;
2427 }
2428
2429 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2430
2431 /*
2432 * Default write policy as shown to user space via poll/select/SIGIO
2433 */
2434 static inline bool sock_writeable(const struct sock *sk)
2435 {
2436 return refcount_read(&sk->sk_wmem_alloc) < (READ_ONCE(sk->sk_sndbuf) >> 1);
2437 }
2438
2439 static inline gfp_t gfp_any(void)
2440 {
2441 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2442 }
2443
2444 static inline gfp_t gfp_memcg_charge(void)
2445 {
2446 return in_softirq() ? GFP_NOWAIT : GFP_KERNEL;
2447 }
2448
2449 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2450 {
2451 return noblock ? 0 : sk->sk_rcvtimeo;
2452 }
2453
2454 static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2455 {
2456 return noblock ? 0 : sk->sk_sndtimeo;
2457 }
2458
2459 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2460 {
2461 int v = waitall ? len : min_t(int, READ_ONCE(sk->sk_rcvlowat), len);
2462
2463 return v ?: 1;
2464 }
2465
2466 /* Alas, with timeout socket operations are not restartable.
2467 * Compare this to poll().
2468 */
2469 static inline int sock_intr_errno(long timeo)
2470 {
2471 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2472 }
2473
2474 struct sock_skb_cb {
2475 u32 dropcount;
2476 };
2477
2478 /* Store sock_skb_cb at the end of skb->cb[] so protocol families
2479 * using skb->cb[] would keep using it directly and utilize its
2480 * alignement guarantee.
2481 */
2482 #define SOCK_SKB_CB_OFFSET ((sizeof_field(struct sk_buff, cb) - \
2483 sizeof(struct sock_skb_cb)))
2484
2485 #define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \
2486 SOCK_SKB_CB_OFFSET))
2487
2488 #define sock_skb_cb_check_size(size) \
2489 BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET)
2490
2491 static inline void
2492 sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb)
2493 {
2494 SOCK_SKB_CB(skb)->dropcount = sock_flag(sk, SOCK_RXQ_OVFL) ?
2495 atomic_read(&sk->sk_drops) : 0;
2496 }
2497
2498 static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb)
2499 {
2500 int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2501
2502 atomic_add(segs, &sk->sk_drops);
2503 }
2504
2505 static inline ktime_t sock_read_timestamp(struct sock *sk)
2506 {
2507 #if BITS_PER_LONG==32
2508 unsigned int seq;
2509 ktime_t kt;
2510
2511 do {
2512 seq = read_seqbegin(&sk->sk_stamp_seq);
2513 kt = sk->sk_stamp;
2514 } while (read_seqretry(&sk->sk_stamp_seq, seq));
2515
2516 return kt;
2517 #else
2518 return READ_ONCE(sk->sk_stamp);
2519 #endif
2520 }
2521
2522 static inline void sock_write_timestamp(struct sock *sk, ktime_t kt)
2523 {
2524 #if BITS_PER_LONG==32
2525 write_seqlock(&sk->sk_stamp_seq);
2526 sk->sk_stamp = kt;
2527 write_sequnlock(&sk->sk_stamp_seq);
2528 #else
2529 WRITE_ONCE(sk->sk_stamp, kt);
2530 #endif
2531 }
2532
2533 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2534 struct sk_buff *skb);
2535 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2536 struct sk_buff *skb);
2537
2538 static inline void
2539 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2540 {
2541 ktime_t kt = skb->tstamp;
2542 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2543
2544 /*
2545 * generate control messages if
2546 * - receive time stamping in software requested
2547 * - software time stamp available and wanted
2548 * - hardware time stamps available and wanted
2549 */
2550 if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2551 (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2552 (kt && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2553 (hwtstamps->hwtstamp &&
2554 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
2555 __sock_recv_timestamp(msg, sk, skb);
2556 else
2557 sock_write_timestamp(sk, kt);
2558
2559 if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2560 __sock_recv_wifi_status(msg, sk, skb);
2561 }
2562
2563 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2564 struct sk_buff *skb);
2565
2566 #define SK_DEFAULT_STAMP (-1L * NSEC_PER_SEC)
2567 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2568 struct sk_buff *skb)
2569 {
