]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - include/net/sock.h
net: rfs: add hash collision detection
[mirror_ubuntu-artful-kernel.git] / include / net / sock.h
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Definitions for the AF_INET socket handler.
7 *
8 * Version: @(#)sock.h 1.0.4 05/13/93
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche <flla@stud.uni-sb.de>
14 *
15 * Fixes:
16 * Alan Cox : Volatiles in skbuff pointers. See
17 * skbuff comments. May be overdone,
18 * better to prove they can be removed
19 * than the reverse.
20 * Alan Cox : Added a zapped field for tcp to note
21 * a socket is reset and must stay shut up
22 * Alan Cox : New fields for options
23 * Pauline Middelink : identd support
24 * Alan Cox : Eliminate low level recv/recvfrom
25 * David S. Miller : New socket lookup architecture.
26 * Steve Whitehouse: Default routines for sock_ops
27 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made
28 * protinfo be just a void pointer, as the
29 * protocol specific parts were moved to
30 * respective headers and ipv4/v6, etc now
31 * use private slabcaches for its socks
32 * Pedro Hortas : New flags field for socket options
33 *
34 *
35 * This program is free software; you can redistribute it and/or
36 * modify it under the terms of the GNU General Public License
37 * as published by the Free Software Foundation; either version
38 * 2 of the License, or (at your option) any later version.
39 */
40 #ifndef _SOCK_H
41 #define _SOCK_H
42
43 #include <linux/hardirq.h>
44 #include <linux/kernel.h>
45 #include <linux/list.h>
46 #include <linux/list_nulls.h>
47 #include <linux/timer.h>
48 #include <linux/cache.h>
49 #include <linux/bitops.h>
50 #include <linux/lockdep.h>
51 #include <linux/netdevice.h>
52 #include <linux/skbuff.h> /* struct sk_buff */
53 #include <linux/mm.h>
54 #include <linux/security.h>
55 #include <linux/slab.h>
56 #include <linux/uaccess.h>
57 #include <linux/page_counter.h>
58 #include <linux/memcontrol.h>
59 #include <linux/static_key.h>
60 #include <linux/aio.h>
61 #include <linux/sched.h>
62
63 #include <linux/filter.h>
64 #include <linux/rculist_nulls.h>
65 #include <linux/poll.h>
66
67 #include <linux/atomic.h>
68 #include <net/dst.h>
69 #include <net/checksum.h>
70 #include <linux/net_tstamp.h>
71
72 struct cgroup;
73 struct cgroup_subsys;
74 #ifdef CONFIG_NET
75 int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss);
76 void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg);
77 #else
78 static inline
79 int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
80 {
81 return 0;
82 }
83 static inline
84 void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg)
85 {
86 }
87 #endif
88 /*
89 * This structure really needs to be cleaned up.
90 * Most of it is for TCP, and not used by any of
91 * the other protocols.
92 */
93
94 /* Define this to get the SOCK_DBG debugging facility. */
95 #define SOCK_DEBUGGING
96 #ifdef SOCK_DEBUGGING
97 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
98 printk(KERN_DEBUG msg); } while (0)
99 #else
100 /* Validate arguments and do nothing */
101 static inline __printf(2, 3)
102 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
103 {
104 }
105 #endif
106
107 /* This is the per-socket lock. The spinlock provides a synchronization
108 * between user contexts and software interrupt processing, whereas the
109 * mini-semaphore synchronizes multiple users amongst themselves.
110 */
111 typedef struct {
112 spinlock_t slock;
113 int owned;
114 wait_queue_head_t wq;
115 /*
116 * We express the mutex-alike socket_lock semantics
117 * to the lock validator by explicitly managing
118 * the slock as a lock variant (in addition to
119 * the slock itself):
120 */
121 #ifdef CONFIG_DEBUG_LOCK_ALLOC
122 struct lockdep_map dep_map;
123 #endif
124 } socket_lock_t;
125
126 struct sock;
127 struct proto;
128 struct net;
129
130 typedef __u32 __bitwise __portpair;
131 typedef __u64 __bitwise __addrpair;
132
133 /**
134 * struct sock_common - minimal network layer representation of sockets
135 * @skc_daddr: Foreign IPv4 addr
136 * @skc_rcv_saddr: Bound local IPv4 addr
137 * @skc_hash: hash value used with various protocol lookup tables
138 * @skc_u16hashes: two u16 hash values used by UDP lookup tables
139 * @skc_dport: placeholder for inet_dport/tw_dport
140 * @skc_num: placeholder for inet_num/tw_num
141 * @skc_family: network address family
142 * @skc_state: Connection state
143 * @skc_reuse: %SO_REUSEADDR setting
144 * @skc_reuseport: %SO_REUSEPORT setting
145 * @skc_bound_dev_if: bound device index if != 0
146 * @skc_bind_node: bind hash linkage for various protocol lookup tables
147 * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
148 * @skc_prot: protocol handlers inside a network family
149 * @skc_net: reference to the network namespace of this socket
150 * @skc_node: main hash linkage for various protocol lookup tables
151 * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
152 * @skc_tx_queue_mapping: tx queue number for this connection
153 * @skc_refcnt: reference count
154 *
155 * This is the minimal network layer representation of sockets, the header
156 * for struct sock and struct inet_timewait_sock.
157 */
158 struct sock_common {
159 /* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned
160 * address on 64bit arches : cf INET_MATCH()
161 */
162 union {
163 __addrpair skc_addrpair;
164 struct {
165 __be32 skc_daddr;
166 __be32 skc_rcv_saddr;
167 };
168 };
169 union {
170 unsigned int skc_hash;
171 __u16 skc_u16hashes[2];
172 };
173 /* skc_dport && skc_num must be grouped as well */
174 union {
175 __portpair skc_portpair;
176 struct {
177 __be16 skc_dport;
178 __u16 skc_num;
179 };
180 };
181
182 unsigned short skc_family;
183 volatile unsigned char skc_state;
184 unsigned char skc_reuse:4;
185 unsigned char skc_reuseport:1;
186 unsigned char skc_ipv6only:1;
187 int skc_bound_dev_if;
188 union {
189 struct hlist_node skc_bind_node;
190 struct hlist_nulls_node skc_portaddr_node;
191 };
192 struct proto *skc_prot;
193 #ifdef CONFIG_NET_NS
194 struct net *skc_net;
195 #endif
196
197 #if IS_ENABLED(CONFIG_IPV6)
198 struct in6_addr skc_v6_daddr;
199 struct in6_addr skc_v6_rcv_saddr;
200 #endif
201
202 /*
203 * fields between dontcopy_begin/dontcopy_end
204 * are not copied in sock_copy()
205 */
206 /* private: */
207 int skc_dontcopy_begin[0];
208 /* public: */
209 union {
210 struct hlist_node skc_node;
211 struct hlist_nulls_node skc_nulls_node;
212 };
213 int skc_tx_queue_mapping;
214 atomic_t skc_refcnt;
215 /* private: */
216 int skc_dontcopy_end[0];
217 /* public: */
218 };
219
220 struct cg_proto;
221 /**
222 * struct sock - network layer representation of sockets
223 * @__sk_common: shared layout with inet_timewait_sock
224 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
225 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
226 * @sk_lock: synchronizer
227 * @sk_rcvbuf: size of receive buffer in bytes
228 * @sk_wq: sock wait queue and async head
229 * @sk_rx_dst: receive input route used by early demux
230 * @sk_dst_cache: destination cache
231 * @sk_dst_lock: destination cache lock
232 * @sk_policy: flow policy
233 * @sk_receive_queue: incoming packets
234 * @sk_wmem_alloc: transmit queue bytes committed
235 * @sk_write_queue: Packet sending queue
236 * @sk_omem_alloc: "o" is "option" or "other"
237 * @sk_wmem_queued: persistent queue size
238 * @sk_forward_alloc: space allocated forward
239 * @sk_napi_id: id of the last napi context to receive data for sk
240 * @sk_ll_usec: usecs to busypoll when there is no data
241 * @sk_allocation: allocation mode
242 * @sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
243 * @sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
244 * @sk_sndbuf: size of send buffer in bytes
245 * @sk_flags: %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
246 * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
247 * @sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
248 * @sk_no_check_rx: allow zero checksum in RX packets
249 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
250 * @sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
251 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
252 * @sk_gso_max_size: Maximum GSO segment size to build
253 * @sk_gso_max_segs: Maximum number of GSO segments
254 * @sk_lingertime: %SO_LINGER l_linger setting
255 * @sk_backlog: always used with the per-socket spinlock held
256 * @sk_callback_lock: used with the callbacks in the end of this struct
257 * @sk_error_queue: rarely used
258 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
