]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - include/net/sock.h
ceph: rename snapshot support
[mirror_ubuntu-bionic-kernel.git] / include / net / sock.h
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Definitions for the AF_INET socket handler.
7 *
8 * Version: @(#)sock.h 1.0.4 05/13/93
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche <flla@stud.uni-sb.de>
14 *
15 * Fixes:
16 * Alan Cox : Volatiles in skbuff pointers. See
17 * skbuff comments. May be overdone,
18 * better to prove they can be removed
19 * than the reverse.
20 * Alan Cox : Added a zapped field for tcp to note
21 * a socket is reset and must stay shut up
22 * Alan Cox : New fields for options
23 * Pauline Middelink : identd support
24 * Alan Cox : Eliminate low level recv/recvfrom
25 * David S. Miller : New socket lookup architecture.
26 * Steve Whitehouse: Default routines for sock_ops
27 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made
28 * protinfo be just a void pointer, as the
29 * protocol specific parts were moved to
30 * respective headers and ipv4/v6, etc now
31 * use private slabcaches for its socks
32 * Pedro Hortas : New flags field for socket options
33 *
34 *
35 * This program is free software; you can redistribute it and/or
36 * modify it under the terms of the GNU General Public License
37 * as published by the Free Software Foundation; either version
38 * 2 of the License, or (at your option) any later version.
39 */
40 #ifndef _SOCK_H
41 #define _SOCK_H
42
43 #include <linux/hardirq.h>
44 #include <linux/kernel.h>
45 #include <linux/list.h>
46 #include <linux/list_nulls.h>
47 #include <linux/timer.h>
48 #include <linux/cache.h>
49 #include <linux/bitops.h>
50 #include <linux/lockdep.h>
51 #include <linux/netdevice.h>
52 #include <linux/skbuff.h> /* struct sk_buff */
53 #include <linux/mm.h>
54 #include <linux/security.h>
55 #include <linux/slab.h>
56 #include <linux/uaccess.h>
57 #include <linux/page_counter.h>
58 #include <linux/memcontrol.h>
59 #include <linux/static_key.h>
60 #include <linux/aio.h>
61 #include <linux/sched.h>
62
63 #include <linux/filter.h>
64 #include <linux/rculist_nulls.h>
65 #include <linux/poll.h>
66
67 #include <linux/atomic.h>
68 #include <net/dst.h>
69 #include <net/checksum.h>
70 #include <linux/net_tstamp.h>
71
72 struct cgroup;
73 struct cgroup_subsys;
74 #ifdef CONFIG_NET
75 int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss);
76 void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg);
77 #else
78 static inline
79 int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
80 {
81 return 0;
82 }
83 static inline
84 void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg)
85 {
86 }
87 #endif
88 /*
89 * This structure really needs to be cleaned up.
90 * Most of it is for TCP, and not used by any of
91 * the other protocols.
92 */
93
94 /* Define this to get the SOCK_DBG debugging facility. */
95 #define SOCK_DEBUGGING
96 #ifdef SOCK_DEBUGGING
97 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
98 printk(KERN_DEBUG msg); } while (0)
99 #else
100 /* Validate arguments and do nothing */
101 static inline __printf(2, 3)
102 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
103 {
104 }
105 #endif
106
107 /* This is the per-socket lock. The spinlock provides a synchronization
108 * between user contexts and software interrupt processing, whereas the
109 * mini-semaphore synchronizes multiple users amongst themselves.
110 */
111 typedef struct {
112 spinlock_t slock;
113 int owned;
114 wait_queue_head_t wq;
115 /*
116 * We express the mutex-alike socket_lock semantics
117 * to the lock validator by explicitly managing
118 * the slock as a lock variant (in addition to
119 * the slock itself):
120 */
121 #ifdef CONFIG_DEBUG_LOCK_ALLOC
122 struct lockdep_map dep_map;
123 #endif
124 } socket_lock_t;
125
126 struct sock;
127 struct proto;
128 struct net;
129
130 typedef __u32 __bitwise __portpair;
131 typedef __u64 __bitwise __addrpair;
132
133 /**
134 * struct sock_common - minimal network layer representation of sockets
135 * @skc_daddr: Foreign IPv4 addr
136 * @skc_rcv_saddr: Bound local IPv4 addr
137 * @skc_hash: hash value used with various protocol lookup tables
138 * @skc_u16hashes: two u16 hash values used by UDP lookup tables
139 * @skc_dport: placeholder for inet_dport/tw_dport
140 * @skc_num: placeholder for inet_num/tw_num
141 * @skc_family: network address family
142 * @skc_state: Connection state
143 * @skc_reuse: %SO_REUSEADDR setting
144 * @skc_reuseport: %SO_REUSEPORT setting
145 * @skc_bound_dev_if: bound device index if != 0
146 * @skc_bind_node: bind hash linkage for various protocol lookup tables
147 * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
148 * @skc_prot: protocol handlers inside a network family
149 * @skc_net: reference to the network namespace of this socket
150 * @skc_node: main hash linkage for various protocol lookup tables
151 * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
152 * @skc_tx_queue_mapping: tx queue number for this connection
153 * @skc_refcnt: reference count
154 *
155 * This is the minimal network layer representation of sockets, the header
156 * for struct sock and struct inet_timewait_sock.
157 */
158 struct sock_common {
159 /* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned
160 * address on 64bit arches : cf INET_MATCH()
161 */
162 union {
163 __addrpair skc_addrpair;
164 struct {
165 __be32 skc_daddr;
166 __be32 skc_rcv_saddr;
167 };
168 };
169 union {
170 unsigned int skc_hash;
171 __u16 skc_u16hashes[2];
172 };
173 /* skc_dport && skc_num must be grouped as well */
174 union {
175 __portpair skc_portpair;
176 struct {
177 __be16 skc_dport;
178 __u16 skc_num;
179 };
180 };
181
182 unsigned short skc_family;
183 volatile unsigned char skc_state;
184 unsigned char skc_reuse:4;
185 unsigned char skc_reuseport:1;
186 unsigned char skc_ipv6only:1;
187 int skc_bound_dev_if;
188 union {
189 struct hlist_node skc_bind_node;
190 struct hlist_nulls_node skc_portaddr_node;
191 };
192 struct proto *skc_prot;
193 #ifdef CONFIG_NET_NS
194 struct net *skc_net;
195 #endif
196
197 #if IS_ENABLED(CONFIG_IPV6)
198 struct in6_addr skc_v6_daddr;
199 struct in6_addr skc_v6_rcv_saddr;
200 #endif
201
202 /*
203 * fields between dontcopy_begin/dontcopy_end
204 * are not copied in sock_copy()
205 */
206 /* private: */
207 int skc_dontcopy_begin[0];
208 /* public: */
209 union {
210 struct hlist_node skc_node;
211 struct hlist_nulls_node skc_nulls_node;
212 };
213 int skc_tx_queue_mapping;
214 atomic_t skc_refcnt;
215 /* private: */
216 int skc_dontcopy_end[0];
217 /* public: */
218 };
219
220 struct cg_proto;
221 /**
222 * struct sock - network layer representation of sockets
223 * @__sk_common: shared layout with inet_timewait_sock
224 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
225 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
226 * @sk_lock: synchronizer
227 * @sk_rcvbuf: size of receive buffer in bytes
228 * @sk_wq: sock wait queue and async head
229 * @sk_rx_dst: receive input route used by early demux
230 * @sk_dst_cache: destination cache
231 * @sk_dst_lock: destination cache lock
232 * @sk_policy: flow policy
233 * @sk_receive_queue: incoming packets
234 * @sk_wmem_alloc: transmit queue bytes committed
235 * @sk_write_queue: Packet sending queue
236 * @sk_omem_alloc: "o" is "option" or "other"
237 * @sk_wmem_queued: persistent queue size
238 * @sk_forward_alloc: space allocated forward
239 * @sk_napi_id: id of the last napi context to receive data for sk
240 * @sk_ll_usec: usecs to busypoll when there is no data
241 * @sk_allocation: allocation mode
242 * @sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
243 * @sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
244 * @sk_sndbuf: size of send buffer in bytes
245 * @sk_flags: %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
246 * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
247 * @sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
248 * @sk_no_check_rx: allow zero checksum in RX packets
249 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
250 * @sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
251 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
252 * @sk_gso_max_size: Maximum GSO segment size to build
253 * @sk_gso_max_segs: Maximum number of GSO segments
254 * @sk_lingertime: %SO_LINGER l_linger setting
255 * @sk_backlog: always used with the per-socket spinlock held
256 * @sk_callback_lock: used with the callbacks in the end of this struct
257 * @sk_error_queue: rarely used
258 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
