]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - include/net/sock.h
Merge tag 'pci-v5.1-fixes-1' of git://git.kernel.org/pub/scm/linux/kernel/git/helgaas/pci
[mirror_ubuntu-eoan-kernel.git] / include / net / sock.h
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Definitions for the AF_INET socket handler.
7 *
8 * Version: @(#)sock.h 1.0.4 05/13/93
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche <flla@stud.uni-sb.de>
14 *
15 * Fixes:
16 * Alan Cox : Volatiles in skbuff pointers. See
17 * skbuff comments. May be overdone,
18 * better to prove they can be removed
19 * than the reverse.
20 * Alan Cox : Added a zapped field for tcp to note
21 * a socket is reset and must stay shut up
22 * Alan Cox : New fields for options
23 * Pauline Middelink : identd support
24 * Alan Cox : Eliminate low level recv/recvfrom
25 * David S. Miller : New socket lookup architecture.
26 * Steve Whitehouse: Default routines for sock_ops
27 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made
28 * protinfo be just a void pointer, as the
29 * protocol specific parts were moved to
30 * respective headers and ipv4/v6, etc now
31 * use private slabcaches for its socks
32 * Pedro Hortas : New flags field for socket options
33 *
34 *
35 * This program is free software; you can redistribute it and/or
36 * modify it under the terms of the GNU General Public License
37 * as published by the Free Software Foundation; either version
38 * 2 of the License, or (at your option) any later version.
39 */
40 #ifndef _SOCK_H
41 #define _SOCK_H
42
43 #include <linux/hardirq.h>
44 #include <linux/kernel.h>
45 #include <linux/list.h>
46 #include <linux/list_nulls.h>
47 #include <linux/timer.h>
48 #include <linux/cache.h>
49 #include <linux/bitops.h>
50 #include <linux/lockdep.h>
51 #include <linux/netdevice.h>
52 #include <linux/skbuff.h> /* struct sk_buff */
53 #include <linux/mm.h>
54 #include <linux/security.h>
55 #include <linux/slab.h>
56 #include <linux/uaccess.h>
57 #include <linux/page_counter.h>
58 #include <linux/memcontrol.h>
59 #include <linux/static_key.h>
60 #include <linux/sched.h>
61 #include <linux/wait.h>
62 #include <linux/cgroup-defs.h>
63 #include <linux/rbtree.h>
64 #include <linux/filter.h>
65 #include <linux/rculist_nulls.h>
66 #include <linux/poll.h>
67
68 #include <linux/atomic.h>
69 #include <linux/refcount.h>
70 #include <net/dst.h>
71 #include <net/checksum.h>
72 #include <net/tcp_states.h>
73 #include <linux/net_tstamp.h>
74 #include <net/smc.h>
75 #include <net/l3mdev.h>
76
77 /*
78 * This structure really needs to be cleaned up.
79 * Most of it is for TCP, and not used by any of
80 * the other protocols.
81 */
82
83 /* Define this to get the SOCK_DBG debugging facility. */
84 #define SOCK_DEBUGGING
85 #ifdef SOCK_DEBUGGING
86 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
87 printk(KERN_DEBUG msg); } while (0)
88 #else
89 /* Validate arguments and do nothing */
90 static inline __printf(2, 3)
91 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
92 {
93 }
94 #endif
95
96 /* This is the per-socket lock. The spinlock provides a synchronization
97 * between user contexts and software interrupt processing, whereas the
98 * mini-semaphore synchronizes multiple users amongst themselves.
99 */
100 typedef struct {
101 spinlock_t slock;
102 int owned;
103 wait_queue_head_t wq;
104 /*
105 * We express the mutex-alike socket_lock semantics
106 * to the lock validator by explicitly managing
107 * the slock as a lock variant (in addition to
108 * the slock itself):
109 */
110 #ifdef CONFIG_DEBUG_LOCK_ALLOC
111 struct lockdep_map dep_map;
112 #endif
113 } socket_lock_t;
114
115 struct sock;
116 struct proto;
117 struct net;
118
119 typedef __u32 __bitwise __portpair;
120 typedef __u64 __bitwise __addrpair;
121
122 /**
123 * struct sock_common - minimal network layer representation of sockets
124 * @skc_daddr: Foreign IPv4 addr
125 * @skc_rcv_saddr: Bound local IPv4 addr
126 * @skc_hash: hash value used with various protocol lookup tables
127 * @skc_u16hashes: two u16 hash values used by UDP lookup tables
128 * @skc_dport: placeholder for inet_dport/tw_dport
129 * @skc_num: placeholder for inet_num/tw_num
130 * @skc_family: network address family
131 * @skc_state: Connection state
132 * @skc_reuse: %SO_REUSEADDR setting
133 * @skc_reuseport: %SO_REUSEPORT setting
134 * @skc_bound_dev_if: bound device index if != 0
135 * @skc_bind_node: bind hash linkage for various protocol lookup tables
136 * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
137 * @skc_prot: protocol handlers inside a network family
138 * @skc_net: reference to the network namespace of this socket
139 * @skc_node: main hash linkage for various protocol lookup tables
140 * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
141 * @skc_tx_queue_mapping: tx queue number for this connection
142 * @skc_rx_queue_mapping: rx queue number for this connection
143 * @skc_flags: place holder for sk_flags
144 * %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
145 * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
146 * @skc_incoming_cpu: record/match cpu processing incoming packets
147 * @skc_refcnt: reference count
148 *
149 * This is the minimal network layer representation of sockets, the header
150 * for struct sock and struct inet_timewait_sock.
151 */
152 struct sock_common {
153 /* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned
154 * address on 64bit arches : cf INET_MATCH()
155 */
156 union {
157 __addrpair skc_addrpair;
158 struct {
159 __be32 skc_daddr;
160 __be32 skc_rcv_saddr;
161 };
162 };
163 union {
164 unsigned int skc_hash;
165 __u16 skc_u16hashes[2];
166 };
167 /* skc_dport && skc_num must be grouped as well */
168 union {
169 __portpair skc_portpair;
170 struct {
171 __be16 skc_dport;
172 __u16 skc_num;
173 };
174 };
175
176 unsigned short skc_family;
177 volatile unsigned char skc_state;
178 unsigned char skc_reuse:4;
179 unsigned char skc_reuseport:1;
180 unsigned char skc_ipv6only:1;
181 unsigned char skc_net_refcnt:1;
182 int skc_bound_dev_if;
183 union {
184 struct hlist_node skc_bind_node;
185 struct hlist_node skc_portaddr_node;
186 };
187 struct proto *skc_prot;
188 possible_net_t skc_net;
189
190 #if IS_ENABLED(CONFIG_IPV6)
191 struct in6_addr skc_v6_daddr;
192 struct in6_addr skc_v6_rcv_saddr;
193 #endif
194
195 atomic64_t skc_cookie;
196
197 /* following fields are padding to force
198 * offset(struct sock, sk_refcnt) == 128 on 64bit arches
199 * assuming IPV6 is enabled. We use this padding differently
200 * for different kind of 'sockets'
201 */
202 union {
203 unsigned long skc_flags;
204 struct sock *skc_listener; /* request_sock */
205 struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */
206 };
207 /*
208 * fields between dontcopy_begin/dontcopy_end
209 * are not copied in sock_copy()
210 */
211 /* private: */
212 int skc_dontcopy_begin[0];
213 /* public: */
214 union {
215 struct hlist_node skc_node;
216 struct hlist_nulls_node skc_nulls_node;
217 };
218 unsigned short skc_tx_queue_mapping;
219 #ifdef CONFIG_XPS
220 unsigned short skc_rx_queue_mapping;
221 #endif
222 union {
223 int skc_incoming_cpu;
224 u32 skc_rcv_wnd;
225 u32 skc_tw_rcv_nxt; /* struct tcp_timewait_sock */
226 };
227
228 refcount_t skc_refcnt;
229 /* private: */
230 int skc_dontcopy_end[0];
231 union {
232 u32 skc_rxhash;
233 u32 skc_window_clamp;
234 u32 skc_tw_snd_nxt; /* struct tcp_timewait_sock */
235 };
236 /* public: */
237 };
238
239 /**
240 * struct sock - network layer representation of sockets
241 * @__sk_common: shared layout with inet_timewait_sock
242 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
243 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
244 * @sk_lock: synchronizer
245 * @sk_kern_sock: True if sock is using kernel lock classes
246 * @sk_rcvbuf: size of receive buffer in bytes
247 * @sk_wq: sock wait queue and async head
248 * @sk_rx_dst: receive input route used by early demux
249 * @sk_dst_cache: destination cache
250 * @sk_dst_pending_confirm: need to confirm neighbour
251 * @sk_policy: flow policy
252 * @sk_receive_queue: incoming packets
253 * @sk_wmem_alloc: transmit queue bytes committed
254 * @sk_tsq_flags: TCP Small Queues flags
255 * @sk_write_queue: Packet sending queue
256 * @sk_omem_alloc: "o" is "option" or "other"
257 * @sk_wmem_queued: persistent queue size
258 * @sk_forward_alloc: space allocated forward
259 * @sk_napi_id: id of the last napi context to receive data for sk
260 * @sk_ll_usec: usecs to busypoll when there is no data
261 * @sk_allocation: allocation mode
262 * @sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
263 * @sk_pacing_status: Pacing status (requested, handled by sch_fq)
264 * @sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
265 * @sk_sndbuf: size of send buffer in bytes
266 * @__sk_flags_offset: empty field used to determine location of bitfield
267 * @sk_padding: unused element for alignment
268 * @sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
269 * @sk_no_check_rx: allow zero checksum in RX packets
270 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
271 * @sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
272 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
