]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - include/net/sock.h
Merge tag 'driver-core-5.15-rc4' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-jammy-kernel.git] / include / net / sock.h
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Definitions for the AF_INET socket handler.
8 *
9 * Version: @(#)sock.h 1.0.4 05/13/93
10 *
11 * Authors: Ross Biro
12 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13 * Corey Minyard <wf-rch!minyard@relay.EU.net>
14 * Florian La Roche <flla@stud.uni-sb.de>
15 *
16 * Fixes:
17 * Alan Cox : Volatiles in skbuff pointers. See
18 * skbuff comments. May be overdone,
19 * better to prove they can be removed
20 * than the reverse.
21 * Alan Cox : Added a zapped field for tcp to note
22 * a socket is reset and must stay shut up
23 * Alan Cox : New fields for options
24 * Pauline Middelink : identd support
25 * Alan Cox : Eliminate low level recv/recvfrom
26 * David S. Miller : New socket lookup architecture.
27 * Steve Whitehouse: Default routines for sock_ops
28 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made
29 * protinfo be just a void pointer, as the
30 * protocol specific parts were moved to
31 * respective headers and ipv4/v6, etc now
32 * use private slabcaches for its socks
33 * Pedro Hortas : New flags field for socket options
34 */
35 #ifndef _SOCK_H
36 #define _SOCK_H
37
38 #include <linux/hardirq.h>
39 #include <linux/kernel.h>
40 #include <linux/list.h>
41 #include <linux/list_nulls.h>
42 #include <linux/timer.h>
43 #include <linux/cache.h>
44 #include <linux/bitops.h>
45 #include <linux/lockdep.h>
46 #include <linux/netdevice.h>
47 #include <linux/skbuff.h> /* struct sk_buff */
48 #include <linux/mm.h>
49 #include <linux/security.h>
50 #include <linux/slab.h>
51 #include <linux/uaccess.h>
52 #include <linux/page_counter.h>
53 #include <linux/memcontrol.h>
54 #include <linux/static_key.h>
55 #include <linux/sched.h>
56 #include <linux/wait.h>
57 #include <linux/cgroup-defs.h>
58 #include <linux/rbtree.h>
59 #include <linux/filter.h>
60 #include <linux/rculist_nulls.h>
61 #include <linux/poll.h>
62 #include <linux/sockptr.h>
63 #include <linux/indirect_call_wrapper.h>
64 #include <linux/atomic.h>
65 #include <linux/refcount.h>
66 #include <net/dst.h>
67 #include <net/checksum.h>
68 #include <net/tcp_states.h>
69 #include <linux/net_tstamp.h>
70 #include <net/l3mdev.h>
71 #include <uapi/linux/socket.h>
72
73 /*
74 * This structure really needs to be cleaned up.
75 * Most of it is for TCP, and not used by any of
76 * the other protocols.
77 */
78
79 /* Define this to get the SOCK_DBG debugging facility. */
80 #define SOCK_DEBUGGING
81 #ifdef SOCK_DEBUGGING
82 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
83 printk(KERN_DEBUG msg); } while (0)
84 #else
85 /* Validate arguments and do nothing */
86 static inline __printf(2, 3)
87 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
88 {
89 }
90 #endif
91
92 /* This is the per-socket lock. The spinlock provides a synchronization
93 * between user contexts and software interrupt processing, whereas the
94 * mini-semaphore synchronizes multiple users amongst themselves.
95 */
96 typedef struct {
97 spinlock_t slock;
98 int owned;
99 wait_queue_head_t wq;
100 /*
101 * We express the mutex-alike socket_lock semantics
102 * to the lock validator by explicitly managing
103 * the slock as a lock variant (in addition to
104 * the slock itself):
105 */
106 #ifdef CONFIG_DEBUG_LOCK_ALLOC
107 struct lockdep_map dep_map;
108 #endif
109 } socket_lock_t;
110
111 struct sock;
112 struct proto;
113 struct net;
114
115 typedef __u32 __bitwise __portpair;
116 typedef __u64 __bitwise __addrpair;
117
118 /**
119 * struct sock_common - minimal network layer representation of sockets
120 * @skc_daddr: Foreign IPv4 addr
121 * @skc_rcv_saddr: Bound local IPv4 addr
122 * @skc_addrpair: 8-byte-aligned __u64 union of @skc_daddr & @skc_rcv_saddr
123 * @skc_hash: hash value used with various protocol lookup tables
124 * @skc_u16hashes: two u16 hash values used by UDP lookup tables
125 * @skc_dport: placeholder for inet_dport/tw_dport
126 * @skc_num: placeholder for inet_num/tw_num
127 * @skc_portpair: __u32 union of @skc_dport & @skc_num
128 * @skc_family: network address family
129 * @skc_state: Connection state
130 * @skc_reuse: %SO_REUSEADDR setting
131 * @skc_reuseport: %SO_REUSEPORT setting
132 * @skc_ipv6only: socket is IPV6 only
133 * @skc_net_refcnt: socket is using net ref counting
134 * @skc_bound_dev_if: bound device index if != 0
135 * @skc_bind_node: bind hash linkage for various protocol lookup tables
136 * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
137 * @skc_prot: protocol handlers inside a network family
138 * @skc_net: reference to the network namespace of this socket
139 * @skc_v6_daddr: IPV6 destination address
140 * @skc_v6_rcv_saddr: IPV6 source address
141 * @skc_cookie: socket's cookie value
142 * @skc_node: main hash linkage for various protocol lookup tables
143 * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
144 * @skc_tx_queue_mapping: tx queue number for this connection
145 * @skc_rx_queue_mapping: rx queue number for this connection
146 * @skc_flags: place holder for sk_flags
147 * %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
148 * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
149 * @skc_listener: connection request listener socket (aka rsk_listener)
150 * [union with @skc_flags]
151 * @skc_tw_dr: (aka tw_dr) ptr to &struct inet_timewait_death_row
152 * [union with @skc_flags]
153 * @skc_incoming_cpu: record/match cpu processing incoming packets
154 * @skc_rcv_wnd: (aka rsk_rcv_wnd) TCP receive window size (possibly scaled)
155 * [union with @skc_incoming_cpu]
156 * @skc_tw_rcv_nxt: (aka tw_rcv_nxt) TCP window next expected seq number
157 * [union with @skc_incoming_cpu]
158 * @skc_refcnt: reference count
159 *
160 * This is the minimal network layer representation of sockets, the header
161 * for struct sock and struct inet_timewait_sock.
162 */
163 struct sock_common {
164 /* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned
165 * address on 64bit arches : cf INET_MATCH()
166 */
167 union {
168 __addrpair skc_addrpair;
169 struct {
170 __be32 skc_daddr;
171 __be32 skc_rcv_saddr;
172 };
173 };
174 union {
175 unsigned int skc_hash;
176 __u16 skc_u16hashes[2];
177 };
178 /* skc_dport && skc_num must be grouped as well */
179 union {
180 __portpair skc_portpair;
181 struct {
182 __be16 skc_dport;
183 __u16 skc_num;
184 };
185 };
186
187 unsigned short skc_family;
188 volatile unsigned char skc_state;
189 unsigned char skc_reuse:4;
190 unsigned char skc_reuseport:1;
191 unsigned char skc_ipv6only:1;
192 unsigned char skc_net_refcnt:1;
193 int skc_bound_dev_if;
194 union {
195 struct hlist_node skc_bind_node;
196 struct hlist_node skc_portaddr_node;
197 };
198 struct proto *skc_prot;
199 possible_net_t skc_net;
200
201 #if IS_ENABLED(CONFIG_IPV6)
202 struct in6_addr skc_v6_daddr;
203 struct in6_addr skc_v6_rcv_saddr;
204 #endif
205
206 atomic64_t skc_cookie;
207
208 /* following fields are padding to force
209 * offset(struct sock, sk_refcnt) == 128 on 64bit arches
210 * assuming IPV6 is enabled. We use this padding differently
211 * for different kind of 'sockets'
212 */
213 union {
214 unsigned long skc_flags;
215 struct sock *skc_listener; /* request_sock */
216 struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */
217 };
218 /*
219 * fields between dontcopy_begin/dontcopy_end
220 * are not copied in sock_copy()
221 */
222 /* private: */
223 int skc_dontcopy_begin[0];
224 /* public: */
225 union {
226 struct hlist_node skc_node;
227 struct hlist_nulls_node skc_nulls_node;
228 };
229 unsigned short skc_tx_queue_mapping;
230 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
231 unsigned short skc_rx_queue_mapping;
232 #endif
233 union {
234 int skc_incoming_cpu;
235 u32 skc_rcv_wnd;
236 u32 skc_tw_rcv_nxt; /* struct tcp_timewait_sock */
237 };
238
239 refcount_t skc_refcnt;
240 /* private: */
241 int skc_dontcopy_end[0];
242 union {
243 u32 skc_rxhash;
244 u32 skc_window_clamp;
245 u32 skc_tw_snd_nxt; /* struct tcp_timewait_sock */
246 };
247 /* public: */
248 };
249
250 struct bpf_local_storage;
251
252 /**
253 * struct sock - network layer representation of sockets
254 * @__sk_common: shared layout with inet_timewait_sock
255 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
256 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
257 * @sk_lock: synchronizer
258 * @sk_kern_sock: True if sock is using kernel lock classes
259 * @sk_rcvbuf: size of receive buffer in bytes
260 * @sk_wq: sock wait queue and async head
261 * @sk_rx_dst: receive input route used by early demux
262 * @sk_dst_cache: destination cache
263 * @sk_dst_pending_confirm: need to confirm neighbour
264 * @sk_policy: flow policy
265 * @sk_rx_skb_cache: cache copy of recently accessed RX skb
266 * @sk_receive_queue: incoming packets
267 * @sk_wmem_alloc: transmit queue bytes committed
268 * @sk_tsq_flags: TCP Small Queues flags
269 * @sk_write_queue: Packet sending queue
270 * @sk_omem_alloc: "o" is "option" or "other"
271 * @sk_wmem_queued: persistent queue size
272 * @sk_forward_alloc: space allocated forward
273 * @sk_napi_id: id of the last napi context to receive data for sk
274 * @sk_ll_usec: usecs to busypoll when there is no data
275 * @sk_allocation: allocation mode
276 * @sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
277 * @sk_pacing_status: Pacing status (requested, handled by sch_fq)
278 * @sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
279 * @sk_sndbuf: size of send buffer in bytes
280 * @__sk_flags_offset: empty field used to determine location of bitfield
281 * @sk_padding: unused element for alignment
282 * @sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
283 * @sk_no_check_rx: allow zero checksum in RX packets
284 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
285 * @sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
286 * @sk_route_forced_caps: static, forced route capabilities
287 * (set in tcp_init_sock())
288 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
289 * @sk_gso_max_size: Maximum GSO segment size to build
290 * @sk_gso_max_segs: Maximum number of GSO segments
291 * @sk_pacing_shift: scaling factor for TCP Small Queues
292 * @sk_lingertime: %SO_LINGER l_linger setting
293 * @sk_backlog: always used with the per-socket spinlock held
294 * @sk_callback_lock: used with the callbacks in the end of this struct