259 * IPV6_ADDRFORM for instance)
260 * @sk_err: last error
261 * @sk_err_soft: errors that don't cause failure but are the cause of a
262 * persistent failure not just 'timed out'
263 * @sk_drops: raw/udp drops counter
264 * @sk_ack_backlog: current listen backlog
265 * @sk_max_ack_backlog: listen backlog set in listen()
266 * @sk_priority: %SO_PRIORITY setting
267 * @sk_cgrp_prioidx: socket group's priority map index
268 * @sk_type: socket type (%SOCK_STREAM, etc)
269 * @sk_protocol: which protocol this socket belongs in this network family
270 * @sk_peer_pid: &struct pid for this socket's peer
271 * @sk_peer_cred: %SO_PEERCRED setting
272 * @sk_rcvlowat: %SO_RCVLOWAT setting
273 * @sk_rcvtimeo: %SO_RCVTIMEO setting
274 * @sk_sndtimeo: %SO_SNDTIMEO setting
275 * @sk_rxhash: flow hash received from netif layer
276 * @sk_incoming_cpu: record cpu processing incoming packets
277 * @sk_txhash: computed flow hash for use on transmit
278 * @sk_filter: socket filtering instructions
279 * @sk_protinfo: private area, net family specific, when not using slab
280 * @sk_timer: sock cleanup timer
281 * @sk_stamp: time stamp of last packet received
282 * @sk_tsflags: SO_TIMESTAMPING socket options
283 * @sk_tskey: counter to disambiguate concurrent tstamp requests
284 * @sk_socket: Identd and reporting IO signals
285 * @sk_user_data: RPC layer private data
286 * @sk_frag: cached page frag
287 * @sk_peek_off: current peek_offset value
288 * @sk_send_head: front of stuff to transmit
289 * @sk_security: used by security modules
290 * @sk_mark: generic packet mark
291 * @sk_classid: this socket's cgroup classid
292 * @sk_cgrp: this socket's cgroup-specific proto data
293 * @sk_write_pending: a write to stream socket waits to start
294 * @sk_state_change: callback to indicate change in the state of the sock
295 * @sk_data_ready: callback to indicate there is data to be processed
296 * @sk_write_space: callback to indicate there is bf sending space available
297 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
298 * @sk_backlog_rcv: callback to process the backlog
299 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
300 */
301 struct sock {
302 /*
303 * Now struct inet_timewait_sock also uses sock_common, so please just
304 * don't add nothing before this first member (__sk_common) --acme
305 */
306 struct sock_common __sk_common;
307 #define sk_node __sk_common.skc_node
308 #define sk_nulls_node __sk_common.skc_nulls_node
309 #define sk_refcnt __sk_common.skc_refcnt
310 #define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping
311
312 #define sk_dontcopy_begin __sk_common.skc_dontcopy_begin
313 #define sk_dontcopy_end __sk_common.skc_dontcopy_end
314 #define sk_hash __sk_common.skc_hash
315 #define sk_portpair __sk_common.skc_portpair
316 #define sk_num __sk_common.skc_num
317 #define sk_dport __sk_common.skc_dport
318 #define sk_addrpair __sk_common.skc_addrpair
319 #define sk_daddr __sk_common.skc_daddr
320 #define sk_rcv_saddr __sk_common.skc_rcv_saddr
321 #define sk_family __sk_common.skc_family
322 #define sk_state __sk_common.skc_state
323 #define sk_reuse __sk_common.skc_reuse
324 #define sk_reuseport __sk_common.skc_reuseport
325 #define sk_ipv6only __sk_common.skc_ipv6only
326 #define sk_bound_dev_if __sk_common.skc_bound_dev_if
327 #define sk_bind_node __sk_common.skc_bind_node
328 #define sk_prot __sk_common.skc_prot
329 #define sk_net __sk_common.skc_net
330 #define sk_v6_daddr __sk_common.skc_v6_daddr
331 #define sk_v6_rcv_saddr __sk_common.skc_v6_rcv_saddr
332
333 socket_lock_t sk_lock;
334 struct sk_buff_head sk_receive_queue;
335 /*
336 * The backlog queue is special, it is always used with
337 * the per-socket spinlock held and requires low latency
338 * access. Therefore we special case it's implementation.
339 * Note : rmem_alloc is in this structure to fill a hole
340 * on 64bit arches, not because its logically part of
341 * backlog.
342 */
343 struct {
344 atomic_t rmem_alloc;
345 int len;
346 struct sk_buff *head;
347 struct sk_buff *tail;
348 } sk_backlog;
349 #define sk_rmem_alloc sk_backlog.rmem_alloc
350 int sk_forward_alloc;
351 #ifdef CONFIG_RPS
352 __u32 sk_rxhash;
353 #endif
354 u16 sk_incoming_cpu;
355 /* 16bit hole
356 * Warned : sk_incoming_cpu can be set from softirq,
357 * Do not use this hole without fully understanding possible issues.
358 */
359
360 __u32 sk_txhash;
361 #ifdef CONFIG_NET_RX_BUSY_POLL
362 unsigned int sk_napi_id;
363 unsigned int sk_ll_usec;
364 #endif
365 atomic_t sk_drops;
366 int sk_rcvbuf;
367
368 struct sk_filter __rcu *sk_filter;
369 struct socket_wq __rcu *sk_wq;
370
371 #ifdef CONFIG_XFRM
372 struct xfrm_policy *sk_policy[2];
373 #endif
374 unsigned long sk_flags;
375 struct dst_entry *sk_rx_dst;
376 struct dst_entry __rcu *sk_dst_cache;
377 spinlock_t sk_dst_lock;
378 atomic_t sk_wmem_alloc;
379 atomic_t sk_omem_alloc;
380 int sk_sndbuf;
381 struct sk_buff_head sk_write_queue;
382 kmemcheck_bitfield_begin(flags);
383 unsigned int sk_shutdown : 2,
384 sk_no_check_tx : 1,
385 sk_no_check_rx : 1,
386 sk_userlocks : 4,
387 sk_protocol : 8,
388 sk_type : 16;
389 kmemcheck_bitfield_end(flags);
390 int sk_wmem_queued;
391 gfp_t sk_allocation;
392 u32 sk_pacing_rate; /* bytes per second */
393 u32 sk_max_pacing_rate;
394 netdev_features_t sk_route_caps;
395 netdev_features_t sk_route_nocaps;
396 int sk_gso_type;
397 unsigned int sk_gso_max_size;
398 u16 sk_gso_max_segs;
399 int sk_rcvlowat;
400 unsigned long sk_lingertime;
401 struct sk_buff_head sk_error_queue;
402 struct proto *sk_prot_creator;
403 rwlock_t sk_callback_lock;
404 int sk_err,
405 sk_err_soft;
406 unsigned short sk_ack_backlog;
407 unsigned short sk_max_ack_backlog;
408 __u32 sk_priority;
409 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
410 __u32 sk_cgrp_prioidx;
411 #endif
412 struct pid *sk_peer_pid;
413 const struct cred *sk_peer_cred;
414 long sk_rcvtimeo;
415 long sk_sndtimeo;
416 void *sk_protinfo;
417 struct timer_list sk_timer;
418 ktime_t sk_stamp;
419 u16 sk_tsflags;
420 u32 sk_tskey;
421 struct socket *sk_socket;
422 void *sk_user_data;
423 struct page_frag sk_frag;
424 struct sk_buff *sk_send_head;
425 __s32 sk_peek_off;
426 int sk_write_pending;
427 #ifdef CONFIG_SECURITY
428 void *sk_security;
429 #endif
430 __u32 sk_mark;
431 u32 sk_classid;
432 struct cg_proto *sk_cgrp;
433 void (*sk_state_change)(struct sock *sk);
434 void (*sk_data_ready)(struct sock *sk);
435 void (*sk_write_space)(struct sock *sk);
436 void (*sk_error_report)(struct sock *sk);
437 int (*sk_backlog_rcv)(struct sock *sk,
438 struct sk_buff *skb);
439 void (*sk_destruct)(struct sock *sk);
440 };
441
442 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
443
444 #define rcu_dereference_sk_user_data(sk) rcu_dereference(__sk_user_data((sk)))
445 #define rcu_assign_sk_user_data(sk, ptr) rcu_assign_pointer(__sk_user_data((sk)), ptr)
446
447 /*
448 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
449 * or not whether his port will be reused by someone else. SK_FORCE_REUSE
450 * on a socket means that the socket will reuse everybody else's port
451 * without looking at the other's sk_reuse value.
452 */
453
454 #define SK_NO_REUSE 0
455 #define SK_CAN_REUSE 1
456 #define SK_FORCE_REUSE 2
457
458 static inline int sk_peek_offset(struct sock *sk, int flags)
459 {
460 if ((flags & MSG_PEEK) && (sk->sk_peek_off >= 0))
461 return sk->sk_peek_off;
462 else
463 return 0;
464 }
465
466 static inline void sk_peek_offset_bwd(struct sock *sk, int val)
467 {
468 if (sk->sk_peek_off >= 0) {
469 if (sk->sk_peek_off >= val)
470 sk->sk_peek_off -= val;
471 else
472 sk->sk_peek_off = 0;
473 }
474 }
475
476 static inline void sk_peek_offset_fwd(struct sock *sk, int val)
477 {
478 if (sk->sk_peek_off >= 0)
479 sk->sk_peek_off += val;
480 }
481
482 /*
483 * Hashed lists helper routines
484 */
485 static inline struct sock *sk_entry(const struct hlist_node *node)
486 {
487 return hlist_entry(node, struct sock, sk_node);
488 }
489
490 static inline struct sock *__sk_head(const struct hlist_head *head)
491 {
492 return hlist_entry(head->first, struct sock, sk_node);
493 }
494
495 static inline struct sock *sk_head(const struct hlist_head *head)
496 {
497 return hlist_empty(head) ? NULL : __sk_head(head);
498 }
499
500 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
501 {
502 return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
503 }
504
505 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
506 {
507 return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
508 }
509
510 static inline struct sock *sk_next(const struct sock *sk)
511 {
512 return sk->sk_node.next ?