2570 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL) | \
2571 (1UL << SOCK_RCVTSTAMP))
2572 #define TSFLAGS_ANY (SOF_TIMESTAMPING_SOFTWARE | \
2573 SOF_TIMESTAMPING_RAW_HARDWARE)
2574
2575 if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY)
2576 __sock_recv_ts_and_drops(msg, sk, skb);
2577 else if (unlikely(sock_flag(sk, SOCK_TIMESTAMP)))
2578 sock_write_timestamp(sk, skb->tstamp);
2579 else if (unlikely(sk->sk_stamp == SK_DEFAULT_STAMP))
2580 sock_write_timestamp(sk, 0);
2581 }
2582
2583 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags);
2584
2585 /**
2586 * _sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2587 * @sk: socket sending this packet
2588 * @tsflags: timestamping flags to use
2589 * @tx_flags: completed with instructions for time stamping
2590 * @tskey: filled in with next sk_tskey (not for TCP, which uses seqno)
2591 *
2592 * Note: callers should take care of initial ``*tx_flags`` value (usually 0)
2593 */
2594 static inline void _sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2595 __u8 *tx_flags, __u32 *tskey)
2596 {
2597 if (unlikely(tsflags)) {
2598 __sock_tx_timestamp(tsflags, tx_flags);
2599 if (tsflags & SOF_TIMESTAMPING_OPT_ID && tskey &&
2600 tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
2601 *tskey = atomic_inc_return(&sk->sk_tskey) - 1;
2602 }
2603 if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS)))
2604 *tx_flags |= SKBTX_WIFI_STATUS;
2605 }
2606
2607 static inline void sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2608 __u8 *tx_flags)
2609 {
2610 _sock_tx_timestamp(sk, tsflags, tx_flags, NULL);
2611 }
2612
2613 static inline void skb_setup_tx_timestamp(struct sk_buff *skb, __u16 tsflags)
2614 {
2615 _sock_tx_timestamp(skb->sk, tsflags, &skb_shinfo(skb)->tx_flags,
2616 &skb_shinfo(skb)->tskey);
2617 }
2618
2619 DECLARE_STATIC_KEY_FALSE(tcp_rx_skb_cache_key);
2620 /**
2621 * sk_eat_skb - Release a skb if it is no longer needed
2622 * @sk: socket to eat this skb from
2623 * @skb: socket buffer to eat
2624 *
2625 * This routine must be called with interrupts disabled or with the socket
2626 * locked so that the sk_buff queue operation is ok.
2627 */
2628 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
2629 {
2630 __skb_unlink(skb, &sk->sk_receive_queue);
2631 if (static_branch_unlikely(&tcp_rx_skb_cache_key) &&
2632 !sk->sk_rx_skb_cache) {
2633 sk->sk_rx_skb_cache = skb;
2634 skb_orphan(skb);
2635 return;
2636 }
2637 __kfree_skb(skb);
2638 }
2639
2640 static inline
2641 struct net *sock_net(const struct sock *sk)
2642 {
2643 return read_pnet(&sk->sk_net);
2644 }
2645
2646 static inline
2647 void sock_net_set(struct sock *sk, struct net *net)
2648 {
2649 write_pnet(&sk->sk_net, net);
2650 }
2651
2652 static inline bool
2653 skb_sk_is_prefetched(struct sk_buff *skb)
2654 {
2655 #ifdef CONFIG_INET
2656 return skb->destructor == sock_pfree;
2657 #else
2658 return false;
2659 #endif /* CONFIG_INET */
2660 }
2661
2662 /* This helper checks if a socket is a full socket,
2663 * ie _not_ a timewait or request socket.
2664 */
2665 static inline bool sk_fullsock(const struct sock *sk)
2666 {
2667 return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV);
2668 }
2669
2670 static inline bool
2671 sk_is_refcounted(struct sock *sk)
2672 {
2673 /* Only full sockets have sk->sk_flags. */
2674 return !sk_fullsock(sk) || !sock_flag(sk, SOCK_RCU_FREE);
2675 }
2676
2677 /**
2678 * skb_steal_sock - steal a socket from an sk_buff
2679 * @skb: sk_buff to steal the socket from
2680 * @refcounted: is set to true if the socket is reference-counted
2681 */
2682 static inline struct sock *
2683 skb_steal_sock(struct sk_buff *skb, bool *refcounted)
2684 {
2685 if (skb->sk) {
2686 struct sock *sk = skb->sk;
2687
2688 *refcounted = true;
2689 if (skb_sk_is_prefetched(skb))
2690 *refcounted = sk_is_refcounted(sk);
2691 skb->destructor = NULL;
2692 skb->sk = NULL;
2693 return sk;
2694 }
2695 *refcounted = false;
2696 return NULL;
2697 }
2698
2699 /* Checks if this SKB belongs to an HW offloaded socket
2700 * and whether any SW fallbacks are required based on dev.
2701 * Check decrypted mark in case skb_orphan() cleared socket.