295 * @sk_error_queue: rarely used
296 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
297 * IPV6_ADDRFORM for instance)
298 * @sk_err: last error
299 * @sk_err_soft: errors that don't cause failure but are the cause of a
300 * persistent failure not just 'timed out'
301 * @sk_drops: raw/udp drops counter
302 * @sk_ack_backlog: current listen backlog
303 * @sk_max_ack_backlog: listen backlog set in listen()
304 * @sk_uid: user id of owner
305 * @sk_prefer_busy_poll: prefer busypolling over softirq processing
306 * @sk_busy_poll_budget: napi processing budget when busypolling
307 * @sk_priority: %SO_PRIORITY setting
308 * @sk_type: socket type (%SOCK_STREAM, etc)
309 * @sk_protocol: which protocol this socket belongs in this network family
310 * @sk_peer_pid: &struct pid for this socket's peer
311 * @sk_peer_cred: %SO_PEERCRED setting
312 * @sk_rcvlowat: %SO_RCVLOWAT setting
313 * @sk_rcvtimeo: %SO_RCVTIMEO setting
314 * @sk_sndtimeo: %SO_SNDTIMEO setting
315 * @sk_txhash: computed flow hash for use on transmit
316 * @sk_filter: socket filtering instructions
317 * @sk_timer: sock cleanup timer
318 * @sk_stamp: time stamp of last packet received
319 * @sk_stamp_seq: lock for accessing sk_stamp on 32 bit architectures only
320 * @sk_tsflags: SO_TIMESTAMPING flags
321 * @sk_bind_phc: SO_TIMESTAMPING bind PHC index of PTP virtual clock
322 * for timestamping
323 * @sk_tskey: counter to disambiguate concurrent tstamp requests
324 * @sk_zckey: counter to order MSG_ZEROCOPY notifications
325 * @sk_socket: Identd and reporting IO signals
326 * @sk_user_data: RPC layer private data
327 * @sk_frag: cached page frag
328 * @sk_peek_off: current peek_offset value
329 * @sk_send_head: front of stuff to transmit
330 * @tcp_rtx_queue: TCP re-transmit queue [union with @sk_send_head]
331 * @sk_tx_skb_cache: cache copy of recently accessed TX skb
332 * @sk_security: used by security modules
333 * @sk_mark: generic packet mark
334 * @sk_cgrp_data: cgroup data for this cgroup
335 * @sk_memcg: this socket's memory cgroup association
336 * @sk_write_pending: a write to stream socket waits to start
337 * @sk_state_change: callback to indicate change in the state of the sock
338 * @sk_data_ready: callback to indicate there is data to be processed
339 * @sk_write_space: callback to indicate there is bf sending space available
340 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
341 * @sk_backlog_rcv: callback to process the backlog
342 * @sk_validate_xmit_skb: ptr to an optional validate function
343 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
344 * @sk_reuseport_cb: reuseport group container
345 * @sk_bpf_storage: ptr to cache and control for bpf_sk_storage
346 * @sk_rcu: used during RCU grace period
347 * @sk_clockid: clockid used by time-based scheduling (SO_TXTIME)
348 * @sk_txtime_deadline_mode: set deadline mode for SO_TXTIME
349 * @sk_txtime_report_errors: set report errors mode for SO_TXTIME
350 * @sk_txtime_unused: unused txtime flags
351 */
352 struct sock {
353 /*
354 * Now struct inet_timewait_sock also uses sock_common, so please just
355 * don't add nothing before this first member (__sk_common) --acme
356 */
357 struct sock_common __sk_common;
358 #define sk_node __sk_common.skc_node
359 #define sk_nulls_node __sk_common.skc_nulls_node
360 #define sk_refcnt __sk_common.skc_refcnt
361 #define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping
362 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
363 #define sk_rx_queue_mapping __sk_common.skc_rx_queue_mapping
364 #endif
365
366 #define sk_dontcopy_begin __sk_common.skc_dontcopy_begin
367 #define sk_dontcopy_end __sk_common.skc_dontcopy_end
368 #define sk_hash __sk_common.skc_hash
369 #define sk_portpair __sk_common.skc_portpair
370 #define sk_num __sk_common.skc_num
371 #define sk_dport __sk_common.skc_dport
372 #define sk_addrpair __sk_common.skc_addrpair
373 #define sk_daddr __sk_common.skc_daddr
374 #define sk_rcv_saddr __sk_common.skc_rcv_saddr
375 #define sk_family __sk_common.skc_family
376 #define sk_state __sk_common.skc_state
377 #define sk_reuse __sk_common.skc_reuse
378 #define sk_reuseport __sk_common.skc_reuseport
379 #define sk_ipv6only __sk_common.skc_ipv6only
380 #define sk_net_refcnt __sk_common.skc_net_refcnt
381 #define sk_bound_dev_if __sk_common.skc_bound_dev_if
382 #define sk_bind_node __sk_common.skc_bind_node
383 #define sk_prot __sk_common.skc_prot
384 #define sk_net __sk_common.skc_net
385 #define sk_v6_daddr __sk_common.skc_v6_daddr
386 #define sk_v6_rcv_saddr __sk_common.skc_v6_rcv_saddr
387 #define sk_cookie __sk_common.skc_cookie
388 #define sk_incoming_cpu __sk_common.skc_incoming_cpu
389 #define sk_flags __sk_common.skc_flags
390 #define sk_rxhash __sk_common.skc_rxhash
391
392 socket_lock_t sk_lock;
393 atomic_t sk_drops;
394 int sk_rcvlowat;
395 struct sk_buff_head sk_error_queue;
396 struct sk_buff *sk_rx_skb_cache;
397 struct sk_buff_head sk_receive_queue;
398 /*
399 * The backlog queue is special, it is always used with
400 * the per-socket spinlock held and requires low latency
401 * access. Therefore we special case it's implementation.
402 * Note : rmem_alloc is in this structure to fill a hole
403 * on 64bit arches, not because its logically part of
404 * backlog.
405 */
406 struct {
407 atomic_t rmem_alloc;
408 int len;
409 struct sk_buff *head;
410 struct sk_buff *tail;
411 } sk_backlog;
412 #define sk_rmem_alloc sk_backlog.rmem_alloc
413
414 int sk_forward_alloc;
415 #ifdef CONFIG_NET_RX_BUSY_POLL
416 unsigned int sk_ll_usec;
417 /* ===== mostly read cache line ===== */
418 unsigned int sk_napi_id;
419 #endif
420 int sk_rcvbuf;
421
422 struct sk_filter __rcu *sk_filter;
423 union {
424 struct socket_wq __rcu *sk_wq;
425 /* private: */
426 struct socket_wq *sk_wq_raw;
427 /* public: */
428 };
429 #ifdef CONFIG_XFRM
430 struct xfrm_policy __rcu *sk_policy[2];
431 #endif
432 struct dst_entry *sk_rx_dst;
433 struct dst_entry __rcu *sk_dst_cache;
434 atomic_t sk_omem_alloc;
435 int sk_sndbuf;
436
437 /* ===== cache line for TX ===== */
438 int sk_wmem_queued;
439 refcount_t sk_wmem_alloc;
440 unsigned long sk_tsq_flags;
441 union {
442 struct sk_buff *sk_send_head;
443 struct rb_root tcp_rtx_queue;
444 };
445 struct sk_buff *sk_tx_skb_cache;
446 struct sk_buff_head sk_write_queue;
447 __s32 sk_peek_off;
448 int sk_write_pending;
449 __u32 sk_dst_pending_confirm;
450 u32 sk_pacing_status; /* see enum sk_pacing */
451 long sk_sndtimeo;
452 struct timer_list sk_timer;
453 __u32 sk_priority;
454 __u32 sk_mark;
455 unsigned long sk_pacing_rate; /* bytes per second */
456 unsigned long sk_max_pacing_rate;
457 struct page_frag sk_frag;
458 netdev_features_t sk_route_caps;
459 netdev_features_t sk_route_nocaps;
460 netdev_features_t sk_route_forced_caps;
461 int sk_gso_type;
462 unsigned int sk_gso_max_size;
463 gfp_t sk_allocation;
464 __u32 sk_txhash;
465
466 /*
467 * Because of non atomicity rules, all
468 * changes are protected by socket lock.
469 */
470 u8 sk_padding : 1,
471 sk_kern_sock : 1,
472 sk_no_check_tx : 1,
473 sk_no_check_rx : 1,
474 sk_userlocks : 4;
475 u8 sk_pacing_shift;
476 u16 sk_type;
477 u16 sk_protocol;
478 u16 sk_gso_max_segs;
479 unsigned long sk_lingertime;
480 struct proto *sk_prot_creator;
481 rwlock_t sk_callback_lock;
482 int sk_err,
483 sk_err_soft;
484 u32 sk_ack_backlog;
485 u32 sk_max_ack_backlog;
486 kuid_t sk_uid;
487 #ifdef CONFIG_NET_RX_BUSY_POLL
488 u8 sk_prefer_busy_poll;
489 u16 sk_busy_poll_budget;
490 #endif
491 spinlock_t sk_peer_lock;
492 struct pid *sk_peer_pid;
493 const struct cred *sk_peer_cred;
494
495 long sk_rcvtimeo;
496 ktime_t sk_stamp;
497 #if BITS_PER_LONG==32
498 seqlock_t sk_stamp_seq;
499 #endif
500 u16 sk_tsflags;
501 int sk_bind_phc;
502 u8 sk_shutdown;
503 u32 sk_tskey;
504 atomic_t sk_zckey;
505
506 u8 sk_clockid;
507 u8 sk_txtime_deadline_mode : 1,
508 sk_txtime_report_errors : 1,
509 sk_txtime_unused : 6;
510
511 struct socket *sk_socket;
512 void *sk_user_data;
513 #ifdef CONFIG_SECURITY
514 void *sk_security;
515 #endif
516 struct sock_cgroup_data sk_cgrp_data;
517 struct mem_cgroup *sk_memcg;
518 void (*sk_state_change)(struct sock *sk);
519 void (*sk_data_ready)(struct sock *sk);
520 void (*sk_write_space)(struct sock *sk);
521 void (*sk_error_report)(struct sock *sk);
522 int (*sk_backlog_rcv)(struct sock *sk,
523 struct sk_buff *skb);
524 #ifdef CONFIG_SOCK_VALIDATE_XMIT
525 struct sk_buff* (*sk_validate_xmit_skb)(struct sock *sk,
526 struct net_device *dev,
527 struct sk_buff *skb);
528 #endif
529 void (*sk_destruct)(struct sock *sk);
530 struct sock_reuseport __rcu *sk_reuseport_cb;
531 #ifdef CONFIG_BPF_SYSCALL
532 struct bpf_local_storage __rcu *sk_bpf_storage;
533 #endif
534 struct rcu_head sk_rcu;
535 };
536
537 enum sk_pacing {
538 SK_PACING_NONE = 0,
539 SK_PACING_NEEDED = 1,
540 SK_PACING_FQ = 2,
541 };
542
543 /* Pointer stored in sk_user_data might not be suitable for copying
544 * when cloning the socket. For instance, it can point to a reference
545 * counted object. sk_user_data bottom bit is set if pointer must not
546 * be copied.
547 */
548 #define SK_USER_DATA_NOCOPY 1UL
549 #define SK_USER_DATA_BPF 2UL /* Managed by BPF */
550 #define SK_USER_DATA_PTRMASK ~(SK_USER_DATA_NOCOPY | SK_USER_DATA_BPF)
551
552 /**
553 * sk_user_data_is_nocopy - Test if sk_user_data pointer must not be copied
554 * @sk: socket
555 */
556 static inline bool sk_user_data_is_nocopy(const struct sock *sk)
557 {
558 return ((uintptr_t)sk->sk_user_data & SK_USER_DATA_NOCOPY);
559 }
560
561 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
562
563 #define rcu_dereference_sk_user_data(sk) \
564 ({ \
565 void *__tmp = rcu_dereference(__sk_user_data((sk))); \
566 (void *)((uintptr_t)__tmp & SK_USER_DATA_PTRMASK); \
567 })
568 #define rcu_assign_sk_user_data(sk, ptr) \
569 ({ \
570 uintptr_t __tmp = (uintptr_t)(ptr); \
571 WARN_ON_ONCE(__tmp & ~SK_USER_DATA_PTRMASK); \
572 rcu_assign_pointer(__sk_user_data((sk)), __tmp); \
573 })
574 #define rcu_assign_sk_user_data_nocopy(sk, ptr) \
575 ({ \
576 uintptr_t __tmp = (uintptr_t)(ptr); \
577 WARN_ON_ONCE(__tmp & ~SK_USER_DATA_PTRMASK); \
578 rcu_assign_pointer(__sk_user_data((sk)), \
579 __tmp | SK_USER_DATA_NOCOPY); \
580 })
581
582 /*
583 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
584 * or not whether his port will be reused by someone else. SK_FORCE_REUSE
585 * on a socket means that the socket will reuse everybody else's port
586 * without looking at the other's sk_reuse value.