259 * IPV6_ADDRFORM for instance)
260 * @sk_err: last error
261 * @sk_err_soft: errors that don't cause failure but are the cause of a
262 * persistent failure not just 'timed out'
263 * @sk_drops: raw/udp drops counter
264 * @sk_ack_backlog: current listen backlog
265 * @sk_max_ack_backlog: listen backlog set in listen()
266 * @sk_priority: %SO_PRIORITY setting
267 * @sk_cgrp_prioidx: socket group's priority map index
268 * @sk_type: socket type (%SOCK_STREAM, etc)
269 * @sk_protocol: which protocol this socket belongs in this network family
270 * @sk_peer_pid: &struct pid for this socket's peer
271 * @sk_peer_cred: %SO_PEERCRED setting
272 * @sk_rcvlowat: %SO_RCVLOWAT setting
273 * @sk_rcvtimeo: %SO_RCVTIMEO setting
274 * @sk_sndtimeo: %SO_SNDTIMEO setting
275 * @sk_rxhash: flow hash received from netif layer
276 * @sk_incoming_cpu: record cpu processing incoming packets
277 * @sk_txhash: computed flow hash for use on transmit
278 * @sk_filter: socket filtering instructions
279 * @sk_protinfo: private area, net family specific, when not using slab
280 * @sk_timer: sock cleanup timer
281 * @sk_stamp: time stamp of last packet received
282 * @sk_tsflags: SO_TIMESTAMPING socket options
283 * @sk_tskey: counter to disambiguate concurrent tstamp requests
284 * @sk_socket: Identd and reporting IO signals
285 * @sk_user_data: RPC layer private data
286 * @sk_frag: cached page frag
287 * @sk_peek_off: current peek_offset value
288 * @sk_send_head: front of stuff to transmit
289 * @sk_security: used by security modules
290 * @sk_mark: generic packet mark
291 * @sk_classid: this socket's cgroup classid
292 * @sk_cgrp: this socket's cgroup-specific proto data
293 * @sk_write_pending: a write to stream socket waits to start
294 * @sk_state_change: callback to indicate change in the state of the sock
295 * @sk_data_ready: callback to indicate there is data to be processed
296 * @sk_write_space: callback to indicate there is bf sending space available
297 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
298 * @sk_backlog_rcv: callback to process the backlog
299 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
300 */
301 struct sock {
302 /*
303 * Now struct inet_timewait_sock also uses sock_common, so please just
304 * don't add nothing before this first member (__sk_common) --acme
305 */
306 struct sock_common __sk_common;
307 #define sk_node __sk_common.skc_node
308 #define sk_nulls_node __sk_common.skc_nulls_node
309 #define sk_refcnt __sk_common.skc_refcnt
310 #define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping
311
312 #define sk_dontcopy_begin __sk_common.skc_dontcopy_begin
313 #define sk_dontcopy_end __sk_common.skc_dontcopy_end
314 #define sk_hash __sk_common.skc_hash
315 #define sk_portpair __sk_common.skc_portpair
316 #define sk_num __sk_common.skc_num
317 #define sk_dport __sk_common.skc_dport
318 #define sk_addrpair __sk_common.skc_addrpair
319 #define sk_daddr __sk_common.skc_daddr
320 #define sk_rcv_saddr __sk_common.skc_rcv_saddr
321 #define sk_family __sk_common.skc_family
322 #define sk_state __sk_common.skc_state
323 #define sk_reuse __sk_common.skc_reuse
324 #define sk_reuseport __sk_common.skc_reuseport
325 #define sk_ipv6only __sk_common.skc_ipv6only
326 #define sk_bound_dev_if __sk_common.skc_bound_dev_if
327 #define sk_bind_node __sk_common.skc_bind_node
328 #define sk_prot __sk_common.skc_prot
329 #define sk_net __sk_common.skc_net
330 #define sk_v6_daddr __sk_common.skc_v6_daddr
331 #define sk_v6_rcv_saddr __sk_common.skc_v6_rcv_saddr
332
333 socket_lock_t sk_lock;
334 struct sk_buff_head sk_receive_queue;
335 /*
336 * The backlog queue is special, it is always used with
337 * the per-socket spinlock held and requires low latency
338 * access. Therefore we special case it's implementation.
339 * Note : rmem_alloc is in this structure to fill a hole
340 * on 64bit arches, not because its logically part of
341 * backlog.
342 */
343 struct {
344 atomic_t rmem_alloc;
345 int len;
346 struct sk_buff *head;
347 struct sk_buff *tail;
348 } sk_backlog;
349 #define sk_rmem_alloc sk_backlog.rmem_alloc
350 int sk_forward_alloc;
351 #ifdef CONFIG_RPS
352 __u32 sk_rxhash;
353 #endif
354 u16 sk_incoming_cpu;
355 /* 16bit hole
356 * Warned : sk_incoming_cpu can be set from softirq,
357 * Do not use this hole without fully understanding possible issues.
358 */
359
360 __u32 sk_txhash;
361 #ifdef CONFIG_NET_RX_BUSY_POLL
362 unsigned int sk_napi_id;
363 unsigned int sk_ll_usec;
364 #endif
365 atomic_t sk_drops;
366 int sk_rcvbuf;
367
368 struct sk_filter __rcu *sk_filter;
369 struct socket_wq __rcu *sk_wq;
370
371 #ifdef CONFIG_XFRM
372 struct xfrm_policy *sk_policy[2];
373 #endif
374 unsigned long sk_flags;
375 struct dst_entry *sk_rx_dst;
376 struct dst_entry __rcu *sk_dst_cache;
377 spinlock_t sk_dst_lock;
378 atomic_t sk_wmem_alloc;
379 atomic_t sk_omem_alloc;
380 int sk_sndbuf;
381 struct sk_buff_head sk_write_queue;
382 kmemcheck_bitfield_begin(flags);
383 unsigned int sk_shutdown : 2,
384 sk_no_check_tx : 1,
385 sk_no_check_rx : 1,
386 sk_userlocks : 4,
387 sk_protocol : 8,
388 sk_type : 16;
389 kmemcheck_bitfield_end(flags);
390 int sk_wmem_queued;
391 gfp_t sk_allocation;
392 u32 sk_pacing_rate; /* bytes per second */
393 u32 sk_max_pacing_rate;
394 netdev_features_t sk_route_caps;
395 netdev_features_t sk_route_nocaps;
396 int sk_gso_type;
397 unsigned int sk_gso_max_size;
398 u16 sk_gso_max_segs;
399 int sk_rcvlowat;
400 unsigned long sk_lingertime;
401 struct sk_buff_head sk_error_queue;
402 struct proto *sk_prot_creator;
403 rwlock_t sk_callback_lock;
404 int sk_err,
405 sk_err_soft;
406 unsigned short sk_ack_backlog;
407 unsigned short sk_max_ack_backlog;
408 __u32 sk_priority;
409 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
410 __u32 sk_cgrp_prioidx;
411 #endif
412 struct pid *sk_peer_pid;
413 const struct cred *sk_peer_cred;
414 long sk_rcvtimeo;
415 long sk_sndtimeo;
416 void *sk_protinfo;
417 struct timer_list sk_timer;
418 ktime_t sk_stamp;
419 u16 sk_tsflags;
420 u32 sk_tskey;
421 struct socket *sk_socket;
422 void *sk_user_data;
423 struct page_frag sk_frag;
424 struct sk_buff *sk_send_head;
425 __s32 sk_peek_off;
426 int sk_write_pending;
427 #ifdef CONFIG_SECURITY
428 void *sk_security;
429 #endif
430 __u32 sk_mark;
431 u32 sk_classid;
432 struct cg_proto *sk_cgrp;
433 void (*sk_state_change)(struct sock *sk);
434 void (*sk_data_ready)(struct sock *sk);
435 void (*sk_write_space)(struct sock *sk);
436 void (*sk_error_report)(struct sock *sk);
437 int (*sk_backlog_rcv)(struct sock *sk,
438 struct sk_buff *skb);
439 void (*sk_destruct)(struct sock *sk);
440 };
441
442 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
443
444 #define rcu_dereference_sk_user_data(sk) rcu_dereference(__sk_user_data((sk)))
445 #define rcu_assign_sk_user_data(sk, ptr) rcu_assign_pointer(__sk_user_data((sk)), ptr)
446
447 /*
448 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
449 * or not whether his port will be reused by someone else. SK_FORCE_REUSE
450 * on a socket means that the socket will reuse everybody else's port
451 * without looking at the other's sk_reuse value.
452 */
453
454 #define SK_NO_REUSE 0
455 #define SK_CAN_REUSE 1
456 #define SK_FORCE_REUSE 2
457
458 static inline int sk_peek_offset(struct sock *sk, int flags)
459 {
460 if ((flags & MSG_PEEK) && (sk->sk_peek_off >= 0))
461 return sk->sk_peek_off;
462 else
463 return 0;
464 }
465
466 static inline void sk_peek_offset_bwd(struct sock *sk, int val)
467 {
468 if (sk->sk_peek_off >= 0) {
469 if (sk->sk_peek_off >= val)
470 sk->sk_peek_off -= val;
471 else
472 sk->sk_peek_off = 0;
473 }
474 }
475
476 static inline void sk_peek_offset_fwd(struct sock *sk, int val)
477 {
478 if (sk->sk_peek_off >= 0)
479 sk->sk_peek_off += val;
480 }
481
482 /*
483 * Hashed lists helper routines
484 */
485 static inline struct sock *sk_entry(const struct hlist_node *node)
486 {
487 return hlist_entry(node, struct sock, sk_node);
488 }
489
490 static inline struct sock *__sk_head(const struct hlist_head *head)
491 {
492 return hlist_entry(head->first, struct sock, sk_node);
493 }
494
495 static inline struct sock *sk_head(const struct hlist_head *head)
496 {
497 return hlist_empty(head) ? NULL : __sk_head(head);
498 }
499
500 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
501 {
502 return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
503 }
504
505 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
506 {
507 return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
508 }
509
510 static inline struct sock *sk_next(const struct sock *sk)
511 {
512 return sk->sk_node.next ?