513 hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL;
514 }
515
516 static inline struct sock *sk_nulls_next(const struct sock *sk)
517 {
518 return (!is_a_nulls(sk->sk_nulls_node.next)) ?
519 hlist_nulls_entry(sk->sk_nulls_node.next,
520 struct sock, sk_nulls_node) :
521 NULL;
522 }
523
524 static inline bool sk_unhashed(const struct sock *sk)
525 {
526 return hlist_unhashed(&sk->sk_node);
527 }
528
529 static inline bool sk_hashed(const struct sock *sk)
530 {
531 return !sk_unhashed(sk);
532 }
533
534 static inline void sk_node_init(struct hlist_node *node)
535 {
536 node->pprev = NULL;
537 }
538
539 static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
540 {
541 node->pprev = NULL;
542 }
543
544 static inline void __sk_del_node(struct sock *sk)
545 {
546 __hlist_del(&sk->sk_node);
547 }
548
549 /* NB: equivalent to hlist_del_init_rcu */
550 static inline bool __sk_del_node_init(struct sock *sk)
551 {
552 if (sk_hashed(sk)) {
553 __sk_del_node(sk);
554 sk_node_init(&sk->sk_node);
555 return true;
556 }
557 return false;
558 }
559
560 /* Grab socket reference count. This operation is valid only
561 when sk is ALREADY grabbed f.e. it is found in hash table
562 or a list and the lookup is made under lock preventing hash table
563 modifications.
564 */
565
566 static inline void sock_hold(struct sock *sk)
567 {
568 atomic_inc(&sk->sk_refcnt);
569 }
570
571 /* Ungrab socket in the context, which assumes that socket refcnt
572 cannot hit zero, f.e. it is true in context of any socketcall.
573 */
574 static inline void __sock_put(struct sock *sk)
575 {
576 atomic_dec(&sk->sk_refcnt);
577 }
578
579 static inline bool sk_del_node_init(struct sock *sk)
580 {
581 bool rc = __sk_del_node_init(sk);
582
583 if (rc) {
584 /* paranoid for a while -acme */
585 WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
586 __sock_put(sk);
587 }
588 return rc;
589 }
590 #define sk_del_node_init_rcu(sk) sk_del_node_init(sk)
591
592 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
593 {
594 if (sk_hashed(sk)) {
595 hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
596 return true;
597 }
598 return false;
599 }
600
601 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
602 {
603 bool rc = __sk_nulls_del_node_init_rcu(sk);
604
605 if (rc) {
606 /* paranoid for a while -acme */
607 WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
608 __sock_put(sk);
609 }
610 return rc;
611 }
612
613 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
614 {
615 hlist_add_head(&sk->sk_node, list);
616 }
617
618 static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
619 {
620 sock_hold(sk);
621 __sk_add_node(sk, list);
622 }
623
624 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
625 {
626 sock_hold(sk);
627 hlist_add_head_rcu(&sk->sk_node, list);
628 }
629
630 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
631 {
632 hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
633 }
634
635 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
636 {
637 sock_hold(sk);
638 __sk_nulls_add_node_rcu(sk, list);
639 }
640
641 static inline void __sk_del_bind_node(struct sock *sk)
642 {
643 __hlist_del(&sk->sk_bind_node);
644 }
645
646 static inline void sk_add_bind_node(struct sock *sk,
647 struct hlist_head *list)
648 {
649 hlist_add_head(&sk->sk_bind_node, list);
650 }
651
652 #define sk_for_each(__sk, list) \
653 hlist_for_each_entry(__sk, list, sk_node)
654 #define sk_for_each_rcu(__sk, list) \
655 hlist_for_each_entry_rcu(__sk, list, sk_node)
656 #define sk_nulls_for_each(__sk, node, list) \
657 hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
658 #define sk_nulls_for_each_rcu(__sk, node, list) \
659 hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
660 #define sk_for_each_from(__sk) \
661 hlist_for_each_entry_from(__sk, sk_node)
662 #define sk_nulls_for_each_from(__sk, node) \
663 if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
664 hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
665 #define sk_for_each_safe(__sk, tmp, list) \
666 hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
667 #define sk_for_each_bound(__sk, list) \
668 hlist_for_each_entry(__sk, list, sk_bind_node)
669
670 /**
671 * sk_nulls_for_each_entry_offset - iterate over a list at a given struct offset
672 * @tpos: the type * to use as a loop cursor.
673 * @pos: the &struct hlist_node to use as a loop cursor.
674 * @head: the head for your list.
675 * @offset: offset of hlist_node within the struct.
676 *
677 */
678 #define sk_nulls_for_each_entry_offset(tpos, pos, head, offset) \
679 for (pos = (head)->first; \
680 (!is_a_nulls(pos)) && \
681 ({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;}); \
682 pos = pos->next)
683
684 static inline struct user_namespace *sk_user_ns(struct sock *sk)
685 {
686 /* Careful only use this in a context where these parameters
687 * can not change and must all be valid, such as recvmsg from
688 * userspace.
689 */
690 return sk->sk_socket->file->f_cred->user_ns;
691 }
692
693 /* Sock flags */
694 enum sock_flags {
695 SOCK_DEAD,
696 SOCK_DONE,
697 SOCK_URGINLINE,
698 SOCK_KEEPOPEN,
699 SOCK_LINGER,
700 SOCK_DESTROY,
701 SOCK_BROADCAST,
702 SOCK_TIMESTAMP,
703 SOCK_ZAPPED,
704 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
705 SOCK_DBG, /* %SO_DEBUG setting */
706 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
707 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
708 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
709 SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
710 SOCK_MEMALLOC, /* VM depends on this socket for swapping */
711 SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */
712 SOCK_FASYNC, /* fasync() active */
713 SOCK_RXQ_OVFL,
714 SOCK_ZEROCOPY, /* buffers from userspace */
715 SOCK_WIFI_STATUS, /* push wifi status to userspace */
716 SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
717 * Will use last 4 bytes of packet sent from
718 * user-space instead.
719 */
720 SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
721 SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
722 };
723
724 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
725 {
726 nsk->sk_flags = osk->sk_flags;
727 }
728
729 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
730 {
731 __set_bit(flag, &sk->sk_flags);
732 }
733
734 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
735 {
736 __clear_bit(flag, &sk->sk_flags);
737 }
738
739 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
740 {
741 return test_bit(flag, &sk->sk_flags);
742 }
743
744 #ifdef CONFIG_NET
745 extern struct static_key memalloc_socks;
746 static inline int sk_memalloc_socks(void)
747 {
748 return static_key_false(&memalloc_socks);
749 }
750 #else
751
752 static inline int sk_memalloc_socks(void)
753 {
754 return 0;
755 }
756
757 #endif
758
759 static inline gfp_t sk_gfp_atomic(struct sock *sk, gfp_t gfp_mask)
760 {
761 return GFP_ATOMIC | (sk->sk_allocation & __GFP_MEMALLOC);
762 }
763
764 static inline void sk_acceptq_removed(struct sock *sk)
765 {
766 sk->sk_ack_backlog--;
767 }
768
769 static inline void sk_acceptq_added(struct sock *sk)
770 {
771 sk->sk_ack_backlog++;
772 }
773
774 static inline bool sk_acceptq_is_full(const struct sock *sk)
775 {
776 return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
777 }
778
779 /*
780 * Compute minimal free write space needed to queue new packets.
781 */
782 static inline int sk_stream_min_wspace(const struct sock *sk)
783 {
784 return sk->sk_wmem_queued >> 1;
785 }
786
787 static inline int sk_stream_wspace(const struct sock *sk)
788 {
789 return sk->sk_sndbuf - sk->sk_wmem_queued;
790 }
791
792 void sk_stream_write_space(struct sock *sk);
793
794 /* OOB backlog add */
795 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
796 {
797 /* dont let skb dst not refcounted, we are going to leave rcu lock */
798 skb_dst_force(skb);
799
800 if (!sk->sk_backlog.tail)
801 sk->sk_backlog.head = skb;
802 else
803 sk->sk_backlog.tail->next = skb;
804
805 sk->sk_backlog.tail = skb;
806 skb->next = NULL;
807 }
808
809 /*
810 * Take into account size of receive queue and backlog queue
811 * Do not take into account this skb truesize,
812 * to allow even a single big packet to come.