587 */
588
589 #define SK_NO_REUSE 0
590 #define SK_CAN_REUSE 1
591 #define SK_FORCE_REUSE 2
592
593 int sk_set_peek_off(struct sock *sk, int val);
594
595 static inline int sk_peek_offset(struct sock *sk, int flags)
596 {
597 if (unlikely(flags & MSG_PEEK)) {
598 return READ_ONCE(sk->sk_peek_off);
599 }
600
601 return 0;
602 }
603
604 static inline void sk_peek_offset_bwd(struct sock *sk, int val)
605 {
606 s32 off = READ_ONCE(sk->sk_peek_off);
607
608 if (unlikely(off >= 0)) {
609 off = max_t(s32, off - val, 0);
610 WRITE_ONCE(sk->sk_peek_off, off);
611 }
612 }
613
614 static inline void sk_peek_offset_fwd(struct sock *sk, int val)
615 {
616 sk_peek_offset_bwd(sk, -val);
617 }
618
619 /*
620 * Hashed lists helper routines
621 */
622 static inline struct sock *sk_entry(const struct hlist_node *node)
623 {
624 return hlist_entry(node, struct sock, sk_node);
625 }
626
627 static inline struct sock *__sk_head(const struct hlist_head *head)
628 {
629 return hlist_entry(head->first, struct sock, sk_node);
630 }
631
632 static inline struct sock *sk_head(const struct hlist_head *head)
633 {
634 return hlist_empty(head) ? NULL : __sk_head(head);
635 }
636
637 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
638 {
639 return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
640 }
641
642 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
643 {
644 return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
645 }
646
647 static inline struct sock *sk_next(const struct sock *sk)
648 {
649 return hlist_entry_safe(sk->sk_node.next, struct sock, sk_node);
650 }
651
652 static inline struct sock *sk_nulls_next(const struct sock *sk)
653 {
654 return (!is_a_nulls(sk->sk_nulls_node.next)) ?
655 hlist_nulls_entry(sk->sk_nulls_node.next,
656 struct sock, sk_nulls_node) :
657 NULL;
658 }
659
660 static inline bool sk_unhashed(const struct sock *sk)
661 {
662 return hlist_unhashed(&sk->sk_node);
663 }
664
665 static inline bool sk_hashed(const struct sock *sk)
666 {
667 return !sk_unhashed(sk);
668 }
669
670 static inline void sk_node_init(struct hlist_node *node)
671 {
672 node->pprev = NULL;
673 }
674
675 static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
676 {
677 node->pprev = NULL;
678 }
679
680 static inline void __sk_del_node(struct sock *sk)
681 {
682 __hlist_del(&sk->sk_node);
683 }
684
685 /* NB: equivalent to hlist_del_init_rcu */
686 static inline bool __sk_del_node_init(struct sock *sk)
687 {
688 if (sk_hashed(sk)) {
689 __sk_del_node(sk);
690 sk_node_init(&sk->sk_node);
691 return true;
692 }
693 return false;
694 }
695
696 /* Grab socket reference count. This operation is valid only
697 when sk is ALREADY grabbed f.e. it is found in hash table
698 or a list and the lookup is made under lock preventing hash table
699 modifications.
700 */
701
702 static __always_inline void sock_hold(struct sock *sk)
703 {
704 refcount_inc(&sk->sk_refcnt);
705 }
706
707 /* Ungrab socket in the context, which assumes that socket refcnt
708 cannot hit zero, f.e. it is true in context of any socketcall.
709 */
710 static __always_inline void __sock_put(struct sock *sk)
711 {
712 refcount_dec(&sk->sk_refcnt);
713 }
714
715 static inline bool sk_del_node_init(struct sock *sk)
716 {
717 bool rc = __sk_del_node_init(sk);
718
719 if (rc) {
720 /* paranoid for a while -acme */
721 WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
722 __sock_put(sk);
723 }
724 return rc;
725 }
726 #define sk_del_node_init_rcu(sk) sk_del_node_init(sk)
727
728 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
729 {
730 if (sk_hashed(sk)) {
731 hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
732 return true;
733 }
734 return false;
735 }
736
737 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
738 {
739 bool rc = __sk_nulls_del_node_init_rcu(sk);
740
741 if (rc) {
742 /* paranoid for a while -acme */
743 WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
744 __sock_put(sk);
745 }
746 return rc;
747 }
748
749 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
750 {
751 hlist_add_head(&sk->sk_node, list);
752 }
753
754 static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
755 {
756 sock_hold(sk);
757 __sk_add_node(sk, list);
758 }
759
760 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
761 {
762 sock_hold(sk);
763 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
764 sk->sk_family == AF_INET6)
765 hlist_add_tail_rcu(&sk->sk_node, list);
766 else
767 hlist_add_head_rcu(&sk->sk_node, list);
768 }
769
770 static inline void sk_add_node_tail_rcu(struct sock *sk, struct hlist_head *list)
771 {
772 sock_hold(sk);
773 hlist_add_tail_rcu(&sk->sk_node, list);
774 }
775
776 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
777 {
778 hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
779 }
780
781 static inline void __sk_nulls_add_node_tail_rcu(struct sock *sk, struct hlist_nulls_head *list)
782 {
783 hlist_nulls_add_tail_rcu(&sk->sk_nulls_node, list);
784 }
785
786 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
787 {
788 sock_hold(sk);
789 __sk_nulls_add_node_rcu(sk, list);
790 }
791
792 static inline void __sk_del_bind_node(struct sock *sk)
793 {
794 __hlist_del(&sk->sk_bind_node);
795 }
796
797 static inline void sk_add_bind_node(struct sock *sk,
798 struct hlist_head *list)
799 {
800 hlist_add_head(&sk->sk_bind_node, list);
801 }
802
803 #define sk_for_each(__sk, list) \
804 hlist_for_each_entry(__sk, list, sk_node)
805 #define sk_for_each_rcu(__sk, list) \
806 hlist_for_each_entry_rcu(__sk, list, sk_node)
807 #define sk_nulls_for_each(__sk, node, list) \
808 hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
809 #define sk_nulls_for_each_rcu(__sk, node, list) \
810 hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
811 #define sk_for_each_from(__sk) \
812 hlist_for_each_entry_from(__sk, sk_node)
813 #define sk_nulls_for_each_from(__sk, node) \
814 if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
815 hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
816 #define sk_for_each_safe(__sk, tmp, list) \
817 hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
818 #define sk_for_each_bound(__sk, list) \
819 hlist_for_each_entry(__sk, list, sk_bind_node)
820
821 /**
822 * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset
823 * @tpos: the type * to use as a loop cursor.
824 * @pos: the &struct hlist_node to use as a loop cursor.
825 * @head: the head for your list.
826 * @offset: offset of hlist_node within the struct.
827 *
828 */
829 #define sk_for_each_entry_offset_rcu(tpos, pos, head, offset) \
830 for (pos = rcu_dereference(hlist_first_rcu(head)); \
831 pos != NULL && \
832 ({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;}); \
833 pos = rcu_dereference(hlist_next_rcu(pos)))
834
835 static inline struct user_namespace *sk_user_ns(struct sock *sk)
836 {
837 /* Careful only use this in a context where these parameters
838 * can not change and must all be valid, such as recvmsg from
839 * userspace.
840 */
841 return sk->sk_socket->file->f_cred->user_ns;
842 }
843
844 /* Sock flags */
845 enum sock_flags {
846 SOCK_DEAD,
847 SOCK_DONE,
848 SOCK_URGINLINE,
849 SOCK_KEEPOPEN,
850 SOCK_LINGER,
851 SOCK_DESTROY,
852 SOCK_BROADCAST,
853 SOCK_TIMESTAMP,
854 SOCK_ZAPPED,
855 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
856 SOCK_DBG, /* %SO_DEBUG setting */
857 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
858 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
859 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
860 SOCK_MEMALLOC, /* VM depends on this socket for swapping */
861 SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */
862 SOCK_FASYNC, /* fasync() active */
863 SOCK_RXQ_OVFL,
864 SOCK_ZEROCOPY, /* buffers from userspace */
865 SOCK_WIFI_STATUS, /* push wifi status to userspace */
866 SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
867 * Will use last 4 bytes of packet sent from
868 * user-space instead.
869 */
870 SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
871 SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
872 SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */
873 SOCK_TXTIME,
874 SOCK_XDP, /* XDP is attached */
875 SOCK_TSTAMP_NEW, /* Indicates 64 bit timestamps always */
876 };
877
878 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
879
880 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
881 {
882 nsk->sk_flags = osk->sk_flags;
883 }
884
885 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
886 {
887 __set_bit(flag, &sk->sk_flags);
888 }
889
890 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
891 {
892 __clear_bit(flag, &sk->sk_flags);
893 }
894
895 static inline void sock_valbool_flag(struct sock *sk, enum sock_flags bit,
896 int valbool)
897 {
898 if (valbool)
899 sock_set_flag(sk, bit);
900 else
901 sock_reset_flag(sk, bit);
902 }
903
904 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
905 {
906 return test_bit(flag, &sk->sk_flags);
907 }
908
909 #ifdef CONFIG_NET
910 DECLARE_STATIC_KEY_FALSE(memalloc_socks_key);
911 static inline int sk_memalloc_socks(void)
912 {
913 return static_branch_unlikely(&memalloc_socks_key);
914 }
915
916 void __receive_sock(struct file *file);
917 #else
918
919 static inline int sk_memalloc_socks(void)
920 {
921 return 0;
922 }
923
924 static inline void __receive_sock(struct file *file)
925 { }
926 #endif
927
928 static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask)
929 {
930 return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC);
931 }
932
933 static inline void sk_acceptq_removed(struct sock *sk)
934 {
935 WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog - 1);
936 }
937
938 static inline void sk_acceptq_added(struct sock *sk)
939 {
940 WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog + 1);
941 }
942
943 /* Note: If you think the test should be:
944 * return READ_ONCE(sk->sk_ack_backlog) >= READ_ONCE(sk->sk_max_ack_backlog);
945 * Then please take a look at commit 64a146513f8f ("[NET]: Revert incorrect accept queue backlog changes.")
946 */
947 static inline bool sk_acceptq_is_full(const struct sock *sk)
948 {
949 return READ_ONCE(sk->sk_ack_backlog) > READ_ONCE(sk->sk_max_ack_backlog);
950 }
951
952 /*
953 * Compute minimal free write space needed to queue new packets.
954 */
955 static inline int sk_stream_min_wspace(const struct sock *sk)
956 {
957 return READ_ONCE(sk->sk_wmem_queued) >> 1;
958 }
959
960 static inline int sk_stream_wspace(const struct sock *sk)
961 {
962 return READ_ONCE(sk->sk_sndbuf) - READ_ONCE(sk->sk_wmem_queued);
963 }
964
965 static inline void sk_wmem_queued_add(struct sock *sk, int val)
966 {
967 WRITE_ONCE(sk->sk_wmem_queued, sk->sk_wmem_queued + val);
968 }
969
970 void sk_stream_write_space(struct sock *sk);
971
972 /* OOB backlog add */
973 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
974 {
975 /* dont let skb dst not refcounted, we are going to leave rcu lock */
976 skb_dst_force(skb);
977
978 if (!sk->sk_backlog.tail)
979 WRITE_ONCE(sk->sk_backlog.head, skb);
980 else
981 sk->sk_backlog.tail->next = skb;
982
983 WRITE_ONCE(sk->sk_backlog.tail, skb);
984 skb->next = NULL;
985 }
986
987 /*
988 * Take into account size of receive queue and backlog queue
989 * Do not take into account this skb truesize,
990 * to allow even a single big packet to come.
991 */
992 static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
993 {
994 unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
995
996 return qsize > limit;
997 }
998
999 /* The per-socket spinlock must be held here. */
1000 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
1001 unsigned int limit)
1002 {
1003 if (sk_rcvqueues_full(sk, limit))
1004 return -ENOBUFS;
1005
1006 /*
1007 * If the skb was allocated from pfmemalloc reserves, only
1008 * allow SOCK_MEMALLOC sockets to use it as this socket is
1009 * helping free memory
1010 */
1011 if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
1012 return -ENOMEM;
1013
1014 __sk_add_backlog(sk, skb);
1015 sk->sk_backlog.len += skb->truesize;
1016 return 0;
1017 }
1018
1019 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
1020
1021 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
1022 {
1023 if (sk_memalloc_socks() && skb_pfmemalloc(skb))
1024 return __sk_backlog_rcv(sk, skb);
1025
1026 return sk->sk_backlog_rcv(sk, skb);
1027 }
1028
1029 static inline void sk_incoming_cpu_update(struct sock *sk)
1030 {
1031 int cpu = raw_smp_processor_id();
1032
1033 if (unlikely(READ_ONCE(sk->sk_incoming_cpu) != cpu))
1034 WRITE_ONCE(sk->sk_incoming_cpu, cpu);
1035 }
1036
1037 static inline void sock_rps_record_flow_hash(__u32 hash)
1038 {
1039 #ifdef CONFIG_RPS
1040 struct rps_sock_flow_table *sock_flow_table;
1041
1042 rcu_read_lock();
1043 sock_flow_table = rcu_dereference(rps_sock_flow_table);
1044 rps_record_sock_flow(sock_flow_table, hash);
1045 rcu_read_unlock();
1046 #endif
1047 }
1048
1049 static inline void sock_rps_record_flow(const struct sock *sk)
1050 {
1051 #ifdef CONFIG_RPS
1052 if (static_branch_unlikely(&rfs_needed)) {
1053 /* Reading sk->sk_rxhash might incur an expensive cache line
1054 * miss.