513 hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL;
514 }
515
516 static inline struct sock *sk_nulls_next(const struct sock *sk)
517 {
518 return (!is_a_nulls(sk->sk_nulls_node.next)) ?
519 hlist_nulls_entry(sk->sk_nulls_node.next,
520 struct sock, sk_nulls_node) :
521 NULL;
522 }
523
524 static inline bool sk_unhashed(const struct sock *sk)
525 {
526 return hlist_unhashed(&sk->sk_node);
527 }
528
529 static inline bool sk_hashed(const struct sock *sk)
530 {
531 return !sk_unhashed(sk);
532 }
533
534 static inline void sk_node_init(struct hlist_node *node)
535 {
536 node->pprev = NULL;
537 }
538
539 static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
540 {
541 node->pprev = NULL;
542 }
543
544 static inline void __sk_del_node(struct sock *sk)
545 {
546 __hlist_del(&sk->sk_node);
547 }
548
549 /* NB: equivalent to hlist_del_init_rcu */
550 static inline bool __sk_del_node_init(struct sock *sk)
551 {
552 if (sk_hashed(sk)) {
553 __sk_del_node(sk);
554 sk_node_init(&sk->sk_node);
555 return true;
556 }
557 return false;
558 }
559
560 /* Grab socket reference count. This operation is valid only
561 when sk is ALREADY grabbed f.e. it is found in hash table
562 or a list and the lookup is made under lock preventing hash table
563 modifications.
564 */
565
566 static inline void sock_hold(struct sock *sk)
567 {
568 atomic_inc(&sk->sk_refcnt);
569 }
570
571 /* Ungrab socket in the context, which assumes that socket refcnt
572 cannot hit zero, f.e. it is true in context of any socketcall.
573 */
574 static inline void __sock_put(struct sock *sk)
575 {
576 atomic_dec(&sk->sk_refcnt);
577 }
578
579 static inline bool sk_del_node_init(struct sock *sk)
580 {
581 bool rc = __sk_del_node_init(sk);
582
583 if (rc) {
584 /* paranoid for a while -acme */
585 WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
586 __sock_put(sk);
587 }
588 return rc;
589 }
590 #define sk_del_node_init_rcu(sk) sk_del_node_init(sk)
591
592 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
593 {
594 if (sk_hashed(sk)) {
595 hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
596 return true;
597 }
598 return false;
599 }
600
601 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
602 {
603 bool rc = __sk_nulls_del_node_init_rcu(sk);
604
605 if (rc) {
606 /* paranoid for a while -acme */
607 WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
608 __sock_put(sk);
609 }
610 return rc;
611 }
612
613 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
614 {
615 hlist_add_head(&sk->sk_node, list);
616 }
617
618 static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
619 {
620 sock_hold(sk);
621 __sk_add_node(sk, list);
622 }
623
624 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
625 {
626 sock_hold(sk);
627 hlist_add_head_rcu(&sk->sk_node, list);
628 }
629
630 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
631 {
632 hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
633 }
634
635 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
636 {
637 sock_hold(sk);
638 __sk_nulls_add_node_rcu(sk, list);
639 }
640
641 static inline void __sk_del_bind_node(struct sock *sk)
642 {
643 __hlist_del(&sk->sk_bind_node);
644 }
645
646 static inline void sk_add_bind_node(struct sock *sk,
647 struct hlist_head *list)
648 {
649 hlist_add_head(&sk->sk_bind_node, list);
650 }
651
652 #define sk_for_each(__sk, list) \
653 hlist_for_each_entry(__sk, list, sk_node)
654 #define sk_for_each_rcu(__sk, list) \
655 hlist_for_each_entry_rcu(__sk, list, sk_node)
656 #define sk_nulls_for_each(__sk, node, list) \
657 hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
658 #define sk_nulls_for_each_rcu(__sk, node, list) \
659 hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
660 #define sk_for_each_from(__sk) \
661 hlist_for_each_entry_from(__sk, sk_node)
662 #define sk_nulls_for_each_from(__sk, node) \
663 if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
664 hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
665 #define sk_for_each_safe(__sk, tmp, list) \
666 hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
667 #define sk_for_each_bound(__sk, list) \
668 hlist_for_each_entry(__sk, list, sk_bind_node)
669
670 /**
671 * sk_nulls_for_each_entry_offset - iterate over a list at a given struct offset
672 * @tpos: the type * to use as a loop cursor.
673 * @pos: the &struct hlist_node to use as a loop cursor.
674 * @head: the head for your list.
675 * @offset: offset of hlist_node within the struct.
676 *
677 */
678 #define sk_nulls_for_each_entry_offset(tpos, pos, head, offset) \
679 for (pos = (head)->first; \
680 (!is_a_nulls(pos)) && \
681 ({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;}); \
682 pos = pos->next)
683
684 static inline struct user_namespace *sk_user_ns(struct sock *sk)
685 {
686 /* Careful only use this in a context where these parameters
687 * can not change and must all be valid, such as recvmsg from
688 * userspace.
689 */
690 return sk->sk_socket->file->f_cred->user_ns;
691 }
692
693 /* Sock flags */
694 enum sock_flags {
695 SOCK_DEAD,
696 SOCK_DONE,
697 SOCK_URGINLINE,
698 SOCK_KEEPOPEN,
699 SOCK_LINGER,
700 SOCK_DESTROY,
701 SOCK_BROADCAST,
702 SOCK_TIMESTAMP,
703 SOCK_ZAPPED,
704 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
705 SOCK_DBG, /* %SO_DEBUG setting */
706 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
707 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
708 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
709 SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
710 SOCK_MEMALLOC, /* VM depends on this socket for swapping */
711 SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */
712 SOCK_FASYNC, /* fasync() active */
713 SOCK_RXQ_OVFL,
714 SOCK_ZEROCOPY, /* buffers from userspace */
715 SOCK_WIFI_STATUS, /* push wifi status to userspace */
716 SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
717 * Will use last 4 bytes of packet sent from
718 * user-space instead.
719 */
720 SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
721 SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
722 };
723
724 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
725 {
726 nsk->sk_flags = osk->sk_flags;
727 }
728
729 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
730 {
731 __set_bit(flag, &sk->sk_flags);
732 }
733
734 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
735 {
736 __clear_bit(flag, &sk->sk_flags);
737 }
738
739 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
740 {
741 return test_bit(flag, &sk->sk_flags);
742 }
743
744 #ifdef CONFIG_NET
745 extern struct static_key memalloc_socks;
746 static inline int sk_memalloc_socks(void)
747 {
748 return static_key_false(&memalloc_socks);
749 }
750 #else
751
752 static inline int sk_memalloc_socks(void)
753 {
754 return 0;
755 }
756
757 #endif
758
759 static inline gfp_t sk_gfp_atomic(struct sock *sk, gfp_t gfp_mask)
760 {
761 return GFP_ATOMIC | (sk->sk_allocation & __GFP_MEMALLOC);
762 }
763
764 static inline void sk_acceptq_removed(struct sock *sk)
765 {
766 sk->sk_ack_backlog--;
767 }
768
769 static inline void sk_acceptq_added(struct sock *sk)
770 {
771 sk->sk_ack_backlog++;
772 }
773
774 static inline bool sk_acceptq_is_full(const struct sock *sk)
775 {
776 return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
777 }
778
779 /*
780 * Compute minimal free write space needed to queue new packets.
781 */
782 static inline int sk_stream_min_wspace(const struct sock *sk)
783 {
784 return sk->sk_wmem_queued >> 1;
785 }
786
787 static inline int sk_stream_wspace(const struct sock *sk)
788 {
789 return sk->sk_sndbuf - sk->sk_wmem_queued;
790 }
791
792 void sk_stream_write_space(struct sock *sk);
793
794 /* OOB backlog add */
795 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
796 {
797 /* dont let skb dst not refcounted, we are going to leave rcu lock */
798 skb_dst_force(skb);
799
800 if (!sk->sk_backlog.tail)
801 sk->sk_backlog.head = skb;
802 else
803 sk->sk_backlog.tail->next = skb;
804
805 sk->sk_backlog.tail = skb;
806 skb->next = NULL;
807 }
808
809 /*
810 * Take into account size of receive queue and backlog queue
811 * Do not take into account this skb truesize,
812 * to allow even a single big packet to come.