813 */
814 static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
815 {
816 unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
817
818 return qsize > limit;
819 }
820
821 /* The per-socket spinlock must be held here. */
822 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
823 unsigned int limit)
824 {
825 if (sk_rcvqueues_full(sk, limit))
826 return -ENOBUFS;
827
828 __sk_add_backlog(sk, skb);
829 sk->sk_backlog.len += skb->truesize;
830 return 0;
831 }
832
833 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
834
835 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
836 {
837 if (sk_memalloc_socks() && skb_pfmemalloc(skb))
838 return __sk_backlog_rcv(sk, skb);
839
840 return sk->sk_backlog_rcv(sk, skb);
841 }
842
843 static inline void sk_incoming_cpu_update(struct sock *sk)
844 {
845 sk->sk_incoming_cpu = raw_smp_processor_id();
846 }
847
848 static inline void sock_rps_record_flow_hash(__u32 hash)
849 {
850 #ifdef CONFIG_RPS
851 struct rps_sock_flow_table *sock_flow_table;
852
853 rcu_read_lock();
854 sock_flow_table = rcu_dereference(rps_sock_flow_table);
855 rps_record_sock_flow(sock_flow_table, hash);
856 rcu_read_unlock();
857 #endif
858 }
859
860 static inline void sock_rps_record_flow(const struct sock *sk)
861 {
862 #ifdef CONFIG_RPS
863 sock_rps_record_flow_hash(sk->sk_rxhash);
864 #endif
865 }
866
867 static inline void sock_rps_save_rxhash(struct sock *sk,
868 const struct sk_buff *skb)
869 {
870 #ifdef CONFIG_RPS
871 if (unlikely(sk->sk_rxhash != skb->hash))
872 sk->sk_rxhash = skb->hash;
873 #endif
874 }
875
876 static inline void sock_rps_reset_rxhash(struct sock *sk)
877 {
878 #ifdef CONFIG_RPS
879 sk->sk_rxhash = 0;
880 #endif
881 }
882
883 #define sk_wait_event(__sk, __timeo, __condition) \
884 ({ int __rc; \
885 release_sock(__sk); \
886 __rc = __condition; \
887 if (!__rc) { \
888 *(__timeo) = schedule_timeout(*(__timeo)); \
889 } \
890 sched_annotate_sleep(); \
891 lock_sock(__sk); \
892 __rc = __condition; \
893 __rc; \
894 })
895
896 int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
897 int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
898 void sk_stream_wait_close(struct sock *sk, long timeo_p);
899 int sk_stream_error(struct sock *sk, int flags, int err);
900 void sk_stream_kill_queues(struct sock *sk);
901 void sk_set_memalloc(struct sock *sk);
902 void sk_clear_memalloc(struct sock *sk);
903
904 int sk_wait_data(struct sock *sk, long *timeo);
905
906 struct request_sock_ops;
907 struct timewait_sock_ops;
908 struct inet_hashinfo;
909 struct raw_hashinfo;
910 struct module;
911
912 /*
913 * caches using SLAB_DESTROY_BY_RCU should let .next pointer from nulls nodes
914 * un-modified. Special care is taken when initializing object to zero.
915 */
916 static inline void sk_prot_clear_nulls(struct sock *sk, int size)
917 {
918 if (offsetof(struct sock, sk_node.next) != 0)
919 memset(sk, 0, offsetof(struct sock, sk_node.next));
920 memset(&sk->sk_node.pprev, 0,
921 size - offsetof(struct sock, sk_node.pprev));
922 }
923
924 /* Networking protocol blocks we attach to sockets.
925 * socket layer -> transport layer interface
926 * transport -> network interface is defined by struct inet_proto
927 */
928 struct proto {
929 void (*close)(struct sock *sk,
930 long timeout);
931 int (*connect)(struct sock *sk,
932 struct sockaddr *uaddr,
933 int addr_len);
934 int (*disconnect)(struct sock *sk, int flags);
935
936 struct sock * (*accept)(struct sock *sk, int flags, int *err);
937
938 int (*ioctl)(struct sock *sk, int cmd,
939 unsigned long arg);
940 int (*init)(struct sock *sk);
941 void (*destroy)(struct sock *sk);
942 void (*shutdown)(struct sock *sk, int how);
943 int (*setsockopt)(struct sock *sk, int level,
944 int optname, char __user *optval,
945 unsigned int optlen);
946 int (*getsockopt)(struct sock *sk, int level,
947 int optname, char __user *optval,
948 int __user *option);
949 #ifdef CONFIG_COMPAT
950 int (*compat_setsockopt)(struct sock *sk,
951 int level,
952 int optname, char __user *optval,
953 unsigned int optlen);
954 int (*compat_getsockopt)(struct sock *sk,
955 int level,
956 int optname, char __user *optval,
957 int __user *option);
958 int (*compat_ioctl)(struct sock *sk,
959 unsigned int cmd, unsigned long arg);
960 #endif
961 int (*sendmsg)(struct kiocb *iocb, struct sock *sk,
962 struct msghdr *msg, size_t len);
963 int (*recvmsg)(struct kiocb *iocb, struct sock *sk,
964 struct msghdr *msg,
965 size_t len, int noblock, int flags,
966 int *addr_len);
967 int (*sendpage)(struct sock *sk, struct page *page,
968 int offset, size_t size, int flags);
969 int (*bind)(struct sock *sk,
970 struct sockaddr *uaddr, int addr_len);
971
972 int (*backlog_rcv) (struct sock *sk,
973 struct sk_buff *skb);
974
975 void (*release_cb)(struct sock *sk);
976
977 /* Keeping track of sk's, looking them up, and port selection methods. */
978 void (*hash)(struct sock *sk);
979 void (*unhash)(struct sock *sk);
980 void (*rehash)(struct sock *sk);
981 int (*get_port)(struct sock *sk, unsigned short snum);
982 void (*clear_sk)(struct sock *sk, int size);
983
984 /* Keeping track of sockets in use */
985 #ifdef CONFIG_PROC_FS
986 unsigned int inuse_idx;
987 #endif
988
989 bool (*stream_memory_free)(const struct sock *sk);
990 /* Memory pressure */
991 void (*enter_memory_pressure)(struct sock *sk);
992 atomic_long_t *memory_allocated; /* Current allocated memory. */
993 struct percpu_counter *sockets_allocated; /* Current number of sockets. */
994 /*
995 * Pressure flag: try to collapse.
996 * Technical note: it is used by multiple contexts non atomically.
997 * All the __sk_mem_schedule() is of this nature: accounting
998 * is strict, actions are advisory and have some latency.
999 */
1000 int *memory_pressure;
1001 long *sysctl_mem;
1002 int *sysctl_wmem;
1003 int *sysctl_rmem;
1004 int max_header;
1005 bool no_autobind;
1006
1007 struct kmem_cache *slab;
1008 unsigned int obj_size;
1009 int slab_flags;
1010
1011 struct percpu_counter *orphan_count;
1012
1013 struct request_sock_ops *rsk_prot;
1014 struct timewait_sock_ops *twsk_prot;
1015
1016 union {
1017 struct inet_hashinfo *hashinfo;
1018 struct udp_table *udp_table;
1019 struct raw_hashinfo *raw_hash;
1020 } h;
1021
1022 struct module *owner;
1023
1024 char name[32];
1025
1026 struct list_head node;
1027 #ifdef SOCK_REFCNT_DEBUG
1028 atomic_t socks;
1029 #endif
1030 #ifdef CONFIG_MEMCG_KMEM
1031 /*
1032 * cgroup specific init/deinit functions. Called once for all
1033 * protocols that implement it, from cgroups populate function.
1034 * This function has to setup any files the protocol want to
1035 * appear in the kmem cgroup filesystem.
1036 */
1037 int (*init_cgroup)(struct mem_cgroup *memcg,
1038 struct cgroup_subsys *ss);
1039 void (*destroy_cgroup)(struct mem_cgroup *memcg);
1040 struct cg_proto *(*proto_cgroup)(struct mem_cgroup *memcg);
1041 #endif
1042 };
1043
1044 /*
1045 * Bits in struct cg_proto.flags
1046 */
1047 enum cg_proto_flags {
1048 /* Currently active and new sockets should be assigned to cgroups */
1049 MEMCG_SOCK_ACTIVE,
1050 /* It was ever activated; we must disarm static keys on destruction */
1051 MEMCG_SOCK_ACTIVATED,
1052 };
1053
1054 struct cg_proto {
1055 struct page_counter memory_allocated; /* Current allocated memory. */
1056 struct percpu_counter sockets_allocated; /* Current number of sockets. */
1057 int memory_pressure;
1058 long sysctl_mem[3];
1059 unsigned long flags;
1060 /*
1061 * memcg field is used to find which memcg we belong directly
1062 * Each memcg struct can hold more than one cg_proto, so container_of
1063 * won't really cut.
1064 *
1065 * The elegant solution would be having an inverse function to
1066 * proto_cgroup in struct proto, but that means polluting the structure
1067 * for everybody, instead of just for memcg users.
