]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - include/net/sock.h
sctp: update the netstamp_needed counter when copying sockets
[mirror_ubuntu-artful-kernel.git] / include / net / sock.h
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Definitions for the AF_INET socket handler.
7 *
8 * Version: @(#)sock.h 1.0.4 05/13/93
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche <flla@stud.uni-sb.de>
14 *
15 * Fixes:
16 * Alan Cox : Volatiles in skbuff pointers. See
17 * skbuff comments. May be overdone,
18 * better to prove they can be removed
19 * than the reverse.
20 * Alan Cox : Added a zapped field for tcp to note
21 * a socket is reset and must stay shut up
22 * Alan Cox : New fields for options
23 * Pauline Middelink : identd support
24 * Alan Cox : Eliminate low level recv/recvfrom
25 * David S. Miller : New socket lookup architecture.
26 * Steve Whitehouse: Default routines for sock_ops
27 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made
28 * protinfo be just a void pointer, as the
29 * protocol specific parts were moved to
30 * respective headers and ipv4/v6, etc now
31 * use private slabcaches for its socks
32 * Pedro Hortas : New flags field for socket options
33 *
34 *
35 * This program is free software; you can redistribute it and/or
36 * modify it under the terms of the GNU General Public License
37 * as published by the Free Software Foundation; either version
38 * 2 of the License, or (at your option) any later version.
39 */
40 #ifndef _SOCK_H
41 #define _SOCK_H
42
43 #include <linux/hardirq.h>
44 #include <linux/kernel.h>
45 #include <linux/list.h>
46 #include <linux/list_nulls.h>
47 #include <linux/timer.h>
48 #include <linux/cache.h>
49 #include <linux/bitops.h>
50 #include <linux/lockdep.h>
51 #include <linux/netdevice.h>
52 #include <linux/skbuff.h> /* struct sk_buff */
53 #include <linux/mm.h>
54 #include <linux/security.h>
55 #include <linux/slab.h>
56 #include <linux/uaccess.h>
57 #include <linux/page_counter.h>
58 #include <linux/memcontrol.h>
59 #include <linux/static_key.h>
60 #include <linux/sched.h>
61
62 #include <linux/filter.h>
63 #include <linux/rculist_nulls.h>
64 #include <linux/poll.h>
65
66 #include <linux/atomic.h>
67 #include <net/dst.h>
68 #include <net/checksum.h>
69 #include <net/tcp_states.h>
70 #include <linux/net_tstamp.h>
71
72 struct cgroup;
73 struct cgroup_subsys;
74 #ifdef CONFIG_NET
75 int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss);
76 void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg);
77 #else
78 static inline
79 int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
80 {
81 return 0;
82 }
83 static inline
84 void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg)
85 {
86 }
87 #endif
88 /*
89 * This structure really needs to be cleaned up.
90 * Most of it is for TCP, and not used by any of
91 * the other protocols.
92 */
93
94 /* Define this to get the SOCK_DBG debugging facility. */
95 #define SOCK_DEBUGGING
96 #ifdef SOCK_DEBUGGING
97 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
98 printk(KERN_DEBUG msg); } while (0)
99 #else
100 /* Validate arguments and do nothing */
101 static inline __printf(2, 3)
102 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
103 {
104 }
105 #endif
106
107 /* This is the per-socket lock. The spinlock provides a synchronization
108 * between user contexts and software interrupt processing, whereas the
109 * mini-semaphore synchronizes multiple users amongst themselves.
110 */
111 typedef struct {
112 spinlock_t slock;
113 int owned;
114 wait_queue_head_t wq;
115 /*
116 * We express the mutex-alike socket_lock semantics
117 * to the lock validator by explicitly managing
118 * the slock as a lock variant (in addition to
119 * the slock itself):
120 */
121 #ifdef CONFIG_DEBUG_LOCK_ALLOC
122 struct lockdep_map dep_map;
123 #endif
124 } socket_lock_t;
125
126 struct sock;
127 struct proto;
128 struct net;
129
130 typedef __u32 __bitwise __portpair;
131 typedef __u64 __bitwise __addrpair;
132
133 /**
134 * struct sock_common - minimal network layer representation of sockets
135 * @skc_daddr: Foreign IPv4 addr
136 * @skc_rcv_saddr: Bound local IPv4 addr
137 * @skc_hash: hash value used with various protocol lookup tables
138 * @skc_u16hashes: two u16 hash values used by UDP lookup tables
139 * @skc_dport: placeholder for inet_dport/tw_dport
140 * @skc_num: placeholder for inet_num/tw_num
141 * @skc_family: network address family
142 * @skc_state: Connection state
143 * @skc_reuse: %SO_REUSEADDR setting
144 * @skc_reuseport: %SO_REUSEPORT setting
145 * @skc_bound_dev_if: bound device index if != 0
146 * @skc_bind_node: bind hash linkage for various protocol lookup tables
147 * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
148 * @skc_prot: protocol handlers inside a network family
149 * @skc_net: reference to the network namespace of this socket
150 * @skc_node: main hash linkage for various protocol lookup tables
151 * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
152 * @skc_tx_queue_mapping: tx queue number for this connection
153 * @skc_flags: place holder for sk_flags
154 * %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
155 * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
156 * @skc_incoming_cpu: record/match cpu processing incoming packets
157 * @skc_refcnt: reference count
158 *
159 * This is the minimal network layer representation of sockets, the header
160 * for struct sock and struct inet_timewait_sock.
161 */
162 struct sock_common {
163 /* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned
164 * address on 64bit arches : cf INET_MATCH()
165 */
166 union {
167 __addrpair skc_addrpair;
168 struct {
169 __be32 skc_daddr;
170 __be32 skc_rcv_saddr;
171 };
172 };
173 union {
174 unsigned int skc_hash;
175 __u16 skc_u16hashes[2];
176 };
177 /* skc_dport && skc_num must be grouped as well */
178 union {
179 __portpair skc_portpair;
180 struct {
181 __be16 skc_dport;
182 __u16 skc_num;
183 };
184 };
185
186 unsigned short skc_family;
187 volatile unsigned char skc_state;
188 unsigned char skc_reuse:4;
189 unsigned char skc_reuseport:1;
190 unsigned char skc_ipv6only:1;
191 unsigned char skc_net_refcnt:1;
192 int skc_bound_dev_if;
193 union {
194 struct hlist_node skc_bind_node;
195 struct hlist_nulls_node skc_portaddr_node;
196 };
197 struct proto *skc_prot;
198 possible_net_t skc_net;
199
200 #if IS_ENABLED(CONFIG_IPV6)
201 struct in6_addr skc_v6_daddr;
202 struct in6_addr skc_v6_rcv_saddr;
203 #endif
204
205 atomic64_t skc_cookie;
206
207 /* following fields are padding to force
208 * offset(struct sock, sk_refcnt) == 128 on 64bit arches
209 * assuming IPV6 is enabled. We use this padding differently
210 * for different kind of 'sockets'
211 */
212 union {
213 unsigned long skc_flags;
214 struct sock *skc_listener; /* request_sock */
215 struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */
216 };
217 /*
218 * fields between dontcopy_begin/dontcopy_end
219 * are not copied in sock_copy()
220 */
221 /* private: */
222 int skc_dontcopy_begin[0];
223 /* public: */
224 union {
225 struct hlist_node skc_node;
226 struct hlist_nulls_node skc_nulls_node;
227 };
228 int skc_tx_queue_mapping;
229 union {
230 int skc_incoming_cpu;
231 u32 skc_rcv_wnd;
232 u32 skc_tw_rcv_nxt; /* struct tcp_timewait_sock */
233 };
234
235 atomic_t skc_refcnt;
236 /* private: */
237 int skc_dontcopy_end[0];
238 union {
239 u32 skc_rxhash;
240 u32 skc_window_clamp;
241 u32 skc_tw_snd_nxt; /* struct tcp_timewait_sock */
242 };
243 /* public: */
244 };
245
246 struct cg_proto;
247 /**
248 * struct sock - network layer representation of sockets
249 * @__sk_common: shared layout with inet_timewait_sock
250 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
251 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
252 * @sk_lock: synchronizer
253 * @sk_rcvbuf: size of receive buffer in bytes
254 * @sk_wq: sock wait queue and async head
255 * @sk_rx_dst: receive input route used by early demux
256 * @sk_dst_cache: destination cache
257 * @sk_policy: flow policy
258 * @sk_receive_queue: incoming packets
259 * @sk_wmem_alloc: transmit queue bytes committed
260 * @sk_write_queue: Packet sending queue
261 * @sk_omem_alloc: "o" is "option" or "other"
262 * @sk_wmem_queued: persistent queue size
263 * @sk_forward_alloc: space allocated forward
264 * @sk_napi_id: id of the last napi context to receive data for sk
265 * @sk_ll_usec: usecs to busypoll when there is no data
266 * @sk_allocation: allocation mode
267 * @sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
268 * @sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
269 * @sk_sndbuf: size of send buffer in bytes
270 * @sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
271 * @sk_no_check_rx: allow zero checksum in RX packets
272 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
273 * @sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