1055 *
1056 * TCP_ESTABLISHED does cover almost all states where RFS
1057 * might be useful, and is cheaper [1] than testing :
1058 * IPv4: inet_sk(sk)->inet_daddr
1059 * IPv6: ipv6_addr_any(&sk->sk_v6_daddr)
1060 * OR an additional socket flag
1061 * [1] : sk_state and sk_prot are in the same cache line.
1062 */
1063 if (sk->sk_state == TCP_ESTABLISHED)
1064 sock_rps_record_flow_hash(sk->sk_rxhash);
1065 }
1066 #endif
1067 }
1068
1069 static inline void sock_rps_save_rxhash(struct sock *sk,
1070 const struct sk_buff *skb)
1071 {
1072 #ifdef CONFIG_RPS
1073 if (unlikely(sk->sk_rxhash != skb->hash))
1074 sk->sk_rxhash = skb->hash;
1075 #endif
1076 }
1077
1078 static inline void sock_rps_reset_rxhash(struct sock *sk)
1079 {
1080 #ifdef CONFIG_RPS
1081 sk->sk_rxhash = 0;
1082 #endif
1083 }
1084
1085 #define sk_wait_event(__sk, __timeo, __condition, __wait) \
1086 ({ int __rc; \
1087 release_sock(__sk); \
1088 __rc = __condition; \
1089 if (!__rc) { \
1090 *(__timeo) = wait_woken(__wait, \
1091 TASK_INTERRUPTIBLE, \
1092 *(__timeo)); \
1093 } \
1094 sched_annotate_sleep(); \
1095 lock_sock(__sk); \
1096 __rc = __condition; \
1097 __rc; \
1098 })
1099
1100 int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
1101 int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
1102 void sk_stream_wait_close(struct sock *sk, long timeo_p);
1103 int sk_stream_error(struct sock *sk, int flags, int err);
1104 void sk_stream_kill_queues(struct sock *sk);
1105 void sk_set_memalloc(struct sock *sk);
1106 void sk_clear_memalloc(struct sock *sk);
1107
1108 void __sk_flush_backlog(struct sock *sk);
1109
1110 static inline bool sk_flush_backlog(struct sock *sk)
1111 {
1112 if (unlikely(READ_ONCE(sk->sk_backlog.tail))) {
1113 __sk_flush_backlog(sk);
1114 return true;
1115 }
1116 return false;
1117 }
1118
1119 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb);
1120
1121 struct request_sock_ops;
1122 struct timewait_sock_ops;
1123 struct inet_hashinfo;
1124 struct raw_hashinfo;
1125 struct smc_hashinfo;
1126 struct module;
1127 struct sk_psock;
1128
1129 /*
1130 * caches using SLAB_TYPESAFE_BY_RCU should let .next pointer from nulls nodes
1131 * un-modified. Special care is taken when initializing object to zero.
1132 */
1133 static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1134 {
1135 if (offsetof(struct sock, sk_node.next) != 0)
1136 memset(sk, 0, offsetof(struct sock, sk_node.next));
1137 memset(&sk->sk_node.pprev, 0,
1138 size - offsetof(struct sock, sk_node.pprev));
1139 }
1140
1141 /* Networking protocol blocks we attach to sockets.
1142 * socket layer -> transport layer interface
1143 */
1144 struct proto {
1145 void (*close)(struct sock *sk,
1146 long timeout);
1147 int (*pre_connect)(struct sock *sk,
1148 struct sockaddr *uaddr,
1149 int addr_len);
1150 int (*connect)(struct sock *sk,
1151 struct sockaddr *uaddr,
1152 int addr_len);
1153 int (*disconnect)(struct sock *sk, int flags);
1154
1155 struct sock * (*accept)(struct sock *sk, int flags, int *err,
1156 bool kern);
1157
1158 int (*ioctl)(struct sock *sk, int cmd,
1159 unsigned long arg);
1160 int (*init)(struct sock *sk);
1161 void (*destroy)(struct sock *sk);
1162 void (*shutdown)(struct sock *sk, int how);
1163 int (*setsockopt)(struct sock *sk, int level,
1164 int optname, sockptr_t optval,
1165 unsigned int optlen);
1166 int (*getsockopt)(struct sock *sk, int level,
1167 int optname, char __user *optval,
1168 int __user *option);
1169 void (*keepalive)(struct sock *sk, int valbool);
1170 #ifdef CONFIG_COMPAT
1171 int (*compat_ioctl)(struct sock *sk,
1172 unsigned int cmd, unsigned long arg);
1173 #endif
1174 int (*sendmsg)(struct sock *sk, struct msghdr *msg,
1175 size_t len);
1176 int (*recvmsg)(struct sock *sk, struct msghdr *msg,
1177 size_t len, int noblock, int flags,
1178 int *addr_len);
1179 int (*sendpage)(struct sock *sk, struct page *page,
1180 int offset, size_t size, int flags);
1181 int (*bind)(struct sock *sk,
1182 struct sockaddr *addr, int addr_len);
1183 int (*bind_add)(struct sock *sk,
1184 struct sockaddr *addr, int addr_len);
1185
1186 int (*backlog_rcv) (struct sock *sk,
1187 struct sk_buff *skb);
1188 bool (*bpf_bypass_getsockopt)(int level,
1189 int optname);
1190
1191 void (*release_cb)(struct sock *sk);
1192
1193 /* Keeping track of sk's, looking them up, and port selection methods. */
1194 int (*hash)(struct sock *sk);
1195 void (*unhash)(struct sock *sk);
1196 void (*rehash)(struct sock *sk);
1197 int (*get_port)(struct sock *sk, unsigned short snum);
1198 #ifdef CONFIG_BPF_SYSCALL
1199 int (*psock_update_sk_prot)(struct sock *sk,
1200 struct sk_psock *psock,
1201 bool restore);
1202 #endif
1203
1204 /* Keeping track of sockets in use */
1205 #ifdef CONFIG_PROC_FS
1206 unsigned int inuse_idx;
1207 #endif
1208
1209 bool (*stream_memory_free)(const struct sock *sk, int wake);
1210 bool (*stream_memory_read)(const struct sock *sk);
1211 /* Memory pressure */
1212 void (*enter_memory_pressure)(struct sock *sk);
1213 void (*leave_memory_pressure)(struct sock *sk);
1214 atomic_long_t *memory_allocated; /* Current allocated memory. */
1215 struct percpu_counter *sockets_allocated; /* Current number of sockets. */
1216 /*
1217 * Pressure flag: try to collapse.
1218 * Technical note: it is used by multiple contexts non atomically.
1219 * All the __sk_mem_schedule() is of this nature: accounting
1220 * is strict, actions are advisory and have some latency.
1221 */
1222 unsigned long *memory_pressure;
1223 long *sysctl_mem;
1224
1225 int *sysctl_wmem;
1226 int *sysctl_rmem;
1227 u32 sysctl_wmem_offset;
1228 u32 sysctl_rmem_offset;
1229
1230 int max_header;
1231 bool no_autobind;
1232
1233 struct kmem_cache *slab;
1234 unsigned int obj_size;
1235 slab_flags_t slab_flags;
1236 unsigned int useroffset; /* Usercopy region offset */
1237 unsigned int usersize; /* Usercopy region size */
1238
1239 struct percpu_counter *orphan_count;
1240
1241 struct request_sock_ops *rsk_prot;
1242 struct timewait_sock_ops *twsk_prot;
1243
1244 union {
1245 struct inet_hashinfo *hashinfo;
1246 struct udp_table *udp_table;
1247 struct raw_hashinfo *raw_hash;
1248 struct smc_hashinfo *smc_hash;
1249 } h;
1250
1251 struct module *owner;
1252
1253 char name[32];
1254
1255 struct list_head node;
1256 #ifdef SOCK_REFCNT_DEBUG
1257 atomic_t socks;
1258 #endif
1259 int (*diag_destroy)(struct sock *sk, int err);
1260 } __randomize_layout;
1261
1262 int proto_register(struct proto *prot, int alloc_slab);
1263 void proto_unregister(struct proto *prot);
1264 int sock_load_diag_module(int family, int protocol);
1265
1266 #ifdef SOCK_REFCNT_DEBUG
1267 static inline void sk_refcnt_debug_inc(struct sock *sk)
1268 {
1269 atomic_inc(&sk->sk_prot->socks);
1270 }
1271
1272 static inline void sk_refcnt_debug_dec(struct sock *sk)
1273 {
1274 atomic_dec(&sk->sk_prot->socks);
1275 printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1276 sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1277 }
1278
1279 static inline void sk_refcnt_debug_release(const struct sock *sk)
1280 {
1281 if (refcount_read(&sk->sk_refcnt) != 1)
1282 printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1283 sk->sk_prot->name, sk, refcount_read(&sk->sk_refcnt));
1284 }
1285 #else /* SOCK_REFCNT_DEBUG */
1286 #define sk_refcnt_debug_inc(sk) do { } while (0)
1287 #define sk_refcnt_debug_dec(sk) do { } while (0)
1288 #define sk_refcnt_debug_release(sk) do { } while (0)
1289 #endif /* SOCK_REFCNT_DEBUG */
1290
1291 INDIRECT_CALLABLE_DECLARE(bool tcp_stream_memory_free(const struct sock *sk, int wake));
1292
1293 static inline bool __sk_stream_memory_free(const struct sock *sk, int wake)
1294 {
1295 if (READ_ONCE(sk->sk_wmem_queued) >= READ_ONCE(sk->sk_sndbuf))
1296 return false;
1297
1298 #ifdef CONFIG_INET
1299 return sk->sk_prot->stream_memory_free ?
1300 INDIRECT_CALL_1(sk->sk_prot->stream_memory_free,
1301 tcp_stream_memory_free,
1302 sk, wake) : true;
1303 #else
1304 return sk->sk_prot->stream_memory_free ?