1068 */
1069 struct mem_cgroup *memcg;
1070 };
1071
1072 int proto_register(struct proto *prot, int alloc_slab);
1073 void proto_unregister(struct proto *prot);
1074
1075 static inline bool memcg_proto_active(struct cg_proto *cg_proto)
1076 {
1077 return test_bit(MEMCG_SOCK_ACTIVE, &cg_proto->flags);
1078 }
1079
1080 #ifdef SOCK_REFCNT_DEBUG
1081 static inline void sk_refcnt_debug_inc(struct sock *sk)
1082 {
1083 atomic_inc(&sk->sk_prot->socks);
1084 }
1085
1086 static inline void sk_refcnt_debug_dec(struct sock *sk)
1087 {
1088 atomic_dec(&sk->sk_prot->socks);
1089 printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1090 sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1091 }
1092
1093 static inline void sk_refcnt_debug_release(const struct sock *sk)
1094 {
1095 if (atomic_read(&sk->sk_refcnt) != 1)
1096 printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1097 sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt));
1098 }
1099 #else /* SOCK_REFCNT_DEBUG */
1100 #define sk_refcnt_debug_inc(sk) do { } while (0)
1101 #define sk_refcnt_debug_dec(sk) do { } while (0)
1102 #define sk_refcnt_debug_release(sk) do { } while (0)
1103 #endif /* SOCK_REFCNT_DEBUG */
1104
1105 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_NET)
1106 extern struct static_key memcg_socket_limit_enabled;
1107 static inline struct cg_proto *parent_cg_proto(struct proto *proto,
1108 struct cg_proto *cg_proto)
1109 {
1110 return proto->proto_cgroup(parent_mem_cgroup(cg_proto->memcg));
1111 }
1112 #define mem_cgroup_sockets_enabled static_key_false(&memcg_socket_limit_enabled)
1113 #else
1114 #define mem_cgroup_sockets_enabled 0
1115 static inline struct cg_proto *parent_cg_proto(struct proto *proto,
1116 struct cg_proto *cg_proto)
1117 {
1118 return NULL;
1119 }
1120 #endif
1121
1122 static inline bool sk_stream_memory_free(const struct sock *sk)
1123 {
1124 if (sk->sk_wmem_queued >= sk->sk_sndbuf)
1125 return false;
1126
1127 return sk->sk_prot->stream_memory_free ?
1128 sk->sk_prot->stream_memory_free(sk) : true;
1129 }
1130
1131 static inline bool sk_stream_is_writeable(const struct sock *sk)
1132 {
1133 return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1134 sk_stream_memory_free(sk);
1135 }
1136
1137
1138 static inline bool sk_has_memory_pressure(const struct sock *sk)
1139 {
1140 return sk->sk_prot->memory_pressure != NULL;
1141 }
1142
1143 static inline bool sk_under_memory_pressure(const struct sock *sk)
1144 {
1145 if (!sk->sk_prot->memory_pressure)
1146 return false;
1147
1148 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1149 return !!sk->sk_cgrp->memory_pressure;
1150
1151 return !!*sk->sk_prot->memory_pressure;
1152 }
1153
1154 static inline void sk_leave_memory_pressure(struct sock *sk)
1155 {
1156 int *memory_pressure = sk->sk_prot->memory_pressure;
1157
1158 if (!memory_pressure)
1159 return;
1160
1161 if (*memory_pressure)
1162 *memory_pressure = 0;
1163
1164 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1165 struct cg_proto *cg_proto = sk->sk_cgrp;
1166 struct proto *prot = sk->sk_prot;
1167
1168 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1169 cg_proto->memory_pressure = 0;
1170 }
1171
1172 }
1173
1174 static inline void sk_enter_memory_pressure(struct sock *sk)
1175 {
1176 if (!sk->sk_prot->enter_memory_pressure)
1177 return;
1178
1179 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1180 struct cg_proto *cg_proto = sk->sk_cgrp;
1181 struct proto *prot = sk->sk_prot;
1182
1183 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1184 cg_proto->memory_pressure = 1;
1185 }
1186
1187 sk->sk_prot->enter_memory_pressure(sk);
1188 }
1189
1190 static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1191 {
1192 long *prot = sk->sk_prot->sysctl_mem;
1193 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1194 prot = sk->sk_cgrp->sysctl_mem;
1195 return prot[index];
1196 }
1197
1198 static inline void memcg_memory_allocated_add(struct cg_proto *prot,
1199 unsigned long amt,
1200 int *parent_status)
1201 {
1202 page_counter_charge(&prot->memory_allocated, amt);
1203
1204 if (page_counter_read(&prot->memory_allocated) >
1205 prot->memory_allocated.limit)
1206 *parent_status = OVER_LIMIT;
1207 }
1208
1209 static inline void memcg_memory_allocated_sub(struct cg_proto *prot,
1210 unsigned long amt)
1211 {
1212 page_counter_uncharge(&prot->memory_allocated, amt);
1213 }
1214
1215 static inline long
1216 sk_memory_allocated(const struct sock *sk)
1217 {
1218 struct proto *prot = sk->sk_prot;
1219
1220 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1221 return page_counter_read(&sk->sk_cgrp->memory_allocated);
1222
1223 return atomic_long_read(prot->memory_allocated);
1224 }
1225
1226 static inline long
1227 sk_memory_allocated_add(struct sock *sk, int amt, int *parent_status)
1228 {
1229 struct proto *prot = sk->sk_prot;
1230
1231 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1232 memcg_memory_allocated_add(sk->sk_cgrp, amt, parent_status);
1233 /* update the root cgroup regardless */
1234 atomic_long_add_return(amt, prot->memory_allocated);
1235 return page_counter_read(&sk->sk_cgrp->memory_allocated);
1236 }
1237
1238 return atomic_long_add_return(amt, prot->memory_allocated);
1239 }
1240
1241 static inline void
1242 sk_memory_allocated_sub(struct sock *sk, int amt)
1243 {
1244 struct proto *prot = sk->sk_prot;
1245
1246 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1247 memcg_memory_allocated_sub(sk->sk_cgrp, amt);
1248
1249 atomic_long_sub(amt, prot->memory_allocated);
1250 }
1251
1252 static inline void sk_sockets_allocated_dec(struct sock *sk)
1253 {
1254 struct proto *prot = sk->sk_prot;
1255
1256 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1257 struct cg_proto *cg_proto = sk->sk_cgrp;
1258
1259 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1260 percpu_counter_dec(&cg_proto->sockets_allocated);
1261 }
1262
1263 percpu_counter_dec(prot->sockets_allocated);
1264 }
1265
1266 static inline void sk_sockets_allocated_inc(struct sock *sk)
1267 {
1268 struct proto *prot = sk->sk_prot;
1269
1270 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1271 struct cg_proto *cg_proto = sk->sk_cgrp;
1272
1273 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1274 percpu_counter_inc(&cg_proto->sockets_allocated);
1275 }
1276
1277 percpu_counter_inc(prot->sockets_allocated);
1278 }
1279
1280 static inline int
1281 sk_sockets_allocated_read_positive(struct sock *sk)
1282 {
1283 struct proto *prot = sk->sk_prot;
1284
1285 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1286 return percpu_counter_read_positive(&sk->sk_cgrp->sockets_allocated);
1287
1288 return percpu_counter_read_positive(prot->sockets_allocated);
1289 }
1290
1291 static inline int
1292 proto_sockets_allocated_sum_positive(struct proto *prot)
1293 {
1294 return percpu_counter_sum_positive(prot->sockets_allocated);
1295 }
1296
1297 static inline long
1298 proto_memory_allocated(struct proto *prot)
1299 {
1300 return atomic_long_read(prot->memory_allocated);
1301 }
1302
1303 static inline bool
1304 proto_memory_pressure(struct proto *prot)
1305 {
1306 if (!prot->memory_pressure)
1307 return false;
1308 return !!*prot->memory_pressure;
1309 }
1310
1311
1312 #ifdef CONFIG_PROC_FS
1313 /* Called with local bh disabled */
1314 void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
1315 int sock_prot_inuse_get(struct net *net, struct proto *proto);
1316 #else
1317 static inline void sock_prot_inuse_add(struct net *net, struct proto *prot,
1318 int inc)
1319 {
1320 }
1321 #endif
1322
1323
1324 /* With per-bucket locks this operation is not-atomic, so that
1325 * this version is not worse.