274 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
275 * @sk_gso_max_size: Maximum GSO segment size to build
276 * @sk_gso_max_segs: Maximum number of GSO segments
277 * @sk_lingertime: %SO_LINGER l_linger setting
278 * @sk_backlog: always used with the per-socket spinlock held
279 * @sk_callback_lock: used with the callbacks in the end of this struct
280 * @sk_error_queue: rarely used
281 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
282 * IPV6_ADDRFORM for instance)
283 * @sk_err: last error
284 * @sk_err_soft: errors that don't cause failure but are the cause of a
285 * persistent failure not just 'timed out'
286 * @sk_drops: raw/udp drops counter
287 * @sk_ack_backlog: current listen backlog
288 * @sk_max_ack_backlog: listen backlog set in listen()
289 * @sk_priority: %SO_PRIORITY setting
290 * @sk_cgrp_prioidx: socket group's priority map index
291 * @sk_type: socket type (%SOCK_STREAM, etc)
292 * @sk_protocol: which protocol this socket belongs in this network family
293 * @sk_peer_pid: &struct pid for this socket's peer
294 * @sk_peer_cred: %SO_PEERCRED setting
295 * @sk_rcvlowat: %SO_RCVLOWAT setting
296 * @sk_rcvtimeo: %SO_RCVTIMEO setting
297 * @sk_sndtimeo: %SO_SNDTIMEO setting
298 * @sk_txhash: computed flow hash for use on transmit
299 * @sk_filter: socket filtering instructions
300 * @sk_timer: sock cleanup timer
301 * @sk_stamp: time stamp of last packet received
302 * @sk_tsflags: SO_TIMESTAMPING socket options
303 * @sk_tskey: counter to disambiguate concurrent tstamp requests
304 * @sk_socket: Identd and reporting IO signals
305 * @sk_user_data: RPC layer private data
306 * @sk_frag: cached page frag
307 * @sk_peek_off: current peek_offset value
308 * @sk_send_head: front of stuff to transmit
309 * @sk_security: used by security modules
310 * @sk_mark: generic packet mark
311 * @sk_classid: this socket's cgroup classid
312 * @sk_cgrp: this socket's cgroup-specific proto data
313 * @sk_write_pending: a write to stream socket waits to start
314 * @sk_state_change: callback to indicate change in the state of the sock
315 * @sk_data_ready: callback to indicate there is data to be processed
316 * @sk_write_space: callback to indicate there is bf sending space available
317 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
318 * @sk_backlog_rcv: callback to process the backlog
319 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
320 */
321 struct sock {
322 /*
323 * Now struct inet_timewait_sock also uses sock_common, so please just
324 * don't add nothing before this first member (__sk_common) --acme
325 */
326 struct sock_common __sk_common;
327 #define sk_node __sk_common.skc_node
328 #define sk_nulls_node __sk_common.skc_nulls_node
329 #define sk_refcnt __sk_common.skc_refcnt
330 #define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping
331
332 #define sk_dontcopy_begin __sk_common.skc_dontcopy_begin
333 #define sk_dontcopy_end __sk_common.skc_dontcopy_end
334 #define sk_hash __sk_common.skc_hash
335 #define sk_portpair __sk_common.skc_portpair
336 #define sk_num __sk_common.skc_num
337 #define sk_dport __sk_common.skc_dport
338 #define sk_addrpair __sk_common.skc_addrpair
339 #define sk_daddr __sk_common.skc_daddr
340 #define sk_rcv_saddr __sk_common.skc_rcv_saddr
341 #define sk_family __sk_common.skc_family
342 #define sk_state __sk_common.skc_state
343 #define sk_reuse __sk_common.skc_reuse
344 #define sk_reuseport __sk_common.skc_reuseport
345 #define sk_ipv6only __sk_common.skc_ipv6only
346 #define sk_net_refcnt __sk_common.skc_net_refcnt
347 #define sk_bound_dev_if __sk_common.skc_bound_dev_if
348 #define sk_bind_node __sk_common.skc_bind_node
349 #define sk_prot __sk_common.skc_prot
350 #define sk_net __sk_common.skc_net
351 #define sk_v6_daddr __sk_common.skc_v6_daddr
352 #define sk_v6_rcv_saddr __sk_common.skc_v6_rcv_saddr
353 #define sk_cookie __sk_common.skc_cookie
354 #define sk_incoming_cpu __sk_common.skc_incoming_cpu
355 #define sk_flags __sk_common.skc_flags
356 #define sk_rxhash __sk_common.skc_rxhash
357
358 socket_lock_t sk_lock;
359 struct sk_buff_head sk_receive_queue;
360 /*
361 * The backlog queue is special, it is always used with
362 * the per-socket spinlock held and requires low latency
363 * access. Therefore we special case it's implementation.
364 * Note : rmem_alloc is in this structure to fill a hole
365 * on 64bit arches, not because its logically part of
366 * backlog.
367 */
368 struct {
369 atomic_t rmem_alloc;
370 int len;
371 struct sk_buff *head;
372 struct sk_buff *tail;
373 } sk_backlog;
374 #define sk_rmem_alloc sk_backlog.rmem_alloc
375 int sk_forward_alloc;
376
377 __u32 sk_txhash;
378 #ifdef CONFIG_NET_RX_BUSY_POLL
379 unsigned int sk_napi_id;
380 unsigned int sk_ll_usec;
381 #endif
382 atomic_t sk_drops;
383 int sk_rcvbuf;
384
385 struct sk_filter __rcu *sk_filter;
386 union {
387 struct socket_wq __rcu *sk_wq;
388 struct socket_wq *sk_wq_raw;
389 };
390 #ifdef CONFIG_XFRM
391 struct xfrm_policy *sk_policy[2];
392 #endif
393 struct dst_entry *sk_rx_dst;
394 struct dst_entry __rcu *sk_dst_cache;
395 /* Note: 32bit hole on 64bit arches */
396 atomic_t sk_wmem_alloc;
397 atomic_t sk_omem_alloc;
398 int sk_sndbuf;
399 struct sk_buff_head sk_write_queue;
400 kmemcheck_bitfield_begin(flags);
401 unsigned int sk_shutdown : 2,
402 sk_no_check_tx : 1,
403 sk_no_check_rx : 1,
404 sk_userlocks : 4,
405 sk_protocol : 8,
406 sk_type : 16;
407 kmemcheck_bitfield_end(flags);
408 int sk_wmem_queued;
409 gfp_t sk_allocation;
410 u32 sk_pacing_rate; /* bytes per second */
411 u32 sk_max_pacing_rate;
412 netdev_features_t sk_route_caps;
413 netdev_features_t sk_route_nocaps;
414 int sk_gso_type;
415 unsigned int sk_gso_max_size;
416 u16 sk_gso_max_segs;
417 int sk_rcvlowat;
418 unsigned long sk_lingertime;
419 struct sk_buff_head sk_error_queue;
420 struct proto *sk_prot_creator;
421 rwlock_t sk_callback_lock;
422 int sk_err,
423 sk_err_soft;
424 u32 sk_ack_backlog;
425 u32 sk_max_ack_backlog;
426 __u32 sk_priority;
427 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
428 __u32 sk_cgrp_prioidx;
429 #endif
430 struct pid *sk_peer_pid;
431 const struct cred *sk_peer_cred;
432 long sk_rcvtimeo;
433 long sk_sndtimeo;
434 struct timer_list sk_timer;
435 ktime_t sk_stamp;
436 u16 sk_tsflags;
437 u32 sk_tskey;
438 struct socket *sk_socket;
439 void *sk_user_data;
440 struct page_frag sk_frag;
441 struct sk_buff *sk_send_head;
442 __s32 sk_peek_off;
443 int sk_write_pending;
444 #ifdef CONFIG_SECURITY
445 void *sk_security;
446 #endif
447 __u32 sk_mark;
448 #ifdef CONFIG_CGROUP_NET_CLASSID
449 u32 sk_classid;
450 #endif
451 struct cg_proto *sk_cgrp;
452 void (*sk_state_change)(struct sock *sk);
453 void (*sk_data_ready)(struct sock *sk);
454 void (*sk_write_space)(struct sock *sk);
455 void (*sk_error_report)(struct sock *sk);
456 int (*sk_backlog_rcv)(struct sock *sk,
457 struct sk_buff *skb);
458 void (*sk_destruct)(struct sock *sk);
459 };
460
461 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
462
463 #define rcu_dereference_sk_user_data(sk) rcu_dereference(__sk_user_data((sk)))
464 #define rcu_assign_sk_user_data(sk, ptr) rcu_assign_pointer(__sk_user_data((sk)), ptr)
465
466 /*
467 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
468 * or not whether his port will be reused by someone else. SK_FORCE_REUSE
469 * on a socket means that the socket will reuse everybody else's port
470 * without looking at the other's sk_reuse value.
471 */
472
473 #define SK_NO_REUSE 0
474 #define SK_CAN_REUSE 1
475 #define SK_FORCE_REUSE 2
476
477 static inline int sk_peek_offset(struct sock *sk, int flags)
478 {
479 if ((flags & MSG_PEEK) && (sk->sk_peek_off >= 0))
480 return sk->sk_peek_off;
481 else
482 return 0;
483 }
484
485 static inline void sk_peek_offset_bwd(struct sock *sk, int val)
486 {
487 if (sk->sk_peek_off >= 0) {
488 if (sk->sk_peek_off >= val)
489 sk->sk_peek_off -= val;
490 else
491 sk->sk_peek_off = 0;
492 }
493 }
494
495 static inline void sk_peek_offset_fwd(struct sock *sk, int val)
496 {
497 if (sk->sk_peek_off >= 0)
498 sk->sk_peek_off += val;
499 }
500
501 /*
502 * Hashed lists helper routines
503 */
504 static inline struct sock *sk_entry(const struct hlist_node *node)
505 {
506 return hlist_entry(node, struct sock, sk_node);
507 }
508
509 static inline struct sock *__sk_head(const struct hlist_head *head)
510 {
511 return hlist_entry(head->first, struct sock, sk_node);
512 }
513
514 static inline struct sock *sk_head(const struct hlist_head *head)
515 {
516 return hlist_empty(head) ? NULL : __sk_head(head);
517 }
518
519 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
520 {
521 return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
522 }
523
524 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
525 {
526 return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
527 }
528
529 static inline struct sock *sk_next(const struct sock *sk)
530 {
531 return sk->sk_node.next ?