1305 sk->sk_prot->stream_memory_free(sk, wake) : true;
1306 #endif
1307 }
1308
1309 static inline bool sk_stream_memory_free(const struct sock *sk)
1310 {
1311 return __sk_stream_memory_free(sk, 0);
1312 }
1313
1314 static inline bool __sk_stream_is_writeable(const struct sock *sk, int wake)
1315 {
1316 return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1317 __sk_stream_memory_free(sk, wake);
1318 }
1319
1320 static inline bool sk_stream_is_writeable(const struct sock *sk)
1321 {
1322 return __sk_stream_is_writeable(sk, 0);
1323 }
1324
1325 static inline int sk_under_cgroup_hierarchy(struct sock *sk,
1326 struct cgroup *ancestor)
1327 {
1328 #ifdef CONFIG_SOCK_CGROUP_DATA
1329 return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data),
1330 ancestor);
1331 #else
1332 return -ENOTSUPP;
1333 #endif
1334 }
1335
1336 static inline bool sk_has_memory_pressure(const struct sock *sk)
1337 {
1338 return sk->sk_prot->memory_pressure != NULL;
1339 }
1340
1341 static inline bool sk_under_memory_pressure(const struct sock *sk)
1342 {
1343 if (!sk->sk_prot->memory_pressure)
1344 return false;
1345
1346 if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
1347 mem_cgroup_under_socket_pressure(sk->sk_memcg))
1348 return true;
1349
1350 return !!*sk->sk_prot->memory_pressure;
1351 }
1352
1353 static inline long
1354 sk_memory_allocated(const struct sock *sk)
1355 {
1356 return atomic_long_read(sk->sk_prot->memory_allocated);
1357 }
1358
1359 static inline long
1360 sk_memory_allocated_add(struct sock *sk, int amt)
1361 {
1362 return atomic_long_add_return(amt, sk->sk_prot->memory_allocated);
1363 }
1364
1365 static inline void
1366 sk_memory_allocated_sub(struct sock *sk, int amt)
1367 {
1368 atomic_long_sub(amt, sk->sk_prot->memory_allocated);
1369 }
1370
1371 #define SK_ALLOC_PERCPU_COUNTER_BATCH 16
1372
1373 static inline void sk_sockets_allocated_dec(struct sock *sk)
1374 {
1375 percpu_counter_add_batch(sk->sk_prot->sockets_allocated, -1,
1376 SK_ALLOC_PERCPU_COUNTER_BATCH);
1377 }
1378
1379 static inline void sk_sockets_allocated_inc(struct sock *sk)
1380 {
1381 percpu_counter_add_batch(sk->sk_prot->sockets_allocated, 1,
1382 SK_ALLOC_PERCPU_COUNTER_BATCH);
1383 }
1384
1385 static inline u64
1386 sk_sockets_allocated_read_positive(struct sock *sk)
1387 {
1388 return percpu_counter_read_positive(sk->sk_prot->sockets_allocated);
1389 }
1390
1391 static inline int
1392 proto_sockets_allocated_sum_positive(struct proto *prot)
1393 {
1394 return percpu_counter_sum_positive(prot->sockets_allocated);
1395 }
1396
1397 static inline long
1398 proto_memory_allocated(struct proto *prot)
1399 {
1400 return atomic_long_read(prot->memory_allocated);
1401 }
1402
1403 static inline bool
1404 proto_memory_pressure(struct proto *prot)
1405 {
1406 if (!prot->memory_pressure)
1407 return false;
1408 return !!*prot->memory_pressure;
1409 }
1410
1411
1412 #ifdef CONFIG_PROC_FS
1413 /* Called with local bh disabled */
1414 void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
1415 int sock_prot_inuse_get(struct net *net, struct proto *proto);
1416 int sock_inuse_get(struct net *net);
1417 #else
1418 static inline void sock_prot_inuse_add(struct net *net, struct proto *prot,
1419 int inc)
1420 {
1421 }
1422 #endif
1423
1424
1425 /* With per-bucket locks this operation is not-atomic, so that
1426 * this version is not worse.
1427 */
1428 static inline int __sk_prot_rehash(struct sock *sk)
1429 {
1430 sk->sk_prot->unhash(sk);
1431 return sk->sk_prot->hash(sk);
1432 }
1433
1434 /* About 10 seconds */
1435 #define SOCK_DESTROY_TIME (10*HZ)
1436
1437 /* Sockets 0-1023 can't be bound to unless you are superuser */
1438 #define PROT_SOCK 1024
1439
1440 #define SHUTDOWN_MASK 3
1441 #define RCV_SHUTDOWN 1
1442 #define SEND_SHUTDOWN 2
1443
1444 #define SOCK_BINDADDR_LOCK 4
1445 #define SOCK_BINDPORT_LOCK 8
1446
1447 struct socket_alloc {
1448 struct socket socket;
1449 struct inode vfs_inode;
1450 };
1451
1452 static inline struct socket *SOCKET_I(struct inode *inode)
1453 {
1454 return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1455 }
1456
1457 static inline struct inode *SOCK_INODE(struct socket *socket)
1458 {
1459 return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1460 }
1461
1462 /*
1463 * Functions for memory accounting
1464 */
1465 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind);
1466 int __sk_mem_schedule(struct sock *sk, int size, int kind);
1467 void __sk_mem_reduce_allocated(struct sock *sk, int amount);
1468 void __sk_mem_reclaim(struct sock *sk, int amount);
1469
1470 /* We used to have PAGE_SIZE here, but systems with 64KB pages
1471 * do not necessarily have 16x time more memory than 4KB ones.
1472 */
1473 #define SK_MEM_QUANTUM 4096
1474 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1475 #define SK_MEM_SEND 0
1476 #define SK_MEM_RECV 1
1477
1478 /* sysctl_mem values are in pages, we convert them in SK_MEM_QUANTUM units */
1479 static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1480 {
1481 long val = sk->sk_prot->sysctl_mem[index];
1482
1483 #if PAGE_SIZE > SK_MEM_QUANTUM
1484 val <<= PAGE_SHIFT - SK_MEM_QUANTUM_SHIFT;
1485 #elif PAGE_SIZE < SK_MEM_QUANTUM
1486 val >>= SK_MEM_QUANTUM_SHIFT - PAGE_SHIFT;
1487 #endif
1488 return val;
1489 }
1490
1491 static inline int sk_mem_pages(int amt)
1492 {
1493 return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1494 }
1495
1496 static inline bool sk_has_account(struct sock *sk)
1497 {
1498 /* return true if protocol supports memory accounting */
1499 return !!sk->sk_prot->memory_allocated;
1500 }
1501
1502 static inline bool sk_wmem_schedule(struct sock *sk, int size)
1503 {
1504 if (!sk_has_account(sk))
1505 return true;
1506 return size <= sk->sk_forward_alloc ||
1507 __sk_mem_schedule(sk, size, SK_MEM_SEND);
1508 }
1509
1510 static inline bool
1511 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1512 {
1513 if (!sk_has_account(sk))
1514 return true;
1515 return size <= sk->sk_forward_alloc ||
1516 __sk_mem_schedule(sk, size, SK_MEM_RECV) ||
1517 skb_pfmemalloc(skb);
1518 }
1519
1520 static inline void sk_mem_reclaim(struct sock *sk)
1521 {
1522 if (!sk_has_account(sk))
1523 return;
1524 if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
1525 __sk_mem_reclaim(sk, sk->sk_forward_alloc);
1526 }
1527
1528 static inline void sk_mem_reclaim_partial(struct sock *sk)
1529 {
1530 if (!sk_has_account(sk))
1531 return;
1532 if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
1533 __sk_mem_reclaim(sk, sk->sk_forward_alloc - 1);
1534 }
1535
1536 static inline void sk_mem_charge(struct sock *sk, int size)
1537 {
1538 if (!sk_has_account(sk))
1539 return;
1540 sk->sk_forward_alloc -= size;
1541 }
1542
1543 static inline void sk_mem_uncharge(struct sock *sk, int size)
1544 {
1545 if (!sk_has_account(sk))
1546 return;
1547 sk->sk_forward_alloc += size;
1548
1549 /* Avoid a possible overflow.
1550 * TCP send queues can make this happen, if sk_mem_reclaim()
1551 * is not called and more than 2 GBytes are released at once.
1552 *
1553 * If we reach 2 MBytes, reclaim 1 MBytes right now, there is
1554 * no need to hold that much forward allocation anyway.
1555 */
1556 if (unlikely(sk->sk_forward_alloc >= 1 << 21))
1557 __sk_mem_reclaim(sk, 1 << 20);
1558 }
1559
1560 DECLARE_STATIC_KEY_FALSE(tcp_tx_skb_cache_key);
1561 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1562 {
1563 sk_wmem_queued_add(sk, -skb->truesize);
1564 sk_mem_uncharge(sk, skb->truesize);
1565 if (static_branch_unlikely(&tcp_tx_skb_cache_key) &&
1566 !sk->sk_tx_skb_cache && !skb_cloned(skb)) {
1567 skb_ext_reset(skb);
1568 skb_zcopy_clear(skb, true);
1569 sk->sk_tx_skb_cache = skb;
1570 return;
1571 }
1572 __kfree_skb(skb);
1573 }
1574
1575 static inline void sock_release_ownership(struct sock *sk)
1576 {
1577 if (sk->sk_lock.owned) {
1578 sk->sk_lock.owned = 0;
1579
1580 /* The sk_lock has mutex_unlock() semantics: */
1581 mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
1582 }
1583 }
1584
1585 /*
1586 * Macro so as to not evaluate some arguments when
1587 * lockdep is not enabled.
1588 *
1589 * Mark both the sk_lock and the sk_lock.slock as a
1590 * per-address-family lock class.
1591 */
1592 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) \
1593 do { \
1594 sk->sk_lock.owned = 0; \
1595 init_waitqueue_head(&sk->sk_lock.wq); \
1596 spin_lock_init(&(sk)->sk_lock.slock); \
1597 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \
1598 sizeof((sk)->sk_lock)); \
1599 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \
1600 (skey), (sname)); \
1601 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \
1602 } while (0)
1603
1604 static inline bool lockdep_sock_is_held(const struct sock *sk)
1605 {
1606 return lockdep_is_held(&sk->sk_lock) ||
1607 lockdep_is_held(&sk->sk_lock.slock);
1608 }
1609
1610 void lock_sock_nested(struct sock *sk, int subclass);
1611
1612 static inline void lock_sock(struct sock *sk)
1613 {
1614 lock_sock_nested(sk, 0);
1615 }
1616
1617 void __lock_sock(struct sock *sk);
1618 void __release_sock(struct sock *sk);
1619 void release_sock(struct sock *sk);
1620
1621 /* BH context may only use the following locking interface. */
1622 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock))
1623 #define bh_lock_sock_nested(__sk) \
1624 spin_lock_nested(&((__sk)->sk_lock.slock), \
1625 SINGLE_DEPTH_NESTING)
1626 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock))
1627
1628 bool __lock_sock_fast(struct sock *sk) __acquires(&sk->sk_lock.slock);
1629
1630 /**
1631 * lock_sock_fast - fast version of lock_sock
1632 * @sk: socket
1633 *
1634 * This version should be used for very small section, where process wont block
1635 * return false if fast path is taken:
1636 *
1637 * sk_lock.slock locked, owned = 0, BH disabled
1638 *
1639 * return true if slow path is taken:
1640 *
1641 * sk_lock.slock unlocked, owned = 1, BH enabled
1642 */
1643 static inline bool lock_sock_fast(struct sock *sk)
1644 {
1645 /* The sk_lock has mutex_lock() semantics here. */
1646 mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
1647
1648 return __lock_sock_fast(sk);
1649 }
1650
1651 /* fast socket lock variant for caller already holding a [different] socket lock */
1652 static inline bool lock_sock_fast_nested(struct sock *sk)
1653 {
1654 mutex_acquire(&sk->sk_lock.dep_map, SINGLE_DEPTH_NESTING, 0, _RET_IP_);
1655
1656 return __lock_sock_fast(sk);
1657 }
1658
1659 /**
1660 * unlock_sock_fast - complement of lock_sock_fast
1661 * @sk: socket
1662 * @slow: slow mode
1663 *
1664 * fast unlock socket for user context.
1665 * If slow mode is on, we call regular release_sock()
1666 */
1667 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1668 __releases(&sk->sk_lock.slock)
1669 {
1670 if (slow) {
1671 release_sock(sk);
1672 __release(&sk->sk_lock.slock);
1673 } else {
1674 mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
1675 spin_unlock_bh(&sk->sk_lock.slock);
1676 }
1677 }
1678
1679 /* Used by processes to "lock" a socket state, so that
1680 * interrupts and bottom half handlers won't change it
1681 * from under us. It essentially blocks any incoming
1682 * packets, so that we won't get any new data or any
1683 * packets that change the state of the socket.
1684 *
1685 * While locked, BH processing will add new packets to
1686 * the backlog queue. This queue is processed by the
1687 * owner of the socket lock right before it is released.
1688 *
1689 * Since ~2.3.5 it is also exclusive sleep lock serializing
1690 * accesses from user process context.