273 * @sk_gso_max_size: Maximum GSO segment size to build
274 * @sk_gso_max_segs: Maximum number of GSO segments
275 * @sk_pacing_shift: scaling factor for TCP Small Queues
276 * @sk_lingertime: %SO_LINGER l_linger setting
277 * @sk_backlog: always used with the per-socket spinlock held
278 * @sk_callback_lock: used with the callbacks in the end of this struct
279 * @sk_error_queue: rarely used
280 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
281 * IPV6_ADDRFORM for instance)
282 * @sk_err: last error
283 * @sk_err_soft: errors that don't cause failure but are the cause of a
284 * persistent failure not just 'timed out'
285 * @sk_drops: raw/udp drops counter
286 * @sk_ack_backlog: current listen backlog
287 * @sk_max_ack_backlog: listen backlog set in listen()
288 * @sk_uid: user id of owner
289 * @sk_priority: %SO_PRIORITY setting
290 * @sk_type: socket type (%SOCK_STREAM, etc)
291 * @sk_protocol: which protocol this socket belongs in this network family
292 * @sk_peer_pid: &struct pid for this socket's peer
293 * @sk_peer_cred: %SO_PEERCRED setting
294 * @sk_rcvlowat: %SO_RCVLOWAT setting
295 * @sk_rcvtimeo: %SO_RCVTIMEO setting
296 * @sk_sndtimeo: %SO_SNDTIMEO setting
297 * @sk_txhash: computed flow hash for use on transmit
298 * @sk_filter: socket filtering instructions
299 * @sk_timer: sock cleanup timer
300 * @sk_stamp: time stamp of last packet received
301 * @sk_stamp_seq: lock for accessing sk_stamp on 32 bit architectures only
302 * @sk_tsflags: SO_TIMESTAMPING socket options
303 * @sk_tskey: counter to disambiguate concurrent tstamp requests
304 * @sk_zckey: counter to order MSG_ZEROCOPY notifications
305 * @sk_socket: Identd and reporting IO signals
306 * @sk_user_data: RPC layer private data
307 * @sk_frag: cached page frag
308 * @sk_peek_off: current peek_offset value
309 * @sk_send_head: front of stuff to transmit
310 * @sk_security: used by security modules
311 * @sk_mark: generic packet mark
312 * @sk_cgrp_data: cgroup data for this cgroup
313 * @sk_memcg: this socket's memory cgroup association
314 * @sk_write_pending: a write to stream socket waits to start
315 * @sk_state_change: callback to indicate change in the state of the sock
316 * @sk_data_ready: callback to indicate there is data to be processed
317 * @sk_write_space: callback to indicate there is bf sending space available
318 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
319 * @sk_backlog_rcv: callback to process the backlog
320 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
321 * @sk_reuseport_cb: reuseport group container
322 * @sk_rcu: used during RCU grace period
323 * @sk_clockid: clockid used by time-based scheduling (SO_TXTIME)
324 * @sk_txtime_deadline_mode: set deadline mode for SO_TXTIME
325 * @sk_txtime_unused: unused txtime flags
326 */
327 struct sock {
328 /*
329 * Now struct inet_timewait_sock also uses sock_common, so please just
330 * don't add nothing before this first member (__sk_common) --acme
331 */
332 struct sock_common __sk_common;
333 #define sk_node __sk_common.skc_node
334 #define sk_nulls_node __sk_common.skc_nulls_node
335 #define sk_refcnt __sk_common.skc_refcnt
336 #define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping
337 #ifdef CONFIG_XPS
338 #define sk_rx_queue_mapping __sk_common.skc_rx_queue_mapping
339 #endif
340
341 #define sk_dontcopy_begin __sk_common.skc_dontcopy_begin
342 #define sk_dontcopy_end __sk_common.skc_dontcopy_end
343 #define sk_hash __sk_common.skc_hash
344 #define sk_portpair __sk_common.skc_portpair
345 #define sk_num __sk_common.skc_num
346 #define sk_dport __sk_common.skc_dport
347 #define sk_addrpair __sk_common.skc_addrpair
348 #define sk_daddr __sk_common.skc_daddr
349 #define sk_rcv_saddr __sk_common.skc_rcv_saddr
350 #define sk_family __sk_common.skc_family
351 #define sk_state __sk_common.skc_state
352 #define sk_reuse __sk_common.skc_reuse
353 #define sk_reuseport __sk_common.skc_reuseport
354 #define sk_ipv6only __sk_common.skc_ipv6only
355 #define sk_net_refcnt __sk_common.skc_net_refcnt
356 #define sk_bound_dev_if __sk_common.skc_bound_dev_if
357 #define sk_bind_node __sk_common.skc_bind_node
358 #define sk_prot __sk_common.skc_prot
359 #define sk_net __sk_common.skc_net
360 #define sk_v6_daddr __sk_common.skc_v6_daddr
361 #define sk_v6_rcv_saddr __sk_common.skc_v6_rcv_saddr
362 #define sk_cookie __sk_common.skc_cookie
363 #define sk_incoming_cpu __sk_common.skc_incoming_cpu
364 #define sk_flags __sk_common.skc_flags
365 #define sk_rxhash __sk_common.skc_rxhash
366
367 socket_lock_t sk_lock;
368 atomic_t sk_drops;
369 int sk_rcvlowat;
370 struct sk_buff_head sk_error_queue;
371 struct sk_buff_head sk_receive_queue;
372 /*
373 * The backlog queue is special, it is always used with
374 * the per-socket spinlock held and requires low latency
375 * access. Therefore we special case it's implementation.
376 * Note : rmem_alloc is in this structure to fill a hole
377 * on 64bit arches, not because its logically part of
378 * backlog.
379 */
380 struct {
381 atomic_t rmem_alloc;
382 int len;
383 struct sk_buff *head;
384 struct sk_buff *tail;
385 } sk_backlog;
386 #define sk_rmem_alloc sk_backlog.rmem_alloc
387
388 int sk_forward_alloc;
389 #ifdef CONFIG_NET_RX_BUSY_POLL
390 unsigned int sk_ll_usec;
391 /* ===== mostly read cache line ===== */
392 unsigned int sk_napi_id;
393 #endif
394 int sk_rcvbuf;
395
396 struct sk_filter __rcu *sk_filter;
397 union {
398 struct socket_wq __rcu *sk_wq;
399 struct socket_wq *sk_wq_raw;
400 };
401 #ifdef CONFIG_XFRM
402 struct xfrm_policy __rcu *sk_policy[2];
403 #endif
404 struct dst_entry *sk_rx_dst;
405 struct dst_entry __rcu *sk_dst_cache;
406 atomic_t sk_omem_alloc;
407 int sk_sndbuf;
408
409 /* ===== cache line for TX ===== */
410 int sk_wmem_queued;
411 refcount_t sk_wmem_alloc;
412 unsigned long sk_tsq_flags;
413 union {
414 struct sk_buff *sk_send_head;
415 struct rb_root tcp_rtx_queue;
416 };
417 struct sk_buff_head sk_write_queue;
418 __s32 sk_peek_off;
419 int sk_write_pending;
420 __u32 sk_dst_pending_confirm;
421 u32 sk_pacing_status; /* see enum sk_pacing */
422 long sk_sndtimeo;
423 struct timer_list sk_timer;
424 __u32 sk_priority;
425 __u32 sk_mark;
426 unsigned long sk_pacing_rate; /* bytes per second */
427 unsigned long sk_max_pacing_rate;
428 struct page_frag sk_frag;
429 netdev_features_t sk_route_caps;
430 netdev_features_t sk_route_nocaps;
431 netdev_features_t sk_route_forced_caps;
432 int sk_gso_type;
433 unsigned int sk_gso_max_size;
434 gfp_t sk_allocation;
435 __u32 sk_txhash;
436
437 /*
438 * Because of non atomicity rules, all
439 * changes are protected by socket lock.
440 */
441 unsigned int __sk_flags_offset[0];
442 #ifdef __BIG_ENDIAN_BITFIELD
443 #define SK_FL_PROTO_SHIFT 16
444 #define SK_FL_PROTO_MASK 0x00ff0000
445
446 #define SK_FL_TYPE_SHIFT 0
447 #define SK_FL_TYPE_MASK 0x0000ffff
448 #else
449 #define SK_FL_PROTO_SHIFT 8
450 #define SK_FL_PROTO_MASK 0x0000ff00
451
452 #define SK_FL_TYPE_SHIFT 16
453 #define SK_FL_TYPE_MASK 0xffff0000
454 #endif
455
456 unsigned int sk_padding : 1,
457 sk_kern_sock : 1,
458 sk_no_check_tx : 1,
459 sk_no_check_rx : 1,
460 sk_userlocks : 4,
461 sk_protocol : 8,
462 sk_type : 16;
463 #define SK_PROTOCOL_MAX U8_MAX
464 u16 sk_gso_max_segs;
465 u8 sk_pacing_shift;
466 unsigned long sk_lingertime;
467 struct proto *sk_prot_creator;
468 rwlock_t sk_callback_lock;
469 int sk_err,
470 sk_err_soft;
471 u32 sk_ack_backlog;
472 u32 sk_max_ack_backlog;
473 kuid_t sk_uid;
474 struct pid *sk_peer_pid;
475 const struct cred *sk_peer_cred;
476 long sk_rcvtimeo;
477 ktime_t sk_stamp;
478 #if BITS_PER_LONG==32
479 seqlock_t sk_stamp_seq;
480 #endif
481 u16 sk_tsflags;
482 u8 sk_shutdown;
483 u32 sk_tskey;
484 atomic_t sk_zckey;
485
486 u8 sk_clockid;
487 u8 sk_txtime_deadline_mode : 1,
488 sk_txtime_report_errors : 1,
489 sk_txtime_unused : 6;
490
491 struct socket *sk_socket;
492 void *sk_user_data;
493 #ifdef CONFIG_SECURITY
494 void *sk_security;
495 #endif
496 struct sock_cgroup_data sk_cgrp_data;
497 struct mem_cgroup *sk_memcg;
498 void (*sk_state_change)(struct sock *sk);
499 void (*sk_data_ready)(struct sock *sk);
500 void (*sk_write_space)(struct sock *sk);
501 void (*sk_error_report)(struct sock *sk);
502 int (*sk_backlog_rcv)(struct sock *sk,
503 struct sk_buff *skb);
504 #ifdef CONFIG_SOCK_VALIDATE_XMIT
505 struct sk_buff* (*sk_validate_xmit_skb)(struct sock *sk,
506 struct net_device *dev,
507 struct sk_buff *skb);
508 #endif
509 void (*sk_destruct)(struct sock *sk);
510 struct sock_reuseport __rcu *sk_reuseport_cb;
511 struct rcu_head sk_rcu;
512 };
513
514 enum sk_pacing {
515 SK_PACING_NONE = 0,
516 SK_PACING_NEEDED = 1,
517 SK_PACING_FQ = 2,
518 };
519
520 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
521
522 #define rcu_dereference_sk_user_data(sk) rcu_dereference(__sk_user_data((sk)))
523 #define rcu_assign_sk_user_data(sk, ptr) rcu_assign_pointer(__sk_user_data((sk)), ptr)
524
525 /*
526 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
527 * or not whether his port will be reused by someone else. SK_FORCE_REUSE
528 * on a socket means that the socket will reuse everybody else's port
529 * without looking at the other's sk_reuse value.