532 hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL;
533 }
534
535 static inline struct sock *sk_nulls_next(const struct sock *sk)
536 {
537 return (!is_a_nulls(sk->sk_nulls_node.next)) ?
538 hlist_nulls_entry(sk->sk_nulls_node.next,
539 struct sock, sk_nulls_node) :
540 NULL;
541 }
542
543 static inline bool sk_unhashed(const struct sock *sk)
544 {
545 return hlist_unhashed(&sk->sk_node);
546 }
547
548 static inline bool sk_hashed(const struct sock *sk)
549 {
550 return !sk_unhashed(sk);
551 }
552
553 static inline void sk_node_init(struct hlist_node *node)
554 {
555 node->pprev = NULL;
556 }
557
558 static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
559 {
560 node->pprev = NULL;
561 }
562
563 static inline void __sk_del_node(struct sock *sk)
564 {
565 __hlist_del(&sk->sk_node);
566 }
567
568 /* NB: equivalent to hlist_del_init_rcu */
569 static inline bool __sk_del_node_init(struct sock *sk)
570 {
571 if (sk_hashed(sk)) {
572 __sk_del_node(sk);
573 sk_node_init(&sk->sk_node);
574 return true;
575 }
576 return false;
577 }
578
579 /* Grab socket reference count. This operation is valid only
580 when sk is ALREADY grabbed f.e. it is found in hash table
581 or a list and the lookup is made under lock preventing hash table
582 modifications.
583 */
584
585 static inline void sock_hold(struct sock *sk)
586 {
587 atomic_inc(&sk->sk_refcnt);
588 }
589
590 /* Ungrab socket in the context, which assumes that socket refcnt
591 cannot hit zero, f.e. it is true in context of any socketcall.
592 */
593 static inline void __sock_put(struct sock *sk)
594 {
595 atomic_dec(&sk->sk_refcnt);
596 }
597
598 static inline bool sk_del_node_init(struct sock *sk)
599 {
600 bool rc = __sk_del_node_init(sk);
601
602 if (rc) {
603 /* paranoid for a while -acme */
604 WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
605 __sock_put(sk);
606 }
607 return rc;
608 }
609 #define sk_del_node_init_rcu(sk) sk_del_node_init(sk)
610
611 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
612 {
613 if (sk_hashed(sk)) {
614 hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
615 return true;
616 }
617 return false;
618 }
619
620 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
621 {
622 bool rc = __sk_nulls_del_node_init_rcu(sk);
623
624 if (rc) {
625 /* paranoid for a while -acme */
626 WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
627 __sock_put(sk);
628 }
629 return rc;
630 }
631
632 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
633 {
634 hlist_add_head(&sk->sk_node, list);
635 }
636
637 static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
638 {
639 sock_hold(sk);
640 __sk_add_node(sk, list);
641 }
642
643 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
644 {
645 sock_hold(sk);
646 hlist_add_head_rcu(&sk->sk_node, list);
647 }
648
649 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
650 {
651 hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
652 }
653
654 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
655 {
656 sock_hold(sk);
657 __sk_nulls_add_node_rcu(sk, list);
658 }
659
660 static inline void __sk_del_bind_node(struct sock *sk)
661 {
662 __hlist_del(&sk->sk_bind_node);
663 }
664
665 static inline void sk_add_bind_node(struct sock *sk,
666 struct hlist_head *list)
667 {
668 hlist_add_head(&sk->sk_bind_node, list);
669 }
670
671 #define sk_for_each(__sk, list) \
672 hlist_for_each_entry(__sk, list, sk_node)
673 #define sk_for_each_rcu(__sk, list) \
674 hlist_for_each_entry_rcu(__sk, list, sk_node)
675 #define sk_nulls_for_each(__sk, node, list) \
676 hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
677 #define sk_nulls_for_each_rcu(__sk, node, list) \
678 hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
679 #define sk_for_each_from(__sk) \
680 hlist_for_each_entry_from(__sk, sk_node)
681 #define sk_nulls_for_each_from(__sk, node) \
682 if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
683 hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
684 #define sk_for_each_safe(__sk, tmp, list) \
685 hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
686 #define sk_for_each_bound(__sk, list) \
687 hlist_for_each_entry(__sk, list, sk_bind_node)
688
689 /**
690 * sk_nulls_for_each_entry_offset - iterate over a list at a given struct offset
691 * @tpos: the type * to use as a loop cursor.
692 * @pos: the &struct hlist_node to use as a loop cursor.
693 * @head: the head for your list.
694 * @offset: offset of hlist_node within the struct.
695 *
696 */
697 #define sk_nulls_for_each_entry_offset(tpos, pos, head, offset) \
698 for (pos = (head)->first; \
699 (!is_a_nulls(pos)) && \
700 ({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;}); \
701 pos = pos->next)
702
703 static inline struct user_namespace *sk_user_ns(struct sock *sk)
704 {
705 /* Careful only use this in a context where these parameters
706 * can not change and must all be valid, such as recvmsg from
707 * userspace.
708 */
709 return sk->sk_socket->file->f_cred->user_ns;
710 }
711
712 /* Sock flags */
713 enum sock_flags {
714 SOCK_DEAD,
715 SOCK_DONE,
716 SOCK_URGINLINE,
717 SOCK_KEEPOPEN,
718 SOCK_LINGER,
719 SOCK_DESTROY,
720 SOCK_BROADCAST,
721 SOCK_TIMESTAMP,
722 SOCK_ZAPPED,
723 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
724 SOCK_DBG, /* %SO_DEBUG setting */
725 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
726 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
727 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
728 SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
729 SOCK_MEMALLOC, /* VM depends on this socket for swapping */
730 SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */
731 SOCK_FASYNC, /* fasync() active */
732 SOCK_RXQ_OVFL,
733 SOCK_ZEROCOPY, /* buffers from userspace */
734 SOCK_WIFI_STATUS, /* push wifi status to userspace */
735 SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
736 * Will use last 4 bytes of packet sent from
737 * user-space instead.
738 */
739 SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
740 SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
741 };
742
743 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
744
745 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
746 {
747 nsk->sk_flags = osk->sk_flags;
748 }
749
750 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
751 {
752 __set_bit(flag, &sk->sk_flags);
753 }
754
755 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
756 {
757 __clear_bit(flag, &sk->sk_flags);
758 }
759
760 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
761 {
762 return test_bit(flag, &sk->sk_flags);
763 }
764
765 #ifdef CONFIG_NET
766 extern struct static_key memalloc_socks;
767 static inline int sk_memalloc_socks(void)
768 {
769 return static_key_false(&memalloc_socks);
770 }
771 #else
772
773 static inline int sk_memalloc_socks(void)
774 {
775 return 0;
776 }
777
778 #endif
779
780 static inline gfp_t sk_gfp_atomic(const struct sock *sk, gfp_t gfp_mask)
781 {
782 return GFP_ATOMIC | (sk->sk_allocation & __GFP_MEMALLOC);
783 }
784
785 static inline void sk_acceptq_removed(struct sock *sk)
786 {
787 sk->sk_ack_backlog--;
788 }
789
790 static inline void sk_acceptq_added(struct sock *sk)
791 {
792 sk->sk_ack_backlog++;
793 }
794
795 static inline bool sk_acceptq_is_full(const struct sock *sk)
796 {
797 return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
798 }
799
800 /*
801 * Compute minimal free write space needed to queue new packets.
802 */
803 static inline int sk_stream_min_wspace(const struct sock *sk)
804 {
805 return sk->sk_wmem_queued >> 1;
806 }
807
808 static inline int sk_stream_wspace(const struct sock *sk)
809 {
810 return sk->sk_sndbuf - sk->sk_wmem_queued;
811 }
812
813 void sk_stream_write_space(struct sock *sk);
814
815 /* OOB backlog add */
816 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
817 {
818 /* dont let skb dst not refcounted, we are going to leave rcu lock */
819 skb_dst_force(skb);
820
821 if (!sk->sk_backlog.tail)
822 sk->sk_backlog.head = skb;
823 else
824 sk->sk_backlog.tail->next = skb;
825
826 sk->sk_backlog.tail = skb;
827 skb->next = NULL;
828 }
829
830 /*
831 * Take into account size of receive queue and backlog queue
832 * Do not take into account this skb truesize,
833 * to allow even a single big packet to come.
