]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - include/net/sock.h
Bluetooth: Refactor locking in amp_physical_cfm
[mirror_ubuntu-artful-kernel.git] / include / net / sock.h
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Definitions for the AF_INET socket handler.
7 *
8 * Version: @(#)sock.h 1.0.4 05/13/93
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche <flla@stud.uni-sb.de>
14 *
15 * Fixes:
16 * Alan Cox : Volatiles in skbuff pointers. See
17 * skbuff comments. May be overdone,
18 * better to prove they can be removed
19 * than the reverse.
20 * Alan Cox : Added a zapped field for tcp to note
21 * a socket is reset and must stay shut up
22 * Alan Cox : New fields for options
23 * Pauline Middelink : identd support
24 * Alan Cox : Eliminate low level recv/recvfrom
25 * David S. Miller : New socket lookup architecture.
26 * Steve Whitehouse: Default routines for sock_ops
27 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made
28 * protinfo be just a void pointer, as the
29 * protocol specific parts were moved to
30 * respective headers and ipv4/v6, etc now
31 * use private slabcaches for its socks
32 * Pedro Hortas : New flags field for socket options
33 *
34 *
35 * This program is free software; you can redistribute it and/or
36 * modify it under the terms of the GNU General Public License
37 * as published by the Free Software Foundation; either version
38 * 2 of the License, or (at your option) any later version.
39 */
40 #ifndef _SOCK_H
41 #define _SOCK_H
42
43 #include <linux/hardirq.h>
44 #include <linux/kernel.h>
45 #include <linux/list.h>
46 #include <linux/list_nulls.h>
47 #include <linux/timer.h>
48 #include <linux/cache.h>
49 #include <linux/bitops.h>
50 #include <linux/lockdep.h>
51 #include <linux/netdevice.h>
52 #include <linux/skbuff.h> /* struct sk_buff */
53 #include <linux/mm.h>
54 #include <linux/security.h>
55 #include <linux/slab.h>
56 #include <linux/uaccess.h>
57 #include <linux/memcontrol.h>
58 #include <linux/res_counter.h>
59 #include <linux/static_key.h>
60 #include <linux/aio.h>
61 #include <linux/sched.h>
62
63 #include <linux/filter.h>
64 #include <linux/rculist_nulls.h>
65 #include <linux/poll.h>
66
67 #include <linux/atomic.h>
68 #include <net/dst.h>
69 #include <net/checksum.h>
70
71 struct cgroup;
72 struct cgroup_subsys;
73 #ifdef CONFIG_NET
74 int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss);
75 void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg);
76 #else
77 static inline
78 int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
79 {
80 return 0;
81 }
82 static inline
83 void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg)
84 {
85 }
86 #endif
87 /*
88 * This structure really needs to be cleaned up.
89 * Most of it is for TCP, and not used by any of
90 * the other protocols.
91 */
92
93 /* Define this to get the SOCK_DBG debugging facility. */
94 #define SOCK_DEBUGGING
95 #ifdef SOCK_DEBUGGING
96 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
97 printk(KERN_DEBUG msg); } while (0)
98 #else
99 /* Validate arguments and do nothing */
100 static inline __printf(2, 3)
101 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
102 {
103 }
104 #endif
105
106 /* This is the per-socket lock. The spinlock provides a synchronization
107 * between user contexts and software interrupt processing, whereas the
108 * mini-semaphore synchronizes multiple users amongst themselves.
109 */
110 typedef struct {
111 spinlock_t slock;
112 int owned;
113 wait_queue_head_t wq;
114 /*
115 * We express the mutex-alike socket_lock semantics
116 * to the lock validator by explicitly managing
117 * the slock as a lock variant (in addition to
118 * the slock itself):
119 */
120 #ifdef CONFIG_DEBUG_LOCK_ALLOC
121 struct lockdep_map dep_map;
122 #endif
123 } socket_lock_t;
124
125 struct sock;
126 struct proto;
127 struct net;
128
129 /**
130 * struct sock_common - minimal network layer representation of sockets
131 * @skc_daddr: Foreign IPv4 addr
132 * @skc_rcv_saddr: Bound local IPv4 addr
133 * @skc_hash: hash value used with various protocol lookup tables
134 * @skc_u16hashes: two u16 hash values used by UDP lookup tables
135 * @skc_family: network address family
136 * @skc_state: Connection state
137 * @skc_reuse: %SO_REUSEADDR setting
138 * @skc_bound_dev_if: bound device index if != 0
139 * @skc_bind_node: bind hash linkage for various protocol lookup tables
140 * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
141 * @skc_prot: protocol handlers inside a network family
142 * @skc_net: reference to the network namespace of this socket
143 * @skc_node: main hash linkage for various protocol lookup tables
144 * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
145 * @skc_tx_queue_mapping: tx queue number for this connection
146 * @skc_refcnt: reference count
147 *
148 * This is the minimal network layer representation of sockets, the header
149 * for struct sock and struct inet_timewait_sock.
150 */
151 struct sock_common {
152 /* skc_daddr and skc_rcv_saddr must be grouped :
153 * cf INET_MATCH() and INET_TW_MATCH()
154 */
155 __be32 skc_daddr;
156 __be32 skc_rcv_saddr;
157
158 union {
159 unsigned int skc_hash;
160 __u16 skc_u16hashes[2];
161 };
162 unsigned short skc_family;
163 volatile unsigned char skc_state;
164 unsigned char skc_reuse;
165 int skc_bound_dev_if;
166 union {
167 struct hlist_node skc_bind_node;
168 struct hlist_nulls_node skc_portaddr_node;
169 };
170 struct proto *skc_prot;
171 #ifdef CONFIG_NET_NS
172 struct net *skc_net;
173 #endif
174 /*
175 * fields between dontcopy_begin/dontcopy_end
176 * are not copied in sock_copy()
177 */
178 /* private: */
179 int skc_dontcopy_begin[0];
180 /* public: */
181 union {
182 struct hlist_node skc_node;
183 struct hlist_nulls_node skc_nulls_node;
184 };
185 int skc_tx_queue_mapping;
186 atomic_t skc_refcnt;
187 /* private: */
188 int skc_dontcopy_end[0];
189 /* public: */
190 };
191
192 struct cg_proto;
193 /**
194 * struct sock - network layer representation of sockets
195 * @__sk_common: shared layout with inet_timewait_sock
196 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
197 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
198 * @sk_lock: synchronizer
199 * @sk_rcvbuf: size of receive buffer in bytes
200 * @sk_wq: sock wait queue and async head
201 * @sk_rx_dst: receive input route used by early tcp demux
202 * @sk_dst_cache: destination cache
203 * @sk_dst_lock: destination cache lock
204 * @sk_policy: flow policy
205 * @sk_receive_queue: incoming packets
206 * @sk_wmem_alloc: transmit queue bytes committed
207 * @sk_write_queue: Packet sending queue
208 * @sk_async_wait_queue: DMA copied packets
209 * @sk_omem_alloc: "o" is "option" or "other"
210 * @sk_wmem_queued: persistent queue size
211 * @sk_forward_alloc: space allocated forward
212 * @sk_allocation: allocation mode
213 * @sk_sndbuf: size of send buffer in bytes
214 * @sk_flags: %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
215 * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
216 * @sk_no_check: %SO_NO_CHECK setting, wether or not checkup packets
217 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
218 * @sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
219 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
220 * @sk_gso_max_size: Maximum GSO segment size to build
221 * @sk_gso_max_segs: Maximum number of GSO segments
222 * @sk_lingertime: %SO_LINGER l_linger setting
223 * @sk_backlog: always used with the per-socket spinlock held
224 * @sk_callback_lock: used with the callbacks in the end of this struct
225 * @sk_error_queue: rarely used
226 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
227 * IPV6_ADDRFORM for instance)
228 * @sk_err: last error
229 * @sk_err_soft: errors that don't cause failure but are the cause of a
230 * persistent failure not just 'timed out'
231 * @sk_drops: raw/udp drops counter
232 * @sk_ack_backlog: current listen backlog
233 * @sk_max_ack_backlog: listen backlog set in listen()
234 * @sk_priority: %SO_PRIORITY setting
235 * @sk_cgrp_prioidx: socket group's priority map index
236 * @sk_type: socket type (%SOCK_STREAM, etc)
237 * @sk_protocol: which protocol this socket belongs in this network family
238 * @sk_peer_pid: &struct pid for this socket's peer
239 * @sk_peer_cred: %SO_PEERCRED setting
240 * @sk_rcvlowat: %SO_RCVLOWAT setting
241 * @sk_rcvtimeo: %SO_RCVTIMEO setting
242 * @sk_sndtimeo: %SO_SNDTIMEO setting
243 * @sk_rxhash: flow hash received from netif layer
244 * @sk_filter: socket filtering instructions
245 * @sk_protinfo: private area, net family specific, when not using slab
246 * @sk_timer: sock cleanup timer
247 * @sk_stamp: time stamp of last packet received
248 * @sk_socket: Identd and reporting IO signals
249 * @sk_user_data: RPC layer private data
250 * @sk_frag: cached page frag
251 * @sk_peek_off: current peek_offset value
252 * @sk_send_head: front of stuff to transmit
253 * @sk_security: used by security modules
254 * @sk_mark: generic packet mark
255 * @sk_classid: this socket's cgroup classid
256 * @sk_cgrp: this socket's cgroup-specific proto data
257 * @sk_write_pending: a write to stream socket waits to start
258 * @sk_state_change: callback to indicate change in the state of the sock
259 * @sk_data_ready: callback to indicate there is data to be processed
260 * @sk_write_space: callback to indicate there is bf sending space available
261 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
262 * @sk_backlog_rcv: callback to process the backlog
263 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
264 */
265 struct sock {
266 /*
267 * Now struct inet_timewait_sock also uses sock_common, so please just
268 * don't add nothing before this first member (__sk_common) --acme
269 */
270 struct sock_common __sk_common;
271 #define sk_node __sk_common.skc_node
272 #define sk_nulls_node __sk_common.skc_nulls_node
273 #define sk_refcnt __sk_common.skc_refcnt
274 #define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping
275
276 #define sk_dontcopy_begin __sk_common.skc_dontcopy_begin
277 #define sk_dontcopy_end __sk_common.skc_dontcopy_end
278 #define sk_hash __sk_common.skc_hash
279 #define sk_family __sk_common.skc_family
280 #define sk_state __sk_common.skc_state
281 #define sk_reuse __sk_common.skc_reuse
282 #define sk_bound_dev_if __sk_common.skc_bound_dev_if
283 #define sk_bind_node __sk_common.skc_bind_node
284 #define sk_prot __sk_common.skc_prot
285 #define sk_net __sk_common.skc_net
286 socket_lock_t sk_lock;
287 struct sk_buff_head sk_receive_queue;
288 /*
289 * The backlog queue is special, it is always used with
290 * the per-socket spinlock held and requires low latency
291 * access. Therefore we special case it's implementation.