530 */
531
532 #define SK_NO_REUSE 0
533 #define SK_CAN_REUSE 1
534 #define SK_FORCE_REUSE 2
535
536 int sk_set_peek_off(struct sock *sk, int val);
537
538 static inline int sk_peek_offset(struct sock *sk, int flags)
539 {
540 if (unlikely(flags & MSG_PEEK)) {
541 return READ_ONCE(sk->sk_peek_off);
542 }
543
544 return 0;
545 }
546
547 static inline void sk_peek_offset_bwd(struct sock *sk, int val)
548 {
549 s32 off = READ_ONCE(sk->sk_peek_off);
550
551 if (unlikely(off >= 0)) {
552 off = max_t(s32, off - val, 0);
553 WRITE_ONCE(sk->sk_peek_off, off);
554 }
555 }
556
557 static inline void sk_peek_offset_fwd(struct sock *sk, int val)
558 {
559 sk_peek_offset_bwd(sk, -val);
560 }
561
562 /*
563 * Hashed lists helper routines
564 */
565 static inline struct sock *sk_entry(const struct hlist_node *node)
566 {
567 return hlist_entry(node, struct sock, sk_node);
568 }
569
570 static inline struct sock *__sk_head(const struct hlist_head *head)
571 {
572 return hlist_entry(head->first, struct sock, sk_node);
573 }
574
575 static inline struct sock *sk_head(const struct hlist_head *head)
576 {
577 return hlist_empty(head) ? NULL : __sk_head(head);
578 }
579
580 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
581 {
582 return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
583 }
584
585 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
586 {
587 return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
588 }
589
590 static inline struct sock *sk_next(const struct sock *sk)
591 {
592 return hlist_entry_safe(sk->sk_node.next, struct sock, sk_node);
593 }
594
595 static inline struct sock *sk_nulls_next(const struct sock *sk)
596 {
597 return (!is_a_nulls(sk->sk_nulls_node.next)) ?
598 hlist_nulls_entry(sk->sk_nulls_node.next,
599 struct sock, sk_nulls_node) :
600 NULL;
601 }
602
603 static inline bool sk_unhashed(const struct sock *sk)
604 {
605 return hlist_unhashed(&sk->sk_node);
606 }
607
608 static inline bool sk_hashed(const struct sock *sk)
609 {
610 return !sk_unhashed(sk);
611 }
612
613 static inline void sk_node_init(struct hlist_node *node)
614 {
615 node->pprev = NULL;
616 }
617
618 static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
619 {
620 node->pprev = NULL;
621 }
622
623 static inline void __sk_del_node(struct sock *sk)
624 {
625 __hlist_del(&sk->sk_node);
626 }
627
628 /* NB: equivalent to hlist_del_init_rcu */
629 static inline bool __sk_del_node_init(struct sock *sk)
630 {
631 if (sk_hashed(sk)) {
632 __sk_del_node(sk);
633 sk_node_init(&sk->sk_node);
634 return true;
635 }
636 return false;
637 }
638
639 /* Grab socket reference count. This operation is valid only
640 when sk is ALREADY grabbed f.e. it is found in hash table
641 or a list and the lookup is made under lock preventing hash table
642 modifications.
643 */
644
645 static __always_inline void sock_hold(struct sock *sk)
646 {
647 refcount_inc(&sk->sk_refcnt);
648 }
649
650 /* Ungrab socket in the context, which assumes that socket refcnt
651 cannot hit zero, f.e. it is true in context of any socketcall.
652 */
653 static __always_inline void __sock_put(struct sock *sk)
654 {
655 refcount_dec(&sk->sk_refcnt);
656 }
657
658 static inline bool sk_del_node_init(struct sock *sk)
659 {
660 bool rc = __sk_del_node_init(sk);
661
662 if (rc) {
663 /* paranoid for a while -acme */
664 WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
665 __sock_put(sk);
666 }
667 return rc;
668 }
669 #define sk_del_node_init_rcu(sk) sk_del_node_init(sk)
670
671 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
672 {
673 if (sk_hashed(sk)) {
674 hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
675 return true;
676 }
677 return false;
678 }
679
680 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
681 {
682 bool rc = __sk_nulls_del_node_init_rcu(sk);
683
684 if (rc) {
685 /* paranoid for a while -acme */
686 WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
687 __sock_put(sk);
688 }
689 return rc;
690 }
691
692 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
693 {
694 hlist_add_head(&sk->sk_node, list);
695 }
696
697 static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
698 {
699 sock_hold(sk);
700 __sk_add_node(sk, list);
701 }
702
703 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
704 {
705 sock_hold(sk);
706 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
707 sk->sk_family == AF_INET6)
708 hlist_add_tail_rcu(&sk->sk_node, list);
709 else
710 hlist_add_head_rcu(&sk->sk_node, list);
711 }
712
713 static inline void sk_add_node_tail_rcu(struct sock *sk, struct hlist_head *list)
714 {
715 sock_hold(sk);
716 hlist_add_tail_rcu(&sk->sk_node, list);
717 }
718
719 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
720 {
721 hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
722 }
723
724 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
725 {
726 sock_hold(sk);
727 __sk_nulls_add_node_rcu(sk, list);
728 }
729
730 static inline void __sk_del_bind_node(struct sock *sk)
731 {
732 __hlist_del(&sk->sk_bind_node);
733 }
734
735 static inline void sk_add_bind_node(struct sock *sk,
736 struct hlist_head *list)
737 {
738 hlist_add_head(&sk->sk_bind_node, list);
739 }
740
741 #define sk_for_each(__sk, list) \
742 hlist_for_each_entry(__sk, list, sk_node)
743 #define sk_for_each_rcu(__sk, list) \
744 hlist_for_each_entry_rcu(__sk, list, sk_node)
745 #define sk_nulls_for_each(__sk, node, list) \
746 hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
747 #define sk_nulls_for_each_rcu(__sk, node, list) \
748 hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
749 #define sk_for_each_from(__sk) \
750 hlist_for_each_entry_from(__sk, sk_node)
751 #define sk_nulls_for_each_from(__sk, node) \
752 if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
753 hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
754 #define sk_for_each_safe(__sk, tmp, list) \
755 hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
756 #define sk_for_each_bound(__sk, list) \
757 hlist_for_each_entry(__sk, list, sk_bind_node)
758
759 /**
760 * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset
761 * @tpos: the type * to use as a loop cursor.
762 * @pos: the &struct hlist_node to use as a loop cursor.
763 * @head: the head for your list.
764 * @offset: offset of hlist_node within the struct.
765 *
766 */
767 #define sk_for_each_entry_offset_rcu(tpos, pos, head, offset) \
768 for (pos = rcu_dereference(hlist_first_rcu(head)); \
769 pos != NULL && \
770 ({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;}); \
771 pos = rcu_dereference(hlist_next_rcu(pos)))
772
773 static inline struct user_namespace *sk_user_ns(struct sock *sk)
774 {
775 /* Careful only use this in a context where these parameters
776 * can not change and must all be valid, such as recvmsg from
777 * userspace.
778 */
779 return sk->sk_socket->file->f_cred->user_ns;
780 }
781
782 /* Sock flags */
783 enum sock_flags {
784 SOCK_DEAD,
785 SOCK_DONE,
786 SOCK_URGINLINE,
787 SOCK_KEEPOPEN,
788 SOCK_LINGER,
789 SOCK_DESTROY,
790 SOCK_BROADCAST,
791 SOCK_TIMESTAMP,
792 SOCK_ZAPPED,
793 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
794 SOCK_DBG, /* %SO_DEBUG setting */
795 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
796 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
797 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
798 SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
799 SOCK_MEMALLOC, /* VM depends on this socket for swapping */
800 SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */
801 SOCK_FASYNC, /* fasync() active */
802 SOCK_RXQ_OVFL,
803 SOCK_ZEROCOPY, /* buffers from userspace */
804 SOCK_WIFI_STATUS, /* push wifi status to userspace */
805 SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
806 * Will use last 4 bytes of packet sent from
807 * user-space instead.
808 */
809 SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
810 SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
811 SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */
812 SOCK_TXTIME,
813 SOCK_XDP, /* XDP is attached */
814 SOCK_TSTAMP_NEW, /* Indicates 64 bit timestamps always */
815 };
816
817 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
818
819 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
820 {
821 nsk->sk_flags = osk->sk_flags;
822 }
823
824 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
825 {
826 __set_bit(flag, &sk->sk_flags);
827 }
828
829 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
830 {
831 __clear_bit(flag, &sk->sk_flags);
832 }
833
834 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
835 {
836 return test_bit(flag, &sk->sk_flags);
837 }
838
839 #ifdef CONFIG_NET
840 DECLARE_STATIC_KEY_FALSE(memalloc_socks_key);
841 static inline int sk_memalloc_socks(void)
842 {
843 return static_branch_unlikely(&memalloc_socks_key);
844 }
845 #else
846
847 static inline int sk_memalloc_socks(void)
848 {
849 return 0;
850 }
851
852 #endif
853
854 static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask)
855 {
856 return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC);
857 }
858
859 static inline void sk_acceptq_removed(struct sock *sk)
860 {
861 sk->sk_ack_backlog--;
862 }
863
864 static inline void sk_acceptq_added(struct sock *sk)
865 {
866 sk->sk_ack_backlog++;
867 }
868
869 static inline bool sk_acceptq_is_full(const struct sock *sk)
870 {
871 return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
872 }
873
874 /*
875 * Compute minimal free write space needed to queue new packets.
876 */
877 static inline int sk_stream_min_wspace(const struct sock *sk)
878 {
879 return sk->sk_wmem_queued >> 1;
880 }
881
882 static inline int sk_stream_wspace(const struct sock *sk)
883 {
884 return sk->sk_sndbuf - sk->sk_wmem_queued;
885 }
886
887 void sk_stream_write_space(struct sock *sk);
888
889 /* OOB backlog add */
890 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
891 {
892 /* dont let skb dst not refcounted, we are going to leave rcu lock */
893 skb_dst_force(skb);
894
895 if (!sk->sk_backlog.tail)
896 sk->sk_backlog.head = skb;
897 else
898 sk->sk_backlog.tail->next = skb;
899
900 sk->sk_backlog.tail = skb;
901 skb->next = NULL;
902 }
903
904 /*
905 * Take into account size of receive queue and backlog queue
906 * Do not take into account this skb truesize,
907 * to allow even a single big packet to come.
908 */
909 static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
910 {
911 unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
912
913 return qsize > limit;
914 }
915
916 /* The per-socket spinlock must be held here. */
917 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
918 unsigned int limit)
919 {
920 if (sk_rcvqueues_full(sk, limit))
921 return -ENOBUFS;
922
923 /*
924 * If the skb was allocated from pfmemalloc reserves, only
925 * allow SOCK_MEMALLOC sockets to use it as this socket is
926 * helping free memory
927 */
928 if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
929 return -ENOMEM;
930
931 __sk_add_backlog(sk, skb);
932 sk->sk_backlog.len += skb->truesize;
933 return 0;
934 }
935
936 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
937
938 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
939 {
940 if (sk_memalloc_socks() && skb_pfmemalloc(skb))
941 return __sk_backlog_rcv(sk, skb);
942
943 return sk->sk_backlog_rcv(sk, skb);
944 }
945
946 static inline void sk_incoming_cpu_update(struct sock *sk)
947 {
948 int cpu = raw_smp_processor_id();
949
950 if (unlikely(sk->sk_incoming_cpu != cpu))
951 sk->sk_incoming_cpu = cpu;
952 }
953
954 static inline void sock_rps_record_flow_hash(__u32 hash)
955 {
956 #ifdef CONFIG_RPS
957 struct rps_sock_flow_table *sock_flow_table;
958
959 rcu_read_lock();
960 sock_flow_table = rcu_dereference(rps_sock_flow_table);
961 rps_record_sock_flow(sock_flow_table, hash);
962 rcu_read_unlock();
963 #endif
964 }
965
966 static inline void sock_rps_record_flow(const struct sock *sk)
967 {
968 #ifdef CONFIG_RPS
969 if (static_key_false(&rfs_needed)) {
970 /* Reading sk->sk_rxhash might incur an expensive cache line
971 * miss.