834 */
835 static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
836 {
837 unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
838
839 return qsize > limit;
840 }
841
842 /* The per-socket spinlock must be held here. */
843 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
844 unsigned int limit)
845 {
846 if (sk_rcvqueues_full(sk, limit))
847 return -ENOBUFS;
848
849 /*
850 * If the skb was allocated from pfmemalloc reserves, only
851 * allow SOCK_MEMALLOC sockets to use it as this socket is
852 * helping free memory
853 */
854 if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
855 return -ENOMEM;
856
857 __sk_add_backlog(sk, skb);
858 sk->sk_backlog.len += skb->truesize;
859 return 0;
860 }
861
862 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
863
864 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
865 {
866 if (sk_memalloc_socks() && skb_pfmemalloc(skb))
867 return __sk_backlog_rcv(sk, skb);
868
869 return sk->sk_backlog_rcv(sk, skb);
870 }
871
872 static inline void sk_incoming_cpu_update(struct sock *sk)
873 {
874 sk->sk_incoming_cpu = raw_smp_processor_id();
875 }
876
877 static inline void sock_rps_record_flow_hash(__u32 hash)
878 {
879 #ifdef CONFIG_RPS
880 struct rps_sock_flow_table *sock_flow_table;
881
882 rcu_read_lock();
883 sock_flow_table = rcu_dereference(rps_sock_flow_table);
884 rps_record_sock_flow(sock_flow_table, hash);
885 rcu_read_unlock();
886 #endif
887 }
888
889 static inline void sock_rps_record_flow(const struct sock *sk)
890 {
891 #ifdef CONFIG_RPS
892 sock_rps_record_flow_hash(sk->sk_rxhash);
893 #endif
894 }
895
896 static inline void sock_rps_save_rxhash(struct sock *sk,
897 const struct sk_buff *skb)
898 {
899 #ifdef CONFIG_RPS
900 if (unlikely(sk->sk_rxhash != skb->hash))
901 sk->sk_rxhash = skb->hash;
902 #endif
903 }
904
905 static inline void sock_rps_reset_rxhash(struct sock *sk)
906 {
907 #ifdef CONFIG_RPS
908 sk->sk_rxhash = 0;
909 #endif
910 }
911
912 #define sk_wait_event(__sk, __timeo, __condition) \
913 ({ int __rc; \
914 release_sock(__sk); \
915 __rc = __condition; \
916 if (!__rc) { \
917 *(__timeo) = schedule_timeout(*(__timeo)); \
918 } \
919 sched_annotate_sleep(); \
920 lock_sock(__sk); \
921 __rc = __condition; \
922 __rc; \
923 })
924
925 int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
926 int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
927 void sk_stream_wait_close(struct sock *sk, long timeo_p);
928 int sk_stream_error(struct sock *sk, int flags, int err);
929 void sk_stream_kill_queues(struct sock *sk);
930 void sk_set_memalloc(struct sock *sk);
931 void sk_clear_memalloc(struct sock *sk);
932
933 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb);
934
935 struct request_sock_ops;
936 struct timewait_sock_ops;
937 struct inet_hashinfo;
938 struct raw_hashinfo;
939 struct module;
940
941 /*
942 * caches using SLAB_DESTROY_BY_RCU should let .next pointer from nulls nodes
943 * un-modified. Special care is taken when initializing object to zero.
944 */
945 static inline void sk_prot_clear_nulls(struct sock *sk, int size)
946 {
947 if (offsetof(struct sock, sk_node.next) != 0)
948 memset(sk, 0, offsetof(struct sock, sk_node.next));
949 memset(&sk->sk_node.pprev, 0,
950 size - offsetof(struct sock, sk_node.pprev));
951 }
952
953 /* Networking protocol blocks we attach to sockets.
954 * socket layer -> transport layer interface
955 */
956 struct proto {
957 void (*close)(struct sock *sk,
958 long timeout);
959 int (*connect)(struct sock *sk,
960 struct sockaddr *uaddr,
961 int addr_len);
962 int (*disconnect)(struct sock *sk, int flags);
963
964 struct sock * (*accept)(struct sock *sk, int flags, int *err);
965
966 int (*ioctl)(struct sock *sk, int cmd,
967 unsigned long arg);
968 int (*init)(struct sock *sk);
969 void (*destroy)(struct sock *sk);
970 void (*shutdown)(struct sock *sk, int how);
971 int (*setsockopt)(struct sock *sk, int level,
972 int optname, char __user *optval,
973 unsigned int optlen);
974 int (*getsockopt)(struct sock *sk, int level,
975 int optname, char __user *optval,
976 int __user *option);
977 #ifdef CONFIG_COMPAT
978 int (*compat_setsockopt)(struct sock *sk,
979 int level,
980 int optname, char __user *optval,
981 unsigned int optlen);
982 int (*compat_getsockopt)(struct sock *sk,
983 int level,
984 int optname, char __user *optval,
985 int __user *option);
986 int (*compat_ioctl)(struct sock *sk,
987 unsigned int cmd, unsigned long arg);
988 #endif
989 int (*sendmsg)(struct sock *sk, struct msghdr *msg,
990 size_t len);
991 int (*recvmsg)(struct sock *sk, struct msghdr *msg,
992 size_t len, int noblock, int flags,
993 int *addr_len);
994 int (*sendpage)(struct sock *sk, struct page *page,
995 int offset, size_t size, int flags);
996 int (*bind)(struct sock *sk,
997 struct sockaddr *uaddr, int addr_len);
998
999 int (*backlog_rcv) (struct sock *sk,
1000 struct sk_buff *skb);
1001
1002 void (*release_cb)(struct sock *sk);
1003
1004 /* Keeping track of sk's, looking them up, and port selection methods. */
1005 void (*hash)(struct sock *sk);
1006 void (*unhash)(struct sock *sk);
1007 void (*rehash)(struct sock *sk);
1008 int (*get_port)(struct sock *sk, unsigned short snum);
1009 void (*clear_sk)(struct sock *sk, int size);
1010
1011 /* Keeping track of sockets in use */
1012 #ifdef CONFIG_PROC_FS
1013 unsigned int inuse_idx;
1014 #endif
1015
1016 bool (*stream_memory_free)(const struct sock *sk);
1017 /* Memory pressure */
1018 void (*enter_memory_pressure)(struct sock *sk);
1019 atomic_long_t *memory_allocated; /* Current allocated memory. */
1020 struct percpu_counter *sockets_allocated; /* Current number of sockets. */
1021 /*
1022 * Pressure flag: try to collapse.
1023 * Technical note: it is used by multiple contexts non atomically.
1024 * All the __sk_mem_schedule() is of this nature: accounting
1025 * is strict, actions are advisory and have some latency.
1026 */
1027 int *memory_pressure;
1028 long *sysctl_mem;
1029 int *sysctl_wmem;
1030 int *sysctl_rmem;
1031 int max_header;
1032 bool no_autobind;
1033
1034 struct kmem_cache *slab;
1035 unsigned int obj_size;
1036 int slab_flags;
1037
1038 struct percpu_counter *orphan_count;
1039
1040 struct request_sock_ops *rsk_prot;
1041 struct timewait_sock_ops *twsk_prot;
1042
1043 union {
1044 struct inet_hashinfo *hashinfo;
1045 struct udp_table *udp_table;
1046 struct raw_hashinfo *raw_hash;
1047 } h;
1048
1049 struct module *owner;
1050
1051 char name[32];
1052
1053 struct list_head node;
1054 #ifdef SOCK_REFCNT_DEBUG
1055 atomic_t socks;
1056 #endif
1057 #ifdef CONFIG_MEMCG_KMEM
1058 /*
1059 * cgroup specific init/deinit functions. Called once for all
1060 * protocols that implement it, from cgroups populate function.
1061 * This function has to setup any files the protocol want to
1062 * appear in the kmem cgroup filesystem.
1063 */
1064 int (*init_cgroup)(struct mem_cgroup *memcg,
1065 struct cgroup_subsys *ss);
1066 void (*destroy_cgroup)(struct mem_cgroup *memcg);
1067 struct cg_proto *(*proto_cgroup)(struct mem_cgroup *memcg);
1068 #endif
1069 };
1070
1071 int proto_register(struct proto *prot, int alloc_slab);
1072 void proto_unregister(struct proto *prot);
1073
1074 #ifdef SOCK_REFCNT_DEBUG
1075 static inline void sk_refcnt_debug_inc(struct sock *sk)
1076 {
1077 atomic_inc(&sk->sk_prot->socks);
1078 }
1079
1080 static inline void sk_refcnt_debug_dec(struct sock *sk)
1081 {
1082 atomic_dec(&sk->sk_prot->socks);
1083 printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1084 sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1085 }
1086
1087 static inline void sk_refcnt_debug_release(const struct sock *sk)
1088 {
1089 if (atomic_read(&sk->sk_refcnt) != 1)
1090 printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1091 sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt));
1092 }
1093 #else /* SOCK_REFCNT_DEBUG */
1094 #define sk_refcnt_debug_inc(sk) do { } while (0)
1095 #define sk_refcnt_debug_dec(sk) do { } while (0)
1096 #define sk_refcnt_debug_release(sk) do { } while (0)
1097 #endif /* SOCK_REFCNT_DEBUG */
1098
1099 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_NET)
1100 extern struct static_key memcg_socket_limit_enabled;
1101 static inline struct cg_proto *parent_cg_proto(struct proto *proto,
1102 struct cg_proto *cg_proto)
1103 {
1104 return proto->proto_cgroup(parent_mem_cgroup(cg_proto->memcg));
1105 }
1106 #define mem_cgroup_sockets_enabled static_key_false(&memcg_socket_limit_enabled)
1107 #else
1108 #define mem_cgroup_sockets_enabled 0
1109 static inline struct cg_proto *parent_cg_proto(struct proto *proto,
1110 struct cg_proto *cg_proto)
1111 {
1112 return NULL;
1113 }
1114 #endif
1115
1116 static inline bool sk_stream_memory_free(const struct sock *sk)
1117 {
1118 if (sk->sk_wmem_queued >= sk->sk_sndbuf)
1119 return false;
1120
1121 return sk->sk_prot->stream_memory_free ?