292 * Note : rmem_alloc is in this structure to fill a hole
293 * on 64bit arches, not because its logically part of
294 * backlog.
295 */
296 struct {
297 atomic_t rmem_alloc;
298 int len;
299 struct sk_buff *head;
300 struct sk_buff *tail;
301 } sk_backlog;
302 #define sk_rmem_alloc sk_backlog.rmem_alloc
303 int sk_forward_alloc;
304 #ifdef CONFIG_RPS
305 __u32 sk_rxhash;
306 #endif
307 atomic_t sk_drops;
308 int sk_rcvbuf;
309
310 struct sk_filter __rcu *sk_filter;
311 struct socket_wq __rcu *sk_wq;
312
313 #ifdef CONFIG_NET_DMA
314 struct sk_buff_head sk_async_wait_queue;
315 #endif
316
317 #ifdef CONFIG_XFRM
318 struct xfrm_policy *sk_policy[2];
319 #endif
320 unsigned long sk_flags;
321 struct dst_entry *sk_rx_dst;
322 struct dst_entry *sk_dst_cache;
323 spinlock_t sk_dst_lock;
324 atomic_t sk_wmem_alloc;
325 atomic_t sk_omem_alloc;
326 int sk_sndbuf;
327 struct sk_buff_head sk_write_queue;
328 kmemcheck_bitfield_begin(flags);
329 unsigned int sk_shutdown : 2,
330 sk_no_check : 2,
331 sk_userlocks : 4,
332 sk_protocol : 8,
333 sk_type : 16;
334 kmemcheck_bitfield_end(flags);
335 int sk_wmem_queued;
336 gfp_t sk_allocation;
337 netdev_features_t sk_route_caps;
338 netdev_features_t sk_route_nocaps;
339 int sk_gso_type;
340 unsigned int sk_gso_max_size;
341 u16 sk_gso_max_segs;
342 int sk_rcvlowat;
343 unsigned long sk_lingertime;
344 struct sk_buff_head sk_error_queue;
345 struct proto *sk_prot_creator;
346 rwlock_t sk_callback_lock;
347 int sk_err,
348 sk_err_soft;
349 unsigned short sk_ack_backlog;
350 unsigned short sk_max_ack_backlog;
351 __u32 sk_priority;
352 #ifdef CONFIG_CGROUPS
353 __u32 sk_cgrp_prioidx;
354 #endif
355 struct pid *sk_peer_pid;
356 const struct cred *sk_peer_cred;
357 long sk_rcvtimeo;
358 long sk_sndtimeo;
359 void *sk_protinfo;
360 struct timer_list sk_timer;
361 ktime_t sk_stamp;
362 struct socket *sk_socket;
363 void *sk_user_data;
364 struct page_frag sk_frag;
365 struct sk_buff *sk_send_head;
366 __s32 sk_peek_off;
367 int sk_write_pending;
368 #ifdef CONFIG_SECURITY
369 void *sk_security;
370 #endif
371 __u32 sk_mark;
372 u32 sk_classid;
373 struct cg_proto *sk_cgrp;
374 void (*sk_state_change)(struct sock *sk);
375 void (*sk_data_ready)(struct sock *sk, int bytes);
376 void (*sk_write_space)(struct sock *sk);
377 void (*sk_error_report)(struct sock *sk);
378 int (*sk_backlog_rcv)(struct sock *sk,
379 struct sk_buff *skb);
380 void (*sk_destruct)(struct sock *sk);
381 };
382
383 /*
384 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
385 * or not whether his port will be reused by someone else. SK_FORCE_REUSE
386 * on a socket means that the socket will reuse everybody else's port
387 * without looking at the other's sk_reuse value.
388 */
389
390 #define SK_NO_REUSE 0
391 #define SK_CAN_REUSE 1
392 #define SK_FORCE_REUSE 2
393
394 static inline int sk_peek_offset(struct sock *sk, int flags)
395 {
396 if ((flags & MSG_PEEK) && (sk->sk_peek_off >= 0))
397 return sk->sk_peek_off;
398 else
399 return 0;
400 }
401
402 static inline void sk_peek_offset_bwd(struct sock *sk, int val)
403 {
404 if (sk->sk_peek_off >= 0) {
405 if (sk->sk_peek_off >= val)
406 sk->sk_peek_off -= val;
407 else
408 sk->sk_peek_off = 0;
409 }
410 }
411
412 static inline void sk_peek_offset_fwd(struct sock *sk, int val)
413 {
414 if (sk->sk_peek_off >= 0)
415 sk->sk_peek_off += val;
416 }
417
418 /*
419 * Hashed lists helper routines
420 */
421 static inline struct sock *sk_entry(const struct hlist_node *node)
422 {
423 return hlist_entry(node, struct sock, sk_node);
424 }
425
426 static inline struct sock *__sk_head(const struct hlist_head *head)
427 {
428 return hlist_entry(head->first, struct sock, sk_node);
429 }
430
431 static inline struct sock *sk_head(const struct hlist_head *head)
432 {
433 return hlist_empty(head) ? NULL : __sk_head(head);
434 }
435
436 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
437 {
438 return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
439 }
440
441 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
442 {
443 return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
444 }
445
446 static inline struct sock *sk_next(const struct sock *sk)
447 {
448 return sk->sk_node.next ?
449 hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL;
450 }
451
452 static inline struct sock *sk_nulls_next(const struct sock *sk)
453 {
454 return (!is_a_nulls(sk->sk_nulls_node.next)) ?
455 hlist_nulls_entry(sk->sk_nulls_node.next,
456 struct sock, sk_nulls_node) :
457 NULL;
458 }
459
460 static inline bool sk_unhashed(const struct sock *sk)
461 {
462 return hlist_unhashed(&sk->sk_node);
463 }
464
465 static inline bool sk_hashed(const struct sock *sk)
466 {
467 return !sk_unhashed(sk);
468 }
469
470 static inline void sk_node_init(struct hlist_node *node)
471 {
472 node->pprev = NULL;
473 }
474
475 static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
476 {
477 node->pprev = NULL;
478 }
479
480 static inline void __sk_del_node(struct sock *sk)
481 {
482 __hlist_del(&sk->sk_node);
483 }
484
485 /* NB: equivalent to hlist_del_init_rcu */
486 static inline bool __sk_del_node_init(struct sock *sk)
487 {
488 if (sk_hashed(sk)) {
489 __sk_del_node(sk);
490 sk_node_init(&sk->sk_node);
491 return true;
492 }
493 return false;
494 }
495
496 /* Grab socket reference count. This operation is valid only
497 when sk is ALREADY grabbed f.e. it is found in hash table
498 or a list and the lookup is made under lock preventing hash table
499 modifications.
500 */
501
502 static inline void sock_hold(struct sock *sk)
503 {
504 atomic_inc(&sk->sk_refcnt);
505 }
506
507 /* Ungrab socket in the context, which assumes that socket refcnt
508 cannot hit zero, f.e. it is true in context of any socketcall.