813 */
814 static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
815 {
816 unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
817
818 return qsize > limit;
819 }
820
821 /* The per-socket spinlock must be held here. */
822 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
823 unsigned int limit)
824 {
825 if (sk_rcvqueues_full(sk, limit))
826 return -ENOBUFS;
827
828 __sk_add_backlog(sk, skb);
829 sk->sk_backlog.len += skb->truesize;
830 return 0;
831 }
832
833 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
834
835 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
836 {
837 if (sk_memalloc_socks() && skb_pfmemalloc(skb))
838 return __sk_backlog_rcv(sk, skb);
839
840 return sk->sk_backlog_rcv(sk, skb);
841 }
842
843 static inline void sk_incoming_cpu_update(struct sock *sk)
844 {
845 sk->sk_incoming_cpu = raw_smp_processor_id();
846 }
847
848 static inline void sock_rps_record_flow_hash(__u32 hash)
849 {
850 #ifdef CONFIG_RPS
851 struct rps_sock_flow_table *sock_flow_table;
852
853 rcu_read_lock();
854 sock_flow_table = rcu_dereference(rps_sock_flow_table);
855 rps_record_sock_flow(sock_flow_table, hash);
856 rcu_read_unlock();
857 #endif
858 }
859
860 static inline void sock_rps_record_flow(const struct sock *sk)
861 {
862 #ifdef CONFIG_RPS
863 sock_rps_record_flow_hash(sk->sk_rxhash);
864 #endif
865 }
866
867 static inline void sock_rps_save_rxhash(struct sock *sk,
868 const struct sk_buff *skb)
869 {
870 #ifdef CONFIG_RPS
871 if (unlikely(sk->sk_rxhash != skb->hash))
872 sk->sk_rxhash = skb->hash;
873 #endif
874 }
875
876 static inline void sock_rps_reset_rxhash(struct sock *sk)
877 {
878 #ifdef CONFIG_RPS
879 sk->sk_rxhash = 0;
880 #endif
881 }
882
883 #define sk_wait_event(__sk, __timeo, __condition) \
884 ({ int __rc; \
885 release_sock(__sk); \
886 __rc = __condition; \
887 if (!__rc) { \
888 *(__timeo) = schedule_timeout(*(__timeo)); \
889 } \
890 sched_annotate_sleep(); \
891 lock_sock(__sk); \
892 __rc = __condition; \
893 __rc; \
894 })
895
896 int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
897 int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
898 void sk_stream_wait_close(struct sock *sk, long timeo_p);
899 int sk_stream_error(struct sock *sk, int flags, int err);
900 void sk_stream_kill_queues(struct sock *sk);
901 void sk_set_memalloc(struct sock *sk);
902 void sk_clear_memalloc(struct sock *sk);
903
904 int sk_wait_data(struct sock *sk, long *timeo);
905
906 struct request_sock_ops;
907 struct timewait_sock_ops;
908 struct inet_hashinfo;
909 struct raw_hashinfo;
910 struct module;
911
912 /*
913 * caches using SLAB_DESTROY_BY_RCU should let .next pointer from nulls nodes
914 * un-modified. Special care is taken when initializing object to zero.
915 */
916 static inline void sk_prot_clear_nulls(struct sock *sk, int size)
917 {
918 if (offsetof(struct sock, sk_node.next) != 0)
919 memset(sk, 0, offsetof(struct sock, sk_node.next));
920 memset(&sk->sk_node.pprev, 0,
921 size - offsetof(struct sock, sk_node.pprev));
922 }
923
924 /* Networking protocol blocks we attach to sockets.
925 * socket layer -> transport layer interface
926 * transport -> network interface is defined by struct inet_proto
927 */
928 struct proto {
929 void (*close)(struct sock *sk,
930 long timeout);
931 int (*connect)(struct sock *sk,
932 struct sockaddr *uaddr,
933 int addr_len);
934 int (*disconnect)(struct sock *sk, int flags);
935
936 struct sock * (*accept)(struct sock *sk, int flags, int *err);
937
938 int (*ioctl)(struct sock *sk, int cmd,
939 unsigned long arg);
940 int (*init)(struct sock *sk);
941 void (*destroy)(struct sock *sk);
942 void (*shutdown)(struct sock *sk, int how);
943 int (*setsockopt)(struct sock *sk, int level,
944 int optname, char __user *optval,
945 unsigned int optlen);
946 int (*getsockopt)(struct sock *sk, int level,
947 int optname, char __user *optval,
948 int __user *option);
949 #ifdef CONFIG_COMPAT
950 int (*compat_setsockopt)(struct sock *sk,
951 int level,
952 int optname, char __user *optval,
953 unsigned int optlen);
954 int (*compat_getsockopt)(struct sock *sk,
955 int level,
956 int optname, char __user *optval,
957 int __user *option);
958 int (*compat_ioctl)(struct sock *sk,
959 unsigned int cmd, unsigned long arg);
960 #endif
961 int (*sendmsg)(struct kiocb *iocb, struct sock *sk,
962 struct msghdr *msg, size_t len);
963 int (*recvmsg)(struct kiocb *iocb, struct sock *sk,
964 struct msghdr *msg,
965 size_t len, int noblock, int flags,
966 int *addr_len);
967 int (*sendpage)(struct sock *sk, struct page *page,
968 int offset, size_t size, int flags);
969 int (*bind)(struct sock *sk,
970 struct sockaddr *uaddr, int addr_len);
971
972 int (*backlog_rcv) (struct sock *sk,
973 struct sk_buff *skb);
974
975 void (*release_cb)(struct sock *sk);
976
977 /* Keeping track of sk's, looking them up, and port selection methods. */
978 void (*hash)(struct sock *sk);
979 void (*unhash)(struct sock *sk);
980 void (*rehash)(struct sock *sk);
981 int (*get_port)(struct sock *sk, unsigned short snum);
982 void (*clear_sk)(struct sock *sk, int size);
983
984 /* Keeping track of sockets in use */
985 #ifdef CONFIG_PROC_FS
986 unsigned int inuse_idx;
987 #endif
988
989 bool (*stream_memory_free)(const struct sock *sk);
990 /* Memory pressure */
991 void (*enter_memory_pressure)(struct sock *sk);
992 atomic_long_t *memory_allocated; /* Current allocated memory. */
993 struct percpu_counter *sockets_allocated; /* Current number of sockets. */
994 /*
995 * Pressure flag: try to collapse.
996 * Technical note: it is used by multiple contexts non atomically.
997 * All the __sk_mem_schedule() is of this nature: accounting
998 * is strict, actions are advisory and have some latency.
999 */
1000 int *memory_pressure;
1001 long *sysctl_mem;
1002 int *sysctl_wmem;
1003 int *sysctl_rmem;
1004 int max_header;
1005 bool no_autobind;
1006
1007 struct kmem_cache *slab;
1008 unsigned int obj_size;
1009 int slab_flags;
1010
1011 struct percpu_counter *orphan_count;
1012
1013 struct request_sock_ops *rsk_prot;
1014 struct timewait_sock_ops *twsk_prot;
1015
1016 union {
1017 struct inet_hashinfo *hashinfo;
1018 struct udp_table *udp_table;
1019 struct raw_hashinfo *raw_hash;
1020 } h;
1021
1022 struct module *owner;
1023
1024 char name[32];
1025
1026 struct list_head node;
1027 #ifdef SOCK_REFCNT_DEBUG
1028 atomic_t socks;
1029 #endif
1030 #ifdef CONFIG_MEMCG_KMEM
1031 /*
1032 * cgroup specific init/deinit functions. Called once for all
1033 * protocols that implement it, from cgroups populate function.
1034 * This function has to setup any files the protocol want to
1035 * appear in the kmem cgroup filesystem.
1036 */
1037 int (*init_cgroup)(struct mem_cgroup *memcg,
1038 struct cgroup_subsys *ss);
1039 void (*destroy_cgroup)(struct mem_cgroup *memcg);
1040 struct cg_proto *(*proto_cgroup)(struct mem_cgroup *memcg);
1041 #endif
1042 };
1043
1044 /*
1045 * Bits in struct cg_proto.flags
1046 */
1047 enum cg_proto_flags {
1048 /* Currently active and new sockets should be assigned to cgroups */
1049 MEMCG_SOCK_ACTIVE,
1050 /* It was ever activated; we must disarm static keys on destruction */
1051 MEMCG_SOCK_ACTIVATED,
1052 };
1053
1054 struct cg_proto {
1055 struct page_counter memory_allocated; /* Current allocated memory. */
1056 struct percpu_counter sockets_allocated; /* Current number of sockets. */
1057 int memory_pressure;
1058 long sysctl_mem[3];
1059 unsigned long flags;
1060 /*
1061 * memcg field is used to find which memcg we belong directly
1062 * Each memcg struct can hold more than one cg_proto, so container_of
1063 * won't really cut.
1064 *
1065 * The elegant solution would be having an inverse function to
1066 * proto_cgroup in struct proto, but that means polluting the structure
1067 * for everybody, instead of just for memcg users.