1122 sk->sk_prot->stream_memory_free(sk) : true;
1123 }
1124
1125 static inline bool sk_stream_is_writeable(const struct sock *sk)
1126 {
1127 return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1128 sk_stream_memory_free(sk);
1129 }
1130
1131
1132 static inline bool sk_has_memory_pressure(const struct sock *sk)
1133 {
1134 return sk->sk_prot->memory_pressure != NULL;
1135 }
1136
1137 static inline bool sk_under_memory_pressure(const struct sock *sk)
1138 {
1139 if (!sk->sk_prot->memory_pressure)
1140 return false;
1141
1142 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1143 return !!sk->sk_cgrp->memory_pressure;
1144
1145 return !!*sk->sk_prot->memory_pressure;
1146 }
1147
1148 static inline void sk_leave_memory_pressure(struct sock *sk)
1149 {
1150 int *memory_pressure = sk->sk_prot->memory_pressure;
1151
1152 if (!memory_pressure)
1153 return;
1154
1155 if (*memory_pressure)
1156 *memory_pressure = 0;
1157
1158 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1159 struct cg_proto *cg_proto = sk->sk_cgrp;
1160 struct proto *prot = sk->sk_prot;
1161
1162 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1163 cg_proto->memory_pressure = 0;
1164 }
1165
1166 }
1167
1168 static inline void sk_enter_memory_pressure(struct sock *sk)
1169 {
1170 if (!sk->sk_prot->enter_memory_pressure)
1171 return;
1172
1173 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1174 struct cg_proto *cg_proto = sk->sk_cgrp;
1175 struct proto *prot = sk->sk_prot;
1176
1177 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1178 cg_proto->memory_pressure = 1;
1179 }
1180
1181 sk->sk_prot->enter_memory_pressure(sk);
1182 }
1183
1184 static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1185 {
1186 long *prot = sk->sk_prot->sysctl_mem;
1187 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1188 prot = sk->sk_cgrp->sysctl_mem;
1189 return prot[index];
1190 }
1191
1192 static inline void memcg_memory_allocated_add(struct cg_proto *prot,
1193 unsigned long amt,
1194 int *parent_status)
1195 {
1196 page_counter_charge(&prot->memory_allocated, amt);
1197
1198 if (page_counter_read(&prot->memory_allocated) >
1199 prot->memory_allocated.limit)
1200 *parent_status = OVER_LIMIT;
1201 }
1202
1203 static inline void memcg_memory_allocated_sub(struct cg_proto *prot,
1204 unsigned long amt)
1205 {
1206 page_counter_uncharge(&prot->memory_allocated, amt);
1207 }
1208
1209 static inline long
1210 sk_memory_allocated(const struct sock *sk)
1211 {
1212 struct proto *prot = sk->sk_prot;
1213
1214 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1215 return page_counter_read(&sk->sk_cgrp->memory_allocated);
1216
1217 return atomic_long_read(prot->memory_allocated);
1218 }
1219
1220 static inline long
1221 sk_memory_allocated_add(struct sock *sk, int amt, int *parent_status)
1222 {
1223 struct proto *prot = sk->sk_prot;
1224
1225 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1226 memcg_memory_allocated_add(sk->sk_cgrp, amt, parent_status);
1227 /* update the root cgroup regardless */
1228 atomic_long_add_return(amt, prot->memory_allocated);
1229 return page_counter_read(&sk->sk_cgrp->memory_allocated);
1230 }
1231
1232 return atomic_long_add_return(amt, prot->memory_allocated);
1233 }
1234
1235 static inline void
1236 sk_memory_allocated_sub(struct sock *sk, int amt)
1237 {
1238 struct proto *prot = sk->sk_prot;
1239
1240 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1241 memcg_memory_allocated_sub(sk->sk_cgrp, amt);
1242
1243 atomic_long_sub(amt, prot->memory_allocated);
1244 }
1245
1246 static inline void sk_sockets_allocated_dec(struct sock *sk)
1247 {
1248 struct proto *prot = sk->sk_prot;
1249
1250 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1251 struct cg_proto *cg_proto = sk->sk_cgrp;
1252
1253 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1254 percpu_counter_dec(&cg_proto->sockets_allocated);
1255 }
1256
1257 percpu_counter_dec(prot->sockets_allocated);
1258 }
1259
1260 static inline void sk_sockets_allocated_inc(struct sock *sk)
1261 {
1262 struct proto *prot = sk->sk_prot;
1263
1264 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1265 struct cg_proto *cg_proto = sk->sk_cgrp;
1266
1267 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1268 percpu_counter_inc(&cg_proto->sockets_allocated);
1269 }
1270
1271 percpu_counter_inc(prot->sockets_allocated);
1272 }
1273
1274 static inline int
1275 sk_sockets_allocated_read_positive(struct sock *sk)
1276 {
1277 struct proto *prot = sk->sk_prot;
1278
1279 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1280 return percpu_counter_read_positive(&sk->sk_cgrp->sockets_allocated);
1281
1282 return percpu_counter_read_positive(prot->sockets_allocated);
1283 }
1284
1285 static inline int
1286 proto_sockets_allocated_sum_positive(struct proto *prot)
1287 {
1288 return percpu_counter_sum_positive(prot->sockets_allocated);
1289 }
1290
1291 static inline long
1292 proto_memory_allocated(struct proto *prot)
1293 {
1294 return atomic_long_read(prot->memory_allocated);
1295 }
1296
1297 static inline bool
1298 proto_memory_pressure(struct proto *prot)
1299 {
1300 if (!prot->memory_pressure)
1301 return false;
1302 return !!*prot->memory_pressure;
1303 }
1304
1305
1306 #ifdef CONFIG_PROC_FS
1307 /* Called with local bh disabled */
1308 void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
1309 int sock_prot_inuse_get(struct net *net, struct proto *proto);
1310 #else
1311 static inline void sock_prot_inuse_add(struct net *net, struct proto *prot,
1312 int inc)
1313 {
1314 }
1315 #endif
1316
1317
1318 /* With per-bucket locks this operation is not-atomic, so that
1319 * this version is not worse.
1320 */
1321 static inline void __sk_prot_rehash(struct sock *sk)
1322 {
1323 sk->sk_prot->unhash(sk);
1324 sk->sk_prot->hash(sk);
1325 }
1326
1327 void sk_prot_clear_portaddr_nulls(struct sock *sk, int size);
1328
1329 /* About 10 seconds */
1330 #define SOCK_DESTROY_TIME (10*HZ)
1331
1332 /* Sockets 0-1023 can't be bound to unless you are superuser */
1333 #define PROT_SOCK 1024
1334
1335 #define SHUTDOWN_MASK 3
1336 #define RCV_SHUTDOWN 1
1337 #define SEND_SHUTDOWN 2
1338
1339 #define SOCK_SNDBUF_LOCK 1
1340 #define SOCK_RCVBUF_LOCK 2
1341 #define SOCK_BINDADDR_LOCK 4
1342 #define SOCK_BINDPORT_LOCK 8
1343
1344 struct socket_alloc {
1345 struct socket socket;
1346 struct inode vfs_inode;
1347 };
1348
1349 static inline struct socket *SOCKET_I(struct inode *inode)
1350 {
1351 return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1352 }
1353
1354 static inline struct inode *SOCK_INODE(struct socket *socket)
1355 {
1356 return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1357 }
1358
1359 /*
1360 * Functions for memory accounting
1361 */
1362 int __sk_mem_schedule(struct sock *sk, int size, int kind);
1363 void __sk_mem_reclaim(struct sock *sk, int amount);
1364
1365 #define SK_MEM_QUANTUM ((int)PAGE_SIZE)
1366 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1367 #define SK_MEM_SEND 0
1368 #define SK_MEM_RECV 1
1369
1370 static inline int sk_mem_pages(int amt)
1371 {
1372 return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1373 }
1374
1375 static inline bool sk_has_account(struct sock *sk)
1376 {
1377 /* return true if protocol supports memory accounting */
1378 return !!sk->sk_prot->memory_allocated;
1379 }
1380
1381 static inline bool sk_wmem_schedule(struct sock *sk, int size)
1382 {
1383 if (!sk_has_account(sk))
1384 return true;
1385 return size <= sk->sk_forward_alloc ||
1386 __sk_mem_schedule(sk, size, SK_MEM_SEND);
1387 }
1388
1389 static inline bool
1390 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1391 {
1392 if (!sk_has_account(sk))
1393 return true;
1394 return size<= sk->sk_forward_alloc ||
1395 __sk_mem_schedule(sk, size, SK_MEM_RECV) ||
1396 skb_pfmemalloc(skb);
1397 }
1398
1399 static inline void sk_mem_reclaim(struct sock *sk)
1400 {
1401 if (!sk_has_account(sk))
1402 return;
1403 if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
1404 __sk_mem_reclaim(sk, sk->sk_forward_alloc);
1405 }
1406
1407 static inline void sk_mem_reclaim_partial(struct sock *sk)
1408 {
1409 if (!sk_has_account(sk))
1410 return;
1411 if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
1412 __sk_mem_reclaim(sk, sk->sk_forward_alloc - 1);
1413 }
1414
1415 static inline void sk_mem_charge(struct sock *sk, int size)
1416 {
1417 if (!sk_has_account(sk))
1418 return;
1419 sk->sk_forward_alloc -= size;
1420 }
1421
1422 static inline void sk_mem_uncharge(struct sock *sk, int size)
1423 {
1424 if (!sk_has_account(sk))
1425 return;
1426 sk->sk_forward_alloc += size;
1427 }
1428
1429 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1430 {
1431 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1432 sk->sk_wmem_queued -= skb->truesize;
1433 sk_mem_uncharge(sk, skb->truesize);
1434 __kfree_skb(skb);
1435 }
1436
1437 /* Used by processes to "lock" a socket state, so that
1438 * interrupts and bottom half handlers won't change it
1439 * from under us. It essentially blocks any incoming
1440 * packets, so that we won't get any new data or any
1441 * packets that change the state of the socket.