509 */
510 static inline void __sock_put(struct sock *sk)
511 {
512 atomic_dec(&sk->sk_refcnt);
513 }
514
515 static inline bool sk_del_node_init(struct sock *sk)
516 {
517 bool rc = __sk_del_node_init(sk);
518
519 if (rc) {
520 /* paranoid for a while -acme */
521 WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
522 __sock_put(sk);
523 }
524 return rc;
525 }
526 #define sk_del_node_init_rcu(sk) sk_del_node_init(sk)
527
528 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
529 {
530 if (sk_hashed(sk)) {
531 hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
532 return true;
533 }
534 return false;
535 }
536
537 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
538 {
539 bool rc = __sk_nulls_del_node_init_rcu(sk);
540
541 if (rc) {
542 /* paranoid for a while -acme */
543 WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
544 __sock_put(sk);
545 }
546 return rc;
547 }
548
549 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
550 {
551 hlist_add_head(&sk->sk_node, list);
552 }
553
554 static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
555 {
556 sock_hold(sk);
557 __sk_add_node(sk, list);
558 }
559
560 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
561 {
562 sock_hold(sk);
563 hlist_add_head_rcu(&sk->sk_node, list);
564 }
565
566 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
567 {
568 hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
569 }
570
571 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
572 {
573 sock_hold(sk);
574 __sk_nulls_add_node_rcu(sk, list);
575 }
576
577 static inline void __sk_del_bind_node(struct sock *sk)
578 {
579 __hlist_del(&sk->sk_bind_node);
580 }
581
582 static inline void sk_add_bind_node(struct sock *sk,
583 struct hlist_head *list)
584 {
585 hlist_add_head(&sk->sk_bind_node, list);
586 }
587
588 #define sk_for_each(__sk, node, list) \
589 hlist_for_each_entry(__sk, node, list, sk_node)
590 #define sk_for_each_rcu(__sk, node, list) \
591 hlist_for_each_entry_rcu(__sk, node, list, sk_node)
592 #define sk_nulls_for_each(__sk, node, list) \
593 hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
594 #define sk_nulls_for_each_rcu(__sk, node, list) \
595 hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
596 #define sk_for_each_from(__sk, node) \
597 if (__sk && ({ node = &(__sk)->sk_node; 1; })) \
598 hlist_for_each_entry_from(__sk, node, sk_node)
599 #define sk_nulls_for_each_from(__sk, node) \
600 if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
601 hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
602 #define sk_for_each_safe(__sk, node, tmp, list) \
603 hlist_for_each_entry_safe(__sk, node, tmp, list, sk_node)
604 #define sk_for_each_bound(__sk, node, list) \
605 hlist_for_each_entry(__sk, node, list, sk_bind_node)
606
607 static inline struct user_namespace *sk_user_ns(struct sock *sk)
608 {
609 /* Careful only use this in a context where these parameters
610 * can not change and must all be valid, such as recvmsg from
611 * userspace.
612 */
613 return sk->sk_socket->file->f_cred->user_ns;
614 }
615
616 /* Sock flags */
617 enum sock_flags {
618 SOCK_DEAD,
619 SOCK_DONE,
620 SOCK_URGINLINE,
621 SOCK_KEEPOPEN,
622 SOCK_LINGER,
623 SOCK_DESTROY,
624 SOCK_BROADCAST,
625 SOCK_TIMESTAMP,
626 SOCK_ZAPPED,
627 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
628 SOCK_DBG, /* %SO_DEBUG setting */
629 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
630 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
631 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
632 SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
633 SOCK_MEMALLOC, /* VM depends on this socket for swapping */
634 SOCK_TIMESTAMPING_TX_HARDWARE, /* %SOF_TIMESTAMPING_TX_HARDWARE */
635 SOCK_TIMESTAMPING_TX_SOFTWARE, /* %SOF_TIMESTAMPING_TX_SOFTWARE */
636 SOCK_TIMESTAMPING_RX_HARDWARE, /* %SOF_TIMESTAMPING_RX_HARDWARE */
637 SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */
638 SOCK_TIMESTAMPING_SOFTWARE, /* %SOF_TIMESTAMPING_SOFTWARE */
639 SOCK_TIMESTAMPING_RAW_HARDWARE, /* %SOF_TIMESTAMPING_RAW_HARDWARE */
640 SOCK_TIMESTAMPING_SYS_HARDWARE, /* %SOF_TIMESTAMPING_SYS_HARDWARE */
641 SOCK_FASYNC, /* fasync() active */
642 SOCK_RXQ_OVFL,
643 SOCK_ZEROCOPY, /* buffers from userspace */
644 SOCK_WIFI_STATUS, /* push wifi status to userspace */
645 SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
646 * Will use last 4 bytes of packet sent from
647 * user-space instead.
648 */
649 };
650
651 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
652 {
653 nsk->sk_flags = osk->sk_flags;
654 }
655
656 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
657 {
658 __set_bit(flag, &sk->sk_flags);
659 }
660
661 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
662 {
663 __clear_bit(flag, &sk->sk_flags);
664 }
665
666 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
667 {
668 return test_bit(flag, &sk->sk_flags);
669 }
670
671 #ifdef CONFIG_NET
672 extern struct static_key memalloc_socks;
673 static inline int sk_memalloc_socks(void)
674 {
675 return static_key_false(&memalloc_socks);
676 }
677 #else
678
679 static inline int sk_memalloc_socks(void)
680 {
681 return 0;
682 }
683
684 #endif
685
686 static inline gfp_t sk_gfp_atomic(struct sock *sk, gfp_t gfp_mask)
687 {
688 return GFP_ATOMIC | (sk->sk_allocation & __GFP_MEMALLOC);
689 }
690
691 static inline void sk_acceptq_removed(struct sock *sk)
692 {
693 sk->sk_ack_backlog--;
694 }
695
696 static inline void sk_acceptq_added(struct sock *sk)
697 {
698 sk->sk_ack_backlog++;
699 }
700
701 static inline bool sk_acceptq_is_full(const struct sock *sk)
702 {
703 return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
704 }
705
706 /*
707 * Compute minimal free write space needed to queue new packets.
708 */
709 static inline int sk_stream_min_wspace(const struct sock *sk)
710 {
711 return sk->sk_wmem_queued >> 1;
712 }
713
714 static inline int sk_stream_wspace(const struct sock *sk)
715 {
716 return sk->sk_sndbuf - sk->sk_wmem_queued;
717 }
718
719 extern void sk_stream_write_space(struct sock *sk);
720
721 static inline bool sk_stream_memory_free(const struct sock *sk)
722 {
723 return sk->sk_wmem_queued < sk->sk_sndbuf;
724 }
725
726 /* OOB backlog add */
727 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
728 {
729 /* dont let skb dst not refcounted, we are going to leave rcu lock */
730 skb_dst_force(skb);
731
732 if (!sk->sk_backlog.tail)
733 sk->sk_backlog.head = skb;
734 else
735 sk->sk_backlog.tail->next = skb;
736
737 sk->sk_backlog.tail = skb;
738 skb->next = NULL;
739 }
740
741 /*
742 * Take into account size of receive queue and backlog queue
743 * Do not take into account this skb truesize,
744 * to allow even a single big packet to come.
745 */
746 static inline bool sk_rcvqueues_full(const struct sock *sk, const struct sk_buff *skb,
747 unsigned int limit)
748 {
749 unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
750
751 return qsize > limit;
752 }
753
754 /* The per-socket spinlock must be held here. */
755 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
756 unsigned int limit)
757 {
758 if (sk_rcvqueues_full(sk, skb, limit))
759 return -ENOBUFS;
760
761 __sk_add_backlog(sk, skb);
762 sk->sk_backlog.len += skb->truesize;
763 return 0;
764 }
765
766 extern int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
767
768 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
769 {
770 if (sk_memalloc_socks() && skb_pfmemalloc(skb))
771 return __sk_backlog_rcv(sk, skb);
772
773 return sk->sk_backlog_rcv(sk, skb);
774 }
775
776 static inline void sock_rps_record_flow(const struct sock *sk)
777 {
778 #ifdef CONFIG_RPS
779 struct rps_sock_flow_table *sock_flow_table;
780
781 rcu_read_lock();
782 sock_flow_table = rcu_dereference(rps_sock_flow_table);
783 rps_record_sock_flow(sock_flow_table, sk->sk_rxhash);
784 rcu_read_unlock();
785 #endif
786 }
787
788 static inline void sock_rps_reset_flow(const struct sock *sk)
789 {
790 #ifdef CONFIG_RPS
791 struct rps_sock_flow_table *sock_flow_table;
792
793 rcu_read_lock();
794 sock_flow_table = rcu_dereference(rps_sock_flow_table);
795 rps_reset_sock_flow(sock_flow_table, sk->sk_rxhash);
796 rcu_read_unlock();
797 #endif
798 }
799
800 static inline void sock_rps_save_rxhash(struct sock *sk,
801 const struct sk_buff *skb)
802 {
803 #ifdef CONFIG_RPS
804 if (unlikely(sk->sk_rxhash != skb->rxhash)) {
805 sock_rps_reset_flow(sk);
806 sk->sk_rxhash = skb->rxhash;
807 }
808 #endif
809 }
810
811 static inline void sock_rps_reset_rxhash(struct sock *sk)
812 {
813 #ifdef CONFIG_RPS
814 sock_rps_reset_flow(sk);
815 sk->sk_rxhash = 0;
816 #endif
817 }
818
819 #define sk_wait_event(__sk, __timeo, __condition) \
820 ({ int __rc; \
821 release_sock(__sk); \
822 __rc = __condition; \
823 if (!__rc) { \
824 *(__timeo) = schedule_timeout(*(__timeo)); \
825 } \
826 lock_sock(__sk); \
827 __rc = __condition; \
828 __rc; \
829 })
830
831 extern int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
832 extern int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
833 extern void sk_stream_wait_close(struct sock *sk, long timeo_p);
834 extern int sk_stream_error(struct sock *sk, int flags, int err);
835 extern void sk_stream_kill_queues(struct sock *sk);
836 extern void sk_set_memalloc(struct sock *sk);
837 extern void sk_clear_memalloc(struct sock *sk);
838
839 extern int sk_wait_data(struct sock *sk, long *timeo);
840
841 struct request_sock_ops;
842 struct timewait_sock_ops;
843 struct inet_hashinfo;
844 struct raw_hashinfo;
845 struct module;
846
847 /* Networking protocol blocks we attach to sockets.