1068 */
1069 struct mem_cgroup *memcg;
1070 };
1071
1072 int proto_register(struct proto *prot, int alloc_slab);
1073 void proto_unregister(struct proto *prot);
1074
1075 static inline bool memcg_proto_active(struct cg_proto *cg_proto)
1076 {
1077 return test_bit(MEMCG_SOCK_ACTIVE, &cg_proto->flags);
1078 }
1079
1080 static inline bool memcg_proto_activated(struct cg_proto *cg_proto)
1081 {
1082 return test_bit(MEMCG_SOCK_ACTIVATED, &cg_proto->flags);
1083 }
1084
1085 #ifdef SOCK_REFCNT_DEBUG
1086 static inline void sk_refcnt_debug_inc(struct sock *sk)
1087 {
1088 atomic_inc(&sk->sk_prot->socks);
1089 }
1090
1091 static inline void sk_refcnt_debug_dec(struct sock *sk)
1092 {
1093 atomic_dec(&sk->sk_prot->socks);
1094 printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1095 sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1096 }
1097
1098 static inline void sk_refcnt_debug_release(const struct sock *sk)
1099 {
1100 if (atomic_read(&sk->sk_refcnt) != 1)
1101 printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1102 sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt));
1103 }
1104 #else /* SOCK_REFCNT_DEBUG */
1105 #define sk_refcnt_debug_inc(sk) do { } while (0)
1106 #define sk_refcnt_debug_dec(sk) do { } while (0)
1107 #define sk_refcnt_debug_release(sk) do { } while (0)
1108 #endif /* SOCK_REFCNT_DEBUG */
1109
1110 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_NET)
1111 extern struct static_key memcg_socket_limit_enabled;
1112 static inline struct cg_proto *parent_cg_proto(struct proto *proto,
1113 struct cg_proto *cg_proto)
1114 {
1115 return proto->proto_cgroup(parent_mem_cgroup(cg_proto->memcg));
1116 }
1117 #define mem_cgroup_sockets_enabled static_key_false(&memcg_socket_limit_enabled)
1118 #else
1119 #define mem_cgroup_sockets_enabled 0
1120 static inline struct cg_proto *parent_cg_proto(struct proto *proto,
1121 struct cg_proto *cg_proto)
1122 {
1123 return NULL;
1124 }
1125 #endif
1126
1127 static inline bool sk_stream_memory_free(const struct sock *sk)
1128 {
1129 if (sk->sk_wmem_queued >= sk->sk_sndbuf)
1130 return false;
1131
1132 return sk->sk_prot->stream_memory_free ?
1133 sk->sk_prot->stream_memory_free(sk) : true;
1134 }
1135
1136 static inline bool sk_stream_is_writeable(const struct sock *sk)
1137 {
1138 return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1139 sk_stream_memory_free(sk);
1140 }
1141
1142
1143 static inline bool sk_has_memory_pressure(const struct sock *sk)
1144 {
1145 return sk->sk_prot->memory_pressure != NULL;
1146 }
1147
1148 static inline bool sk_under_memory_pressure(const struct sock *sk)
1149 {
1150 if (!sk->sk_prot->memory_pressure)
1151 return false;
1152
1153 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1154 return !!sk->sk_cgrp->memory_pressure;
1155
1156 return !!*sk->sk_prot->memory_pressure;
1157 }
1158
1159 static inline void sk_leave_memory_pressure(struct sock *sk)
1160 {
1161 int *memory_pressure = sk->sk_prot->memory_pressure;
1162
1163 if (!memory_pressure)
1164 return;
1165
1166 if (*memory_pressure)
1167 *memory_pressure = 0;
1168
1169 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1170 struct cg_proto *cg_proto = sk->sk_cgrp;
1171 struct proto *prot = sk->sk_prot;
1172
1173 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1174 cg_proto->memory_pressure = 0;
1175 }
1176
1177 }
1178
1179 static inline void sk_enter_memory_pressure(struct sock *sk)
1180 {
1181 if (!sk->sk_prot->enter_memory_pressure)
1182 return;
1183
1184 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1185 struct cg_proto *cg_proto = sk->sk_cgrp;
1186 struct proto *prot = sk->sk_prot;
1187
1188 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1189 cg_proto->memory_pressure = 1;
1190 }
1191
1192 sk->sk_prot->enter_memory_pressure(sk);
1193 }
1194
1195 static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1196 {
1197 long *prot = sk->sk_prot->sysctl_mem;
1198 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1199 prot = sk->sk_cgrp->sysctl_mem;
1200 return prot[index];
1201 }
1202
1203 static inline void memcg_memory_allocated_add(struct cg_proto *prot,
1204 unsigned long amt,
1205 int *parent_status)
1206 {
1207 page_counter_charge(&prot->memory_allocated, amt);
1208
1209 if (page_counter_read(&prot->memory_allocated) >
1210 prot->memory_allocated.limit)
1211 *parent_status = OVER_LIMIT;
1212 }
1213
1214 static inline void memcg_memory_allocated_sub(struct cg_proto *prot,
1215 unsigned long amt)
1216 {
1217 page_counter_uncharge(&prot->memory_allocated, amt);
1218 }
1219
1220 static inline long
1221 sk_memory_allocated(const struct sock *sk)
1222 {
1223 struct proto *prot = sk->sk_prot;
1224
1225 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1226 return page_counter_read(&sk->sk_cgrp->memory_allocated);
1227
1228 return atomic_long_read(prot->memory_allocated);
1229 }
1230
1231 static inline long
1232 sk_memory_allocated_add(struct sock *sk, int amt, int *parent_status)
1233 {
1234 struct proto *prot = sk->sk_prot;
1235
1236 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1237 memcg_memory_allocated_add(sk->sk_cgrp, amt, parent_status);
1238 /* update the root cgroup regardless */
1239 atomic_long_add_return(amt, prot->memory_allocated);
1240 return page_counter_read(&sk->sk_cgrp->memory_allocated);
1241 }
1242
1243 return atomic_long_add_return(amt, prot->memory_allocated);
1244 }
1245
1246 static inline void
1247 sk_memory_allocated_sub(struct sock *sk, int amt)
1248 {
1249 struct proto *prot = sk->sk_prot;
1250
1251 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1252 memcg_memory_allocated_sub(sk->sk_cgrp, amt);
1253
1254 atomic_long_sub(amt, prot->memory_allocated);
1255 }
1256
1257 static inline void sk_sockets_allocated_dec(struct sock *sk)
1258 {
1259 struct proto *prot = sk->sk_prot;
1260
1261 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1262 struct cg_proto *cg_proto = sk->sk_cgrp;
1263
1264 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1265 percpu_counter_dec(&cg_proto->sockets_allocated);
1266 }
1267
1268 percpu_counter_dec(prot->sockets_allocated);
1269 }
1270
1271 static inline void sk_sockets_allocated_inc(struct sock *sk)
1272 {
1273 struct proto *prot = sk->sk_prot;
1274
1275 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1276 struct cg_proto *cg_proto = sk->sk_cgrp;
1277
1278 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1279 percpu_counter_inc(&cg_proto->sockets_allocated);
1280 }
1281
1282 percpu_counter_inc(prot->sockets_allocated);
1283 }
1284
1285 static inline int
1286 sk_sockets_allocated_read_positive(struct sock *sk)
1287 {
1288 struct proto *prot = sk->sk_prot;
1289
1290 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1291 return percpu_counter_read_positive(&sk->sk_cgrp->sockets_allocated);
1292
1293 return percpu_counter_read_positive(prot->sockets_allocated);
1294 }
1295
1296 static inline int
1297 proto_sockets_allocated_sum_positive(struct proto *prot)
1298 {
1299 return percpu_counter_sum_positive(prot->sockets_allocated);
1300 }
1301
1302 static inline long
1303 proto_memory_allocated(struct proto *prot)
1304 {
1305 return atomic_long_read(prot->memory_allocated);
1306 }
1307
1308 static inline bool
1309 proto_memory_pressure(struct proto *prot)
1310 {
1311 if (!prot->memory_pressure)
1312 return false;
1313 return !!*prot->memory_pressure;
1314 }
1315
1316
1317 #ifdef CONFIG_PROC_FS
1318 /* Called with local bh disabled */
1319 void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
1320 int sock_prot_inuse_get(struct net *net, struct proto *proto);
1321 #else
1322 static inline void sock_prot_inuse_add(struct net *net, struct proto *prot,
1323 int inc)
1324 {
1325 }
1326 #endif
1327
1328
1329 /* With per-bucket locks this operation is not-atomic, so that
1330 * this version is not worse.