1442 *
1443 * While locked, BH processing will add new packets to
1444 * the backlog queue. This queue is processed by the
1445 * owner of the socket lock right before it is released.
1446 *
1447 * Since ~2.3.5 it is also exclusive sleep lock serializing
1448 * accesses from user process context.
1449 */
1450 #define sock_owned_by_user(sk) ((sk)->sk_lock.owned)
1451
1452 static inline void sock_release_ownership(struct sock *sk)
1453 {
1454 sk->sk_lock.owned = 0;
1455 }
1456
1457 /*
1458 * Macro so as to not evaluate some arguments when
1459 * lockdep is not enabled.
1460 *
1461 * Mark both the sk_lock and the sk_lock.slock as a
1462 * per-address-family lock class.
1463 */
1464 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) \
1465 do { \
1466 sk->sk_lock.owned = 0; \
1467 init_waitqueue_head(&sk->sk_lock.wq); \
1468 spin_lock_init(&(sk)->sk_lock.slock); \
1469 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \
1470 sizeof((sk)->sk_lock)); \
1471 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \
1472 (skey), (sname)); \
1473 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \
1474 } while (0)
1475
1476 void lock_sock_nested(struct sock *sk, int subclass);
1477
1478 static inline void lock_sock(struct sock *sk)
1479 {
1480 lock_sock_nested(sk, 0);
1481 }
1482
1483 void release_sock(struct sock *sk);
1484
1485 /* BH context may only use the following locking interface. */
1486 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock))
1487 #define bh_lock_sock_nested(__sk) \
1488 spin_lock_nested(&((__sk)->sk_lock.slock), \
1489 SINGLE_DEPTH_NESTING)
1490 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock))
1491
1492 bool lock_sock_fast(struct sock *sk);
1493 /**
1494 * unlock_sock_fast - complement of lock_sock_fast
1495 * @sk: socket
1496 * @slow: slow mode
1497 *
1498 * fast unlock socket for user context.
1499 * If slow mode is on, we call regular release_sock()
1500 */
1501 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1502 {
1503 if (slow)
1504 release_sock(sk);
1505 else
1506 spin_unlock_bh(&sk->sk_lock.slock);
1507 }
1508
1509
1510 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1511 struct proto *prot, int kern);
1512 void sk_free(struct sock *sk);
1513 void sk_destruct(struct sock *sk);
1514 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1515
1516 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1517 gfp_t priority);
1518 void sock_wfree(struct sk_buff *skb);
1519 void skb_orphan_partial(struct sk_buff *skb);
1520 void sock_rfree(struct sk_buff *skb);
1521 void sock_efree(struct sk_buff *skb);
1522 #ifdef CONFIG_INET
1523 void sock_edemux(struct sk_buff *skb);
1524 #else
1525 #define sock_edemux(skb) sock_efree(skb)
1526 #endif
1527
1528 int sock_setsockopt(struct socket *sock, int level, int op,
1529 char __user *optval, unsigned int optlen);
1530
1531 int sock_getsockopt(struct socket *sock, int level, int op,
1532 char __user *optval, int __user *optlen);
1533 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1534 int noblock, int *errcode);
1535 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1536 unsigned long data_len, int noblock,
1537 int *errcode, int max_page_order);
1538 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1539 void sock_kfree_s(struct sock *sk, void *mem, int size);
1540 void sock_kzfree_s(struct sock *sk, void *mem, int size);
1541 void sk_send_sigurg(struct sock *sk);
1542
1543 struct sockcm_cookie {
1544 u32 mark;
1545 };
1546
1547 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1548 struct sockcm_cookie *sockc);
1549
1550 /*
1551 * Functions to fill in entries in struct proto_ops when a protocol
1552 * does not implement a particular function.
1553 */
1554 int sock_no_bind(struct socket *, struct sockaddr *, int);
1555 int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1556 int sock_no_socketpair(struct socket *, struct socket *);
1557 int sock_no_accept(struct socket *, struct socket *, int);
1558 int sock_no_getname(struct socket *, struct sockaddr *, int *, int);
1559 unsigned int sock_no_poll(struct file *, struct socket *,
1560 struct poll_table_struct *);
1561 int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1562 int sock_no_listen(struct socket *, int);
1563 int sock_no_shutdown(struct socket *, int);
1564 int sock_no_getsockopt(struct socket *, int , int, char __user *, int __user *);
1565 int sock_no_setsockopt(struct socket *, int, int, char __user *, unsigned int);
1566 int sock_no_sendmsg(struct socket *, struct msghdr *, size_t);
1567 int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int);
1568 int sock_no_mmap(struct file *file, struct socket *sock,
1569 struct vm_area_struct *vma);
1570 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset,
1571 size_t size, int flags);
1572
1573 /*
1574 * Functions to fill in entries in struct proto_ops when a protocol
1575 * uses the inet style.
1576 */
1577 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1578 char __user *optval, int __user *optlen);
1579 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1580 int flags);
1581 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1582 char __user *optval, unsigned int optlen);
1583 int compat_sock_common_getsockopt(struct socket *sock, int level,
1584 int optname, char __user *optval, int __user *optlen);
1585 int compat_sock_common_setsockopt(struct socket *sock, int level,
1586 int optname, char __user *optval, unsigned int optlen);
1587
1588 void sk_common_release(struct sock *sk);
1589
1590 /*
1591 * Default socket callbacks and setup code
1592 */
1593
1594 /* Initialise core socket variables */
1595 void sock_init_data(struct socket *sock, struct sock *sk);
1596
1597 /*
1598 * Socket reference counting postulates.
1599 *
1600 * * Each user of socket SHOULD hold a reference count.
1601 * * Each access point to socket (an hash table bucket, reference from a list,
1602 * running timer, skb in flight MUST hold a reference count.
1603 * * When reference count hits 0, it means it will never increase back.
1604 * * When reference count hits 0, it means that no references from
1605 * outside exist to this socket and current process on current CPU
1606 * is last user and may/should destroy this socket.
1607 * * sk_free is called from any context: process, BH, IRQ. When
1608 * it is called, socket has no references from outside -> sk_free
1609 * may release descendant resources allocated by the socket, but
1610 * to the time when it is called, socket is NOT referenced by any
1611 * hash tables, lists etc.
1612 * * Packets, delivered from outside (from network or from another process)
1613 * and enqueued on receive/error queues SHOULD NOT grab reference count,
1614 * when they sit in queue. Otherwise, packets will leak to hole, when
1615 * socket is looked up by one cpu and unhasing is made by another CPU.
1616 * It is true for udp/raw, netlink (leak to receive and error queues), tcp
1617 * (leak to backlog). Packet socket does all the processing inside
1618 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1619 * use separate SMP lock, so that they are prone too.
1620 */
1621
1622 /* Ungrab socket and destroy it, if it was the last reference. */
1623 static inline void sock_put(struct sock *sk)
1624 {
1625 if (atomic_dec_and_test(&sk->sk_refcnt))
1626 sk_free(sk);
1627 }
1628 /* Generic version of sock_put(), dealing with all sockets
1629 * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...)
1630 */
1631 void sock_gen_put(struct sock *sk);
1632
1633 int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested);
1634
1635 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1636 {
1637 sk->sk_tx_queue_mapping = tx_queue;
1638 }
1639
1640 static inline void sk_tx_queue_clear(struct sock *sk)
1641 {
1642 sk->sk_tx_queue_mapping = -1;
1643 }
1644
1645 static inline int sk_tx_queue_get(const struct sock *sk)
1646 {
1647 return sk ? sk->sk_tx_queue_mapping : -1;
1648 }
1649
1650 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1651 {
1652 sk_tx_queue_clear(sk);
1653 sk->sk_socket = sock;
1654 }
1655
1656 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1657 {
1658 BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1659 return &rcu_dereference_raw(sk->sk_wq)->wait;
1660 }
1661 /* Detach socket from process context.
1662 * Announce socket dead, detach it from wait queue and inode.
1663 * Note that parent inode held reference count on this struct sock,
1664 * we do not release it in this function, because protocol
1665 * probably wants some additional cleanups or even continuing
1666 * to work with this socket (TCP).