848 * socket layer -> transport layer interface
849 * transport -> network interface is defined by struct inet_proto
850 */
851 struct proto {
852 void (*close)(struct sock *sk,
853 long timeout);
854 int (*connect)(struct sock *sk,
855 struct sockaddr *uaddr,
856 int addr_len);
857 int (*disconnect)(struct sock *sk, int flags);
858
859 struct sock * (*accept)(struct sock *sk, int flags, int *err);
860
861 int (*ioctl)(struct sock *sk, int cmd,
862 unsigned long arg);
863 int (*init)(struct sock *sk);
864 void (*destroy)(struct sock *sk);
865 void (*shutdown)(struct sock *sk, int how);
866 int (*setsockopt)(struct sock *sk, int level,
867 int optname, char __user *optval,
868 unsigned int optlen);
869 int (*getsockopt)(struct sock *sk, int level,
870 int optname, char __user *optval,
871 int __user *option);
872 #ifdef CONFIG_COMPAT
873 int (*compat_setsockopt)(struct sock *sk,
874 int level,
875 int optname, char __user *optval,
876 unsigned int optlen);
877 int (*compat_getsockopt)(struct sock *sk,
878 int level,
879 int optname, char __user *optval,
880 int __user *option);
881 int (*compat_ioctl)(struct sock *sk,
882 unsigned int cmd, unsigned long arg);
883 #endif
884 int (*sendmsg)(struct kiocb *iocb, struct sock *sk,
885 struct msghdr *msg, size_t len);
886 int (*recvmsg)(struct kiocb *iocb, struct sock *sk,
887 struct msghdr *msg,
888 size_t len, int noblock, int flags,
889 int *addr_len);
890 int (*sendpage)(struct sock *sk, struct page *page,
891 int offset, size_t size, int flags);
892 int (*bind)(struct sock *sk,
893 struct sockaddr *uaddr, int addr_len);
894
895 int (*backlog_rcv) (struct sock *sk,
896 struct sk_buff *skb);
897
898 void (*release_cb)(struct sock *sk);
899 void (*mtu_reduced)(struct sock *sk);
900
901 /* Keeping track of sk's, looking them up, and port selection methods. */
902 void (*hash)(struct sock *sk);
903 void (*unhash)(struct sock *sk);
904 void (*rehash)(struct sock *sk);
905 int (*get_port)(struct sock *sk, unsigned short snum);
906 void (*clear_sk)(struct sock *sk, int size);
907
908 /* Keeping track of sockets in use */
909 #ifdef CONFIG_PROC_FS
910 unsigned int inuse_idx;
911 #endif
912
913 /* Memory pressure */
914 void (*enter_memory_pressure)(struct sock *sk);
915 atomic_long_t *memory_allocated; /* Current allocated memory. */
916 struct percpu_counter *sockets_allocated; /* Current number of sockets. */
917 /*
918 * Pressure flag: try to collapse.
919 * Technical note: it is used by multiple contexts non atomically.
920 * All the __sk_mem_schedule() is of this nature: accounting
921 * is strict, actions are advisory and have some latency.
922 */
923 int *memory_pressure;
924 long *sysctl_mem;
925 int *sysctl_wmem;
926 int *sysctl_rmem;
927 int max_header;
928 bool no_autobind;
929
930 struct kmem_cache *slab;
931 unsigned int obj_size;
932 int slab_flags;
933
934 struct percpu_counter *orphan_count;
935
936 struct request_sock_ops *rsk_prot;
937 struct timewait_sock_ops *twsk_prot;
938
939 union {
940 struct inet_hashinfo *hashinfo;
941 struct udp_table *udp_table;
942 struct raw_hashinfo *raw_hash;
943 } h;
944
945 struct module *owner;
946
947 char name[32];
948
949 struct list_head node;
950 #ifdef SOCK_REFCNT_DEBUG
951 atomic_t socks;
952 #endif
953 #ifdef CONFIG_MEMCG_KMEM
954 /*
955 * cgroup specific init/deinit functions. Called once for all
956 * protocols that implement it, from cgroups populate function.
957 * This function has to setup any files the protocol want to
958 * appear in the kmem cgroup filesystem.
959 */
960 int (*init_cgroup)(struct mem_cgroup *memcg,
961 struct cgroup_subsys *ss);
962 void (*destroy_cgroup)(struct mem_cgroup *memcg);
963 struct cg_proto *(*proto_cgroup)(struct mem_cgroup *memcg);
964 #endif
965 };
966
967 /*
968 * Bits in struct cg_proto.flags
969 */
970 enum cg_proto_flags {
971 /* Currently active and new sockets should be assigned to cgroups */
972 MEMCG_SOCK_ACTIVE,
973 /* It was ever activated; we must disarm static keys on destruction */
974 MEMCG_SOCK_ACTIVATED,
975 };
976
977 struct cg_proto {
978 void (*enter_memory_pressure)(struct sock *sk);
979 struct res_counter *memory_allocated; /* Current allocated memory. */
980 struct percpu_counter *sockets_allocated; /* Current number of sockets. */
981 int *memory_pressure;
982 long *sysctl_mem;
983 unsigned long flags;
984 /*
985 * memcg field is used to find which memcg we belong directly
986 * Each memcg struct can hold more than one cg_proto, so container_of
987 * won't really cut.
988 *
989 * The elegant solution would be having an inverse function to
990 * proto_cgroup in struct proto, but that means polluting the structure
991 * for everybody, instead of just for memcg users.
992 */
993 struct mem_cgroup *memcg;
994 };
995
996 extern int proto_register(struct proto *prot, int alloc_slab);
997 extern void proto_unregister(struct proto *prot);
998
999 static inline bool memcg_proto_active(struct cg_proto *cg_proto)
1000 {
1001 return test_bit(MEMCG_SOCK_ACTIVE, &cg_proto->flags);
1002 }
1003
1004 static inline bool memcg_proto_activated(struct cg_proto *cg_proto)
1005 {
1006 return test_bit(MEMCG_SOCK_ACTIVATED, &cg_proto->flags);
1007 }
1008
1009 #ifdef SOCK_REFCNT_DEBUG
1010 static inline void sk_refcnt_debug_inc(struct sock *sk)
1011 {
1012 atomic_inc(&sk->sk_prot->socks);
1013 }
1014
1015 static inline void sk_refcnt_debug_dec(struct sock *sk)
1016 {
1017 atomic_dec(&sk->sk_prot->socks);
1018 printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1019 sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1020 }
1021
1022 inline void sk_refcnt_debug_release(const struct sock *sk)
1023 {
1024 if (atomic_read(&sk->sk_refcnt) != 1)
1025 printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1026 sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt));
1027 }
1028 #else /* SOCK_REFCNT_DEBUG */
1029 #define sk_refcnt_debug_inc(sk) do { } while (0)
1030 #define sk_refcnt_debug_dec(sk) do { } while (0)
1031 #define sk_refcnt_debug_release(sk) do { } while (0)
1032 #endif /* SOCK_REFCNT_DEBUG */
1033
1034 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_NET)
1035 extern struct static_key memcg_socket_limit_enabled;
1036 static inline struct cg_proto *parent_cg_proto(struct proto *proto,
1037 struct cg_proto *cg_proto)
1038 {
1039 return proto->proto_cgroup(parent_mem_cgroup(cg_proto->memcg));
1040 }
1041 #define mem_cgroup_sockets_enabled static_key_false(&memcg_socket_limit_enabled)
1042 #else
1043 #define mem_cgroup_sockets_enabled 0
1044 static inline struct cg_proto *parent_cg_proto(struct proto *proto,
1045 struct cg_proto *cg_proto)
1046 {
1047 return NULL;
1048 }
1049 #endif
1050
1051
1052 static inline bool sk_has_memory_pressure(const struct sock *sk)
1053 {
1054 return sk->sk_prot->memory_pressure != NULL;
1055 }
1056
1057 static inline bool sk_under_memory_pressure(const struct sock *sk)
1058 {
1059 if (!sk->sk_prot->memory_pressure)
1060 return false;
1061
1062 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1063 return !!*sk->sk_cgrp->memory_pressure;
1064
1065 return !!*sk->sk_prot->memory_pressure;
1066 }
1067
1068 static inline void sk_leave_memory_pressure(struct sock *sk)
1069 {
1070 int *memory_pressure = sk->sk_prot->memory_pressure;
1071
1072 if (!memory_pressure)
1073 return;
1074
1075 if (*memory_pressure)
1076 *memory_pressure = 0;
1077
1078 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1079 struct cg_proto *cg_proto = sk->sk_cgrp;
1080 struct proto *prot = sk->sk_prot;
1081
1082 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1083 if (*cg_proto->memory_pressure)
1084 *cg_proto->memory_pressure = 0;
1085 }
1086
1087 }
1088
1089 static inline void sk_enter_memory_pressure(struct sock *sk)
1090 {
1091 if (!sk->sk_prot->enter_memory_pressure)
1092 return;
1093
1094 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1095 struct cg_proto *cg_proto = sk->sk_cgrp;
1096 struct proto *prot = sk->sk_prot;
1097
1098 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1099 cg_proto->enter_memory_pressure(sk);
1100 }
1101
1102 sk->sk_prot->enter_memory_pressure(sk);
1103 }
1104
1105 static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1106 {