2702 */
2703 static inline struct sk_buff *sk_validate_xmit_skb(struct sk_buff *skb,
2704 struct net_device *dev)
2705 {
2706 #ifdef CONFIG_SOCK_VALIDATE_XMIT
2707 struct sock *sk = skb->sk;
2708
2709 if (sk && sk_fullsock(sk) && sk->sk_validate_xmit_skb) {
2710 skb = sk->sk_validate_xmit_skb(sk, dev, skb);
2711 #ifdef CONFIG_TLS_DEVICE
2712 } else if (unlikely(skb->decrypted)) {
2713 pr_warn_ratelimited("unencrypted skb with no associated socket - dropping\n");
2714 kfree_skb(skb);
2715 skb = NULL;
2716 #endif
2717 }
2718 #endif
2719
2720 return skb;
2721 }
2722
2723 /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV
2724 * SYNACK messages can be attached to either ones (depending on SYNCOOKIE)
2725 */
2726 static inline bool sk_listener(const struct sock *sk)
2727 {
2728 return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV);
2729 }
2730
2731 void sock_enable_timestamp(struct sock *sk, enum sock_flags flag);
2732 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2733 int type);
2734
2735 bool sk_ns_capable(const struct sock *sk,
2736 struct user_namespace *user_ns, int cap);
2737 bool sk_capable(const struct sock *sk, int cap);
2738 bool sk_net_capable(const struct sock *sk, int cap);
2739
2740 void sk_get_meminfo(const struct sock *sk, u32 *meminfo);
2741
2742 /* Take into consideration the size of the struct sk_buff overhead in the
2743 * determination of these values, since that is non-constant across
2744 * platforms. This makes socket queueing behavior and performance
2745 * not depend upon such differences.
2746 */
2747 #define _SK_MEM_PACKETS 256
2748 #define _SK_MEM_OVERHEAD SKB_TRUESIZE(256)
2749 #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2750 #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2751
2752 extern __u32 sysctl_wmem_max;
2753 extern __u32 sysctl_rmem_max;
2754
2755 extern int sysctl_tstamp_allow_data;
2756 extern int sysctl_optmem_max;
2757
2758 extern __u32 sysctl_wmem_default;
2759 extern __u32 sysctl_rmem_default;
2760
2761 #define SKB_FRAG_PAGE_ORDER get_order(32768)
2762 DECLARE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
2763
2764 static inline int sk_get_wmem0(const struct sock *sk, const struct proto *proto)
2765 {
2766 /* Does this proto have per netns sysctl_wmem ? */
2767 if (proto->sysctl_wmem_offset)
2768 return READ_ONCE(*(int *)((void *)sock_net(sk) + proto->sysctl_wmem_offset));
2769
2770 return READ_ONCE(*proto->sysctl_wmem);
2771 }
2772
2773 static inline int sk_get_rmem0(const struct sock *sk, const struct proto *proto)
2774 {
2775 /* Does this proto have per netns sysctl_rmem ? */
2776 if (proto->sysctl_rmem_offset)
2777 return READ_ONCE(*(int *)((void *)sock_net(sk) + proto->sysctl_rmem_offset));
2778
2779 return READ_ONCE(*proto->sysctl_rmem);
2780 }
2781
2782 /* Default TCP Small queue budget is ~1 ms of data (1sec >> 10)
2783 * Some wifi drivers need to tweak it to get more chunks.
2784 * They can use this helper from their ndo_start_xmit()
2785 */
2786 static inline void sk_pacing_shift_update(struct sock *sk, int val)
2787 {
2788 if (!sk || !sk_fullsock(sk) || READ_ONCE(sk->sk_pacing_shift) == val)
2789 return;
2790 WRITE_ONCE(sk->sk_pacing_shift, val);
2791 }
2792
2793 /* if a socket is bound to a device, check that the given device
2794 * index is either the same or that the socket is bound to an L3
2795 * master device and the given device index is also enslaved to
2796 * that L3 master
2797 */
2798 static inline bool sk_dev_equal_l3scope(struct sock *sk, int dif)
2799 {
2800 int mdif;
2801
2802 if (!sk->sk_bound_dev_if || sk->sk_bound_dev_if == dif)
2803 return true;
2804
2805 mdif = l3mdev_master_ifindex_by_index(sock_net(sk), dif);
2806 if (mdif && mdif == sk->sk_bound_dev_if)
2807 return true;
2808
2809 return false;
2810 }
2811
2812 void sock_def_readable(struct sock *sk);
2813
2814 int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk);
2815 void sock_set_timestamp(struct sock *sk, int optname, bool valbool);
2816 int sock_set_timestamping(struct sock *sk, int optname,
2817 struct so_timestamping timestamping);
2818
2819 void sock_enable_timestamps(struct sock *sk);
2820 void sock_no_linger(struct sock *sk);
2821 void sock_set_keepalive(struct sock *sk);
2822 void sock_set_priority(struct sock *sk, u32 priority);
2823 void sock_set_rcvbuf(struct sock *sk, int val);
2824 void sock_set_mark(struct sock *sk, u32 val);
2825 void sock_set_reuseaddr(struct sock *sk);
2826 void sock_set_reuseport(struct sock *sk);
2827 void sock_set_sndtimeo(struct sock *sk, s64 secs);
2828
2829 int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len);
2830
2831 static inline bool sk_is_readable(struct sock *sk)
2832 {
2833 if (sk->sk_prot->sock_is_readable)
2834 return sk->sk_prot->sock_is_readable(sk);
2835 return false;
2836 }
2837 #endif /* _SOCK_H */