972 *
973 * TCP_ESTABLISHED does cover almost all states where RFS
974 * might be useful, and is cheaper [1] than testing :
975 * IPv4: inet_sk(sk)->inet_daddr
976 * IPv6: ipv6_addr_any(&sk->sk_v6_daddr)
977 * OR an additional socket flag
978 * [1] : sk_state and sk_prot are in the same cache line.
979 */
980 if (sk->sk_state == TCP_ESTABLISHED)
981 sock_rps_record_flow_hash(sk->sk_rxhash);
982 }
983 #endif
984 }
985
986 static inline void sock_rps_save_rxhash(struct sock *sk,
987 const struct sk_buff *skb)
988 {
989 #ifdef CONFIG_RPS
990 if (unlikely(sk->sk_rxhash != skb->hash))
991 sk->sk_rxhash = skb->hash;
992 #endif
993 }
994
995 static inline void sock_rps_reset_rxhash(struct sock *sk)
996 {
997 #ifdef CONFIG_RPS
998 sk->sk_rxhash = 0;
999 #endif
1000 }
1001
1002 #define sk_wait_event(__sk, __timeo, __condition, __wait) \
1003 ({ int __rc; \
1004 release_sock(__sk); \
1005 __rc = __condition; \
1006 if (!__rc) { \
1007 *(__timeo) = wait_woken(__wait, \
1008 TASK_INTERRUPTIBLE, \
1009 *(__timeo)); \
1010 } \
1011 sched_annotate_sleep(); \
1012 lock_sock(__sk); \
1013 __rc = __condition; \
1014 __rc; \
1015 })
1016
1017 int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
1018 int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
1019 void sk_stream_wait_close(struct sock *sk, long timeo_p);
1020 int sk_stream_error(struct sock *sk, int flags, int err);
1021 void sk_stream_kill_queues(struct sock *sk);
1022 void sk_set_memalloc(struct sock *sk);
1023 void sk_clear_memalloc(struct sock *sk);
1024
1025 void __sk_flush_backlog(struct sock *sk);
1026
1027 static inline bool sk_flush_backlog(struct sock *sk)
1028 {
1029 if (unlikely(READ_ONCE(sk->sk_backlog.tail))) {
1030 __sk_flush_backlog(sk);
1031 return true;
1032 }
1033 return false;
1034 }
1035
1036 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb);
1037
1038 struct request_sock_ops;
1039 struct timewait_sock_ops;
1040 struct inet_hashinfo;
1041 struct raw_hashinfo;
1042 struct smc_hashinfo;
1043 struct module;
1044
1045 /*
1046 * caches using SLAB_TYPESAFE_BY_RCU should let .next pointer from nulls nodes
1047 * un-modified. Special care is taken when initializing object to zero.
1048 */
1049 static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1050 {
1051 if (offsetof(struct sock, sk_node.next) != 0)
1052 memset(sk, 0, offsetof(struct sock, sk_node.next));
1053 memset(&sk->sk_node.pprev, 0,
1054 size - offsetof(struct sock, sk_node.pprev));
1055 }
1056
1057 /* Networking protocol blocks we attach to sockets.
1058 * socket layer -> transport layer interface
1059 */
1060 struct proto {
1061 void (*close)(struct sock *sk,
1062 long timeout);
1063 int (*pre_connect)(struct sock *sk,
1064 struct sockaddr *uaddr,
1065 int addr_len);
1066 int (*connect)(struct sock *sk,
1067 struct sockaddr *uaddr,
1068 int addr_len);
1069 int (*disconnect)(struct sock *sk, int flags);
1070
1071 struct sock * (*accept)(struct sock *sk, int flags, int *err,
1072 bool kern);
1073
1074 int (*ioctl)(struct sock *sk, int cmd,
1075 unsigned long arg);
1076 int (*init)(struct sock *sk);
1077 void (*destroy)(struct sock *sk);
1078 void (*shutdown)(struct sock *sk, int how);
1079 int (*setsockopt)(struct sock *sk, int level,
1080 int optname, char __user *optval,
1081 unsigned int optlen);
1082 int (*getsockopt)(struct sock *sk, int level,
1083 int optname, char __user *optval,
1084 int __user *option);
1085 void (*keepalive)(struct sock *sk, int valbool);
1086 #ifdef CONFIG_COMPAT
1087 int (*compat_setsockopt)(struct sock *sk,
1088 int level,
1089 int optname, char __user *optval,
1090 unsigned int optlen);
1091 int (*compat_getsockopt)(struct sock *sk,
1092 int level,
1093 int optname, char __user *optval,
1094 int __user *option);
1095 int (*compat_ioctl)(struct sock *sk,
1096 unsigned int cmd, unsigned long arg);
1097 #endif
1098 int (*sendmsg)(struct sock *sk, struct msghdr *msg,
1099 size_t len);
1100 int (*recvmsg)(struct sock *sk, struct msghdr *msg,
1101 size_t len, int noblock, int flags,
1102 int *addr_len);
1103 int (*sendpage)(struct sock *sk, struct page *page,
1104 int offset, size_t size, int flags);
1105 int (*bind)(struct sock *sk,
1106 struct sockaddr *uaddr, int addr_len);
1107
1108 int (*backlog_rcv) (struct sock *sk,
1109 struct sk_buff *skb);
1110
1111 void (*release_cb)(struct sock *sk);
1112
1113 /* Keeping track of sk's, looking them up, and port selection methods. */
1114 int (*hash)(struct sock *sk);
1115 void (*unhash)(struct sock *sk);
1116 void (*rehash)(struct sock *sk);
1117 int (*get_port)(struct sock *sk, unsigned short snum);
1118
1119 /* Keeping track of sockets in use */
1120 #ifdef CONFIG_PROC_FS
1121 unsigned int inuse_idx;
1122 #endif
1123
1124 bool (*stream_memory_free)(const struct sock *sk, int wake);
1125 bool (*stream_memory_read)(const struct sock *sk);
1126 /* Memory pressure */
1127 void (*enter_memory_pressure)(struct sock *sk);
1128 void (*leave_memory_pressure)(struct sock *sk);
1129 atomic_long_t *memory_allocated; /* Current allocated memory. */
1130 struct percpu_counter *sockets_allocated; /* Current number of sockets. */
1131 /*
1132 * Pressure flag: try to collapse.
1133 * Technical note: it is used by multiple contexts non atomically.
1134 * All the __sk_mem_schedule() is of this nature: accounting
1135 * is strict, actions are advisory and have some latency.
1136 */
1137 unsigned long *memory_pressure;
1138 long *sysctl_mem;
1139
1140 int *sysctl_wmem;
1141 int *sysctl_rmem;
1142 u32 sysctl_wmem_offset;
1143 u32 sysctl_rmem_offset;
1144
1145 int max_header;
1146 bool no_autobind;
1147
1148 struct kmem_cache *slab;
1149 unsigned int obj_size;
1150 slab_flags_t slab_flags;
1151 unsigned int useroffset; /* Usercopy region offset */
1152 unsigned int usersize; /* Usercopy region size */
1153
1154 struct percpu_counter *orphan_count;
1155
1156 struct request_sock_ops *rsk_prot;
1157 struct timewait_sock_ops *twsk_prot;
1158
1159 union {
1160 struct inet_hashinfo *hashinfo;
1161 struct udp_table *udp_table;
1162 struct raw_hashinfo *raw_hash;
1163 struct smc_hashinfo *smc_hash;
1164 } h;
1165
1166 struct module *owner;
1167
1168 char name[32];
1169
1170 struct list_head node;
1171 #ifdef SOCK_REFCNT_DEBUG
1172 atomic_t socks;
1173 #endif
1174 int (*diag_destroy)(struct sock *sk, int err);
1175 } __randomize_layout;
1176
1177 int proto_register(struct proto *prot, int alloc_slab);
1178 void proto_unregister(struct proto *prot);
1179 int sock_load_diag_module(int family, int protocol);
1180
1181 #ifdef SOCK_REFCNT_DEBUG
1182 static inline void sk_refcnt_debug_inc(struct sock *sk)
1183 {
1184 atomic_inc(&sk->sk_prot->socks);
1185 }
1186
1187 static inline void sk_refcnt_debug_dec(struct sock *sk)
1188 {
1189 atomic_dec(&sk->sk_prot->socks);
1190 printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1191 sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1192 }
1193
1194 static inline void sk_refcnt_debug_release(const struct sock *sk)
1195 {
1196 if (refcount_read(&sk->sk_refcnt) != 1)
1197 printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1198 sk->sk_prot->name, sk, refcount_read(&sk->sk_refcnt));
1199 }
1200 #else /* SOCK_REFCNT_DEBUG */
1201 #define sk_refcnt_debug_inc(sk) do { } while (0)
1202 #define sk_refcnt_debug_dec(sk) do { } while (0)
1203 #define sk_refcnt_debug_release(sk) do { } while (0)
1204 #endif /* SOCK_REFCNT_DEBUG */
1205
1206 static inline bool __sk_stream_memory_free(const struct sock *sk, int wake)
1207 {
1208 if (sk->sk_wmem_queued >= sk->sk_sndbuf)
1209 return false;
1210
1211 return sk->sk_prot->stream_memory_free ?