1107 long *prot = sk->sk_prot->sysctl_mem;
1108 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1109 prot = sk->sk_cgrp->sysctl_mem;
1110 return prot[index];
1111 }
1112
1113 static inline void memcg_memory_allocated_add(struct cg_proto *prot,
1114 unsigned long amt,
1115 int *parent_status)
1116 {
1117 struct res_counter *fail;
1118 int ret;
1119
1120 ret = res_counter_charge_nofail(prot->memory_allocated,
1121 amt << PAGE_SHIFT, &fail);
1122 if (ret < 0)
1123 *parent_status = OVER_LIMIT;
1124 }
1125
1126 static inline void memcg_memory_allocated_sub(struct cg_proto *prot,
1127 unsigned long amt)
1128 {
1129 res_counter_uncharge(prot->memory_allocated, amt << PAGE_SHIFT);
1130 }
1131
1132 static inline u64 memcg_memory_allocated_read(struct cg_proto *prot)
1133 {
1134 u64 ret;
1135 ret = res_counter_read_u64(prot->memory_allocated, RES_USAGE);
1136 return ret >> PAGE_SHIFT;
1137 }
1138
1139 static inline long
1140 sk_memory_allocated(const struct sock *sk)
1141 {
1142 struct proto *prot = sk->sk_prot;
1143 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1144 return memcg_memory_allocated_read(sk->sk_cgrp);
1145
1146 return atomic_long_read(prot->memory_allocated);
1147 }
1148
1149 static inline long
1150 sk_memory_allocated_add(struct sock *sk, int amt, int *parent_status)
1151 {
1152 struct proto *prot = sk->sk_prot;
1153
1154 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1155 memcg_memory_allocated_add(sk->sk_cgrp, amt, parent_status);
1156 /* update the root cgroup regardless */
1157 atomic_long_add_return(amt, prot->memory_allocated);
1158 return memcg_memory_allocated_read(sk->sk_cgrp);
1159 }
1160
1161 return atomic_long_add_return(amt, prot->memory_allocated);
1162 }
1163
1164 static inline void
1165 sk_memory_allocated_sub(struct sock *sk, int amt)
1166 {
1167 struct proto *prot = sk->sk_prot;
1168
1169 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1170 memcg_memory_allocated_sub(sk->sk_cgrp, amt);
1171
1172 atomic_long_sub(amt, prot->memory_allocated);
1173 }
1174
1175 static inline void sk_sockets_allocated_dec(struct sock *sk)
1176 {
1177 struct proto *prot = sk->sk_prot;
1178
1179 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1180 struct cg_proto *cg_proto = sk->sk_cgrp;
1181
1182 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1183 percpu_counter_dec(cg_proto->sockets_allocated);
1184 }
1185
1186 percpu_counter_dec(prot->sockets_allocated);
1187 }
1188
1189 static inline void sk_sockets_allocated_inc(struct sock *sk)
1190 {
1191 struct proto *prot = sk->sk_prot;
1192
1193 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1194 struct cg_proto *cg_proto = sk->sk_cgrp;
1195
1196 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1197 percpu_counter_inc(cg_proto->sockets_allocated);
1198 }
1199
1200 percpu_counter_inc(prot->sockets_allocated);
1201 }
1202
1203 static inline int
1204 sk_sockets_allocated_read_positive(struct sock *sk)
1205 {
1206 struct proto *prot = sk->sk_prot;
1207
1208 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1209 return percpu_counter_read_positive(sk->sk_cgrp->sockets_allocated);
1210
1211 return percpu_counter_read_positive(prot->sockets_allocated);
1212 }
1213
1214 static inline int
1215 proto_sockets_allocated_sum_positive(struct proto *prot)
1216 {
1217 return percpu_counter_sum_positive(prot->sockets_allocated);
1218 }
1219
1220 static inline long
1221 proto_memory_allocated(struct proto *prot)
1222 {
1223 return atomic_long_read(prot->memory_allocated);
1224 }
1225
1226 static inline bool
1227 proto_memory_pressure(struct proto *prot)
1228 {
1229 if (!prot->memory_pressure)
1230 return false;
1231 return !!*prot->memory_pressure;
1232 }
1233
1234
1235 #ifdef CONFIG_PROC_FS
1236 /* Called with local bh disabled */
1237 extern void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
1238 extern int sock_prot_inuse_get(struct net *net, struct proto *proto);
1239 #else
1240 static inline void sock_prot_inuse_add(struct net *net, struct proto *prot,
1241 int inc)
1242 {
1243 }
1244 #endif
1245
1246
1247 /* With per-bucket locks this operation is not-atomic, so that
1248 * this version is not worse.
1249 */
1250 static inline void __sk_prot_rehash(struct sock *sk)
1251 {
1252 sk->sk_prot->unhash(sk);
1253 sk->sk_prot->hash(sk);
1254 }
1255
1256 void sk_prot_clear_portaddr_nulls(struct sock *sk, int size);
1257
1258 /* About 10 seconds */
1259 #define SOCK_DESTROY_TIME (10*HZ)
1260
1261 /* Sockets 0-1023 can't be bound to unless you are superuser */
1262 #define PROT_SOCK 1024
1263
1264 #define SHUTDOWN_MASK 3
1265 #define RCV_SHUTDOWN 1
1266 #define SEND_SHUTDOWN 2
1267
1268 #define SOCK_SNDBUF_LOCK 1
1269 #define SOCK_RCVBUF_LOCK 2
1270 #define SOCK_BINDADDR_LOCK 4
1271 #define SOCK_BINDPORT_LOCK 8
1272
1273 /* sock_iocb: used to kick off async processing of socket ios */
1274 struct sock_iocb {
1275 struct list_head list;
1276
1277 int flags;
1278 int size;
1279 struct socket *sock;
1280 struct sock *sk;
1281 struct scm_cookie *scm;
1282 struct msghdr *msg, async_msg;
1283 struct kiocb *kiocb;
1284 };
1285
1286 static inline struct sock_iocb *kiocb_to_siocb(struct kiocb *iocb)
1287 {
1288 return (struct sock_iocb *)iocb->private;
1289 }
1290
1291 static inline struct kiocb *siocb_to_kiocb(struct sock_iocb *si)
1292 {
1293 return si->kiocb;
1294 }
1295
1296 struct socket_alloc {
1297 struct socket socket;
1298 struct inode vfs_inode;
1299 };
1300
1301 static inline struct socket *SOCKET_I(struct inode *inode)
1302 {
1303 return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1304 }
1305
1306 static inline struct inode *SOCK_INODE(struct socket *socket)
1307 {
1308 return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1309 }
1310
1311 /*
1312 * Functions for memory accounting
1313 */
1314 extern int __sk_mem_schedule(struct sock *sk, int size, int kind);
1315 extern void __sk_mem_reclaim(struct sock *sk);
1316
1317 #define SK_MEM_QUANTUM ((int)PAGE_SIZE)
1318 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1319 #define SK_MEM_SEND 0
1320 #define SK_MEM_RECV 1
1321
1322 static inline int sk_mem_pages(int amt)
1323 {
1324 return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1325 }
1326
1327 static inline bool sk_has_account(struct sock *sk)
1328 {
1329 /* return true if protocol supports memory accounting */
1330 return !!sk->sk_prot->memory_allocated;
1331 }
1332
1333 static inline bool sk_wmem_schedule(struct sock *sk, int size)
1334 {
1335 if (!sk_has_account(sk))
1336 return true;
1337 return size <= sk->sk_forward_alloc ||
1338 __sk_mem_schedule(sk, size, SK_MEM_SEND);
1339 }
1340
1341 static inline bool
1342 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1343 {
1344 if (!sk_has_account(sk))
1345 return true;
1346 return size<= sk->sk_forward_alloc ||
1347 __sk_mem_schedule(sk, size, SK_MEM_RECV) ||
1348 skb_pfmemalloc(skb);
1349 }
1350
1351 static inline void sk_mem_reclaim(struct sock *sk)
1352 {
1353 if (!sk_has_account(sk))
1354 return;
1355 if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
1356 __sk_mem_reclaim(sk);
1357 }
1358
1359 static inline void sk_mem_reclaim_partial(struct sock *sk)
1360 {
1361 if (!sk_has_account(sk))
1362 return;
1363 if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
1364 __sk_mem_reclaim(sk);
1365 }
1366
1367 static inline void sk_mem_charge(struct sock *sk, int size)
1368 {
1369 if (!sk_has_account(sk))
1370 return;
1371 sk->sk_forward_alloc -= size;
1372 }
1373
1374 static inline void sk_mem_uncharge(struct sock *sk, int size)
1375 {
1376 if (!sk_has_account(sk))
1377 return;
1378 sk->sk_forward_alloc += size;
1379 }
1380
1381 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1382 {
1383 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1384 sk->sk_wmem_queued -= skb->truesize;
1385 sk_mem_uncharge(sk, skb->truesize);
1386 __kfree_skb(skb);
1387 }
1388
1389 /* Used by processes to "lock" a socket state, so that
1390 * interrupts and bottom half handlers won't change it
1391 * from under us. It essentially blocks any incoming
1392 * packets, so that we won't get any new data or any
1393 * packets that change the state of the socket.