1691 */
1692
1693 static inline void sock_owned_by_me(const struct sock *sk)
1694 {
1695 #ifdef CONFIG_LOCKDEP
1696 WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks);
1697 #endif
1698 }
1699
1700 static inline bool sock_owned_by_user(const struct sock *sk)
1701 {
1702 sock_owned_by_me(sk);
1703 return sk->sk_lock.owned;
1704 }
1705
1706 static inline bool sock_owned_by_user_nocheck(const struct sock *sk)
1707 {
1708 return sk->sk_lock.owned;
1709 }
1710
1711 /* no reclassification while locks are held */
1712 static inline bool sock_allow_reclassification(const struct sock *csk)
1713 {
1714 struct sock *sk = (struct sock *)csk;
1715
1716 return !sk->sk_lock.owned && !spin_is_locked(&sk->sk_lock.slock);
1717 }
1718
1719 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1720 struct proto *prot, int kern);
1721 void sk_free(struct sock *sk);
1722 void sk_destruct(struct sock *sk);
1723 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1724 void sk_free_unlock_clone(struct sock *sk);
1725
1726 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1727 gfp_t priority);
1728 void __sock_wfree(struct sk_buff *skb);
1729 void sock_wfree(struct sk_buff *skb);
1730 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
1731 gfp_t priority);
1732 void skb_orphan_partial(struct sk_buff *skb);
1733 void sock_rfree(struct sk_buff *skb);
1734 void sock_efree(struct sk_buff *skb);
1735 #ifdef CONFIG_INET
1736 void sock_edemux(struct sk_buff *skb);
1737 void sock_pfree(struct sk_buff *skb);
1738 #else
1739 #define sock_edemux sock_efree
1740 #endif
1741
1742 int sock_setsockopt(struct socket *sock, int level, int op,
1743 sockptr_t optval, unsigned int optlen);
1744
1745 int sock_getsockopt(struct socket *sock, int level, int op,
1746 char __user *optval, int __user *optlen);
1747 int sock_gettstamp(struct socket *sock, void __user *userstamp,
1748 bool timeval, bool time32);
1749 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1750 int noblock, int *errcode);
1751 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1752 unsigned long data_len, int noblock,
1753 int *errcode, int max_page_order);
1754 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1755 void sock_kfree_s(struct sock *sk, void *mem, int size);
1756 void sock_kzfree_s(struct sock *sk, void *mem, int size);
1757 void sk_send_sigurg(struct sock *sk);
1758
1759 struct sockcm_cookie {
1760 u64 transmit_time;
1761 u32 mark;
1762 u16 tsflags;
1763 };
1764
1765 static inline void sockcm_init(struct sockcm_cookie *sockc,
1766 const struct sock *sk)
1767 {
1768 *sockc = (struct sockcm_cookie) { .tsflags = sk->sk_tsflags };
1769 }
1770
1771 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
1772 struct sockcm_cookie *sockc);
1773 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1774 struct sockcm_cookie *sockc);
1775
1776 /*
1777 * Functions to fill in entries in struct proto_ops when a protocol
1778 * does not implement a particular function.
1779 */
1780 int sock_no_bind(struct socket *, struct sockaddr *, int);
1781 int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1782 int sock_no_socketpair(struct socket *, struct socket *);
1783 int sock_no_accept(struct socket *, struct socket *, int, bool);
1784 int sock_no_getname(struct socket *, struct sockaddr *, int);
1785 int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1786 int sock_no_listen(struct socket *, int);
1787 int sock_no_shutdown(struct socket *, int);
1788 int sock_no_sendmsg(struct socket *, struct msghdr *, size_t);
1789 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t len);
1790 int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int);
1791 int sock_no_mmap(struct file *file, struct socket *sock,
1792 struct vm_area_struct *vma);
1793 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset,
1794 size_t size, int flags);
1795 ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page,
1796 int offset, size_t size, int flags);
1797
1798 /*
1799 * Functions to fill in entries in struct proto_ops when a protocol
1800 * uses the inet style.
1801 */
1802 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1803 char __user *optval, int __user *optlen);
1804 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1805 int flags);
1806 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1807 sockptr_t optval, unsigned int optlen);
1808
1809 void sk_common_release(struct sock *sk);
1810
1811 /*
1812 * Default socket callbacks and setup code
1813 */
1814
1815 /* Initialise core socket variables */
1816 void sock_init_data(struct socket *sock, struct sock *sk);
1817
1818 /*
1819 * Socket reference counting postulates.
1820 *
1821 * * Each user of socket SHOULD hold a reference count.
1822 * * Each access point to socket (an hash table bucket, reference from a list,
1823 * running timer, skb in flight MUST hold a reference count.
1824 * * When reference count hits 0, it means it will never increase back.
1825 * * When reference count hits 0, it means that no references from
1826 * outside exist to this socket and current process on current CPU
1827 * is last user and may/should destroy this socket.
1828 * * sk_free is called from any context: process, BH, IRQ. When
1829 * it is called, socket has no references from outside -> sk_free
1830 * may release descendant resources allocated by the socket, but
1831 * to the time when it is called, socket is NOT referenced by any
1832 * hash tables, lists etc.
1833 * * Packets, delivered from outside (from network or from another process)
1834 * and enqueued on receive/error queues SHOULD NOT grab reference count,
1835 * when they sit in queue. Otherwise, packets will leak to hole, when
1836 * socket is looked up by one cpu and unhasing is made by another CPU.
1837 * It is true for udp/raw, netlink (leak to receive and error queues), tcp
1838 * (leak to backlog). Packet socket does all the processing inside
1839 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1840 * use separate SMP lock, so that they are prone too.
1841 */
1842
1843 /* Ungrab socket and destroy it, if it was the last reference. */
1844 static inline void sock_put(struct sock *sk)
1845 {
1846 if (refcount_dec_and_test(&sk->sk_refcnt))
1847 sk_free(sk);
1848 }
1849 /* Generic version of sock_put(), dealing with all sockets
1850 * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...)
1851 */
1852 void sock_gen_put(struct sock *sk);
1853
1854 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested,
1855 unsigned int trim_cap, bool refcounted);
1856 static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1857 const int nested)
1858 {
1859 return __sk_receive_skb(sk, skb, nested, 1, true);
1860 }
1861
1862 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1863 {
1864 /* sk_tx_queue_mapping accept only upto a 16-bit value */
1865 if (WARN_ON_ONCE((unsigned short)tx_queue >= USHRT_MAX))
1866 return;
1867 sk->sk_tx_queue_mapping = tx_queue;
1868 }
1869
1870 #define NO_QUEUE_MAPPING USHRT_MAX
1871
1872 static inline void sk_tx_queue_clear(struct sock *sk)
1873 {
1874 sk->sk_tx_queue_mapping = NO_QUEUE_MAPPING;
1875 }
1876
1877 static inline int sk_tx_queue_get(const struct sock *sk)
1878 {
1879 if (sk && sk->sk_tx_queue_mapping != NO_QUEUE_MAPPING)
1880 return sk->sk_tx_queue_mapping;
1881
1882 return -1;
1883 }
1884
1885 static inline void sk_rx_queue_set(struct sock *sk, const struct sk_buff *skb)
1886 {
1887 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
1888 if (skb_rx_queue_recorded(skb)) {
1889 u16 rx_queue = skb_get_rx_queue(skb);
1890
1891 if (WARN_ON_ONCE(rx_queue == NO_QUEUE_MAPPING))
1892 return;
1893
1894 sk->sk_rx_queue_mapping = rx_queue;
1895 }
1896 #endif
1897 }
1898
1899 static inline void sk_rx_queue_clear(struct sock *sk)
1900 {
1901 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
1902 sk->sk_rx_queue_mapping = NO_QUEUE_MAPPING;
1903 #endif
1904 }
1905
1906 static inline int sk_rx_queue_get(const struct sock *sk)
1907 {
1908 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
1909 if (sk && sk->sk_rx_queue_mapping != NO_QUEUE_MAPPING)
1910 return sk->sk_rx_queue_mapping;
1911 #endif
1912
1913 return -1;
1914 }
1915
1916 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1917 {
1918 sk->sk_socket = sock;
1919 }
1920
1921 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1922 {
1923 BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1924 return &rcu_dereference_raw(sk->sk_wq)->wait;
1925 }
1926 /* Detach socket from process context.
1927 * Announce socket dead, detach it from wait queue and inode.
1928 * Note that parent inode held reference count on this struct sock,
1929 * we do not release it in this function, because protocol
1930 * probably wants some additional cleanups or even continuing
1931 * to work with this socket (TCP).
1932 */
1933 static inline void sock_orphan(struct sock *sk)
1934 {
1935 write_lock_bh(&sk->sk_callback_lock);
1936 sock_set_flag(sk, SOCK_DEAD);
1937 sk_set_socket(sk, NULL);
1938 sk->sk_wq = NULL;
1939 write_unlock_bh(&sk->sk_callback_lock);
1940 }
1941
1942 static inline void sock_graft(struct sock *sk, struct socket *parent)
1943 {
1944 WARN_ON(parent->sk);
1945 write_lock_bh(&sk->sk_callback_lock);
1946 rcu_assign_pointer(sk->sk_wq, &parent->wq);
1947 parent->sk = sk;
1948 sk_set_socket(sk, parent);
1949 sk->sk_uid = SOCK_INODE(parent)->i_uid;
1950 security_sock_graft(sk, parent);
1951 write_unlock_bh(&sk->sk_callback_lock);
1952 }
1953
1954 kuid_t sock_i_uid(struct sock *sk);
1955 unsigned long sock_i_ino(struct sock *sk);
1956
1957 static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk)
1958 {
1959 return sk ? sk->sk_uid : make_kuid(net->user_ns, 0);
1960 }
1961
1962 static inline u32 net_tx_rndhash(void)
1963 {
1964 u32 v = prandom_u32();
1965
1966 return v ?: 1;
1967 }
1968
1969 static inline void sk_set_txhash(struct sock *sk)
1970 {
1971 /* This pairs with READ_ONCE() in skb_set_hash_from_sk() */
1972 WRITE_ONCE(sk->sk_txhash, net_tx_rndhash());
1973 }
1974
1975 static inline bool sk_rethink_txhash(struct sock *sk)
1976 {
1977 if (sk->sk_txhash) {
1978 sk_set_txhash(sk);
1979 return true;
1980 }
1981 return false;
1982 }
1983
1984 static inline struct dst_entry *
1985 __sk_dst_get(struct sock *sk)
1986 {
1987 return rcu_dereference_check(sk->sk_dst_cache,
1988 lockdep_sock_is_held(sk));
1989 }
1990
1991 static inline struct dst_entry *
1992 sk_dst_get(struct sock *sk)
1993 {
1994 struct dst_entry *dst;
1995
1996 rcu_read_lock();
1997 dst = rcu_dereference(sk->sk_dst_cache);
1998 if (dst && !atomic_inc_not_zero(&dst->__refcnt))
1999 dst = NULL;
2000 rcu_read_unlock();
2001 return dst;
2002 }
2003
2004 static inline void __dst_negative_advice(struct sock *sk)
2005 {
2006 struct dst_entry *ndst, *dst = __sk_dst_get(sk);
2007
2008 if (dst && dst->ops->negative_advice) {
2009 ndst = dst->ops->negative_advice(dst);
2010
2011 if (ndst != dst) {
2012 rcu_assign_pointer(sk->sk_dst_cache, ndst);
2013 sk_tx_queue_clear(sk);
2014 sk->sk_dst_pending_confirm = 0;
2015 }
2016 }
2017 }
2018
2019 static inline void dst_negative_advice(struct sock *sk)
2020 {
2021 sk_rethink_txhash(sk);
2022 __dst_negative_advice(sk);
2023 }
2024
2025 static inline void
2026 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
2027 {
2028 struct dst_entry *old_dst;
2029
2030 sk_tx_queue_clear(sk);
2031 sk->sk_dst_pending_confirm = 0;
2032 old_dst = rcu_dereference_protected(sk->sk_dst_cache,
2033 lockdep_sock_is_held(sk));
2034 rcu_assign_pointer(sk->sk_dst_cache, dst);
2035 dst_release(old_dst);
2036 }
2037
2038 static inline void
2039 sk_dst_set(struct sock *sk, struct dst_entry *dst)
2040 {
2041 struct dst_entry *old_dst;
2042
2043 sk_tx_queue_clear(sk);
2044 sk->sk_dst_pending_confirm = 0;
2045 old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst);
2046 dst_release(old_dst);
2047 }
2048
2049 static inline void
2050 __sk_dst_reset(struct sock *sk)
2051 {
2052 __sk_dst_set(sk, NULL);
2053 }
2054
2055 static inline void
2056 sk_dst_reset(struct sock *sk)
2057 {
2058 sk_dst_set(sk, NULL);
2059 }
2060
2061 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
2062
2063 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
2064
2065 static inline void sk_dst_confirm(struct sock *sk)
2066 {
2067 if (!READ_ONCE(sk->sk_dst_pending_confirm))
2068 WRITE_ONCE(sk->sk_dst_pending_confirm, 1);
2069 }
2070
2071 static inline void sock_confirm_neigh(struct sk_buff *skb, struct neighbour *n)
2072 {
2073 if (skb_get_dst_pending_confirm(skb)) {
2074 struct sock *sk = skb->sk;
2075 unsigned long now = jiffies;
2076
2077 /* avoid dirtying neighbour */
2078 if (READ_ONCE(n->confirmed) != now)
2079 WRITE_ONCE(n->confirmed, now);
2080 if (sk && READ_ONCE(sk->sk_dst_pending_confirm))
2081 WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
2082 }
2083 }
2084
2085 bool sk_mc_loop(struct sock *sk);
2086
2087 static inline bool sk_can_gso(const struct sock *sk)
2088 {
2089 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
2090 }
2091
2092 void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
2093
2094 static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
2095 {
2096 sk->sk_route_nocaps |= flags;
2097 sk->sk_route_caps &= ~flags;
2098 }
2099
2100 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
2101 struct iov_iter *from, char *to,
2102 int copy, int offset)
2103 {
2104 if (skb->ip_summed == CHECKSUM_NONE) {
2105 __wsum csum = 0;
2106 if (!csum_and_copy_from_iter_full(to, copy, &csum, from))
2107 return -EFAULT;
2108 skb->csum = csum_block_add(skb->csum, csum, offset);
2109 } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
2110 if (!copy_from_iter_full_nocache(to, copy, from))
2111 return -EFAULT;
2112 } else if (!copy_from_iter_full(to, copy, from))
2113 return -EFAULT;
2114
2115 return 0;
2116 }
2117
2118 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
2119 struct iov_iter *from, int copy)
2120 {
2121 int err, offset = skb->len;
2122
2123 err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
2124 copy, offset);
2125 if (err)
2126 __skb_trim(skb, offset);
2127
2128 return err;
2129 }
2130
2131 static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from,
2132 struct sk_buff *skb,
2133 struct page *page,
2134 int off, int copy)
2135 {
2136 int err;
2137
2138 err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
2139 copy, skb->len);
2140 if (err)
2141 return err;
2142
2143 skb->len += copy;
2144 skb->data_len += copy;
2145 skb->truesize += copy;
2146 sk_wmem_queued_add(sk, copy);
2147 sk_mem_charge(sk, copy);
2148 return 0;
2149 }
2150
2151 /**
2152 * sk_wmem_alloc_get - returns write allocations
2153 * @sk: socket
2154 *
2155 * Return: sk_wmem_alloc minus initial offset of one
2156 */
2157 static inline int sk_wmem_alloc_get(const struct sock *sk)
2158 {
2159 return refcount_read(&sk->sk_wmem_alloc) - 1;
2160 }
2161
2162 /**
2163 * sk_rmem_alloc_get - returns read allocations
2164 * @sk: socket
2165 *
2166 * Return: sk_rmem_alloc
2167 */
2168 static inline int sk_rmem_alloc_get(const struct sock *sk)
2169 {
2170 return atomic_read(&sk->sk_rmem_alloc);
2171 }
2172
2173 /**
2174 * sk_has_allocations - check if allocations are outstanding
2175 * @sk: socket
2176 *
2177 * Return: true if socket has write or read allocations
2178 */
2179 static inline bool sk_has_allocations(const struct sock *sk)
2180 {
2181 return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
2182 }
2183
2184 /**
2185 * skwq_has_sleeper - check if there are any waiting processes
2186 * @wq: struct socket_wq
2187 *
2188 * Return: true if socket_wq has waiting processes
2189 *
2190 * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory
2191 * barrier call. They were added due to the race found within the tcp code.