1212 sk->sk_prot->stream_memory_free(sk, wake) : true;
1213 }
1214
1215 static inline bool sk_stream_memory_free(const struct sock *sk)
1216 {
1217 return __sk_stream_memory_free(sk, 0);
1218 }
1219
1220 static inline bool __sk_stream_is_writeable(const struct sock *sk, int wake)
1221 {
1222 return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1223 __sk_stream_memory_free(sk, wake);
1224 }
1225
1226 static inline bool sk_stream_is_writeable(const struct sock *sk)
1227 {
1228 return __sk_stream_is_writeable(sk, 0);
1229 }
1230
1231 static inline int sk_under_cgroup_hierarchy(struct sock *sk,
1232 struct cgroup *ancestor)
1233 {
1234 #ifdef CONFIG_SOCK_CGROUP_DATA
1235 return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data),
1236 ancestor);
1237 #else
1238 return -ENOTSUPP;
1239 #endif
1240 }
1241
1242 static inline bool sk_has_memory_pressure(const struct sock *sk)
1243 {
1244 return sk->sk_prot->memory_pressure != NULL;
1245 }
1246
1247 static inline bool sk_under_memory_pressure(const struct sock *sk)
1248 {
1249 if (!sk->sk_prot->memory_pressure)
1250 return false;
1251
1252 if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
1253 mem_cgroup_under_socket_pressure(sk->sk_memcg))
1254 return true;
1255
1256 return !!*sk->sk_prot->memory_pressure;
1257 }
1258
1259 static inline long
1260 sk_memory_allocated(const struct sock *sk)
1261 {
1262 return atomic_long_read(sk->sk_prot->memory_allocated);
1263 }
1264
1265 static inline long
1266 sk_memory_allocated_add(struct sock *sk, int amt)
1267 {
1268 return atomic_long_add_return(amt, sk->sk_prot->memory_allocated);
1269 }
1270
1271 static inline void
1272 sk_memory_allocated_sub(struct sock *sk, int amt)
1273 {
1274 atomic_long_sub(amt, sk->sk_prot->memory_allocated);
1275 }
1276
1277 static inline void sk_sockets_allocated_dec(struct sock *sk)
1278 {
1279 percpu_counter_dec(sk->sk_prot->sockets_allocated);
1280 }
1281
1282 static inline void sk_sockets_allocated_inc(struct sock *sk)
1283 {
1284 percpu_counter_inc(sk->sk_prot->sockets_allocated);
1285 }
1286
1287 static inline u64
1288 sk_sockets_allocated_read_positive(struct sock *sk)
1289 {
1290 return percpu_counter_read_positive(sk->sk_prot->sockets_allocated);
1291 }
1292
1293 static inline int
1294 proto_sockets_allocated_sum_positive(struct proto *prot)
1295 {
1296 return percpu_counter_sum_positive(prot->sockets_allocated);
1297 }
1298
1299 static inline long
1300 proto_memory_allocated(struct proto *prot)
1301 {
1302 return atomic_long_read(prot->memory_allocated);
1303 }
1304
1305 static inline bool
1306 proto_memory_pressure(struct proto *prot)
1307 {
1308 if (!prot->memory_pressure)
1309 return false;
1310 return !!*prot->memory_pressure;
1311 }
1312
1313
1314 #ifdef CONFIG_PROC_FS
1315 /* Called with local bh disabled */
1316 void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
1317 int sock_prot_inuse_get(struct net *net, struct proto *proto);
1318 int sock_inuse_get(struct net *net);
1319 #else
1320 static inline void sock_prot_inuse_add(struct net *net, struct proto *prot,
1321 int inc)
1322 {
1323 }
1324 #endif
1325
1326
1327 /* With per-bucket locks this operation is not-atomic, so that
1328 * this version is not worse.
1329 */
1330 static inline int __sk_prot_rehash(struct sock *sk)
1331 {
1332 sk->sk_prot->unhash(sk);
1333 return sk->sk_prot->hash(sk);
1334 }
1335
1336 /* About 10 seconds */
1337 #define SOCK_DESTROY_TIME (10*HZ)
1338
1339 /* Sockets 0-1023 can't be bound to unless you are superuser */
1340 #define PROT_SOCK 1024
1341
1342 #define SHUTDOWN_MASK 3
1343 #define RCV_SHUTDOWN 1
1344 #define SEND_SHUTDOWN 2
1345
1346 #define SOCK_SNDBUF_LOCK 1
1347 #define SOCK_RCVBUF_LOCK 2
1348 #define SOCK_BINDADDR_LOCK 4
1349 #define SOCK_BINDPORT_LOCK 8
1350
1351 struct socket_alloc {
1352 struct socket socket;
1353 struct inode vfs_inode;
1354 };
1355
1356 static inline struct socket *SOCKET_I(struct inode *inode)
1357 {
1358 return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1359 }
1360
1361 static inline struct inode *SOCK_INODE(struct socket *socket)
1362 {
1363 return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1364 }
1365
1366 /*
1367 * Functions for memory accounting
1368 */
1369 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind);
1370 int __sk_mem_schedule(struct sock *sk, int size, int kind);
1371 void __sk_mem_reduce_allocated(struct sock *sk, int amount);
1372 void __sk_mem_reclaim(struct sock *sk, int amount);
1373
1374 /* We used to have PAGE_SIZE here, but systems with 64KB pages
1375 * do not necessarily have 16x time more memory than 4KB ones.
1376 */
1377 #define SK_MEM_QUANTUM 4096
1378 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1379 #define SK_MEM_SEND 0
1380 #define SK_MEM_RECV 1
1381
1382 /* sysctl_mem values are in pages, we convert them in SK_MEM_QUANTUM units */
1383 static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1384 {
1385 long val = sk->sk_prot->sysctl_mem[index];
1386
1387 #if PAGE_SIZE > SK_MEM_QUANTUM
1388 val <<= PAGE_SHIFT - SK_MEM_QUANTUM_SHIFT;
1389 #elif PAGE_SIZE < SK_MEM_QUANTUM
1390 val >>= SK_MEM_QUANTUM_SHIFT - PAGE_SHIFT;
1391 #endif
1392 return val;
1393 }
1394
1395 static inline int sk_mem_pages(int amt)
1396 {
1397 return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1398 }
1399
1400 static inline bool sk_has_account(struct sock *sk)
1401 {
1402 /* return true if protocol supports memory accounting */
1403 return !!sk->sk_prot->memory_allocated;
1404 }
1405
1406 static inline bool sk_wmem_schedule(struct sock *sk, int size)
1407 {
1408 if (!sk_has_account(sk))
1409 return true;
1410 return size <= sk->sk_forward_alloc ||
1411 __sk_mem_schedule(sk, size, SK_MEM_SEND);
1412 }
1413
1414 static inline bool
1415 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1416 {
1417 if (!sk_has_account(sk))
1418 return true;
1419 return size<= sk->sk_forward_alloc ||
1420 __sk_mem_schedule(sk, size, SK_MEM_RECV) ||
1421 skb_pfmemalloc(skb);
1422 }
1423
1424 static inline void sk_mem_reclaim(struct sock *sk)
1425 {
1426 if (!sk_has_account(sk))
1427 return;
1428 if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
1429 __sk_mem_reclaim(sk, sk->sk_forward_alloc);
1430 }
1431
1432 static inline void sk_mem_reclaim_partial(struct sock *sk)
1433 {
1434 if (!sk_has_account(sk))
1435 return;
1436 if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
1437 __sk_mem_reclaim(sk, sk->sk_forward_alloc - 1);
1438 }
1439
1440 static inline void sk_mem_charge(struct sock *sk, int size)
1441 {
1442 if (!sk_has_account(sk))
1443 return;
1444 sk->sk_forward_alloc -= size;
1445 }
1446
1447 static inline void sk_mem_uncharge(struct sock *sk, int size)
1448 {
1449 if (!sk_has_account(sk))
1450 return;
1451 sk->sk_forward_alloc += size;
1452
1453 /* Avoid a possible overflow.
1454 * TCP send queues can make this happen, if sk_mem_reclaim()
1455 * is not called and more than 2 GBytes are released at once.
1456 *
1457 * If we reach 2 MBytes, reclaim 1 MBytes right now, there is
1458 * no need to hold that much forward allocation anyway.
1459 */
1460 if (unlikely(sk->sk_forward_alloc >= 1 << 21))
1461 __sk_mem_reclaim(sk, 1 << 20);
1462 }
1463
1464 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1465 {
1466 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1467 sk->sk_wmem_queued -= skb->truesize;
1468 sk_mem_uncharge(sk, skb->truesize);
1469 __kfree_skb(skb);
1470 }
1471
1472 static inline void sock_release_ownership(struct sock *sk)
1473 {
1474 if (sk->sk_lock.owned) {
1475 sk->sk_lock.owned = 0;
1476
1477 /* The sk_lock has mutex_unlock() semantics: */
1478 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
1479 }
1480 }
1481
1482 /*
1483 * Macro so as to not evaluate some arguments when
1484 * lockdep is not enabled.
1485 *
1486 * Mark both the sk_lock and the sk_lock.slock as a
1487 * per-address-family lock class.
1488 */
1489 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) \
1490 do { \
1491 sk->sk_lock.owned = 0; \
1492 init_waitqueue_head(&sk->sk_lock.wq); \
1493 spin_lock_init(&(sk)->sk_lock.slock); \
1494 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \
1495 sizeof((sk)->sk_lock)); \
1496 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \
1497 (skey), (sname)); \
1498 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \
1499 } while (0)
1500
1501 #ifdef CONFIG_LOCKDEP
1502 static inline bool lockdep_sock_is_held(const struct sock *sk)
1503 {
1504 return lockdep_is_held(&sk->sk_lock) ||
1505 lockdep_is_held(&sk->sk_lock.slock);
1506 }
1507 #endif
1508
1509 void lock_sock_nested(struct sock *sk, int subclass);
1510
1511 static inline void lock_sock(struct sock *sk)
1512 {
1513 lock_sock_nested(sk, 0);
1514 }
1515
1516 void __release_sock(struct sock *sk);
1517 void release_sock(struct sock *sk);
1518
1519 /* BH context may only use the following locking interface. */
1520 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock))
1521 #define bh_lock_sock_nested(__sk) \
1522 spin_lock_nested(&((__sk)->sk_lock.slock), \
1523 SINGLE_DEPTH_NESTING)
1524 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock))
1525
1526 bool lock_sock_fast(struct sock *sk);
1527 /**
1528 * unlock_sock_fast - complement of lock_sock_fast
1529 * @sk: socket
1530 * @slow: slow mode
1531 *
1532 * fast unlock socket for user context.
1533 * If slow mode is on, we call regular release_sock()
1534 */
1535 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1536 {
1537 if (slow)
1538 release_sock(sk);
1539 else
1540 spin_unlock_bh(&sk->sk_lock.slock);
1541 }
1542
1543 /* Used by processes to "lock" a socket state, so that
1544 * interrupts and bottom half handlers won't change it
1545 * from under us. It essentially blocks any incoming
1546 * packets, so that we won't get any new data or any
1547 * packets that change the state of the socket.
1548 *
1549 * While locked, BH processing will add new packets to
1550 * the backlog queue. This queue is processed by the
1551 * owner of the socket lock right before it is released.
1552 *
1553 * Since ~2.3.5 it is also exclusive sleep lock serializing
1554 * accesses from user process context.