1667 */
1668 static inline void sock_orphan(struct sock *sk)
1669 {
1670 write_lock_bh(&sk->sk_callback_lock);
1671 sock_set_flag(sk, SOCK_DEAD);
1672 sk_set_socket(sk, NULL);
1673 sk->sk_wq = NULL;
1674 write_unlock_bh(&sk->sk_callback_lock);
1675 }
1676
1677 static inline void sock_graft(struct sock *sk, struct socket *parent)
1678 {
1679 write_lock_bh(&sk->sk_callback_lock);
1680 sk->sk_wq = parent->wq;
1681 parent->sk = sk;
1682 sk_set_socket(sk, parent);
1683 security_sock_graft(sk, parent);
1684 write_unlock_bh(&sk->sk_callback_lock);
1685 }
1686
1687 kuid_t sock_i_uid(struct sock *sk);
1688 unsigned long sock_i_ino(struct sock *sk);
1689
1690 static inline u32 net_tx_rndhash(void)
1691 {
1692 u32 v = prandom_u32();
1693
1694 return v ?: 1;
1695 }
1696
1697 static inline void sk_set_txhash(struct sock *sk)
1698 {
1699 sk->sk_txhash = net_tx_rndhash();
1700 }
1701
1702 static inline void sk_rethink_txhash(struct sock *sk)
1703 {
1704 if (sk->sk_txhash)
1705 sk_set_txhash(sk);
1706 }
1707
1708 static inline struct dst_entry *
1709 __sk_dst_get(struct sock *sk)
1710 {
1711 return rcu_dereference_check(sk->sk_dst_cache, sock_owned_by_user(sk) ||
1712 lockdep_is_held(&sk->sk_lock.slock));
1713 }
1714
1715 static inline struct dst_entry *
1716 sk_dst_get(struct sock *sk)
1717 {
1718 struct dst_entry *dst;
1719
1720 rcu_read_lock();
1721 dst = rcu_dereference(sk->sk_dst_cache);
1722 if (dst && !atomic_inc_not_zero(&dst->__refcnt))
1723 dst = NULL;
1724 rcu_read_unlock();
1725 return dst;
1726 }
1727
1728 static inline void dst_negative_advice(struct sock *sk)
1729 {
1730 struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1731
1732 sk_rethink_txhash(sk);
1733
1734 if (dst && dst->ops->negative_advice) {
1735 ndst = dst->ops->negative_advice(dst);
1736
1737 if (ndst != dst) {
1738 rcu_assign_pointer(sk->sk_dst_cache, ndst);
1739 sk_tx_queue_clear(sk);
1740 }
1741 }
1742 }
1743
1744 static inline void
1745 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
1746 {
1747 struct dst_entry *old_dst;
1748
1749 sk_tx_queue_clear(sk);
1750 /*
1751 * This can be called while sk is owned by the caller only,
1752 * with no state that can be checked in a rcu_dereference_check() cond
1753 */
1754 old_dst = rcu_dereference_raw(sk->sk_dst_cache);
1755 rcu_assign_pointer(sk->sk_dst_cache, dst);
1756 dst_release(old_dst);
1757 }
1758
1759 static inline void
1760 sk_dst_set(struct sock *sk, struct dst_entry *dst)
1761 {
1762 struct dst_entry *old_dst;
1763
1764 sk_tx_queue_clear(sk);
1765 old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst);
1766 dst_release(old_dst);
1767 }
1768
1769 static inline void
1770 __sk_dst_reset(struct sock *sk)
1771 {
1772 __sk_dst_set(sk, NULL);
1773 }
1774
1775 static inline void
1776 sk_dst_reset(struct sock *sk)
1777 {
1778 sk_dst_set(sk, NULL);
1779 }
1780
1781 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1782
1783 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1784
1785 bool sk_mc_loop(struct sock *sk);
1786
1787 static inline bool sk_can_gso(const struct sock *sk)
1788 {
1789 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1790 }
1791
1792 void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
1793
1794 static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
1795 {
1796 sk->sk_route_nocaps |= flags;
1797 sk->sk_route_caps &= ~flags;
1798 }
1799
1800 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
1801 struct iov_iter *from, char *to,
1802 int copy, int offset)
1803 {
1804 if (skb->ip_summed == CHECKSUM_NONE) {
1805 __wsum csum = 0;
1806 if (csum_and_copy_from_iter(to, copy, &csum, from) != copy)
1807 return -EFAULT;
1808 skb->csum = csum_block_add(skb->csum, csum, offset);
1809 } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1810 if (copy_from_iter_nocache(to, copy, from) != copy)
1811 return -EFAULT;
1812 } else if (copy_from_iter(to, copy, from) != copy)
1813 return -EFAULT;
1814
1815 return 0;
1816 }
1817
1818 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
1819 struct iov_iter *from, int copy)
1820 {
1821 int err, offset = skb->len;
1822
1823 err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
1824 copy, offset);
1825 if (err)
1826 __skb_trim(skb, offset);
1827
1828 return err;
1829 }
1830
1831 static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from,
1832 struct sk_buff *skb,
1833 struct page *page,
1834 int off, int copy)
1835 {
1836 int err;
1837
1838 err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
1839 copy, skb->len);
1840 if (err)
1841 return err;
1842
1843 skb->len += copy;
1844 skb->data_len += copy;
1845 skb->truesize += copy;
1846 sk->sk_wmem_queued += copy;
1847 sk_mem_charge(sk, copy);
1848 return 0;
1849 }
1850
1851 /**
1852 * sk_wmem_alloc_get - returns write allocations
1853 * @sk: socket
1854 *
1855 * Returns sk_wmem_alloc minus initial offset of one
1856 */
1857 static inline int sk_wmem_alloc_get(const struct sock *sk)
1858 {
1859 return atomic_read(&sk->sk_wmem_alloc) - 1;
1860 }
1861
1862 /**
1863 * sk_rmem_alloc_get - returns read allocations
1864 * @sk: socket
1865 *
1866 * Returns sk_rmem_alloc
1867 */
1868 static inline int sk_rmem_alloc_get(const struct sock *sk)
1869 {
1870 return atomic_read(&sk->sk_rmem_alloc);
1871 }
1872
1873 /**
1874 * sk_has_allocations - check if allocations are outstanding
1875 * @sk: socket
1876 *
1877 * Returns true if socket has write or read allocations
1878 */
1879 static inline bool sk_has_allocations(const struct sock *sk)
1880 {
1881 return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
1882 }
1883
1884 /**
1885 * wq_has_sleeper - check if there are any waiting processes
1886 * @wq: struct socket_wq
1887 *
1888 * Returns true if socket_wq has waiting processes
1889 *
1890 * The purpose of the wq_has_sleeper and sock_poll_wait is to wrap the memory
1891 * barrier call. They were added due to the race found within the tcp code.
1892 *
1893 * Consider following tcp code paths:
1894 *
1895 * CPU1 CPU2
1896 *
1897 * sys_select receive packet
1898 * ... ...
1899 * __add_wait_queue update tp->rcv_nxt
1900 * ... ...
1901 * tp->rcv_nxt check sock_def_readable
1902 * ... {
1903 * schedule rcu_read_lock();
1904 * wq = rcu_dereference(sk->sk_wq);
1905 * if (wq && waitqueue_active(&wq->wait))
1906 * wake_up_interruptible(&wq->wait)
1907 * ...
1908 * }
1909 *
1910 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
1911 * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1
1912 * could then endup calling schedule and sleep forever if there are no more
1913 * data on the socket.
1914 *
1915 */
1916 static inline bool wq_has_sleeper(struct socket_wq *wq)
1917 {
1918 /* We need to be sure we are in sync with the
1919 * add_wait_queue modifications to the wait queue.
1920 *
1921 * This memory barrier is paired in the sock_poll_wait.
1922 */
1923 smp_mb();
1924 return wq && waitqueue_active(&wq->wait);
1925 }
1926
1927 /**
1928 * sock_poll_wait - place memory barrier behind the poll_wait call.
1929 * @filp: file
1930 * @wait_address: socket wait queue
1931 * @p: poll_table
1932 *
1933 * See the comments in the wq_has_sleeper function.
1934 */
1935 static inline void sock_poll_wait(struct file *filp,
1936 wait_queue_head_t *wait_address, poll_table *p)
1937 {
1938 if (!poll_does_not_wait(p) && wait_address) {
1939 poll_wait(filp, wait_address, p);
1940 /* We need to be sure we are in sync with the
1941 * socket flags modification.
1942 *
1943 * This memory barrier is paired in the wq_has_sleeper.
1944 */
1945 smp_mb();
1946 }
1947 }
1948
1949 static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
1950 {
1951 if (sk->sk_txhash) {
1952 skb->l4_hash = 1;
1953 skb->hash = sk->sk_txhash;
1954 }
1955 }
1956
1957 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk);
1958
1959 /*
1960 * Queue a received datagram if it will fit. Stream and sequenced
1961 * protocols can't normally use this as they need to fit buffers in
1962 * and play with them.
1963 *
1964 * Inlined as it's very short and called for pretty much every
1965 * packet ever received.