2192 *
2193 * Consider following tcp code paths::
2194 *
2195 * CPU1 CPU2
2196 * sys_select receive packet
2197 * ... ...
2198 * __add_wait_queue update tp->rcv_nxt
2199 * ... ...
2200 * tp->rcv_nxt check sock_def_readable
2201 * ... {
2202 * schedule rcu_read_lock();
2203 * wq = rcu_dereference(sk->sk_wq);
2204 * if (wq && waitqueue_active(&wq->wait))
2205 * wake_up_interruptible(&wq->wait)
2206 * ...
2207 * }
2208 *
2209 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
2210 * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1
2211 * could then endup calling schedule and sleep forever if there are no more
2212 * data on the socket.
2213 *
2214 */
2215 static inline bool skwq_has_sleeper(struct socket_wq *wq)
2216 {
2217 return wq && wq_has_sleeper(&wq->wait);
2218 }
2219
2220 /**
2221 * sock_poll_wait - place memory barrier behind the poll_wait call.
2222 * @filp: file
2223 * @sock: socket to wait on
2224 * @p: poll_table
2225 *
2226 * See the comments in the wq_has_sleeper function.
2227 */
2228 static inline void sock_poll_wait(struct file *filp, struct socket *sock,
2229 poll_table *p)
2230 {
2231 if (!poll_does_not_wait(p)) {
2232 poll_wait(filp, &sock->wq.wait, p);
2233 /* We need to be sure we are in sync with the
2234 * socket flags modification.
2235 *
2236 * This memory barrier is paired in the wq_has_sleeper.
2237 */
2238 smp_mb();
2239 }
2240 }
2241
2242 static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
2243 {
2244 /* This pairs with WRITE_ONCE() in sk_set_txhash() */
2245 u32 txhash = READ_ONCE(sk->sk_txhash);
2246
2247 if (txhash) {
2248 skb->l4_hash = 1;
2249 skb->hash = txhash;
2250 }
2251 }
2252
2253 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk);
2254
2255 /*
2256 * Queue a received datagram if it will fit. Stream and sequenced
2257 * protocols can't normally use this as they need to fit buffers in
2258 * and play with them.
2259 *
2260 * Inlined as it's very short and called for pretty much every
2261 * packet ever received.
2262 */
2263 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
2264 {
2265 skb_orphan(skb);
2266 skb->sk = sk;
2267 skb->destructor = sock_rfree;
2268 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
2269 sk_mem_charge(sk, skb->truesize);
2270 }
2271
2272 static inline __must_check bool skb_set_owner_sk_safe(struct sk_buff *skb, struct sock *sk)
2273 {
2274 if (sk && refcount_inc_not_zero(&sk->sk_refcnt)) {
2275 skb_orphan(skb);
2276 skb->destructor = sock_efree;
2277 skb->sk = sk;
2278 return true;
2279 }
2280 return false;
2281 }
2282
2283 static inline void skb_prepare_for_gro(struct sk_buff *skb)
2284 {
2285 if (skb->destructor != sock_wfree) {
2286 skb_orphan(skb);
2287 return;
2288 }
2289 skb->slow_gro = 1;
2290 }
2291
2292 void sk_reset_timer(struct sock *sk, struct timer_list *timer,
2293 unsigned long expires);
2294
2295 void sk_stop_timer(struct sock *sk, struct timer_list *timer);
2296
2297 void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer);
2298
2299 int __sk_queue_drop_skb(struct sock *sk, struct sk_buff_head *sk_queue,
2300 struct sk_buff *skb, unsigned int flags,
2301 void (*destructor)(struct sock *sk,
2302 struct sk_buff *skb));
2303 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2304 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2305
2306 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
2307 struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
2308
2309 /*
2310 * Recover an error report and clear atomically
2311 */
2312
2313 static inline int sock_error(struct sock *sk)
2314 {
2315 int err;
2316
2317 /* Avoid an atomic operation for the common case.
2318 * This is racy since another cpu/thread can change sk_err under us.
2319 */
2320 if (likely(data_race(!sk->sk_err)))
2321 return 0;
2322
2323 err = xchg(&sk->sk_err, 0);
2324 return -err;
2325 }
2326
2327 void sk_error_report(struct sock *sk);
2328
2329 static inline unsigned long sock_wspace(struct sock *sk)
2330 {
2331 int amt = 0;
2332
2333 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2334 amt = sk->sk_sndbuf - refcount_read(&sk->sk_wmem_alloc);
2335 if (amt < 0)
2336 amt = 0;
2337 }
2338 return amt;
2339 }
2340
2341 /* Note:
2342 * We use sk->sk_wq_raw, from contexts knowing this
2343 * pointer is not NULL and cannot disappear/change.
2344 */
2345 static inline void sk_set_bit(int nr, struct sock *sk)
2346 {
2347 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2348 !sock_flag(sk, SOCK_FASYNC))
2349 return;
2350
2351 set_bit(nr, &sk->sk_wq_raw->flags);
2352 }
2353
2354 static inline void sk_clear_bit(int nr, struct sock *sk)
2355 {
2356 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2357 !sock_flag(sk, SOCK_FASYNC))
2358 return;
2359
2360 clear_bit(nr, &sk->sk_wq_raw->flags);
2361 }
2362
2363 static inline void sk_wake_async(const struct sock *sk, int how, int band)
2364 {
2365 if (sock_flag(sk, SOCK_FASYNC)) {
2366 rcu_read_lock();
2367 sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
2368 rcu_read_unlock();
2369 }
2370 }
2371
2372 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2373 * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2374 * Note: for send buffers, TCP works better if we can build two skbs at
2375 * minimum.
2376 */
2377 #define TCP_SKB_MIN_TRUESIZE (2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2378
2379 #define SOCK_MIN_SNDBUF (TCP_SKB_MIN_TRUESIZE * 2)
2380 #define SOCK_MIN_RCVBUF TCP_SKB_MIN_TRUESIZE
2381
2382 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2383 {
2384 u32 val;
2385
2386 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
2387 return;
2388
2389 val = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2390
2391 WRITE_ONCE(sk->sk_sndbuf, max_t(u32, val, SOCK_MIN_SNDBUF));
2392 }
2393
2394 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
2395 bool force_schedule);
2396
2397 /**
2398 * sk_page_frag - return an appropriate page_frag
2399 * @sk: socket
2400 *
2401 * Use the per task page_frag instead of the per socket one for
2402 * optimization when we know that we're in the normal context and owns
2403 * everything that's associated with %current.
2404 *
2405 * gfpflags_allow_blocking() isn't enough here as direct reclaim may nest
2406 * inside other socket operations and end up recursing into sk_page_frag()
2407 * while it's already in use.
2408 *
2409 * Return: a per task page_frag if context allows that,
2410 * otherwise a per socket one.
2411 */
2412 static inline struct page_frag *sk_page_frag(struct sock *sk)
2413 {
2414 if (gfpflags_normal_context(sk->sk_allocation))
2415 return &current->task_frag;
2416
2417 return &sk->sk_frag;
2418 }
2419
2420 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2421
2422 /*
2423 * Default write policy as shown to user space via poll/select/SIGIO
2424 */
2425 static inline bool sock_writeable(const struct sock *sk)
2426 {
2427 return refcount_read(&sk->sk_wmem_alloc) < (READ_ONCE(sk->sk_sndbuf) >> 1);
2428 }
2429
2430 static inline gfp_t gfp_any(void)
2431 {
2432 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2433 }
2434
2435 static inline gfp_t gfp_memcg_charge(void)
2436 {
2437 return in_softirq() ? GFP_NOWAIT : GFP_KERNEL;
2438 }
2439
2440 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2441 {
2442 return noblock ? 0 : sk->sk_rcvtimeo;
2443 }
2444
2445 static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2446 {
2447 return noblock ? 0 : sk->sk_sndtimeo;
2448 }
2449
2450 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2451 {
2452 int v = waitall ? len : min_t(int, READ_ONCE(sk->sk_rcvlowat), len);
2453
2454 return v ?: 1;
2455 }
2456
2457 /* Alas, with timeout socket operations are not restartable.
2458 * Compare this to poll().
2459 */
2460 static inline int sock_intr_errno(long timeo)
2461 {
2462 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2463 }
2464
2465 struct sock_skb_cb {
2466 u32 dropcount;
2467 };
2468
2469 /* Store sock_skb_cb at the end of skb->cb[] so protocol families
2470 * using skb->cb[] would keep using it directly and utilize its
2471 * alignement guarantee.