1555 */
1556
1557 static inline void sock_owned_by_me(const struct sock *sk)
1558 {
1559 #ifdef CONFIG_LOCKDEP
1560 WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks);
1561 #endif
1562 }
1563
1564 static inline bool sock_owned_by_user(const struct sock *sk)
1565 {
1566 sock_owned_by_me(sk);
1567 return sk->sk_lock.owned;
1568 }
1569
1570 static inline bool sock_owned_by_user_nocheck(const struct sock *sk)
1571 {
1572 return sk->sk_lock.owned;
1573 }
1574
1575 /* no reclassification while locks are held */
1576 static inline bool sock_allow_reclassification(const struct sock *csk)
1577 {
1578 struct sock *sk = (struct sock *)csk;
1579
1580 return !sk->sk_lock.owned && !spin_is_locked(&sk->sk_lock.slock);
1581 }
1582
1583 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1584 struct proto *prot, int kern);
1585 void sk_free(struct sock *sk);
1586 void sk_destruct(struct sock *sk);
1587 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1588 void sk_free_unlock_clone(struct sock *sk);
1589
1590 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1591 gfp_t priority);
1592 void __sock_wfree(struct sk_buff *skb);
1593 void sock_wfree(struct sk_buff *skb);
1594 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
1595 gfp_t priority);
1596 void skb_orphan_partial(struct sk_buff *skb);
1597 void sock_rfree(struct sk_buff *skb);
1598 void sock_efree(struct sk_buff *skb);
1599 #ifdef CONFIG_INET
1600 void sock_edemux(struct sk_buff *skb);
1601 #else
1602 #define sock_edemux sock_efree
1603 #endif
1604
1605 int sock_setsockopt(struct socket *sock, int level, int op,
1606 char __user *optval, unsigned int optlen);
1607
1608 int sock_getsockopt(struct socket *sock, int level, int op,
1609 char __user *optval, int __user *optlen);
1610 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1611 int noblock, int *errcode);
1612 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1613 unsigned long data_len, int noblock,
1614 int *errcode, int max_page_order);
1615 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1616 void sock_kfree_s(struct sock *sk, void *mem, int size);
1617 void sock_kzfree_s(struct sock *sk, void *mem, int size);
1618 void sk_send_sigurg(struct sock *sk);
1619
1620 struct sockcm_cookie {
1621 u64 transmit_time;
1622 u32 mark;
1623 u16 tsflags;
1624 };
1625
1626 static inline void sockcm_init(struct sockcm_cookie *sockc,
1627 const struct sock *sk)
1628 {
1629 *sockc = (struct sockcm_cookie) { .tsflags = sk->sk_tsflags };
1630 }
1631
1632 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
1633 struct sockcm_cookie *sockc);
1634 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1635 struct sockcm_cookie *sockc);
1636
1637 /*
1638 * Functions to fill in entries in struct proto_ops when a protocol
1639 * does not implement a particular function.
1640 */
1641 int sock_no_bind(struct socket *, struct sockaddr *, int);
1642 int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1643 int sock_no_socketpair(struct socket *, struct socket *);
1644 int sock_no_accept(struct socket *, struct socket *, int, bool);
1645 int sock_no_getname(struct socket *, struct sockaddr *, int);
1646 int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1647 int sock_no_listen(struct socket *, int);
1648 int sock_no_shutdown(struct socket *, int);
1649 int sock_no_getsockopt(struct socket *, int , int, char __user *, int __user *);
1650 int sock_no_setsockopt(struct socket *, int, int, char __user *, unsigned int);
1651 int sock_no_sendmsg(struct socket *, struct msghdr *, size_t);
1652 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t len);
1653 int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int);
1654 int sock_no_mmap(struct file *file, struct socket *sock,
1655 struct vm_area_struct *vma);
1656 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset,
1657 size_t size, int flags);
1658 ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page,
1659 int offset, size_t size, int flags);
1660
1661 /*
1662 * Functions to fill in entries in struct proto_ops when a protocol
1663 * uses the inet style.
1664 */
1665 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1666 char __user *optval, int __user *optlen);
1667 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1668 int flags);
1669 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1670 char __user *optval, unsigned int optlen);
1671 int compat_sock_common_getsockopt(struct socket *sock, int level,
1672 int optname, char __user *optval, int __user *optlen);
1673 int compat_sock_common_setsockopt(struct socket *sock, int level,
1674 int optname, char __user *optval, unsigned int optlen);
1675
1676 void sk_common_release(struct sock *sk);
1677
1678 /*
1679 * Default socket callbacks and setup code
1680 */
1681
1682 /* Initialise core socket variables */
1683 void sock_init_data(struct socket *sock, struct sock *sk);
1684
1685 /*
1686 * Socket reference counting postulates.
1687 *
1688 * * Each user of socket SHOULD hold a reference count.
1689 * * Each access point to socket (an hash table bucket, reference from a list,
1690 * running timer, skb in flight MUST hold a reference count.
1691 * * When reference count hits 0, it means it will never increase back.
1692 * * When reference count hits 0, it means that no references from
1693 * outside exist to this socket and current process on current CPU
1694 * is last user and may/should destroy this socket.
1695 * * sk_free is called from any context: process, BH, IRQ. When
1696 * it is called, socket has no references from outside -> sk_free
1697 * may release descendant resources allocated by the socket, but
1698 * to the time when it is called, socket is NOT referenced by any
1699 * hash tables, lists etc.
1700 * * Packets, delivered from outside (from network or from another process)
1701 * and enqueued on receive/error queues SHOULD NOT grab reference count,
1702 * when they sit in queue. Otherwise, packets will leak to hole, when
1703 * socket is looked up by one cpu and unhasing is made by another CPU.
1704 * It is true for udp/raw, netlink (leak to receive and error queues), tcp
1705 * (leak to backlog). Packet socket does all the processing inside
1706 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1707 * use separate SMP lock, so that they are prone too.
1708 */
1709
1710 /* Ungrab socket and destroy it, if it was the last reference. */
1711 static inline void sock_put(struct sock *sk)
1712 {
1713 if (refcount_dec_and_test(&sk->sk_refcnt))
1714 sk_free(sk);
1715 }
1716 /* Generic version of sock_put(), dealing with all sockets
1717 * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...)
1718 */
1719 void sock_gen_put(struct sock *sk);
1720
1721 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested,
1722 unsigned int trim_cap, bool refcounted);
1723 static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1724 const int nested)
1725 {
1726 return __sk_receive_skb(sk, skb, nested, 1, true);
1727 }
1728
1729 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1730 {
1731 /* sk_tx_queue_mapping accept only upto a 16-bit value */
1732 if (WARN_ON_ONCE((unsigned short)tx_queue >= USHRT_MAX))
1733 return;
1734 sk->sk_tx_queue_mapping = tx_queue;
1735 }
1736
1737 #define NO_QUEUE_MAPPING USHRT_MAX
1738
1739 static inline void sk_tx_queue_clear(struct sock *sk)
1740 {
1741 sk->sk_tx_queue_mapping = NO_QUEUE_MAPPING;
1742 }
1743
1744 static inline int sk_tx_queue_get(const struct sock *sk)
1745 {
1746 if (sk && sk->sk_tx_queue_mapping != NO_QUEUE_MAPPING)
1747 return sk->sk_tx_queue_mapping;
1748
1749 return -1;
1750 }
1751
1752 static inline void sk_rx_queue_set(struct sock *sk, const struct sk_buff *skb)
1753 {
1754 #ifdef CONFIG_XPS
1755 if (skb_rx_queue_recorded(skb)) {
1756 u16 rx_queue = skb_get_rx_queue(skb);
1757
1758 if (WARN_ON_ONCE(rx_queue == NO_QUEUE_MAPPING))
1759 return;
1760
1761 sk->sk_rx_queue_mapping = rx_queue;
1762 }
1763 #endif
1764 }
1765
1766 static inline void sk_rx_queue_clear(struct sock *sk)
1767 {
1768 #ifdef CONFIG_XPS
1769 sk->sk_rx_queue_mapping = NO_QUEUE_MAPPING;
1770 #endif
1771 }
1772
1773 #ifdef CONFIG_XPS
1774 static inline int sk_rx_queue_get(const struct sock *sk)
1775 {
1776 if (sk && sk->sk_rx_queue_mapping != NO_QUEUE_MAPPING)
1777 return sk->sk_rx_queue_mapping;
1778
1779 return -1;
1780 }
1781 #endif
1782
1783 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1784 {
1785 sk_tx_queue_clear(sk);
1786 sk->sk_socket = sock;
1787 }
1788
1789 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1790 {
1791 BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1792 return &rcu_dereference_raw(sk->sk_wq)->wait;
1793 }
1794 /* Detach socket from process context.
1795 * Announce socket dead, detach it from wait queue and inode.
1796 * Note that parent inode held reference count on this struct sock,
1797 * we do not release it in this function, because protocol
1798 * probably wants some additional cleanups or even continuing
1799 * to work with this socket (TCP).