1326 */
1327 static inline void __sk_prot_rehash(struct sock *sk)
1328 {
1329 sk->sk_prot->unhash(sk);
1330 sk->sk_prot->hash(sk);
1331 }
1332
1333 void sk_prot_clear_portaddr_nulls(struct sock *sk, int size);
1334
1335 /* About 10 seconds */
1336 #define SOCK_DESTROY_TIME (10*HZ)
1337
1338 /* Sockets 0-1023 can't be bound to unless you are superuser */
1339 #define PROT_SOCK 1024
1340
1341 #define SHUTDOWN_MASK 3
1342 #define RCV_SHUTDOWN 1
1343 #define SEND_SHUTDOWN 2
1344
1345 #define SOCK_SNDBUF_LOCK 1
1346 #define SOCK_RCVBUF_LOCK 2
1347 #define SOCK_BINDADDR_LOCK 4
1348 #define SOCK_BINDPORT_LOCK 8
1349
1350 struct socket_alloc {
1351 struct socket socket;
1352 struct inode vfs_inode;
1353 };
1354
1355 static inline struct socket *SOCKET_I(struct inode *inode)
1356 {
1357 return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1358 }
1359
1360 static inline struct inode *SOCK_INODE(struct socket *socket)
1361 {
1362 return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1363 }
1364
1365 /*
1366 * Functions for memory accounting
1367 */
1368 int __sk_mem_schedule(struct sock *sk, int size, int kind);
1369 void __sk_mem_reclaim(struct sock *sk);
1370
1371 #define SK_MEM_QUANTUM ((int)PAGE_SIZE)
1372 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1373 #define SK_MEM_SEND 0
1374 #define SK_MEM_RECV 1
1375
1376 static inline int sk_mem_pages(int amt)
1377 {
1378 return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1379 }
1380
1381 static inline bool sk_has_account(struct sock *sk)
1382 {
1383 /* return true if protocol supports memory accounting */
1384 return !!sk->sk_prot->memory_allocated;
1385 }
1386
1387 static inline bool sk_wmem_schedule(struct sock *sk, int size)
1388 {
1389 if (!sk_has_account(sk))
1390 return true;
1391 return size <= sk->sk_forward_alloc ||
1392 __sk_mem_schedule(sk, size, SK_MEM_SEND);
1393 }
1394
1395 static inline bool
1396 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1397 {
1398 if (!sk_has_account(sk))
1399 return true;
1400 return size<= sk->sk_forward_alloc ||
1401 __sk_mem_schedule(sk, size, SK_MEM_RECV) ||
1402 skb_pfmemalloc(skb);
1403 }
1404
1405 static inline void sk_mem_reclaim(struct sock *sk)
1406 {
1407 if (!sk_has_account(sk))
1408 return;
1409 if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
1410 __sk_mem_reclaim(sk);
1411 }
1412
1413 static inline void sk_mem_reclaim_partial(struct sock *sk)
1414 {
1415 if (!sk_has_account(sk))
1416 return;
1417 if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
1418 __sk_mem_reclaim(sk);
1419 }
1420
1421 static inline void sk_mem_charge(struct sock *sk, int size)
1422 {
1423 if (!sk_has_account(sk))
1424 return;
1425 sk->sk_forward_alloc -= size;
1426 }
1427
1428 static inline void sk_mem_uncharge(struct sock *sk, int size)
1429 {
1430 if (!sk_has_account(sk))
1431 return;
1432 sk->sk_forward_alloc += size;
1433 }
1434
1435 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1436 {
1437 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1438 sk->sk_wmem_queued -= skb->truesize;
1439 sk_mem_uncharge(sk, skb->truesize);
1440 __kfree_skb(skb);
1441 }
1442
1443 /* Used by processes to "lock" a socket state, so that
1444 * interrupts and bottom half handlers won't change it
1445 * from under us. It essentially blocks any incoming
1446 * packets, so that we won't get any new data or any
1447 * packets that change the state of the socket.
1448 *
1449 * While locked, BH processing will add new packets to
1450 * the backlog queue. This queue is processed by the
1451 * owner of the socket lock right before it is released.
1452 *
1453 * Since ~2.3.5 it is also exclusive sleep lock serializing
1454 * accesses from user process context.
1455 */
1456 #define sock_owned_by_user(sk) ((sk)->sk_lock.owned)
1457
1458 static inline void sock_release_ownership(struct sock *sk)
1459 {
1460 sk->sk_lock.owned = 0;
1461 }
1462
1463 /*
1464 * Macro so as to not evaluate some arguments when
1465 * lockdep is not enabled.
1466 *
1467 * Mark both the sk_lock and the sk_lock.slock as a
1468 * per-address-family lock class.
1469 */
1470 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) \
1471 do { \
1472 sk->sk_lock.owned = 0; \
1473 init_waitqueue_head(&sk->sk_lock.wq); \
1474 spin_lock_init(&(sk)->sk_lock.slock); \
1475 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \
1476 sizeof((sk)->sk_lock)); \
1477 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \
1478 (skey), (sname)); \
1479 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \
1480 } while (0)
1481
1482 void lock_sock_nested(struct sock *sk, int subclass);
1483
1484 static inline void lock_sock(struct sock *sk)
1485 {
1486 lock_sock_nested(sk, 0);
1487 }
1488
1489 void release_sock(struct sock *sk);
1490
1491 /* BH context may only use the following locking interface. */
1492 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock))
1493 #define bh_lock_sock_nested(__sk) \
1494 spin_lock_nested(&((__sk)->sk_lock.slock), \
1495 SINGLE_DEPTH_NESTING)
1496 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock))
1497
1498 bool lock_sock_fast(struct sock *sk);
1499 /**
1500 * unlock_sock_fast - complement of lock_sock_fast
1501 * @sk: socket
1502 * @slow: slow mode
1503 *
1504 * fast unlock socket for user context.
1505 * If slow mode is on, we call regular release_sock()
1506 */
1507 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1508 {
1509 if (slow)
1510 release_sock(sk);
1511 else
1512 spin_unlock_bh(&sk->sk_lock.slock);
1513 }
1514
1515
1516 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1517 struct proto *prot);
1518 void sk_free(struct sock *sk);
1519 void sk_release_kernel(struct sock *sk);
1520 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1521
1522 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1523 gfp_t priority);
1524 void sock_wfree(struct sk_buff *skb);
1525 void skb_orphan_partial(struct sk_buff *skb);
1526 void sock_rfree(struct sk_buff *skb);
1527 void sock_efree(struct sk_buff *skb);
1528 #ifdef CONFIG_INET
1529 void sock_edemux(struct sk_buff *skb);
1530 #else
1531 #define sock_edemux(skb) sock_efree(skb)
1532 #endif
1533
1534 int sock_setsockopt(struct socket *sock, int level, int op,
1535 char __user *optval, unsigned int optlen);
1536
1537 int sock_getsockopt(struct socket *sock, int level, int op,
1538 char __user *optval, int __user *optlen);
1539 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1540 int noblock, int *errcode);
1541 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1542 unsigned long data_len, int noblock,
1543 int *errcode, int max_page_order);
1544 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1545 void sock_kfree_s(struct sock *sk, void *mem, int size);
1546 void sock_kzfree_s(struct sock *sk, void *mem, int size);
1547 void sk_send_sigurg(struct sock *sk);
1548
1549 /*
1550 * Functions to fill in entries in struct proto_ops when a protocol
1551 * does not implement a particular function.
1552 */
1553 int sock_no_bind(struct socket *, struct sockaddr *, int);
1554 int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1555 int sock_no_socketpair(struct socket *, struct socket *);
1556 int sock_no_accept(struct socket *, struct socket *, int);
1557 int sock_no_getname(struct socket *, struct sockaddr *, int *, int);
1558 unsigned int sock_no_poll(struct file *, struct socket *,
1559 struct poll_table_struct *);
1560 int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1561 int sock_no_listen(struct socket *, int);
1562 int sock_no_shutdown(struct socket *, int);
1563 int sock_no_getsockopt(struct socket *, int , int, char __user *, int __user *);
1564 int sock_no_setsockopt(struct socket *, int, int, char __user *, unsigned int);
1565 int sock_no_sendmsg(struct kiocb *, struct socket *, struct msghdr *, size_t);
1566 int sock_no_recvmsg(struct kiocb *, struct socket *, struct msghdr *, size_t,
1567 int);
1568 int sock_no_mmap(struct file *file, struct socket *sock,
1569 struct vm_area_struct *vma);
1570 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset,
1571 size_t size, int flags);
1572
1573 /*
1574 * Functions to fill in entries in struct proto_ops when a protocol
1575 * uses the inet style.
1576 */
1577 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1578 char __user *optval, int __user *optlen);
1579 int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
1580 struct msghdr *msg, size_t size, int flags);
1581 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1582 char __user *optval, unsigned int optlen);
1583 int compat_sock_common_getsockopt(struct socket *sock, int level,
1584 int optname, char __user *optval, int __user *optlen);
1585 int compat_sock_common_setsockopt(struct socket *sock, int level,
1586 int optname, char __user *optval, unsigned int optlen);
1587
1588 void sk_common_release(struct sock *sk);
1589
1590 /*
1591 * Default socket callbacks and setup code
1592 */
1593
1594 /* Initialise core socket variables */
1595 void sock_init_data(struct socket *sock, struct sock *sk);
1596
1597 /*
1598 * Socket reference counting postulates.
1599 *
1600 * * Each user of socket SHOULD hold a reference count.
1601 * * Each access point to socket (an hash table bucket, reference from a list,
1602 * running timer, skb in flight MUST hold a reference count.
1603 * * When reference count hits 0, it means it will never increase back.
1604 * * When reference count hits 0, it means that no references from
1605 * outside exist to this socket and current process on current CPU
1606 * is last user and may/should destroy this socket.
1607 * * sk_free is called from any context: process, BH, IRQ. When
1608 * it is called, socket has no references from outside -> sk_free
1609 * may release descendant resources allocated by the socket, but
1610 * to the time when it is called, socket is NOT referenced by any
1611 * hash tables, lists etc.
1612 * * Packets, delivered from outside (from network or from another process)
1613 * and enqueued on receive/error queues SHOULD NOT grab reference count,
1614 * when they sit in queue. Otherwise, packets will leak to hole, when
1615 * socket is looked up by one cpu and unhasing is made by another CPU.
1616 * It is true for udp/raw, netlink (leak to receive and error queues), tcp
1617 * (leak to backlog). Packet socket does all the processing inside
1618 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1619 * use separate SMP lock, so that they are prone too.