1331 */
1332 static inline void __sk_prot_rehash(struct sock *sk)
1333 {
1334 sk->sk_prot->unhash(sk);
1335 sk->sk_prot->hash(sk);
1336 }
1337
1338 void sk_prot_clear_portaddr_nulls(struct sock *sk, int size);
1339
1340 /* About 10 seconds */
1341 #define SOCK_DESTROY_TIME (10*HZ)
1342
1343 /* Sockets 0-1023 can't be bound to unless you are superuser */
1344 #define PROT_SOCK 1024
1345
1346 #define SHUTDOWN_MASK 3
1347 #define RCV_SHUTDOWN 1
1348 #define SEND_SHUTDOWN 2
1349
1350 #define SOCK_SNDBUF_LOCK 1
1351 #define SOCK_RCVBUF_LOCK 2
1352 #define SOCK_BINDADDR_LOCK 4
1353 #define SOCK_BINDPORT_LOCK 8
1354
1355 struct socket_alloc {
1356 struct socket socket;
1357 struct inode vfs_inode;
1358 };
1359
1360 static inline struct socket *SOCKET_I(struct inode *inode)
1361 {
1362 return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1363 }
1364
1365 static inline struct inode *SOCK_INODE(struct socket *socket)
1366 {
1367 return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1368 }
1369
1370 /*
1371 * Functions for memory accounting
1372 */
1373 int __sk_mem_schedule(struct sock *sk, int size, int kind);
1374 void __sk_mem_reclaim(struct sock *sk);
1375
1376 #define SK_MEM_QUANTUM ((int)PAGE_SIZE)
1377 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1378 #define SK_MEM_SEND 0
1379 #define SK_MEM_RECV 1
1380
1381 static inline int sk_mem_pages(int amt)
1382 {
1383 return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1384 }
1385
1386 static inline bool sk_has_account(struct sock *sk)
1387 {
1388 /* return true if protocol supports memory accounting */
1389 return !!sk->sk_prot->memory_allocated;
1390 }
1391
1392 static inline bool sk_wmem_schedule(struct sock *sk, int size)
1393 {
1394 if (!sk_has_account(sk))
1395 return true;
1396 return size <= sk->sk_forward_alloc ||
1397 __sk_mem_schedule(sk, size, SK_MEM_SEND);
1398 }
1399
1400 static inline bool
1401 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1402 {
1403 if (!sk_has_account(sk))
1404 return true;
1405 return size<= sk->sk_forward_alloc ||
1406 __sk_mem_schedule(sk, size, SK_MEM_RECV) ||
1407 skb_pfmemalloc(skb);
1408 }
1409
1410 static inline void sk_mem_reclaim(struct sock *sk)
1411 {
1412 if (!sk_has_account(sk))
1413 return;
1414 if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
1415 __sk_mem_reclaim(sk);
1416 }
1417
1418 static inline void sk_mem_reclaim_partial(struct sock *sk)
1419 {
1420 if (!sk_has_account(sk))
1421 return;
1422 if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
1423 __sk_mem_reclaim(sk);
1424 }
1425
1426 static inline void sk_mem_charge(struct sock *sk, int size)
1427 {
1428 if (!sk_has_account(sk))
1429 return;
1430 sk->sk_forward_alloc -= size;
1431 }
1432
1433 static inline void sk_mem_uncharge(struct sock *sk, int size)
1434 {
1435 if (!sk_has_account(sk))
1436 return;
1437 sk->sk_forward_alloc += size;
1438 }
1439
1440 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1441 {
1442 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1443 sk->sk_wmem_queued -= skb->truesize;
1444 sk_mem_uncharge(sk, skb->truesize);
1445 __kfree_skb(skb);
1446 }
1447
1448 /* Used by processes to "lock" a socket state, so that
1449 * interrupts and bottom half handlers won't change it
1450 * from under us. It essentially blocks any incoming
1451 * packets, so that we won't get any new data or any
1452 * packets that change the state of the socket.
1453 *
1454 * While locked, BH processing will add new packets to
1455 * the backlog queue. This queue is processed by the
1456 * owner of the socket lock right before it is released.
1457 *
1458 * Since ~2.3.5 it is also exclusive sleep lock serializing
1459 * accesses from user process context.
1460 */
1461 #define sock_owned_by_user(sk) ((sk)->sk_lock.owned)
1462
1463 static inline void sock_release_ownership(struct sock *sk)
1464 {
1465 sk->sk_lock.owned = 0;
1466 }
1467
1468 /*
1469 * Macro so as to not evaluate some arguments when
1470 * lockdep is not enabled.
1471 *
1472 * Mark both the sk_lock and the sk_lock.slock as a
1473 * per-address-family lock class.
1474 */
1475 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) \
1476 do { \
1477 sk->sk_lock.owned = 0; \
1478 init_waitqueue_head(&sk->sk_lock.wq); \
1479 spin_lock_init(&(sk)->sk_lock.slock); \
1480 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \
1481 sizeof((sk)->sk_lock)); \
1482 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \
1483 (skey), (sname)); \
1484 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \
1485 } while (0)
1486
1487 void lock_sock_nested(struct sock *sk, int subclass);
1488
1489 static inline void lock_sock(struct sock *sk)
1490 {
1491 lock_sock_nested(sk, 0);
1492 }
1493
1494 void release_sock(struct sock *sk);
1495
1496 /* BH context may only use the following locking interface. */
1497 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock))
1498 #define bh_lock_sock_nested(__sk) \
1499 spin_lock_nested(&((__sk)->sk_lock.slock), \
1500 SINGLE_DEPTH_NESTING)
1501 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock))
1502
1503 bool lock_sock_fast(struct sock *sk);
1504 /**
1505 * unlock_sock_fast - complement of lock_sock_fast
1506 * @sk: socket
1507 * @slow: slow mode
1508 *
1509 * fast unlock socket for user context.
1510 * If slow mode is on, we call regular release_sock()
1511 */
1512 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1513 {
1514 if (slow)
1515 release_sock(sk);
1516 else
1517 spin_unlock_bh(&sk->sk_lock.slock);
1518 }
1519
1520
1521 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1522 struct proto *prot);
1523 void sk_free(struct sock *sk);
1524 void sk_release_kernel(struct sock *sk);
1525 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1526
1527 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1528 gfp_t priority);
1529 void sock_wfree(struct sk_buff *skb);
1530 void skb_orphan_partial(struct sk_buff *skb);
1531 void sock_rfree(struct sk_buff *skb);
1532 void sock_efree(struct sk_buff *skb);
1533 #ifdef CONFIG_INET
1534 void sock_edemux(struct sk_buff *skb);
1535 #else
1536 #define sock_edemux(skb) sock_efree(skb)
1537 #endif
1538
1539 int sock_setsockopt(struct socket *sock, int level, int op,
1540 char __user *optval, unsigned int optlen);
1541
1542 int sock_getsockopt(struct socket *sock, int level, int op,
1543 char __user *optval, int __user *optlen);
1544 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1545 int noblock, int *errcode);
1546 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1547 unsigned long data_len, int noblock,
1548 int *errcode, int max_page_order);
1549 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1550 void sock_kfree_s(struct sock *sk, void *mem, int size);
1551 void sock_kzfree_s(struct sock *sk, void *mem, int size);
1552 void sk_send_sigurg(struct sock *sk);
1553
1554 /*
1555 * Functions to fill in entries in struct proto_ops when a protocol
1556 * does not implement a particular function.
1557 */
1558 int sock_no_bind(struct socket *, struct sockaddr *, int);
1559 int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1560 int sock_no_socketpair(struct socket *, struct socket *);
1561 int sock_no_accept(struct socket *, struct socket *, int);
1562 int sock_no_getname(struct socket *, struct sockaddr *, int *, int);
1563 unsigned int sock_no_poll(struct file *, struct socket *,
1564 struct poll_table_struct *);
1565 int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1566 int sock_no_listen(struct socket *, int);
1567 int sock_no_shutdown(struct socket *, int);
1568 int sock_no_getsockopt(struct socket *, int , int, char __user *, int __user *);
1569 int sock_no_setsockopt(struct socket *, int, int, char __user *, unsigned int);
1570 int sock_no_sendmsg(struct kiocb *, struct socket *, struct msghdr *, size_t);
1571 int sock_no_recvmsg(struct kiocb *, struct socket *, struct msghdr *, size_t,
1572 int);
1573 int sock_no_mmap(struct file *file, struct socket *sock,
1574 struct vm_area_struct *vma);
1575 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset,
1576 size_t size, int flags);
1577
1578 /*
1579 * Functions to fill in entries in struct proto_ops when a protocol
1580 * uses the inet style.
1581 */
1582 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1583 char __user *optval, int __user *optlen);
1584 int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
1585 struct msghdr *msg, size_t size, int flags);
1586 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1587 char __user *optval, unsigned int optlen);
1588 int compat_sock_common_getsockopt(struct socket *sock, int level,
1589 int optname, char __user *optval, int __user *optlen);
1590 int compat_sock_common_setsockopt(struct socket *sock, int level,
1591 int optname, char __user *optval, unsigned int optlen);
1592
1593 void sk_common_release(struct sock *sk);
1594
1595 /*
1596 * Default socket callbacks and setup code
1597 */
1598
1599 /* Initialise core socket variables */
1600 void sock_init_data(struct socket *sock, struct sock *sk);
1601
1602 /*
1603 * Socket reference counting postulates.
1604 *
1605 * * Each user of socket SHOULD hold a reference count.
1606 * * Each access point to socket (an hash table bucket, reference from a list,
1607 * running timer, skb in flight MUST hold a reference count.
1608 * * When reference count hits 0, it means it will never increase back.
1609 * * When reference count hits 0, it means that no references from
1610 * outside exist to this socket and current process on current CPU
1611 * is last user and may/should destroy this socket.
1612 * * sk_free is called from any context: process, BH, IRQ. When
1613 * it is called, socket has no references from outside -> sk_free
1614 * may release descendant resources allocated by the socket, but
1615 * to the time when it is called, socket is NOT referenced by any
1616 * hash tables, lists etc.
1617 * * Packets, delivered from outside (from network or from another process)
1618 * and enqueued on receive/error queues SHOULD NOT grab reference count,
1619 * when they sit in queue. Otherwise, packets will leak to hole, when
1620 * socket is looked up by one cpu and unhasing is made by another CPU.