1800 */
1801 static inline void sock_orphan(struct sock *sk)
1802 {
1803 write_lock_bh(&sk->sk_callback_lock);
1804 sock_set_flag(sk, SOCK_DEAD);
1805 sk_set_socket(sk, NULL);
1806 sk->sk_wq = NULL;
1807 write_unlock_bh(&sk->sk_callback_lock);
1808 }
1809
1810 static inline void sock_graft(struct sock *sk, struct socket *parent)
1811 {
1812 WARN_ON(parent->sk);
1813 write_lock_bh(&sk->sk_callback_lock);
1814 rcu_assign_pointer(sk->sk_wq, parent->wq);
1815 parent->sk = sk;
1816 sk_set_socket(sk, parent);
1817 sk->sk_uid = SOCK_INODE(parent)->i_uid;
1818 security_sock_graft(sk, parent);
1819 write_unlock_bh(&sk->sk_callback_lock);
1820 }
1821
1822 kuid_t sock_i_uid(struct sock *sk);
1823 unsigned long sock_i_ino(struct sock *sk);
1824
1825 static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk)
1826 {
1827 return sk ? sk->sk_uid : make_kuid(net->user_ns, 0);
1828 }
1829
1830 static inline u32 net_tx_rndhash(void)
1831 {
1832 u32 v = prandom_u32();
1833
1834 return v ?: 1;
1835 }
1836
1837 static inline void sk_set_txhash(struct sock *sk)
1838 {
1839 sk->sk_txhash = net_tx_rndhash();
1840 }
1841
1842 static inline void sk_rethink_txhash(struct sock *sk)
1843 {
1844 if (sk->sk_txhash)
1845 sk_set_txhash(sk);
1846 }
1847
1848 static inline struct dst_entry *
1849 __sk_dst_get(struct sock *sk)
1850 {
1851 return rcu_dereference_check(sk->sk_dst_cache,
1852 lockdep_sock_is_held(sk));
1853 }
1854
1855 static inline struct dst_entry *
1856 sk_dst_get(struct sock *sk)
1857 {
1858 struct dst_entry *dst;
1859
1860 rcu_read_lock();
1861 dst = rcu_dereference(sk->sk_dst_cache);
1862 if (dst && !atomic_inc_not_zero(&dst->__refcnt))
1863 dst = NULL;
1864 rcu_read_unlock();
1865 return dst;
1866 }
1867
1868 static inline void dst_negative_advice(struct sock *sk)
1869 {
1870 struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1871
1872 sk_rethink_txhash(sk);
1873
1874 if (dst && dst->ops->negative_advice) {
1875 ndst = dst->ops->negative_advice(dst);
1876
1877 if (ndst != dst) {
1878 rcu_assign_pointer(sk->sk_dst_cache, ndst);
1879 sk_tx_queue_clear(sk);
1880 sk->sk_dst_pending_confirm = 0;
1881 }
1882 }
1883 }
1884
1885 static inline void
1886 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
1887 {
1888 struct dst_entry *old_dst;
1889
1890 sk_tx_queue_clear(sk);
1891 sk->sk_dst_pending_confirm = 0;
1892 old_dst = rcu_dereference_protected(sk->sk_dst_cache,
1893 lockdep_sock_is_held(sk));
1894 rcu_assign_pointer(sk->sk_dst_cache, dst);
1895 dst_release(old_dst);
1896 }
1897
1898 static inline void
1899 sk_dst_set(struct sock *sk, struct dst_entry *dst)
1900 {
1901 struct dst_entry *old_dst;
1902
1903 sk_tx_queue_clear(sk);
1904 sk->sk_dst_pending_confirm = 0;
1905 old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst);
1906 dst_release(old_dst);
1907 }
1908
1909 static inline void
1910 __sk_dst_reset(struct sock *sk)
1911 {
1912 __sk_dst_set(sk, NULL);
1913 }
1914
1915 static inline void
1916 sk_dst_reset(struct sock *sk)
1917 {
1918 sk_dst_set(sk, NULL);
1919 }
1920
1921 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1922
1923 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1924
1925 static inline void sk_dst_confirm(struct sock *sk)
1926 {
1927 if (!sk->sk_dst_pending_confirm)
1928 sk->sk_dst_pending_confirm = 1;
1929 }
1930
1931 static inline void sock_confirm_neigh(struct sk_buff *skb, struct neighbour *n)
1932 {
1933 if (skb_get_dst_pending_confirm(skb)) {
1934 struct sock *sk = skb->sk;
1935 unsigned long now = jiffies;
1936
1937 /* avoid dirtying neighbour */
1938 if (n->confirmed != now)
1939 n->confirmed = now;
1940 if (sk && sk->sk_dst_pending_confirm)
1941 sk->sk_dst_pending_confirm = 0;
1942 }
1943 }
1944
1945 bool sk_mc_loop(struct sock *sk);
1946
1947 static inline bool sk_can_gso(const struct sock *sk)
1948 {
1949 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1950 }
1951
1952 void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
1953
1954 static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
1955 {
1956 sk->sk_route_nocaps |= flags;
1957 sk->sk_route_caps &= ~flags;
1958 }
1959
1960 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
1961 struct iov_iter *from, char *to,
1962 int copy, int offset)
1963 {
1964 if (skb->ip_summed == CHECKSUM_NONE) {
1965 __wsum csum = 0;
1966 if (!csum_and_copy_from_iter_full(to, copy, &csum, from))
1967 return -EFAULT;
1968 skb->csum = csum_block_add(skb->csum, csum, offset);
1969 } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1970 if (!copy_from_iter_full_nocache(to, copy, from))
1971 return -EFAULT;
1972 } else if (!copy_from_iter_full(to, copy, from))
1973 return -EFAULT;
1974
1975 return 0;
1976 }
1977
1978 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
1979 struct iov_iter *from, int copy)
1980 {
1981 int err, offset = skb->len;
1982
1983 err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
1984 copy, offset);
1985 if (err)
1986 __skb_trim(skb, offset);
1987
1988 return err;
1989 }
1990
1991 static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from,
1992 struct sk_buff *skb,
1993 struct page *page,
1994 int off, int copy)
1995 {
1996 int err;
1997
1998 err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
1999 copy, skb->len);
2000 if (err)
2001 return err;
2002
2003 skb->len += copy;
2004 skb->data_len += copy;
2005 skb->truesize += copy;
2006 sk->sk_wmem_queued += copy;
2007 sk_mem_charge(sk, copy);
2008 return 0;
2009 }
2010
2011 /**
2012 * sk_wmem_alloc_get - returns write allocations
2013 * @sk: socket
2014 *
2015 * Returns sk_wmem_alloc minus initial offset of one
2016 */
2017 static inline int sk_wmem_alloc_get(const struct sock *sk)
2018 {
2019 return refcount_read(&sk->sk_wmem_alloc) - 1;
2020 }
2021
2022 /**
2023 * sk_rmem_alloc_get - returns read allocations
2024 * @sk: socket
2025 *
2026 * Returns sk_rmem_alloc
2027 */
2028 static inline int sk_rmem_alloc_get(const struct sock *sk)
2029 {
2030 return atomic_read(&sk->sk_rmem_alloc);
2031 }
2032
2033 /**
2034 * sk_has_allocations - check if allocations are outstanding
2035 * @sk: socket
2036 *
2037 * Returns true if socket has write or read allocations
2038 */
2039 static inline bool sk_has_allocations(const struct sock *sk)
2040 {
2041 return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
2042 }
2043
2044 /**
2045 * skwq_has_sleeper - check if there are any waiting processes
2046 * @wq: struct socket_wq
2047 *
2048 * Returns true if socket_wq has waiting processes
2049 *
2050 * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory
2051 * barrier call. They were added due to the race found within the tcp code.
2052 *
2053 * Consider following tcp code paths::
2054 *
2055 * CPU1 CPU2
2056 * sys_select receive packet
2057 * ... ...
2058 * __add_wait_queue update tp->rcv_nxt
2059 * ... ...
2060 * tp->rcv_nxt check sock_def_readable
2061 * ... {
2062 * schedule rcu_read_lock();
2063 * wq = rcu_dereference(sk->sk_wq);
2064 * if (wq && waitqueue_active(&wq->wait))
2065 * wake_up_interruptible(&wq->wait)
2066 * ...
2067 * }
2068 *
2069 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
2070 * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1
2071 * could then endup calling schedule and sleep forever if there are no more
2072 * data on the socket.
2073 *
2074 */
2075 static inline bool skwq_has_sleeper(struct socket_wq *wq)
2076 {
2077 return wq && wq_has_sleeper(&wq->wait);
2078 }
2079
2080 /**
2081 * sock_poll_wait - place memory barrier behind the poll_wait call.
2082 * @filp: file
2083 * @sock: socket to wait on
2084 * @p: poll_table
2085 *
2086 * See the comments in the wq_has_sleeper function.
2087 *
2088 * Do not derive sock from filp->private_data here. An SMC socket establishes
2089 * an internal TCP socket that is used in the fallback case. All socket
2090 * operations on the SMC socket are then forwarded to the TCP socket. In case of
2091 * poll, the filp->private_data pointer references the SMC socket because the
2092 * TCP socket has no file assigned.
2093 */
2094 static inline void sock_poll_wait(struct file *filp, struct socket *sock,
2095 poll_table *p)
2096 {
2097 if (!poll_does_not_wait(p)) {
2098 poll_wait(filp, &sock->wq->wait, p);
2099 /* We need to be sure we are in sync with the
2100 * socket flags modification.
2101 *
2102 * This memory barrier is paired in the wq_has_sleeper.
2103 */
2104 smp_mb();
2105 }
2106 }
2107
2108 static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
2109 {
2110 if (sk->sk_txhash) {
2111 skb->l4_hash = 1;
2112 skb->hash = sk->sk_txhash;
2113 }
2114 }
2115
2116 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk);
2117
2118 /*
2119 * Queue a received datagram if it will fit. Stream and sequenced
2120 * protocols can't normally use this as they need to fit buffers in
2121 * and play with them.
2122 *
2123 * Inlined as it's very short and called for pretty much every
2124 * packet ever received.
2125 */
2126 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
2127 {
2128 skb_orphan(skb);
2129 skb->sk = sk;
2130 skb->destructor = sock_rfree;
2131 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
2132 sk_mem_charge(sk, skb->truesize);
2133 }
2134
2135 void sk_reset_timer(struct sock *sk, struct timer_list *timer,
2136 unsigned long expires);
2137
2138 void sk_stop_timer(struct sock *sk, struct timer_list *timer);
2139
2140 int __sk_queue_drop_skb(struct sock *sk, struct sk_buff_head *sk_queue,
2141 struct sk_buff *skb, unsigned int flags,
2142 void (*destructor)(struct sock *sk,
2143 struct sk_buff *skb));
2144 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2145 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2146
2147 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
2148 struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
2149
2150 /*
2151 * Recover an error report and clear atomically
2152 */
2153
2154 static inline int sock_error(struct sock *sk)
2155 {
2156 int err;
2157 if (likely(!sk->sk_err))
2158 return 0;
2159 err = xchg(&sk->sk_err, 0);
2160 return -err;
2161 }
2162
2163 static inline unsigned long sock_wspace(struct sock *sk)
2164 {
2165 int amt = 0;
2166
2167 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2168 amt = sk->sk_sndbuf - refcount_read(&sk->sk_wmem_alloc);
2169 if (amt < 0)
2170 amt = 0;
2171 }
2172 return amt;
2173 }
2174
2175 /* Note:
2176 * We use sk->sk_wq_raw, from contexts knowing this
2177 * pointer is not NULL and cannot disappear/change.
2178 */
2179 static inline void sk_set_bit(int nr, struct sock *sk)
2180 {
2181 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2182 !sock_flag(sk, SOCK_FASYNC))
2183 return;
2184
2185 set_bit(nr, &sk->sk_wq_raw->flags);
2186 }
2187
2188 static inline void sk_clear_bit(int nr, struct sock *sk)
2189 {
2190 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2191 !sock_flag(sk, SOCK_FASYNC))
2192 return;
2193
2194 clear_bit(nr, &sk->sk_wq_raw->flags);
2195 }
2196
2197 static inline void sk_wake_async(const struct sock *sk, int how, int band)
2198 {
2199 if (sock_flag(sk, SOCK_FASYNC)) {
2200 rcu_read_lock();
2201 sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
2202 rcu_read_unlock();
2203 }
2204 }
2205
2206 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2207 * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2208 * Note: for send buffers, TCP works better if we can build two skbs at
2209 * minimum.
2210 */
2211 #define TCP_SKB_MIN_TRUESIZE (2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2212
2213 #define SOCK_MIN_SNDBUF (TCP_SKB_MIN_TRUESIZE * 2)
2214 #define SOCK_MIN_RCVBUF TCP_SKB_MIN_TRUESIZE
2215
2216 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2217 {
2218 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
2219 sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2220 sk->sk_sndbuf = max_t(u32, sk->sk_sndbuf, SOCK_MIN_SNDBUF);
2221 }
2222 }
2223
2224 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
2225 bool force_schedule);
2226
2227 /**
2228 * sk_page_frag - return an appropriate page_frag
2229 * @sk: socket
2230 *
2231 * If socket allocation mode allows current thread to sleep, it means its
2232 * safe to use the per task page_frag instead of the per socket one.