1394 *
1395 * While locked, BH processing will add new packets to
1396 * the backlog queue. This queue is processed by the
1397 * owner of the socket lock right before it is released.
1398 *
1399 * Since ~2.3.5 it is also exclusive sleep lock serializing
1400 * accesses from user process context.
1401 */
1402 #define sock_owned_by_user(sk) ((sk)->sk_lock.owned)
1403
1404 /*
1405 * Macro so as to not evaluate some arguments when
1406 * lockdep is not enabled.
1407 *
1408 * Mark both the sk_lock and the sk_lock.slock as a
1409 * per-address-family lock class.
1410 */
1411 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) \
1412 do { \
1413 sk->sk_lock.owned = 0; \
1414 init_waitqueue_head(&sk->sk_lock.wq); \
1415 spin_lock_init(&(sk)->sk_lock.slock); \
1416 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \
1417 sizeof((sk)->sk_lock)); \
1418 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \
1419 (skey), (sname)); \
1420 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \
1421 } while (0)
1422
1423 extern void lock_sock_nested(struct sock *sk, int subclass);
1424
1425 static inline void lock_sock(struct sock *sk)
1426 {
1427 lock_sock_nested(sk, 0);
1428 }
1429
1430 extern void release_sock(struct sock *sk);
1431
1432 /* BH context may only use the following locking interface. */
1433 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock))
1434 #define bh_lock_sock_nested(__sk) \
1435 spin_lock_nested(&((__sk)->sk_lock.slock), \
1436 SINGLE_DEPTH_NESTING)
1437 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock))
1438
1439 extern bool lock_sock_fast(struct sock *sk);
1440 /**
1441 * unlock_sock_fast - complement of lock_sock_fast
1442 * @sk: socket
1443 * @slow: slow mode
1444 *
1445 * fast unlock socket for user context.
1446 * If slow mode is on, we call regular release_sock()
1447 */
1448 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1449 {
1450 if (slow)
1451 release_sock(sk);
1452 else
1453 spin_unlock_bh(&sk->sk_lock.slock);
1454 }
1455
1456
1457 extern struct sock *sk_alloc(struct net *net, int family,
1458 gfp_t priority,
1459 struct proto *prot);
1460 extern void sk_free(struct sock *sk);
1461 extern void sk_release_kernel(struct sock *sk);
1462 extern struct sock *sk_clone_lock(const struct sock *sk,
1463 const gfp_t priority);
1464
1465 extern struct sk_buff *sock_wmalloc(struct sock *sk,
1466 unsigned long size, int force,
1467 gfp_t priority);
1468 extern struct sk_buff *sock_rmalloc(struct sock *sk,
1469 unsigned long size, int force,
1470 gfp_t priority);
1471 extern void sock_wfree(struct sk_buff *skb);
1472 extern void sock_rfree(struct sk_buff *skb);
1473 extern void sock_edemux(struct sk_buff *skb);
1474
1475 extern int sock_setsockopt(struct socket *sock, int level,
1476 int op, char __user *optval,
1477 unsigned int optlen);
1478
1479 extern int sock_getsockopt(struct socket *sock, int level,
1480 int op, char __user *optval,
1481 int __user *optlen);
1482 extern struct sk_buff *sock_alloc_send_skb(struct sock *sk,
1483 unsigned long size,
1484 int noblock,
1485 int *errcode);
1486 extern struct sk_buff *sock_alloc_send_pskb(struct sock *sk,
1487 unsigned long header_len,
1488 unsigned long data_len,
1489 int noblock,
1490 int *errcode);
1491 extern void *sock_kmalloc(struct sock *sk, int size,
1492 gfp_t priority);
1493 extern void sock_kfree_s(struct sock *sk, void *mem, int size);
1494 extern void sk_send_sigurg(struct sock *sk);
1495
1496 /*
1497 * Functions to fill in entries in struct proto_ops when a protocol
1498 * does not implement a particular function.
1499 */
1500 extern int sock_no_bind(struct socket *,
1501 struct sockaddr *, int);
1502 extern int sock_no_connect(struct socket *,
1503 struct sockaddr *, int, int);
1504 extern int sock_no_socketpair(struct socket *,
1505 struct socket *);
1506 extern int sock_no_accept(struct socket *,
1507 struct socket *, int);
1508 extern int sock_no_getname(struct socket *,
1509 struct sockaddr *, int *, int);
1510 extern unsigned int sock_no_poll(struct file *, struct socket *,
1511 struct poll_table_struct *);
1512 extern int sock_no_ioctl(struct socket *, unsigned int,
1513 unsigned long);
1514 extern int sock_no_listen(struct socket *, int);
1515 extern int sock_no_shutdown(struct socket *, int);
1516 extern int sock_no_getsockopt(struct socket *, int , int,
1517 char __user *, int __user *);
1518 extern int sock_no_setsockopt(struct socket *, int, int,
1519 char __user *, unsigned int);
1520 extern int sock_no_sendmsg(struct kiocb *, struct socket *,
1521 struct msghdr *, size_t);
1522 extern int sock_no_recvmsg(struct kiocb *, struct socket *,
1523 struct msghdr *, size_t, int);
1524 extern int sock_no_mmap(struct file *file,
1525 struct socket *sock,
1526 struct vm_area_struct *vma);
1527 extern ssize_t sock_no_sendpage(struct socket *sock,
1528 struct page *page,
1529 int offset, size_t size,
1530 int flags);
1531
1532 /*
1533 * Functions to fill in entries in struct proto_ops when a protocol
1534 * uses the inet style.
1535 */
1536 extern int sock_common_getsockopt(struct socket *sock, int level, int optname,
1537 char __user *optval, int __user *optlen);
1538 extern int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
1539 struct msghdr *msg, size_t size, int flags);
1540 extern int sock_common_setsockopt(struct socket *sock, int level, int optname,
1541 char __user *optval, unsigned int optlen);
1542 extern int compat_sock_common_getsockopt(struct socket *sock, int level,
1543 int optname, char __user *optval, int __user *optlen);
1544 extern int compat_sock_common_setsockopt(struct socket *sock, int level,
1545 int optname, char __user *optval, unsigned int optlen);
1546
1547 extern void sk_common_release(struct sock *sk);
1548
1549 /*
1550 * Default socket callbacks and setup code
1551 */
1552
1553 /* Initialise core socket variables */
1554 extern void sock_init_data(struct socket *sock, struct sock *sk);
1555
1556 extern void sk_filter_release_rcu(struct rcu_head *rcu);
1557
1558 /**
1559 * sk_filter_release - release a socket filter
1560 * @fp: filter to remove
1561 *
1562 * Remove a filter from a socket and release its resources.
1563 */
1564
1565 static inline void sk_filter_release(struct sk_filter *fp)
1566 {
1567 if (atomic_dec_and_test(&fp->refcnt))
1568 call_rcu(&fp->rcu, sk_filter_release_rcu);
1569 }
1570
1571 static inline void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1572 {
1573 unsigned int size = sk_filter_len(fp);
1574
1575 atomic_sub(size, &sk->sk_omem_alloc);
1576 sk_filter_release(fp);
1577 }
1578
1579 static inline void sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1580 {
1581 atomic_inc(&fp->refcnt);
1582 atomic_add(sk_filter_len(fp), &sk->sk_omem_alloc);
1583 }
1584
1585 /*
1586 * Socket reference counting postulates.
1587 *
1588 * * Each user of socket SHOULD hold a reference count.
1589 * * Each access point to socket (an hash table bucket, reference from a list,
1590 * running timer, skb in flight MUST hold a reference count.
1591 * * When reference count hits 0, it means it will never increase back.
1592 * * When reference count hits 0, it means that no references from
1593 * outside exist to this socket and current process on current CPU
1594 * is last user and may/should destroy this socket.
1595 * * sk_free is called from any context: process, BH, IRQ. When
1596 * it is called, socket has no references from outside -> sk_free
1597 * may release descendant resources allocated by the socket, but
1598 * to the time when it is called, socket is NOT referenced by any
1599 * hash tables, lists etc.
1600 * * Packets, delivered from outside (from network or from another process)
1601 * and enqueued on receive/error queues SHOULD NOT grab reference count,
1602 * when they sit in queue. Otherwise, packets will leak to hole, when
1603 * socket is looked up by one cpu and unhasing is made by another CPU.
1604 * It is true for udp/raw, netlink (leak to receive and error queues), tcp
1605 * (leak to backlog). Packet socket does all the processing inside
1606 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1607 * use separate SMP lock, so that they are prone too.
1608 */
1609
1610 /* Ungrab socket and destroy it, if it was the last reference. */
1611 static inline void sock_put(struct sock *sk)
1612 {
1613 if (atomic_dec_and_test(&sk->sk_refcnt))
1614 sk_free(sk);
1615 }
1616
1617 extern int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1618 const int nested);
1619
1620 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1621 {
1622 sk->sk_tx_queue_mapping = tx_queue;
1623 }
1624
1625 static inline void sk_tx_queue_clear(struct sock *sk)
1626 {
1627 sk->sk_tx_queue_mapping = -1;
1628 }
1629
1630 static inline int sk_tx_queue_get(const struct sock *sk)
1631 {
1632 return sk ? sk->sk_tx_queue_mapping : -1;
1633 }
1634
1635 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1636 {
1637 sk_tx_queue_clear(sk);
1638 sk->sk_socket = sock;
1639 }
1640
1641 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1642 {
1643 BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1644 return &rcu_dereference_raw(sk->sk_wq)->wait;
1645 }
1646 /* Detach socket from process context.