1621 * It is true for udp/raw, netlink (leak to receive and error queues), tcp
1622 * (leak to backlog). Packet socket does all the processing inside
1623 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1624 * use separate SMP lock, so that they are prone too.
1625 */
1626
1627 /* Ungrab socket and destroy it, if it was the last reference. */
1628 static inline void sock_put(struct sock *sk)
1629 {
1630 if (atomic_dec_and_test(&sk->sk_refcnt))
1631 sk_free(sk);
1632 }
1633 /* Generic version of sock_put(), dealing with all sockets
1634 * (TCP_TIMEWAIT, ESTABLISHED...)
1635 */
1636 void sock_gen_put(struct sock *sk);
1637
1638 int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested);
1639
1640 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1641 {
1642 sk->sk_tx_queue_mapping = tx_queue;
1643 }
1644
1645 static inline void sk_tx_queue_clear(struct sock *sk)
1646 {
1647 sk->sk_tx_queue_mapping = -1;
1648 }
1649
1650 static inline int sk_tx_queue_get(const struct sock *sk)
1651 {
1652 return sk ? sk->sk_tx_queue_mapping : -1;
1653 }
1654
1655 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1656 {
1657 sk_tx_queue_clear(sk);
1658 sk->sk_socket = sock;
1659 }
1660
1661 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1662 {
1663 BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1664 return &rcu_dereference_raw(sk->sk_wq)->wait;
1665 }
1666 /* Detach socket from process context.
1667 * Announce socket dead, detach it from wait queue and inode.
1668 * Note that parent inode held reference count on this struct sock,
1669 * we do not release it in this function, because protocol
1670 * probably wants some additional cleanups or even continuing
1671 * to work with this socket (TCP).
1672 */
1673 static inline void sock_orphan(struct sock *sk)
1674 {
1675 write_lock_bh(&sk->sk_callback_lock);
1676 sock_set_flag(sk, SOCK_DEAD);
1677 sk_set_socket(sk, NULL);
1678 sk->sk_wq = NULL;
1679 write_unlock_bh(&sk->sk_callback_lock);
1680 }
1681
1682 static inline void sock_graft(struct sock *sk, struct socket *parent)
1683 {
1684 write_lock_bh(&sk->sk_callback_lock);
1685 sk->sk_wq = parent->wq;
1686 parent->sk = sk;
1687 sk_set_socket(sk, parent);
1688 security_sock_graft(sk, parent);
1689 write_unlock_bh(&sk->sk_callback_lock);
1690 }
1691
1692 kuid_t sock_i_uid(struct sock *sk);
1693 unsigned long sock_i_ino(struct sock *sk);
1694
1695 static inline struct dst_entry *
1696 __sk_dst_get(struct sock *sk)
1697 {
1698 return rcu_dereference_check(sk->sk_dst_cache, sock_owned_by_user(sk) ||
1699 lockdep_is_held(&sk->sk_lock.slock));
1700 }
1701
1702 static inline struct dst_entry *
1703 sk_dst_get(struct sock *sk)
1704 {
1705 struct dst_entry *dst;
1706
1707 rcu_read_lock();
1708 dst = rcu_dereference(sk->sk_dst_cache);
1709 if (dst && !atomic_inc_not_zero(&dst->__refcnt))
1710 dst = NULL;
1711 rcu_read_unlock();
1712 return dst;
1713 }
1714
1715 static inline void dst_negative_advice(struct sock *sk)
1716 {
1717 struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1718
1719 if (dst && dst->ops->negative_advice) {
1720 ndst = dst->ops->negative_advice(dst);
1721
1722 if (ndst != dst) {
1723 rcu_assign_pointer(sk->sk_dst_cache, ndst);
1724 sk_tx_queue_clear(sk);
1725 }
1726 }
1727 }
1728
1729 static inline void
1730 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
1731 {
1732 struct dst_entry *old_dst;
1733
1734 sk_tx_queue_clear(sk);
1735 /*
1736 * This can be called while sk is owned by the caller only,
1737 * with no state that can be checked in a rcu_dereference_check() cond
1738 */
1739 old_dst = rcu_dereference_raw(sk->sk_dst_cache);
1740 rcu_assign_pointer(sk->sk_dst_cache, dst);
1741 dst_release(old_dst);
1742 }
1743
1744 static inline void
1745 sk_dst_set(struct sock *sk, struct dst_entry *dst)
1746 {
1747 struct dst_entry *old_dst;
1748
1749 sk_tx_queue_clear(sk);
1750 old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst);
1751 dst_release(old_dst);
1752 }
1753
1754 static inline void
1755 __sk_dst_reset(struct sock *sk)
1756 {
1757 __sk_dst_set(sk, NULL);
1758 }
1759
1760 static inline void
1761 sk_dst_reset(struct sock *sk)
1762 {
1763 sk_dst_set(sk, NULL);
1764 }
1765
1766 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1767
1768 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1769
1770 static inline bool sk_can_gso(const struct sock *sk)
1771 {
1772 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1773 }
1774
1775 void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
1776
1777 static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
1778 {
1779 sk->sk_route_nocaps |= flags;
1780 sk->sk_route_caps &= ~flags;
1781 }
1782
1783 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
1784 struct iov_iter *from, char *to,
1785 int copy, int offset)
1786 {
1787 if (skb->ip_summed == CHECKSUM_NONE) {
1788 __wsum csum = 0;
1789 if (csum_and_copy_from_iter(to, copy, &csum, from) != copy)
1790 return -EFAULT;
1791 skb->csum = csum_block_add(skb->csum, csum, offset);
1792 } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1793 if (copy_from_iter_nocache(to, copy, from) != copy)
1794 return -EFAULT;
1795 } else if (copy_from_iter(to, copy, from) != copy)
1796 return -EFAULT;
1797
1798 return 0;
1799 }
1800
1801 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
1802 struct iov_iter *from, int copy)
1803 {
1804 int err, offset = skb->len;
1805
1806 err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
1807 copy, offset);
1808 if (err)
1809 __skb_trim(skb, offset);
1810
1811 return err;
1812 }
1813
1814 static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from,
1815 struct sk_buff *skb,
1816 struct page *page,
1817 int off, int copy)
1818 {
1819 int err;
1820
1821 err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
1822 copy, skb->len);
1823 if (err)
1824 return err;
1825
1826 skb->len += copy;
1827 skb->data_len += copy;
1828 skb->truesize += copy;
1829 sk->sk_wmem_queued += copy;
1830 sk_mem_charge(sk, copy);
1831 return 0;
1832 }
1833
1834 /**
1835 * sk_wmem_alloc_get - returns write allocations
1836 * @sk: socket
1837 *
1838 * Returns sk_wmem_alloc minus initial offset of one
1839 */
1840 static inline int sk_wmem_alloc_get(const struct sock *sk)
1841 {
1842 return atomic_read(&sk->sk_wmem_alloc) - 1;
1843 }
1844
1845 /**
1846 * sk_rmem_alloc_get - returns read allocations
1847 * @sk: socket
1848 *
1849 * Returns sk_rmem_alloc
1850 */
1851 static inline int sk_rmem_alloc_get(const struct sock *sk)
1852 {
1853 return atomic_read(&sk->sk_rmem_alloc);
1854 }
1855
1856 /**
1857 * sk_has_allocations - check if allocations are outstanding
1858 * @sk: socket
1859 *
1860 * Returns true if socket has write or read allocations
1861 */
1862 static inline bool sk_has_allocations(const struct sock *sk)
1863 {
1864 return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
1865 }
1866
1867 /**
1868 * wq_has_sleeper - check if there are any waiting processes
1869 * @wq: struct socket_wq
1870 *
1871 * Returns true if socket_wq has waiting processes
1872 *
1873 * The purpose of the wq_has_sleeper and sock_poll_wait is to wrap the memory
1874 * barrier call. They were added due to the race found within the tcp code.
1875 *
1876 * Consider following tcp code paths:
1877 *
1878 * CPU1 CPU2
1879 *
1880 * sys_select receive packet
1881 * ... ...
1882 * __add_wait_queue update tp->rcv_nxt
1883 * ... ...
1884 * tp->rcv_nxt check sock_def_readable
1885 * ... {
1886 * schedule rcu_read_lock();
1887 * wq = rcu_dereference(sk->sk_wq);
1888 * if (wq && waitqueue_active(&wq->wait))
1889 * wake_up_interruptible(&wq->wait)
1890 * ...
1891 * }
1892 *
1893 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
1894 * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1
1895 * could then endup calling schedule and sleep forever if there are no more
1896 * data on the socket.
1897 *
1898 */
1899 static inline bool wq_has_sleeper(struct socket_wq *wq)
1900 {
1901 /* We need to be sure we are in sync with the
1902 * add_wait_queue modifications to the wait queue.
1903 *
1904 * This memory barrier is paired in the sock_poll_wait.
1905 */
1906 smp_mb();
1907 return wq && waitqueue_active(&wq->wait);
1908 }
1909
1910 /**
1911 * sock_poll_wait - place memory barrier behind the poll_wait call.
1912 * @filp: file
1913 * @wait_address: socket wait queue
1914 * @p: poll_table
1915 *
1916 * See the comments in the wq_has_sleeper function.