2233 */
2234 static inline struct page_frag *sk_page_frag(struct sock *sk)
2235 {
2236 if (gfpflags_allow_blocking(sk->sk_allocation))
2237 return &current->task_frag;
2238
2239 return &sk->sk_frag;
2240 }
2241
2242 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2243
2244 /*
2245 * Default write policy as shown to user space via poll/select/SIGIO
2246 */
2247 static inline bool sock_writeable(const struct sock *sk)
2248 {
2249 return refcount_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1);
2250 }
2251
2252 static inline gfp_t gfp_any(void)
2253 {
2254 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2255 }
2256
2257 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2258 {
2259 return noblock ? 0 : sk->sk_rcvtimeo;
2260 }
2261
2262 static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2263 {
2264 return noblock ? 0 : sk->sk_sndtimeo;
2265 }
2266
2267 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2268 {
2269 return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
2270 }
2271
2272 /* Alas, with timeout socket operations are not restartable.
2273 * Compare this to poll().
2274 */
2275 static inline int sock_intr_errno(long timeo)
2276 {
2277 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2278 }
2279
2280 struct sock_skb_cb {
2281 u32 dropcount;
2282 };
2283
2284 /* Store sock_skb_cb at the end of skb->cb[] so protocol families
2285 * using skb->cb[] would keep using it directly and utilize its
2286 * alignement guarantee.
2287 */
2288 #define SOCK_SKB_CB_OFFSET ((FIELD_SIZEOF(struct sk_buff, cb) - \
2289 sizeof(struct sock_skb_cb)))
2290
2291 #define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \
2292 SOCK_SKB_CB_OFFSET))
2293
2294 #define sock_skb_cb_check_size(size) \
2295 BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET)
2296
2297 static inline void
2298 sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb)
2299 {
2300 SOCK_SKB_CB(skb)->dropcount = sock_flag(sk, SOCK_RXQ_OVFL) ?
2301 atomic_read(&sk->sk_drops) : 0;
2302 }
2303
2304 static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb)
2305 {
2306 int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2307
2308 atomic_add(segs, &sk->sk_drops);
2309 }
2310
2311 static inline ktime_t sock_read_timestamp(struct sock *sk)
2312 {
2313 #if BITS_PER_LONG==32
2314 unsigned int seq;
2315 ktime_t kt;
2316
2317 do {
2318 seq = read_seqbegin(&sk->sk_stamp_seq);
2319 kt = sk->sk_stamp;
2320 } while (read_seqretry(&sk->sk_stamp_seq, seq));
2321
2322 return kt;
2323 #else
2324 return sk->sk_stamp;
2325 #endif
2326 }
2327
2328 static inline void sock_write_timestamp(struct sock *sk, ktime_t kt)
2329 {
2330 #if BITS_PER_LONG==32
2331 write_seqlock(&sk->sk_stamp_seq);
2332 sk->sk_stamp = kt;
2333 write_sequnlock(&sk->sk_stamp_seq);
2334 #else
2335 sk->sk_stamp = kt;
2336 #endif
2337 }
2338
2339 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2340 struct sk_buff *skb);
2341 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2342 struct sk_buff *skb);
2343
2344 static inline void
2345 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2346 {
2347 ktime_t kt = skb->tstamp;
2348 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2349
2350 /*
2351 * generate control messages if
2352 * - receive time stamping in software requested
2353 * - software time stamp available and wanted
2354 * - hardware time stamps available and wanted
2355 */
2356 if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2357 (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2358 (kt && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2359 (hwtstamps->hwtstamp &&
2360 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
2361 __sock_recv_timestamp(msg, sk, skb);
2362 else
2363 sock_write_timestamp(sk, kt);
2364
2365 if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2366 __sock_recv_wifi_status(msg, sk, skb);
2367 }
2368
2369 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2370 struct sk_buff *skb);
2371
2372 #define SK_DEFAULT_STAMP (-1L * NSEC_PER_SEC)
2373 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2374 struct sk_buff *skb)
2375 {
2376 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL) | \
2377 (1UL << SOCK_RCVTSTAMP))
2378 #define TSFLAGS_ANY (SOF_TIMESTAMPING_SOFTWARE | \
2379 SOF_TIMESTAMPING_RAW_HARDWARE)
2380
2381 if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY)
2382 __sock_recv_ts_and_drops(msg, sk, skb);
2383 else if (unlikely(sock_flag(sk, SOCK_TIMESTAMP)))
2384 sock_write_timestamp(sk, skb->tstamp);
2385 else if (unlikely(sk->sk_stamp == SK_DEFAULT_STAMP))
2386 sock_write_timestamp(sk, 0);
2387 }
2388
2389 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags);
2390
2391 /**
2392 * _sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2393 * @sk: socket sending this packet
2394 * @tsflags: timestamping flags to use
2395 * @tx_flags: completed with instructions for time stamping
2396 * @tskey: filled in with next sk_tskey (not for TCP, which uses seqno)
2397 *
2398 * Note: callers should take care of initial ``*tx_flags`` value (usually 0)
2399 */
2400 static inline void _sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2401 __u8 *tx_flags, __u32 *tskey)
2402 {
2403 if (unlikely(tsflags)) {
2404 __sock_tx_timestamp(tsflags, tx_flags);
2405 if (tsflags & SOF_TIMESTAMPING_OPT_ID && tskey &&
2406 tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
2407 *tskey = sk->sk_tskey++;
2408 }
2409 if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS)))
2410 *tx_flags |= SKBTX_WIFI_STATUS;
2411 }
2412
2413 static inline void sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2414 __u8 *tx_flags)
2415 {
2416 _sock_tx_timestamp(sk, tsflags, tx_flags, NULL);
2417 }
2418
2419 static inline void skb_setup_tx_timestamp(struct sk_buff *skb, __u16 tsflags)
2420 {
2421 _sock_tx_timestamp(skb->sk, tsflags, &skb_shinfo(skb)->tx_flags,
2422 &skb_shinfo(skb)->tskey);
2423 }
2424
2425 /**
2426 * sk_eat_skb - Release a skb if it is no longer needed
2427 * @sk: socket to eat this skb from
2428 * @skb: socket buffer to eat
2429 *
2430 * This routine must be called with interrupts disabled or with the socket
2431 * locked so that the sk_buff queue operation is ok.
2432 */
2433 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
2434 {
2435 __skb_unlink(skb, &sk->sk_receive_queue);
2436 __kfree_skb(skb);
2437 }
2438
2439 static inline
2440 struct net *sock_net(const struct sock *sk)
2441 {
2442 return read_pnet(&sk->sk_net);
2443 }
2444
2445 static inline
2446 void sock_net_set(struct sock *sk, struct net *net)
2447 {
2448 write_pnet(&sk->sk_net, net);
2449 }
2450
2451 static inline struct sock *skb_steal_sock(struct sk_buff *skb)
2452 {
2453 if (skb->sk) {
2454 struct sock *sk = skb->sk;
2455
2456 skb->destructor = NULL;
2457 skb->sk = NULL;
2458 return sk;
2459 }
2460 return NULL;
2461 }
2462
2463 /* This helper checks if a socket is a full socket,
2464 * ie _not_ a timewait or request socket.
2465 */
2466 static inline bool sk_fullsock(const struct sock *sk)
2467 {
2468 return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV);
2469 }
2470
2471 /* Checks if this SKB belongs to an HW offloaded socket
2472 * and whether any SW fallbacks are required based on dev.
2473 */
2474 static inline struct sk_buff *sk_validate_xmit_skb(struct sk_buff *skb,
2475 struct net_device *dev)
2476 {
2477 #ifdef CONFIG_SOCK_VALIDATE_XMIT
2478 struct sock *sk = skb->sk;
2479
2480 if (sk && sk_fullsock(sk) && sk->sk_validate_xmit_skb)
2481 skb = sk->sk_validate_xmit_skb(sk, dev, skb);
2482 #endif
2483
2484 return skb;
2485 }
2486
2487 /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV
2488 * SYNACK messages can be attached to either ones (depending on SYNCOOKIE)
2489 */
2490 static inline bool sk_listener(const struct sock *sk)
2491 {
2492 return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV);
2493 }
2494
2495 void sock_enable_timestamp(struct sock *sk, int flag);
2496 int sock_get_timestamp(struct sock *, struct timeval __user *);
2497 int sock_get_timestampns(struct sock *, struct timespec __user *);
2498 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2499 int type);
2500
2501 bool sk_ns_capable(const struct sock *sk,
2502 struct user_namespace *user_ns, int cap);
2503 bool sk_capable(const struct sock *sk, int cap);
2504 bool sk_net_capable(const struct sock *sk, int cap);
2505
2506 void sk_get_meminfo(const struct sock *sk, u32 *meminfo);
2507
2508 /* Take into consideration the size of the struct sk_buff overhead in the
2509 * determination of these values, since that is non-constant across
2510 * platforms. This makes socket queueing behavior and performance
2511 * not depend upon such differences.
2512 */
2513 #define _SK_MEM_PACKETS 256
2514 #define _SK_MEM_OVERHEAD SKB_TRUESIZE(256)
2515 #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2516 #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2517
2518 extern __u32 sysctl_wmem_max;
2519 extern __u32 sysctl_rmem_max;
2520
2521 extern int sysctl_tstamp_allow_data;
2522 extern int sysctl_optmem_max;
2523
2524 extern __u32 sysctl_wmem_default;
2525 extern __u32 sysctl_rmem_default;
2526
2527 static inline int sk_get_wmem0(const struct sock *sk, const struct proto *proto)
2528 {
2529 /* Does this proto have per netns sysctl_wmem ? */
2530 if (proto->sysctl_wmem_offset)
2531 return *(int *)((void *)sock_net(sk) + proto->sysctl_wmem_offset);
2532
2533 return *proto->sysctl_wmem;
2534 }
2535
2536 static inline int sk_get_rmem0(const struct sock *sk, const struct proto *proto)
2537 {
2538 /* Does this proto have per netns sysctl_rmem ? */
2539 if (proto->sysctl_rmem_offset)
2540 return *(int *)((void *)sock_net(sk) + proto->sysctl_rmem_offset);
2541
2542 return *proto->sysctl_rmem;
2543 }
2544
2545 /* Default TCP Small queue budget is ~1 ms of data (1sec >> 10)
2546 * Some wifi drivers need to tweak it to get more chunks.
2547 * They can use this helper from their ndo_start_xmit()
2548 */
2549 static inline void sk_pacing_shift_update(struct sock *sk, int val)
2550 {
2551 if (!sk || !sk_fullsock(sk) || sk->sk_pacing_shift == val)
2552 return;
2553 sk->sk_pacing_shift = val;
2554 }
2555
2556 /* if a socket is bound to a device, check that the given device
2557 * index is either the same or that the socket is bound to an L3
2558 * master device and the given device index is also enslaved to
2559 * that L3 master
2560 */
2561 static inline bool sk_dev_equal_l3scope(struct sock *sk, int dif)
2562 {
2563 int mdif;
2564
2565 if (!sk->sk_bound_dev_if || sk->sk_bound_dev_if == dif)
2566 return true;
2567
2568 mdif = l3mdev_master_ifindex_by_index(sock_net(sk), dif);
2569 if (mdif && mdif == sk->sk_bound_dev_if)
2570 return true;
2571
2572 return false;
2573 }
2574
2575 #endif /* _SOCK_H */