1647 * Announce socket dead, detach it from wait queue and inode.
1648 * Note that parent inode held reference count on this struct sock,
1649 * we do not release it in this function, because protocol
1650 * probably wants some additional cleanups or even continuing
1651 * to work with this socket (TCP).
1652 */
1653 static inline void sock_orphan(struct sock *sk)
1654 {
1655 write_lock_bh(&sk->sk_callback_lock);
1656 sock_set_flag(sk, SOCK_DEAD);
1657 sk_set_socket(sk, NULL);
1658 sk->sk_wq = NULL;
1659 write_unlock_bh(&sk->sk_callback_lock);
1660 }
1661
1662 static inline void sock_graft(struct sock *sk, struct socket *parent)
1663 {
1664 write_lock_bh(&sk->sk_callback_lock);
1665 sk->sk_wq = parent->wq;
1666 parent->sk = sk;
1667 sk_set_socket(sk, parent);
1668 security_sock_graft(sk, parent);
1669 write_unlock_bh(&sk->sk_callback_lock);
1670 }
1671
1672 extern kuid_t sock_i_uid(struct sock *sk);
1673 extern unsigned long sock_i_ino(struct sock *sk);
1674
1675 static inline struct dst_entry *
1676 __sk_dst_get(struct sock *sk)
1677 {
1678 return rcu_dereference_check(sk->sk_dst_cache, sock_owned_by_user(sk) ||
1679 lockdep_is_held(&sk->sk_lock.slock));
1680 }
1681
1682 static inline struct dst_entry *
1683 sk_dst_get(struct sock *sk)
1684 {
1685 struct dst_entry *dst;
1686
1687 rcu_read_lock();
1688 dst = rcu_dereference(sk->sk_dst_cache);
1689 if (dst)
1690 dst_hold(dst);
1691 rcu_read_unlock();
1692 return dst;
1693 }
1694
1695 extern void sk_reset_txq(struct sock *sk);
1696
1697 static inline void dst_negative_advice(struct sock *sk)
1698 {
1699 struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1700
1701 if (dst && dst->ops->negative_advice) {
1702 ndst = dst->ops->negative_advice(dst);
1703
1704 if (ndst != dst) {
1705 rcu_assign_pointer(sk->sk_dst_cache, ndst);
1706 sk_reset_txq(sk);
1707 }
1708 }
1709 }
1710
1711 static inline void
1712 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
1713 {
1714 struct dst_entry *old_dst;
1715
1716 sk_tx_queue_clear(sk);
1717 /*
1718 * This can be called while sk is owned by the caller only,
1719 * with no state that can be checked in a rcu_dereference_check() cond
1720 */
1721 old_dst = rcu_dereference_raw(sk->sk_dst_cache);
1722 rcu_assign_pointer(sk->sk_dst_cache, dst);
1723 dst_release(old_dst);
1724 }
1725
1726 static inline void
1727 sk_dst_set(struct sock *sk, struct dst_entry *dst)
1728 {
1729 spin_lock(&sk->sk_dst_lock);
1730 __sk_dst_set(sk, dst);
1731 spin_unlock(&sk->sk_dst_lock);
1732 }
1733
1734 static inline void
1735 __sk_dst_reset(struct sock *sk)
1736 {
1737 __sk_dst_set(sk, NULL);
1738 }
1739
1740 static inline void
1741 sk_dst_reset(struct sock *sk)
1742 {
1743 spin_lock(&sk->sk_dst_lock);
1744 __sk_dst_reset(sk);
1745 spin_unlock(&sk->sk_dst_lock);
1746 }
1747
1748 extern struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1749
1750 extern struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1751
1752 static inline bool sk_can_gso(const struct sock *sk)
1753 {
1754 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1755 }
1756
1757 extern void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
1758
1759 static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
1760 {
1761 sk->sk_route_nocaps |= flags;
1762 sk->sk_route_caps &= ~flags;
1763 }
1764
1765 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
1766 char __user *from, char *to,
1767 int copy, int offset)
1768 {
1769 if (skb->ip_summed == CHECKSUM_NONE) {
1770 int err = 0;
1771 __wsum csum = csum_and_copy_from_user(from, to, copy, 0, &err);
1772 if (err)
1773 return err;
1774 skb->csum = csum_block_add(skb->csum, csum, offset);
1775 } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1776 if (!access_ok(VERIFY_READ, from, copy) ||
1777 __copy_from_user_nocache(to, from, copy))
1778 return -EFAULT;
1779 } else if (copy_from_user(to, from, copy))
1780 return -EFAULT;
1781
1782 return 0;
1783 }
1784
1785 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
1786 char __user *from, int copy)
1787 {
1788 int err, offset = skb->len;
1789
1790 err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
1791 copy, offset);
1792 if (err)
1793 __skb_trim(skb, offset);
1794
1795 return err;
1796 }
1797
1798 static inline int skb_copy_to_page_nocache(struct sock *sk, char __user *from,
1799 struct sk_buff *skb,
1800 struct page *page,
1801 int off, int copy)
1802 {
1803 int err;
1804
1805 err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
1806 copy, skb->len);
1807 if (err)
1808 return err;
1809
1810 skb->len += copy;
1811 skb->data_len += copy;
1812 skb->truesize += copy;
1813 sk->sk_wmem_queued += copy;
1814 sk_mem_charge(sk, copy);
1815 return 0;
1816 }
1817
1818 static inline int skb_copy_to_page(struct sock *sk, char __user *from,
1819 struct sk_buff *skb, struct page *page,
1820 int off, int copy)
1821 {
1822 if (skb->ip_summed == CHECKSUM_NONE) {
1823 int err = 0;
1824 __wsum csum = csum_and_copy_from_user(from,
1825 page_address(page) + off,
1826 copy, 0, &err);
1827 if (err)
1828 return err;
1829 skb->csum = csum_block_add(skb->csum, csum, skb->len);
1830 } else if (copy_from_user(page_address(page) + off, from, copy))
1831 return -EFAULT;
1832
1833 skb->len += copy;
1834 skb->data_len += copy;
1835 skb->truesize += copy;
1836 sk->sk_wmem_queued += copy;
1837 sk_mem_charge(sk, copy);
1838 return 0;
1839 }
1840
1841 /**
1842 * sk_wmem_alloc_get - returns write allocations
1843 * @sk: socket
1844 *
1845 * Returns sk_wmem_alloc minus initial offset of one
1846 */
1847 static inline int sk_wmem_alloc_get(const struct sock *sk)
1848 {
1849 return atomic_read(&sk->sk_wmem_alloc) - 1;
1850 }
1851
1852 /**
1853 * sk_rmem_alloc_get - returns read allocations
1854 * @sk: socket
1855 *
1856 * Returns sk_rmem_alloc
1857 */
1858 static inline int sk_rmem_alloc_get(const struct sock *sk)
1859 {
1860 return atomic_read(&sk->sk_rmem_alloc);
1861 }
1862
1863 /**
1864 * sk_has_allocations - check if allocations are outstanding
1865 * @sk: socket
1866 *
1867 * Returns true if socket has write or read allocations
1868 */
1869 static inline bool sk_has_allocations(const struct sock *sk)
1870 {
1871 return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
1872 }
1873
1874 /**
1875 * wq_has_sleeper - check if there are any waiting processes
1876 * @wq: struct socket_wq
1877 *
1878 * Returns true if socket_wq has waiting processes
1879 *
1880 * The purpose of the wq_has_sleeper and sock_poll_wait is to wrap the memory
1881 * barrier call. They were added due to the race found within the tcp code.
1882 *
1883 * Consider following tcp code paths:
1884 *
1885 * CPU1 CPU2
1886 *
1887 * sys_select receive packet
1888 * ... ...
1889 * __add_wait_queue update tp->rcv_nxt
1890 * ... ...
1891 * tp->rcv_nxt check sock_def_readable
1892 * ... {
1893 * schedule rcu_read_lock();
1894 * wq = rcu_dereference(sk->sk_wq);
1895 * if (wq && waitqueue_active(&wq->wait))
1896 * wake_up_interruptible(&wq->wait)
1897 * ...
1898 * }
1899 *
1900 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
1901 * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1
1902 * could then endup calling schedule and sleep forever if there are no more
1903 * data on the socket.
1904 *
1905 */
1906 static inline bool wq_has_sleeper(struct socket_wq *wq)
1907 {
1908 /* We need to be sure we are in sync with the
1909 * add_wait_queue modifications to the wait queue.
1910 *
1911 * This memory barrier is paired in the sock_poll_wait.
1912 */
1913 smp_mb();
1914 return wq && waitqueue_active(&wq->wait);
1915 }
1916
1917 /**
1918 * sock_poll_wait - place memory barrier behind the poll_wait call.
1919 * @filp: file
1920 * @wait_address: socket wait queue
1921 * @p: poll_table
1922 *
1923 * See the comments in the wq_has_sleeper function.
1924 */
1925 static inline void sock_poll_wait(struct file *filp,
1926 wait_queue_head_t *wait_address, poll_table *p)
1927 {
1928 if (!poll_does_not_wait(p) && wait_address) {
1929 poll_wait(filp, wait_address, p);
1930 /* We need to be sure we are in sync with the
1931 * socket flags modification.