1966 */
1967 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
1968 {
1969 skb_orphan(skb);
1970 skb->sk = sk;
1971 skb->destructor = sock_rfree;
1972 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
1973 sk_mem_charge(sk, skb->truesize);
1974 }
1975
1976 void sk_reset_timer(struct sock *sk, struct timer_list *timer,
1977 unsigned long expires);
1978
1979 void sk_stop_timer(struct sock *sk, struct timer_list *timer);
1980
1981 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
1982
1983 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
1984 struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
1985
1986 /*
1987 * Recover an error report and clear atomically
1988 */
1989
1990 static inline int sock_error(struct sock *sk)
1991 {
1992 int err;
1993 if (likely(!sk->sk_err))
1994 return 0;
1995 err = xchg(&sk->sk_err, 0);
1996 return -err;
1997 }
1998
1999 static inline unsigned long sock_wspace(struct sock *sk)
2000 {
2001 int amt = 0;
2002
2003 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2004 amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
2005 if (amt < 0)
2006 amt = 0;
2007 }
2008 return amt;
2009 }
2010
2011 /* Note:
2012 * We use sk->sk_wq_raw, from contexts knowing this
2013 * pointer is not NULL and cannot disappear/change.
2014 */
2015 static inline void sk_set_bit(int nr, struct sock *sk)
2016 {
2017 set_bit(nr, &sk->sk_wq_raw->flags);
2018 }
2019
2020 static inline void sk_clear_bit(int nr, struct sock *sk)
2021 {
2022 clear_bit(nr, &sk->sk_wq_raw->flags);
2023 }
2024
2025 static inline void sk_wake_async(const struct sock *sk, int how, int band)
2026 {
2027 if (sock_flag(sk, SOCK_FASYNC)) {
2028 rcu_read_lock();
2029 sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
2030 rcu_read_unlock();
2031 }
2032 }
2033
2034 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2035 * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2036 * Note: for send buffers, TCP works better if we can build two skbs at
2037 * minimum.
2038 */
2039 #define TCP_SKB_MIN_TRUESIZE (2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2040
2041 #define SOCK_MIN_SNDBUF (TCP_SKB_MIN_TRUESIZE * 2)
2042 #define SOCK_MIN_RCVBUF TCP_SKB_MIN_TRUESIZE
2043
2044 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2045 {
2046 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
2047 sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2048 sk->sk_sndbuf = max_t(u32, sk->sk_sndbuf, SOCK_MIN_SNDBUF);
2049 }
2050 }
2051
2052 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
2053 bool force_schedule);
2054
2055 /**
2056 * sk_page_frag - return an appropriate page_frag
2057 * @sk: socket
2058 *
2059 * If socket allocation mode allows current thread to sleep, it means its
2060 * safe to use the per task page_frag instead of the per socket one.
2061 */
2062 static inline struct page_frag *sk_page_frag(struct sock *sk)
2063 {
2064 if (gfpflags_allow_blocking(sk->sk_allocation))
2065 return &current->task_frag;
2066
2067 return &sk->sk_frag;
2068 }
2069
2070 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2071
2072 /*
2073 * Default write policy as shown to user space via poll/select/SIGIO
2074 */
2075 static inline bool sock_writeable(const struct sock *sk)
2076 {
2077 return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1);
2078 }
2079
2080 static inline gfp_t gfp_any(void)
2081 {
2082 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2083 }
2084
2085 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2086 {
2087 return noblock ? 0 : sk->sk_rcvtimeo;
2088 }
2089
2090 static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2091 {
2092 return noblock ? 0 : sk->sk_sndtimeo;
2093 }
2094
2095 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2096 {
2097 return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
2098 }
2099
2100 /* Alas, with timeout socket operations are not restartable.
2101 * Compare this to poll().
2102 */
2103 static inline int sock_intr_errno(long timeo)
2104 {
2105 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2106 }
2107
2108 struct sock_skb_cb {
2109 u32 dropcount;
2110 };
2111
2112 /* Store sock_skb_cb at the end of skb->cb[] so protocol families
2113 * using skb->cb[] would keep using it directly and utilize its
2114 * alignement guarantee.
2115 */
2116 #define SOCK_SKB_CB_OFFSET ((FIELD_SIZEOF(struct sk_buff, cb) - \
2117 sizeof(struct sock_skb_cb)))
2118
2119 #define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \
2120 SOCK_SKB_CB_OFFSET))
2121
2122 #define sock_skb_cb_check_size(size) \
2123 BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET)
2124
2125 static inline void
2126 sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb)
2127 {
2128 SOCK_SKB_CB(skb)->dropcount = atomic_read(&sk->sk_drops);
2129 }
2130
2131 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2132 struct sk_buff *skb);
2133 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2134 struct sk_buff *skb);
2135
2136 static inline void
2137 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2138 {
2139 ktime_t kt = skb->tstamp;
2140 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2141
2142 /*
2143 * generate control messages if
2144 * - receive time stamping in software requested
2145 * - software time stamp available and wanted
2146 * - hardware time stamps available and wanted
2147 */
2148 if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2149 (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2150 (kt.tv64 && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2151 (hwtstamps->hwtstamp.tv64 &&
2152 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
2153 __sock_recv_timestamp(msg, sk, skb);
2154 else
2155 sk->sk_stamp = kt;
2156
2157 if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2158 __sock_recv_wifi_status(msg, sk, skb);
2159 }
2160
2161 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2162 struct sk_buff *skb);
2163
2164 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2165 struct sk_buff *skb)
2166 {
2167 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL) | \
2168 (1UL << SOCK_RCVTSTAMP))
2169 #define TSFLAGS_ANY (SOF_TIMESTAMPING_SOFTWARE | \
2170 SOF_TIMESTAMPING_RAW_HARDWARE)
2171
2172 if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY)
2173 __sock_recv_ts_and_drops(msg, sk, skb);
2174 else
2175 sk->sk_stamp = skb->tstamp;
2176 }
2177
2178 void __sock_tx_timestamp(const struct sock *sk, __u8 *tx_flags);
2179
2180 /**
2181 * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2182 * @sk: socket sending this packet
2183 * @tx_flags: completed with instructions for time stamping
2184 *
2185 * Note : callers should take care of initial *tx_flags value (usually 0)
2186 */
2187 static inline void sock_tx_timestamp(const struct sock *sk, __u8 *tx_flags)
2188 {
2189 if (unlikely(sk->sk_tsflags))
2190 __sock_tx_timestamp(sk, tx_flags);
2191 if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS)))
2192 *tx_flags |= SKBTX_WIFI_STATUS;
2193 }
2194
2195 /**
2196 * sk_eat_skb - Release a skb if it is no longer needed
2197 * @sk: socket to eat this skb from
2198 * @skb: socket buffer to eat
2199 *
2200 * This routine must be called with interrupts disabled or with the socket
2201 * locked so that the sk_buff queue operation is ok.
2202 */
2203 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
2204 {
2205 __skb_unlink(skb, &sk->sk_receive_queue);
2206 __kfree_skb(skb);
2207 }
2208
2209 static inline
2210 struct net *sock_net(const struct sock *sk)
2211 {
2212 return read_pnet(&sk->sk_net);
2213 }
2214
2215 static inline
2216 void sock_net_set(struct sock *sk, struct net *net)
2217 {
2218 write_pnet(&sk->sk_net, net);
2219 }
2220
2221 static inline struct sock *skb_steal_sock(struct sk_buff *skb)
2222 {
2223 if (skb->sk) {
2224 struct sock *sk = skb->sk;
2225
2226 skb->destructor = NULL;
2227 skb->sk = NULL;
2228 return sk;
2229 }
2230 return NULL;
2231 }
2232
2233 /* This helper checks if a socket is a full socket,
2234 * ie _not_ a timewait or request socket.
2235 */
2236 static inline bool sk_fullsock(const struct sock *sk)
2237 {
2238 return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV);
2239 }
2240
2241 /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV
2242 * SYNACK messages can be attached to either ones (depending on SYNCOOKIE)
2243 */
2244 static inline bool sk_listener(const struct sock *sk)
2245 {
2246 return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV);
2247 }
2248
2249 /**
2250 * sk_state_load - read sk->sk_state for lockless contexts
2251 * @sk: socket pointer
2252 *
2253 * Paired with sk_state_store(). Used in places we do not hold socket lock :
2254 * tcp_diag_get_info(), tcp_get_info(), tcp_poll(), get_tcp4_sock() ...
2255 */
2256 static inline int sk_state_load(const struct sock *sk)
2257 {
2258 return smp_load_acquire(&sk->sk_state);
2259 }
2260
2261 /**
2262 * sk_state_store - update sk->sk_state
2263 * @sk: socket pointer
2264 * @newstate: new state
2265 *
2266 * Paired with sk_state_load(). Should be used in contexts where
2267 * state change might impact lockless readers.
2268 */
2269 static inline void sk_state_store(struct sock *sk, int newstate)
2270 {
2271 smp_store_release(&sk->sk_state, newstate);
2272 }
2273
2274 void sock_enable_timestamp(struct sock *sk, int flag);
2275 int sock_get_timestamp(struct sock *, struct timeval __user *);
2276 int sock_get_timestampns(struct sock *, struct timespec __user *);
2277 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2278 int type);
2279
2280 bool sk_ns_capable(const struct sock *sk,
2281 struct user_namespace *user_ns, int cap);
2282 bool sk_capable(const struct sock *sk, int cap);
2283 bool sk_net_capable(const struct sock *sk, int cap);
2284
2285 extern __u32 sysctl_wmem_max;
2286 extern __u32 sysctl_rmem_max;
2287
2288 extern int sysctl_tstamp_allow_data;
2289 extern int sysctl_optmem_max;
2290
2291 extern __u32 sysctl_wmem_default;
2292 extern __u32 sysctl_rmem_default;
2293
2294 #endif /* _SOCK_H */