2472 */
2473 #define SOCK_SKB_CB_OFFSET ((sizeof_field(struct sk_buff, cb) - \
2474 sizeof(struct sock_skb_cb)))
2475
2476 #define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \
2477 SOCK_SKB_CB_OFFSET))
2478
2479 #define sock_skb_cb_check_size(size) \
2480 BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET)
2481
2482 static inline void
2483 sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb)
2484 {
2485 SOCK_SKB_CB(skb)->dropcount = sock_flag(sk, SOCK_RXQ_OVFL) ?
2486 atomic_read(&sk->sk_drops) : 0;
2487 }
2488
2489 static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb)
2490 {
2491 int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2492
2493 atomic_add(segs, &sk->sk_drops);
2494 }
2495
2496 static inline ktime_t sock_read_timestamp(struct sock *sk)
2497 {
2498 #if BITS_PER_LONG==32
2499 unsigned int seq;
2500 ktime_t kt;
2501
2502 do {
2503 seq = read_seqbegin(&sk->sk_stamp_seq);
2504 kt = sk->sk_stamp;
2505 } while (read_seqretry(&sk->sk_stamp_seq, seq));
2506
2507 return kt;
2508 #else
2509 return READ_ONCE(sk->sk_stamp);
2510 #endif
2511 }
2512
2513 static inline void sock_write_timestamp(struct sock *sk, ktime_t kt)
2514 {
2515 #if BITS_PER_LONG==32
2516 write_seqlock(&sk->sk_stamp_seq);
2517 sk->sk_stamp = kt;
2518 write_sequnlock(&sk->sk_stamp_seq);
2519 #else
2520 WRITE_ONCE(sk->sk_stamp, kt);
2521 #endif
2522 }
2523
2524 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2525 struct sk_buff *skb);
2526 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2527 struct sk_buff *skb);
2528
2529 static inline void
2530 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2531 {
2532 ktime_t kt = skb->tstamp;
2533 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2534
2535 /*
2536 * generate control messages if
2537 * - receive time stamping in software requested
2538 * - software time stamp available and wanted
2539 * - hardware time stamps available and wanted
2540 */
2541 if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2542 (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2543 (kt && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2544 (hwtstamps->hwtstamp &&
2545 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
2546 __sock_recv_timestamp(msg, sk, skb);
2547 else
2548 sock_write_timestamp(sk, kt);
2549
2550 if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2551 __sock_recv_wifi_status(msg, sk, skb);
2552 }
2553
2554 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2555 struct sk_buff *skb);
2556
2557 #define SK_DEFAULT_STAMP (-1L * NSEC_PER_SEC)
2558 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2559 struct sk_buff *skb)
2560 {
2561 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL) | \
2562 (1UL << SOCK_RCVTSTAMP))
2563 #define TSFLAGS_ANY (SOF_TIMESTAMPING_SOFTWARE | \
2564 SOF_TIMESTAMPING_RAW_HARDWARE)
2565
2566 if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY)
2567 __sock_recv_ts_and_drops(msg, sk, skb);
2568 else if (unlikely(sock_flag(sk, SOCK_TIMESTAMP)))
2569 sock_write_timestamp(sk, skb->tstamp);
2570 else if (unlikely(sk->sk_stamp == SK_DEFAULT_STAMP))
2571 sock_write_timestamp(sk, 0);
2572 }
2573
2574 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags);
2575
2576 /**
2577 * _sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2578 * @sk: socket sending this packet
2579 * @tsflags: timestamping flags to use
2580 * @tx_flags: completed with instructions for time stamping
2581 * @tskey: filled in with next sk_tskey (not for TCP, which uses seqno)
2582 *
2583 * Note: callers should take care of initial ``*tx_flags`` value (usually 0)
2584 */
2585 static inline void _sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2586 __u8 *tx_flags, __u32 *tskey)
2587 {
2588 if (unlikely(tsflags)) {
2589 __sock_tx_timestamp(tsflags, tx_flags);
2590 if (tsflags & SOF_TIMESTAMPING_OPT_ID && tskey &&
2591 tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
2592 *tskey = sk->sk_tskey++;
2593 }
2594 if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS)))
2595 *tx_flags |= SKBTX_WIFI_STATUS;
2596 }
2597
2598 static inline void sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2599 __u8 *tx_flags)
2600 {
2601 _sock_tx_timestamp(sk, tsflags, tx_flags, NULL);
2602 }
2603
2604 static inline void skb_setup_tx_timestamp(struct sk_buff *skb, __u16 tsflags)
2605 {
2606 _sock_tx_timestamp(skb->sk, tsflags, &skb_shinfo(skb)->tx_flags,
2607 &skb_shinfo(skb)->tskey);
2608 }
2609
2610 DECLARE_STATIC_KEY_FALSE(tcp_rx_skb_cache_key);
2611 /**
2612 * sk_eat_skb - Release a skb if it is no longer needed
2613 * @sk: socket to eat this skb from
2614 * @skb: socket buffer to eat
2615 *
2616 * This routine must be called with interrupts disabled or with the socket
2617 * locked so that the sk_buff queue operation is ok.
2618 */
2619 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
2620 {
2621 __skb_unlink(skb, &sk->sk_receive_queue);
2622 if (static_branch_unlikely(&tcp_rx_skb_cache_key) &&
2623 !sk->sk_rx_skb_cache) {
2624 sk->sk_rx_skb_cache = skb;
2625 skb_orphan(skb);
2626 return;
2627 }
2628 __kfree_skb(skb);
2629 }
2630
2631 static inline
2632 struct net *sock_net(const struct sock *sk)
2633 {
2634 return read_pnet(&sk->sk_net);
2635 }
2636
2637 static inline
2638 void sock_net_set(struct sock *sk, struct net *net)
2639 {
2640 write_pnet(&sk->sk_net, net);
2641 }
2642
2643 static inline bool
2644 skb_sk_is_prefetched(struct sk_buff *skb)
2645 {
2646 #ifdef CONFIG_INET
2647 return skb->destructor == sock_pfree;
2648 #else
2649 return false;
2650 #endif /* CONFIG_INET */
2651 }
2652
2653 /* This helper checks if a socket is a full socket,
2654 * ie _not_ a timewait or request socket.
2655 */
2656 static inline bool sk_fullsock(const struct sock *sk)
2657 {
2658 return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV);
2659 }
2660
2661 static inline bool
2662 sk_is_refcounted(struct sock *sk)
2663 {
2664 /* Only full sockets have sk->sk_flags. */
2665 return !sk_fullsock(sk) || !sock_flag(sk, SOCK_RCU_FREE);
2666 }
2667
2668 /**
2669 * skb_steal_sock - steal a socket from an sk_buff
2670 * @skb: sk_buff to steal the socket from
2671 * @refcounted: is set to true if the socket is reference-counted
2672 */
2673 static inline struct sock *
2674 skb_steal_sock(struct sk_buff *skb, bool *refcounted)
2675 {
2676 if (skb->sk) {
2677 struct sock *sk = skb->sk;
2678
2679 *refcounted = true;
2680 if (skb_sk_is_prefetched(skb))
2681 *refcounted = sk_is_refcounted(sk);
2682 skb->destructor = NULL;
2683 skb->sk = NULL;
2684 return sk;
2685 }
2686 *refcounted = false;
2687 return NULL;
2688 }
2689
2690 /* Checks if this SKB belongs to an HW offloaded socket
2691 * and whether any SW fallbacks are required based on dev.
2692 * Check decrypted mark in case skb_orphan() cleared socket.
2693 */
2694 static inline struct sk_buff *sk_validate_xmit_skb(struct sk_buff *skb,
2695 struct net_device *dev)
2696 {
2697 #ifdef CONFIG_SOCK_VALIDATE_XMIT
2698 struct sock *sk = skb->sk;
2699
2700 if (sk && sk_fullsock(sk) && sk->sk_validate_xmit_skb) {
2701 skb = sk->sk_validate_xmit_skb(sk, dev, skb);
2702 #ifdef CONFIG_TLS_DEVICE
2703 } else if (unlikely(skb->decrypted)) {
2704 pr_warn_ratelimited("unencrypted skb with no associated socket - dropping\n");
2705 kfree_skb(skb);
2706 skb = NULL;
2707 #endif
2708 }
2709 #endif
2710
2711 return skb;
2712 }
2713
2714 /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV
2715 * SYNACK messages can be attached to either ones (depending on SYNCOOKIE)
2716 */
2717 static inline bool sk_listener(const struct sock *sk)
2718 {
2719 return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV);
2720 }
2721
2722 void sock_enable_timestamp(struct sock *sk, enum sock_flags flag);
2723 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2724 int type);
2725
2726 bool sk_ns_capable(const struct sock *sk,
2727 struct user_namespace *user_ns, int cap);
2728 bool sk_capable(const struct sock *sk, int cap);
2729 bool sk_net_capable(const struct sock *sk, int cap);
2730
2731 void sk_get_meminfo(const struct sock *sk, u32 *meminfo);
2732
2733 /* Take into consideration the size of the struct sk_buff overhead in the
2734 * determination of these values, since that is non-constant across
2735 * platforms. This makes socket queueing behavior and performance
2736 * not depend upon such differences.
2737 */
2738 #define _SK_MEM_PACKETS 256
2739 #define _SK_MEM_OVERHEAD SKB_TRUESIZE(256)
2740 #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2741 #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2742
2743 extern __u32 sysctl_wmem_max;
2744 extern __u32 sysctl_rmem_max;
2745
2746 extern int sysctl_tstamp_allow_data;
2747 extern int sysctl_optmem_max;
2748
2749 extern __u32 sysctl_wmem_default;
2750 extern __u32 sysctl_rmem_default;
2751
2752 #define SKB_FRAG_PAGE_ORDER get_order(32768)
2753 DECLARE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
2754
2755 static inline int sk_get_wmem0(const struct sock *sk, const struct proto *proto)
2756 {
2757 /* Does this proto have per netns sysctl_wmem ? */
2758 if (proto->sysctl_wmem_offset)
2759 return *(int *)((void *)sock_net(sk) + proto->sysctl_wmem_offset);
2760
2761 return *proto->sysctl_wmem;
2762 }
2763
2764 static inline int sk_get_rmem0(const struct sock *sk, const struct proto *proto)
2765 {
2766 /* Does this proto have per netns sysctl_rmem ? */
2767 if (proto->sysctl_rmem_offset)
2768 return *(int *)((void *)sock_net(sk) + proto->sysctl_rmem_offset);
2769
2770 return *proto->sysctl_rmem;
2771 }
2772
2773 /* Default TCP Small queue budget is ~1 ms of data (1sec >> 10)
2774 * Some wifi drivers need to tweak it to get more chunks.
2775 * They can use this helper from their ndo_start_xmit()
2776 */
2777 static inline void sk_pacing_shift_update(struct sock *sk, int val)
2778 {
2779 if (!sk || !sk_fullsock(sk) || READ_ONCE(sk->sk_pacing_shift) == val)
2780 return;
2781 WRITE_ONCE(sk->sk_pacing_shift, val);
2782 }
2783
2784 /* if a socket is bound to a device, check that the given device
2785 * index is either the same or that the socket is bound to an L3
2786 * master device and the given device index is also enslaved to
2787 * that L3 master
2788 */
2789 static inline bool sk_dev_equal_l3scope(struct sock *sk, int dif)
2790 {
2791 int mdif;
2792
2793 if (!sk->sk_bound_dev_if || sk->sk_bound_dev_if == dif)
2794 return true;
2795
2796 mdif = l3mdev_master_ifindex_by_index(sock_net(sk), dif);
2797 if (mdif && mdif == sk->sk_bound_dev_if)
2798 return true;
2799
2800 return false;
2801 }
2802
2803 void sock_def_readable(struct sock *sk);
2804
2805 int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk);
2806 void sock_set_timestamp(struct sock *sk, int optname, bool valbool);
2807 int sock_set_timestamping(struct sock *sk, int optname,
2808 struct so_timestamping timestamping);
2809
2810 void sock_enable_timestamps(struct sock *sk);
2811 void sock_no_linger(struct sock *sk);
2812 void sock_set_keepalive(struct sock *sk);
2813 void sock_set_priority(struct sock *sk, u32 priority);
2814 void sock_set_rcvbuf(struct sock *sk, int val);
2815 void sock_set_mark(struct sock *sk, u32 val);
2816 void sock_set_reuseaddr(struct sock *sk);
2817 void sock_set_reuseport(struct sock *sk);
2818 void sock_set_sndtimeo(struct sock *sk, s64 secs);
2819
2820 int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len);
2821
2822 #endif /* _SOCK_H */