1917 */
1918 static inline void sock_poll_wait(struct file *filp,
1919 wait_queue_head_t *wait_address, poll_table *p)
1920 {
1921 if (!poll_does_not_wait(p) && wait_address) {
1922 poll_wait(filp, wait_address, p);
1923 /* We need to be sure we are in sync with the
1924 * socket flags modification.
1925 *
1926 * This memory barrier is paired in the wq_has_sleeper.
1927 */
1928 smp_mb();
1929 }
1930 }
1931
1932 static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
1933 {
1934 if (sk->sk_txhash) {
1935 skb->l4_hash = 1;
1936 skb->hash = sk->sk_txhash;
1937 }
1938 }
1939
1940 /*
1941 * Queue a received datagram if it will fit. Stream and sequenced
1942 * protocols can't normally use this as they need to fit buffers in
1943 * and play with them.
1944 *
1945 * Inlined as it's very short and called for pretty much every
1946 * packet ever received.
1947 */
1948
1949 static inline void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
1950 {
1951 skb_orphan(skb);
1952 skb->sk = sk;
1953 skb->destructor = sock_wfree;
1954 skb_set_hash_from_sk(skb, sk);
1955 /*
1956 * We used to take a refcount on sk, but following operation
1957 * is enough to guarantee sk_free() wont free this sock until
1958 * all in-flight packets are completed
1959 */
1960 atomic_add(skb->truesize, &sk->sk_wmem_alloc);
1961 }
1962
1963 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
1964 {
1965 skb_orphan(skb);
1966 skb->sk = sk;
1967 skb->destructor = sock_rfree;
1968 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
1969 sk_mem_charge(sk, skb->truesize);
1970 }
1971
1972 void sk_reset_timer(struct sock *sk, struct timer_list *timer,
1973 unsigned long expires);
1974
1975 void sk_stop_timer(struct sock *sk, struct timer_list *timer);
1976
1977 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
1978
1979 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
1980 struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
1981
1982 /*
1983 * Recover an error report and clear atomically
1984 */
1985
1986 static inline int sock_error(struct sock *sk)
1987 {
1988 int err;
1989 if (likely(!sk->sk_err))
1990 return 0;
1991 err = xchg(&sk->sk_err, 0);
1992 return -err;
1993 }
1994
1995 static inline unsigned long sock_wspace(struct sock *sk)
1996 {
1997 int amt = 0;
1998
1999 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2000 amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
2001 if (amt < 0)
2002 amt = 0;
2003 }
2004 return amt;
2005 }
2006
2007 static inline void sk_wake_async(struct sock *sk, int how, int band)
2008 {
2009 if (sock_flag(sk, SOCK_FASYNC))
2010 sock_wake_async(sk->sk_socket, how, band);
2011 }
2012
2013 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2014 * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2015 * Note: for send buffers, TCP works better if we can build two skbs at
2016 * minimum.
2017 */
2018 #define TCP_SKB_MIN_TRUESIZE (2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2019
2020 #define SOCK_MIN_SNDBUF (TCP_SKB_MIN_TRUESIZE * 2)
2021 #define SOCK_MIN_RCVBUF TCP_SKB_MIN_TRUESIZE
2022
2023 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2024 {
2025 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
2026 sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2027 sk->sk_sndbuf = max_t(u32, sk->sk_sndbuf, SOCK_MIN_SNDBUF);
2028 }
2029 }
2030
2031 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp);
2032
2033 /**
2034 * sk_page_frag - return an appropriate page_frag
2035 * @sk: socket
2036 *
2037 * If socket allocation mode allows current thread to sleep, it means its
2038 * safe to use the per task page_frag instead of the per socket one.
2039 */
2040 static inline struct page_frag *sk_page_frag(struct sock *sk)
2041 {
2042 if (sk->sk_allocation & __GFP_WAIT)
2043 return &current->task_frag;
2044
2045 return &sk->sk_frag;
2046 }
2047
2048 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2049
2050 /*
2051 * Default write policy as shown to user space via poll/select/SIGIO
2052 */
2053 static inline bool sock_writeable(const struct sock *sk)
2054 {
2055 return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1);
2056 }
2057
2058 static inline gfp_t gfp_any(void)
2059 {
2060 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2061 }
2062
2063 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2064 {
2065 return noblock ? 0 : sk->sk_rcvtimeo;
2066 }
2067
2068 static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2069 {
2070 return noblock ? 0 : sk->sk_sndtimeo;
2071 }
2072
2073 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2074 {
2075 return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
2076 }
2077
2078 /* Alas, with timeout socket operations are not restartable.
2079 * Compare this to poll().
2080 */
2081 static inline int sock_intr_errno(long timeo)
2082 {
2083 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2084 }
2085
2086 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2087 struct sk_buff *skb);
2088 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2089 struct sk_buff *skb);
2090
2091 static inline void
2092 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2093 {
2094 ktime_t kt = skb->tstamp;
2095 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2096
2097 /*
2098 * generate control messages if
2099 * - receive time stamping in software requested
2100 * - software time stamp available and wanted
2101 * - hardware time stamps available and wanted
2102 */
2103 if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2104 (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2105 (kt.tv64 && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2106 (hwtstamps->hwtstamp.tv64 &&
2107 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
2108 __sock_recv_timestamp(msg, sk, skb);
2109 else
2110 sk->sk_stamp = kt;
2111
2112 if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2113 __sock_recv_wifi_status(msg, sk, skb);
2114 }
2115
2116 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2117 struct sk_buff *skb);
2118
2119 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2120 struct sk_buff *skb)
2121 {
2122 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL) | \
2123 (1UL << SOCK_RCVTSTAMP))
2124 #define TSFLAGS_ANY (SOF_TIMESTAMPING_SOFTWARE | \
2125 SOF_TIMESTAMPING_RAW_HARDWARE)
2126
2127 if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY)
2128 __sock_recv_ts_and_drops(msg, sk, skb);
2129 else
2130 sk->sk_stamp = skb->tstamp;
2131 }
2132
2133 void __sock_tx_timestamp(const struct sock *sk, __u8 *tx_flags);
2134
2135 /**
2136 * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2137 * @sk: socket sending this packet
2138 * @tx_flags: completed with instructions for time stamping
2139 *
2140 * Note : callers should take care of initial *tx_flags value (usually 0)
2141 */
2142 static inline void sock_tx_timestamp(const struct sock *sk, __u8 *tx_flags)
2143 {
2144 if (unlikely(sk->sk_tsflags))
2145 __sock_tx_timestamp(sk, tx_flags);
2146 if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS)))
2147 *tx_flags |= SKBTX_WIFI_STATUS;
2148 }
2149
2150 /**
2151 * sk_eat_skb - Release a skb if it is no longer needed
2152 * @sk: socket to eat this skb from
2153 * @skb: socket buffer to eat
2154 *
2155 * This routine must be called with interrupts disabled or with the socket
2156 * locked so that the sk_buff queue operation is ok.
2157 */
2158 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
2159 {
2160 __skb_unlink(skb, &sk->sk_receive_queue);
2161 __kfree_skb(skb);
2162 }
2163
2164 static inline
2165 struct net *sock_net(const struct sock *sk)
2166 {
2167 return read_pnet(&sk->sk_net);
2168 }
2169
2170 static inline
2171 void sock_net_set(struct sock *sk, struct net *net)
2172 {
2173 write_pnet(&sk->sk_net, net);
2174 }
2175
2176 /*
2177 * Kernel sockets, f.e. rtnl or icmp_socket, are a part of a namespace.
2178 * They should not hold a reference to a namespace in order to allow
2179 * to stop it.
2180 * Sockets after sk_change_net should be released using sk_release_kernel
2181 */
2182 static inline void sk_change_net(struct sock *sk, struct net *net)
2183 {
2184 struct net *current_net = sock_net(sk);
2185
2186 if (!net_eq(current_net, net)) {
2187 put_net(current_net);
2188 sock_net_set(sk, hold_net(net));
2189 }
2190 }
2191
2192 static inline struct sock *skb_steal_sock(struct sk_buff *skb)
2193 {
2194 if (skb->sk) {
2195 struct sock *sk = skb->sk;
2196
2197 skb->destructor = NULL;
2198 skb->sk = NULL;
2199 return sk;
2200 }
2201 return NULL;
2202 }
2203
2204 void sock_enable_timestamp(struct sock *sk, int flag);
2205 int sock_get_timestamp(struct sock *, struct timeval __user *);
2206 int sock_get_timestampns(struct sock *, struct timespec __user *);
2207 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2208 int type);
2209
2210 bool sk_ns_capable(const struct sock *sk,
2211 struct user_namespace *user_ns, int cap);
2212 bool sk_capable(const struct sock *sk, int cap);
2213 bool sk_net_capable(const struct sock *sk, int cap);
2214
2215 extern __u32 sysctl_wmem_max;
2216 extern __u32 sysctl_rmem_max;
2217
2218 extern int sysctl_tstamp_allow_data;
2219 extern int sysctl_optmem_max;
2220
2221 extern __u32 sysctl_wmem_default;
2222 extern __u32 sysctl_rmem_default;
2223
2224 #endif /* _SOCK_H */