1620 */
1621
1622 /* Ungrab socket and destroy it, if it was the last reference. */
1623 static inline void sock_put(struct sock *sk)
1624 {
1625 if (atomic_dec_and_test(&sk->sk_refcnt))
1626 sk_free(sk);
1627 }
1628 /* Generic version of sock_put(), dealing with all sockets
1629 * (TCP_TIMEWAIT, ESTABLISHED...)
1630 */
1631 void sock_gen_put(struct sock *sk);
1632
1633 int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested);
1634
1635 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1636 {
1637 sk->sk_tx_queue_mapping = tx_queue;
1638 }
1639
1640 static inline void sk_tx_queue_clear(struct sock *sk)
1641 {
1642 sk->sk_tx_queue_mapping = -1;
1643 }
1644
1645 static inline int sk_tx_queue_get(const struct sock *sk)
1646 {
1647 return sk ? sk->sk_tx_queue_mapping : -1;
1648 }
1649
1650 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1651 {
1652 sk_tx_queue_clear(sk);
1653 sk->sk_socket = sock;
1654 }
1655
1656 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1657 {
1658 BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1659 return &rcu_dereference_raw(sk->sk_wq)->wait;
1660 }
1661 /* Detach socket from process context.
1662 * Announce socket dead, detach it from wait queue and inode.
1663 * Note that parent inode held reference count on this struct sock,
1664 * we do not release it in this function, because protocol
1665 * probably wants some additional cleanups or even continuing
1666 * to work with this socket (TCP).
1667 */
1668 static inline void sock_orphan(struct sock *sk)
1669 {
1670 write_lock_bh(&sk->sk_callback_lock);
1671 sock_set_flag(sk, SOCK_DEAD);
1672 sk_set_socket(sk, NULL);
1673 sk->sk_wq = NULL;
1674 write_unlock_bh(&sk->sk_callback_lock);
1675 }
1676
1677 static inline void sock_graft(struct sock *sk, struct socket *parent)
1678 {
1679 write_lock_bh(&sk->sk_callback_lock);
1680 sk->sk_wq = parent->wq;
1681 parent->sk = sk;
1682 sk_set_socket(sk, parent);
1683 security_sock_graft(sk, parent);
1684 write_unlock_bh(&sk->sk_callback_lock);
1685 }
1686
1687 kuid_t sock_i_uid(struct sock *sk);
1688 unsigned long sock_i_ino(struct sock *sk);
1689
1690 static inline struct dst_entry *
1691 __sk_dst_get(struct sock *sk)
1692 {
1693 return rcu_dereference_check(sk->sk_dst_cache, sock_owned_by_user(sk) ||
1694 lockdep_is_held(&sk->sk_lock.slock));
1695 }
1696
1697 static inline struct dst_entry *
1698 sk_dst_get(struct sock *sk)
1699 {
1700 struct dst_entry *dst;
1701
1702 rcu_read_lock();
1703 dst = rcu_dereference(sk->sk_dst_cache);
1704 if (dst && !atomic_inc_not_zero(&dst->__refcnt))
1705 dst = NULL;
1706 rcu_read_unlock();
1707 return dst;
1708 }
1709
1710 static inline void dst_negative_advice(struct sock *sk)
1711 {
1712 struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1713
1714 if (dst && dst->ops->negative_advice) {
1715 ndst = dst->ops->negative_advice(dst);
1716
1717 if (ndst != dst) {
1718 rcu_assign_pointer(sk->sk_dst_cache, ndst);
1719 sk_tx_queue_clear(sk);
1720 }
1721 }
1722 }
1723
1724 static inline void
1725 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
1726 {
1727 struct dst_entry *old_dst;
1728
1729 sk_tx_queue_clear(sk);
1730 /*
1731 * This can be called while sk is owned by the caller only,
1732 * with no state that can be checked in a rcu_dereference_check() cond
1733 */
1734 old_dst = rcu_dereference_raw(sk->sk_dst_cache);
1735 rcu_assign_pointer(sk->sk_dst_cache, dst);
1736 dst_release(old_dst);
1737 }
1738
1739 static inline void
1740 sk_dst_set(struct sock *sk, struct dst_entry *dst)
1741 {
1742 struct dst_entry *old_dst;
1743
1744 sk_tx_queue_clear(sk);
1745 old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst);
1746 dst_release(old_dst);
1747 }
1748
1749 static inline void
1750 __sk_dst_reset(struct sock *sk)
1751 {
1752 __sk_dst_set(sk, NULL);
1753 }
1754
1755 static inline void
1756 sk_dst_reset(struct sock *sk)
1757 {
1758 sk_dst_set(sk, NULL);
1759 }
1760
1761 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1762
1763 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1764
1765 bool sk_mc_loop(struct sock *sk);
1766
1767 static inline bool sk_can_gso(const struct sock *sk)
1768 {
1769 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1770 }
1771
1772 void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
1773
1774 static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
1775 {
1776 sk->sk_route_nocaps |= flags;
1777 sk->sk_route_caps &= ~flags;
1778 }
1779
1780 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
1781 struct iov_iter *from, char *to,
1782 int copy, int offset)
1783 {
1784 if (skb->ip_summed == CHECKSUM_NONE) {
1785 __wsum csum = 0;
1786 if (csum_and_copy_from_iter(to, copy, &csum, from) != copy)
1787 return -EFAULT;
1788 skb->csum = csum_block_add(skb->csum, csum, offset);
1789 } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1790 if (copy_from_iter_nocache(to, copy, from) != copy)
1791 return -EFAULT;
1792 } else if (copy_from_iter(to, copy, from) != copy)
1793 return -EFAULT;
1794
1795 return 0;
1796 }
1797
1798 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
1799 struct iov_iter *from, int copy)
1800 {
1801 int err, offset = skb->len;
1802
1803 err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
1804 copy, offset);
1805 if (err)
1806 __skb_trim(skb, offset);
1807
1808 return err;
1809 }
1810
1811 static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from,
1812 struct sk_buff *skb,
1813 struct page *page,
1814 int off, int copy)
1815 {
1816 int err;
1817
1818 err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
1819 copy, skb->len);
1820 if (err)
1821 return err;
1822
1823 skb->len += copy;
1824 skb->data_len += copy;
1825 skb->truesize += copy;
1826 sk->sk_wmem_queued += copy;
1827 sk_mem_charge(sk, copy);
1828 return 0;
1829 }
1830
1831 /**
1832 * sk_wmem_alloc_get - returns write allocations
1833 * @sk: socket
1834 *
1835 * Returns sk_wmem_alloc minus initial offset of one
1836 */
1837 static inline int sk_wmem_alloc_get(const struct sock *sk)
1838 {
1839 return atomic_read(&sk->sk_wmem_alloc) - 1;
1840 }
1841
1842 /**
1843 * sk_rmem_alloc_get - returns read allocations
1844 * @sk: socket
1845 *
1846 * Returns sk_rmem_alloc
1847 */
1848 static inline int sk_rmem_alloc_get(const struct sock *sk)
1849 {
1850 return atomic_read(&sk->sk_rmem_alloc);
1851 }
1852
1853 /**
1854 * sk_has_allocations - check if allocations are outstanding
1855 * @sk: socket
1856 *
1857 * Returns true if socket has write or read allocations
1858 */
1859 static inline bool sk_has_allocations(const struct sock *sk)
1860 {
1861 return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
1862 }
1863
1864 /**
1865 * wq_has_sleeper - check if there are any waiting processes
1866 * @wq: struct socket_wq
1867 *
1868 * Returns true if socket_wq has waiting processes
1869 *
1870 * The purpose of the wq_has_sleeper and sock_poll_wait is to wrap the memory
1871 * barrier call. They were added due to the race found within the tcp code.
1872 *
1873 * Consider following tcp code paths:
1874 *
1875 * CPU1 CPU2
1876 *
1877 * sys_select receive packet
1878 * ... ...
1879 * __add_wait_queue update tp->rcv_nxt
1880 * ... ...
1881 * tp->rcv_nxt check sock_def_readable
1882 * ... {
1883 * schedule rcu_read_lock();
1884 * wq = rcu_dereference(sk->sk_wq);
1885 * if (wq && waitqueue_active(&wq->wait))
1886 * wake_up_interruptible(&wq->wait)
1887 * ...
1888 * }
1889 *
1890 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
1891 * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1
1892 * could then endup calling schedule and sleep forever if there are no more
1893 * data on the socket.
1894 *
1895 */
1896 static inline bool wq_has_sleeper(struct socket_wq *wq)
1897 {
1898 /* We need to be sure we are in sync with the
1899 * add_wait_queue modifications to the wait queue.
1900 *
1901 * This memory barrier is paired in the sock_poll_wait.
1902 */
1903 smp_mb();
1904 return wq && waitqueue_active(&wq->wait);
1905 }
1906
1907 /**
1908 * sock_poll_wait - place memory barrier behind the poll_wait call.
1909 * @filp: file
1910 * @wait_address: socket wait queue
1911 * @p: poll_table
1912 *
1913 * See the comments in the wq_has_sleeper function.