1932 *
1933 * This memory barrier is paired in the wq_has_sleeper.
1934 */
1935 smp_mb();
1936 }
1937 }
1938
1939 /*
1940 * Queue a received datagram if it will fit. Stream and sequenced
1941 * protocols can't normally use this as they need to fit buffers in
1942 * and play with them.
1943 *
1944 * Inlined as it's very short and called for pretty much every
1945 * packet ever received.
1946 */
1947
1948 static inline void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
1949 {
1950 skb_orphan(skb);
1951 skb->sk = sk;
1952 skb->destructor = sock_wfree;
1953 /*
1954 * We used to take a refcount on sk, but following operation
1955 * is enough to guarantee sk_free() wont free this sock until
1956 * all in-flight packets are completed
1957 */
1958 atomic_add(skb->truesize, &sk->sk_wmem_alloc);
1959 }
1960
1961 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
1962 {
1963 skb_orphan(skb);
1964 skb->sk = sk;
1965 skb->destructor = sock_rfree;
1966 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
1967 sk_mem_charge(sk, skb->truesize);
1968 }
1969
1970 extern void sk_reset_timer(struct sock *sk, struct timer_list *timer,
1971 unsigned long expires);
1972
1973 extern void sk_stop_timer(struct sock *sk, struct timer_list *timer);
1974
1975 extern int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
1976
1977 extern int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
1978
1979 /*
1980 * Recover an error report and clear atomically
1981 */
1982
1983 static inline int sock_error(struct sock *sk)
1984 {
1985 int err;
1986 if (likely(!sk->sk_err))
1987 return 0;
1988 err = xchg(&sk->sk_err, 0);
1989 return -err;
1990 }
1991
1992 static inline unsigned long sock_wspace(struct sock *sk)
1993 {
1994 int amt = 0;
1995
1996 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
1997 amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
1998 if (amt < 0)
1999 amt = 0;
2000 }
2001 return amt;
2002 }
2003
2004 static inline void sk_wake_async(struct sock *sk, int how, int band)
2005 {
2006 if (sock_flag(sk, SOCK_FASYNC))
2007 sock_wake_async(sk->sk_socket, how, band);
2008 }
2009
2010 #define SOCK_MIN_SNDBUF 2048
2011 /*
2012 * Since sk_rmem_alloc sums skb->truesize, even a small frame might need
2013 * sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak
2014 */
2015 #define SOCK_MIN_RCVBUF (2048 + sizeof(struct sk_buff))
2016
2017 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2018 {
2019 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
2020 sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2021 sk->sk_sndbuf = max(sk->sk_sndbuf, SOCK_MIN_SNDBUF);
2022 }
2023 }
2024
2025 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp);
2026
2027 /**
2028 * sk_page_frag - return an appropriate page_frag
2029 * @sk: socket
2030 *
2031 * If socket allocation mode allows current thread to sleep, it means its
2032 * safe to use the per task page_frag instead of the per socket one.
2033 */
2034 static inline struct page_frag *sk_page_frag(struct sock *sk)
2035 {
2036 if (sk->sk_allocation & __GFP_WAIT)
2037 return &current->task_frag;
2038
2039 return &sk->sk_frag;
2040 }
2041
2042 extern bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2043
2044 /*
2045 * Default write policy as shown to user space via poll/select/SIGIO
2046 */
2047 static inline bool sock_writeable(const struct sock *sk)
2048 {
2049 return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1);
2050 }
2051
2052 static inline gfp_t gfp_any(void)
2053 {
2054 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2055 }
2056
2057 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2058 {
2059 return noblock ? 0 : sk->sk_rcvtimeo;
2060 }
2061
2062 static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2063 {
2064 return noblock ? 0 : sk->sk_sndtimeo;
2065 }
2066
2067 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2068 {
2069 return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
2070 }
2071
2072 /* Alas, with timeout socket operations are not restartable.
2073 * Compare this to poll().
2074 */
2075 static inline int sock_intr_errno(long timeo)
2076 {
2077 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2078 }
2079
2080 extern void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2081 struct sk_buff *skb);
2082 extern void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2083 struct sk_buff *skb);
2084
2085 static inline void
2086 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2087 {
2088 ktime_t kt = skb->tstamp;
2089 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2090
2091 /*
2092 * generate control messages if
2093 * - receive time stamping in software requested (SOCK_RCVTSTAMP
2094 * or SOCK_TIMESTAMPING_RX_SOFTWARE)
2095 * - software time stamp available and wanted
2096 * (SOCK_TIMESTAMPING_SOFTWARE)
2097 * - hardware time stamps available and wanted
2098 * (SOCK_TIMESTAMPING_SYS_HARDWARE or
2099 * SOCK_TIMESTAMPING_RAW_HARDWARE)
2100 */
2101 if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2102 sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE) ||
2103 (kt.tv64 && sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) ||
2104 (hwtstamps->hwtstamp.tv64 &&
2105 sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE)) ||
2106 (hwtstamps->syststamp.tv64 &&
2107 sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE)))
2108 __sock_recv_timestamp(msg, sk, skb);
2109 else
2110 sk->sk_stamp = kt;
2111
2112 if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2113 __sock_recv_wifi_status(msg, sk, skb);
2114 }
2115
2116 extern void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2117 struct sk_buff *skb);
2118
2119 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2120 struct sk_buff *skb)
2121 {
2122 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL) | \
2123 (1UL << SOCK_RCVTSTAMP) | \
2124 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE) | \
2125 (1UL << SOCK_TIMESTAMPING_SOFTWARE) | \
2126 (1UL << SOCK_TIMESTAMPING_RAW_HARDWARE) | \
2127 (1UL << SOCK_TIMESTAMPING_SYS_HARDWARE))
2128
2129 if (sk->sk_flags & FLAGS_TS_OR_DROPS)
2130 __sock_recv_ts_and_drops(msg, sk, skb);
2131 else
2132 sk->sk_stamp = skb->tstamp;
2133 }
2134
2135 /**
2136 * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2137 * @sk: socket sending this packet
2138 * @tx_flags: filled with instructions for time stamping
2139 *
2140 * Currently only depends on SOCK_TIMESTAMPING* flags. Returns error code if
2141 * parameters are invalid.
2142 */
2143 extern int sock_tx_timestamp(struct sock *sk, __u8 *tx_flags);
2144
2145 /**
2146 * sk_eat_skb - Release a skb if it is no longer needed
2147 * @sk: socket to eat this skb from
2148 * @skb: socket buffer to eat
2149 * @copied_early: flag indicating whether DMA operations copied this data early
2150 *
2151 * This routine must be called with interrupts disabled or with the socket
2152 * locked so that the sk_buff queue operation is ok.
2153 */
2154 #ifdef CONFIG_NET_DMA
2155 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, bool copied_early)
2156 {
2157 __skb_unlink(skb, &sk->sk_receive_queue);
2158 if (!copied_early)
2159 __kfree_skb(skb);
2160 else
2161 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
2162 }
2163 #else
2164 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, bool copied_early)
2165 {
2166 __skb_unlink(skb, &sk->sk_receive_queue);
2167 __kfree_skb(skb);
2168 }
2169 #endif
2170
2171 static inline
2172 struct net *sock_net(const struct sock *sk)
2173 {
2174 return read_pnet(&sk->sk_net);
2175 }
2176
2177 static inline
2178 void sock_net_set(struct sock *sk, struct net *net)
2179 {
2180 write_pnet(&sk->sk_net, net);
2181 }
2182
2183 /*
2184 * Kernel sockets, f.e. rtnl or icmp_socket, are a part of a namespace.
2185 * They should not hold a reference to a namespace in order to allow
2186 * to stop it.
2187 * Sockets after sk_change_net should be released using sk_release_kernel
2188 */
2189 static inline void sk_change_net(struct sock *sk, struct net *net)
2190 {
2191 put_net(sock_net(sk));
2192 sock_net_set(sk, hold_net(net));
2193 }
2194
2195 static inline struct sock *skb_steal_sock(struct sk_buff *skb)
2196 {
2197 if (skb->sk) {
2198 struct sock *sk = skb->sk;
2199
2200 skb->destructor = NULL;
2201 skb->sk = NULL;
2202 return sk;
2203 }
2204 return NULL;
2205 }
2206
2207 extern void sock_enable_timestamp(struct sock *sk, int flag);
2208 extern int sock_get_timestamp(struct sock *, struct timeval __user *);
2209 extern int sock_get_timestampns(struct sock *, struct timespec __user *);
2210
2211 /*
2212 * Enable debug/info messages
2213 */
2214 extern int net_msg_warn;
2215 #define NETDEBUG(fmt, args...) \
2216 do { if (net_msg_warn) printk(fmt,##args); } while (0)
2217
2218 #define LIMIT_NETDEBUG(fmt, args...) \
2219 do { if (net_msg_warn && net_ratelimit()) printk(fmt,##args); } while(0)
2220
2221 extern __u32 sysctl_wmem_max;
2222 extern __u32 sysctl_rmem_max;
2223
2224 extern int sysctl_optmem_max;
2225
2226 extern __u32 sysctl_wmem_default;
2227 extern __u32 sysctl_rmem_default;
2228
2229 #endif /* _SOCK_H */