1914 */
1915 static inline void sock_poll_wait(struct file *filp,
1916 wait_queue_head_t *wait_address, poll_table *p)
1917 {
1918 if (!poll_does_not_wait(p) && wait_address) {
1919 poll_wait(filp, wait_address, p);
1920 /* We need to be sure we are in sync with the
1921 * socket flags modification.
1922 *
1923 * This memory barrier is paired in the wq_has_sleeper.
1924 */
1925 smp_mb();
1926 }
1927 }
1928
1929 static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
1930 {
1931 if (sk->sk_txhash) {
1932 skb->l4_hash = 1;
1933 skb->hash = sk->sk_txhash;
1934 }
1935 }
1936
1937 /*
1938 * Queue a received datagram if it will fit. Stream and sequenced
1939 * protocols can't normally use this as they need to fit buffers in
1940 * and play with them.
1941 *
1942 * Inlined as it's very short and called for pretty much every
1943 * packet ever received.
1944 */
1945
1946 static inline void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
1947 {
1948 skb_orphan(skb);
1949 skb->sk = sk;
1950 skb->destructor = sock_wfree;
1951 skb_set_hash_from_sk(skb, sk);
1952 /*
1953 * We used to take a refcount on sk, but following operation
1954 * is enough to guarantee sk_free() wont free this sock until
1955 * all in-flight packets are completed
1956 */
1957 atomic_add(skb->truesize, &sk->sk_wmem_alloc);
1958 }
1959
1960 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
1961 {
1962 skb_orphan(skb);
1963 skb->sk = sk;
1964 skb->destructor = sock_rfree;
1965 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
1966 sk_mem_charge(sk, skb->truesize);
1967 }
1968
1969 void sk_reset_timer(struct sock *sk, struct timer_list *timer,
1970 unsigned long expires);
1971
1972 void sk_stop_timer(struct sock *sk, struct timer_list *timer);
1973
1974 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
1975
1976 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
1977 struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
1978
1979 /*
1980 * Recover an error report and clear atomically
1981 */
1982
1983 static inline int sock_error(struct sock *sk)
1984 {
1985 int err;
1986 if (likely(!sk->sk_err))
1987 return 0;
1988 err = xchg(&sk->sk_err, 0);
1989 return -err;
1990 }
1991
1992 static inline unsigned long sock_wspace(struct sock *sk)
1993 {
1994 int amt = 0;
1995
1996 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
1997 amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
1998 if (amt < 0)
1999 amt = 0;
2000 }
2001 return amt;
2002 }
2003
2004 static inline void sk_wake_async(struct sock *sk, int how, int band)
2005 {
2006 if (sock_flag(sk, SOCK_FASYNC))
2007 sock_wake_async(sk->sk_socket, how, band);
2008 }
2009
2010 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2011 * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2012 * Note: for send buffers, TCP works better if we can build two skbs at
2013 * minimum.
2014 */
2015 #define TCP_SKB_MIN_TRUESIZE (2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2016
2017 #define SOCK_MIN_SNDBUF (TCP_SKB_MIN_TRUESIZE * 2)
2018 #define SOCK_MIN_RCVBUF TCP_SKB_MIN_TRUESIZE
2019
2020 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2021 {
2022 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
2023 sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2024 sk->sk_sndbuf = max_t(u32, sk->sk_sndbuf, SOCK_MIN_SNDBUF);
2025 }
2026 }
2027
2028 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp);
2029
2030 /**
2031 * sk_page_frag - return an appropriate page_frag
2032 * @sk: socket
2033 *
2034 * If socket allocation mode allows current thread to sleep, it means its
2035 * safe to use the per task page_frag instead of the per socket one.
2036 */
2037 static inline struct page_frag *sk_page_frag(struct sock *sk)
2038 {
2039 if (sk->sk_allocation & __GFP_WAIT)
2040 return &current->task_frag;
2041
2042 return &sk->sk_frag;
2043 }
2044
2045 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2046
2047 /*
2048 * Default write policy as shown to user space via poll/select/SIGIO
2049 */
2050 static inline bool sock_writeable(const struct sock *sk)
2051 {
2052 return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1);
2053 }
2054
2055 static inline gfp_t gfp_any(void)
2056 {
2057 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2058 }
2059
2060 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2061 {
2062 return noblock ? 0 : sk->sk_rcvtimeo;
2063 }
2064
2065 static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2066 {
2067 return noblock ? 0 : sk->sk_sndtimeo;
2068 }
2069
2070 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2071 {
2072 return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
2073 }
2074
2075 /* Alas, with timeout socket operations are not restartable.
2076 * Compare this to poll().
2077 */
2078 static inline int sock_intr_errno(long timeo)
2079 {
2080 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2081 }
2082
2083 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2084 struct sk_buff *skb);
2085 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2086 struct sk_buff *skb);
2087
2088 static inline void
2089 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2090 {
2091 ktime_t kt = skb->tstamp;
2092 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2093
2094 /*
2095 * generate control messages if
2096 * - receive time stamping in software requested
2097 * - software time stamp available and wanted
2098 * - hardware time stamps available and wanted
2099 */
2100 if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2101 (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2102 (kt.tv64 && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2103 (hwtstamps->hwtstamp.tv64 &&
2104 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
2105 __sock_recv_timestamp(msg, sk, skb);
2106 else
2107 sk->sk_stamp = kt;
2108
2109 if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2110 __sock_recv_wifi_status(msg, sk, skb);
2111 }
2112
2113 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2114 struct sk_buff *skb);
2115
2116 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2117 struct sk_buff *skb)
2118 {
2119 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL) | \
2120 (1UL << SOCK_RCVTSTAMP))
2121 #define TSFLAGS_ANY (SOF_TIMESTAMPING_SOFTWARE | \
2122 SOF_TIMESTAMPING_RAW_HARDWARE)
2123
2124 if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY)
2125 __sock_recv_ts_and_drops(msg, sk, skb);
2126 else
2127 sk->sk_stamp = skb->tstamp;
2128 }
2129
2130 void __sock_tx_timestamp(const struct sock *sk, __u8 *tx_flags);
2131
2132 /**
2133 * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2134 * @sk: socket sending this packet
2135 * @tx_flags: completed with instructions for time stamping
2136 *
2137 * Note : callers should take care of initial *tx_flags value (usually 0)
2138 */
2139 static inline void sock_tx_timestamp(const struct sock *sk, __u8 *tx_flags)
2140 {
2141 if (unlikely(sk->sk_tsflags))
2142 __sock_tx_timestamp(sk, tx_flags);
2143 if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS)))
2144 *tx_flags |= SKBTX_WIFI_STATUS;
2145 }
2146
2147 /**
2148 * sk_eat_skb - Release a skb if it is no longer needed
2149 * @sk: socket to eat this skb from
2150 * @skb: socket buffer to eat
2151 *
2152 * This routine must be called with interrupts disabled or with the socket
2153 * locked so that the sk_buff queue operation is ok.
2154 */
2155 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
2156 {
2157 __skb_unlink(skb, &sk->sk_receive_queue);
2158 __kfree_skb(skb);
2159 }
2160
2161 static inline
2162 struct net *sock_net(const struct sock *sk)
2163 {
2164 return read_pnet(&sk->sk_net);
2165 }
2166
2167 static inline
2168 void sock_net_set(struct sock *sk, struct net *net)
2169 {
2170 write_pnet(&sk->sk_net, net);
2171 }
2172
2173 /*
2174 * Kernel sockets, f.e. rtnl or icmp_socket, are a part of a namespace.
2175 * They should not hold a reference to a namespace in order to allow
2176 * to stop it.
2177 * Sockets after sk_change_net should be released using sk_release_kernel
2178 */
2179 static inline void sk_change_net(struct sock *sk, struct net *net)
2180 {
2181 struct net *current_net = sock_net(sk);
2182
2183 if (!net_eq(current_net, net)) {
2184 put_net(current_net);
2185 sock_net_set(sk, hold_net(net));
2186 }
2187 }
2188
2189 static inline struct sock *skb_steal_sock(struct sk_buff *skb)
2190 {
2191 if (skb->sk) {
2192 struct sock *sk = skb->sk;
2193
2194 skb->destructor = NULL;
2195 skb->sk = NULL;
2196 return sk;
2197 }
2198 return NULL;
2199 }
2200
2201 void sock_enable_timestamp(struct sock *sk, int flag);
2202 int sock_get_timestamp(struct sock *, struct timeval __user *);
2203 int sock_get_timestampns(struct sock *, struct timespec __user *);
2204 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2205 int type);
2206
2207 bool sk_ns_capable(const struct sock *sk,
2208 struct user_namespace *user_ns, int cap);
2209 bool sk_capable(const struct sock *sk, int cap);
2210 bool sk_net_capable(const struct sock *sk, int cap);
2211
2212 extern __u32 sysctl_wmem_max;
2213 extern __u32 sysctl_rmem_max;
2214
2215 extern int sysctl_tstamp_allow_data;
2216 extern int sysctl_optmem_max;
2217
2218 extern __u32 sysctl_wmem_default;
2219 extern __u32 sysctl_rmem_default;
2220
2221 #endif /* _SOCK_H */