]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - include/net/sock.h
Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/sparc
[mirror_ubuntu-bionic-kernel.git] / include / net / sock.h
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Definitions for the AF_INET socket handler.
7 *
8 * Version: @(#)sock.h 1.0.4 05/13/93
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche <flla@stud.uni-sb.de>
14 *
15 * Fixes:
16 * Alan Cox : Volatiles in skbuff pointers. See
17 * skbuff comments. May be overdone,
18 * better to prove they can be removed
19 * than the reverse.
20 * Alan Cox : Added a zapped field for tcp to note
21 * a socket is reset and must stay shut up
22 * Alan Cox : New fields for options
23 * Pauline Middelink : identd support
24 * Alan Cox : Eliminate low level recv/recvfrom
25 * David S. Miller : New socket lookup architecture.
26 * Steve Whitehouse: Default routines for sock_ops
27 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made
28 * protinfo be just a void pointer, as the
29 * protocol specific parts were moved to
30 * respective headers and ipv4/v6, etc now
31 * use private slabcaches for its socks
32 * Pedro Hortas : New flags field for socket options
33 *
34 *
35 * This program is free software; you can redistribute it and/or
36 * modify it under the terms of the GNU General Public License
37 * as published by the Free Software Foundation; either version
38 * 2 of the License, or (at your option) any later version.
39 */
40 #ifndef _SOCK_H
41 #define _SOCK_H
42
43 #include <linux/hardirq.h>
44 #include <linux/kernel.h>
45 #include <linux/list.h>
46 #include <linux/list_nulls.h>
47 #include <linux/timer.h>
48 #include <linux/cache.h>
49 #include <linux/bitops.h>
50 #include <linux/lockdep.h>
51 #include <linux/netdevice.h>
52 #include <linux/skbuff.h> /* struct sk_buff */
53 #include <linux/mm.h>
54 #include <linux/security.h>
55 #include <linux/slab.h>
56 #include <linux/uaccess.h>
57 #include <linux/page_counter.h>
58 #include <linux/memcontrol.h>
59 #include <linux/static_key.h>
60 #include <linux/sched.h>
61 #include <linux/wait.h>
62 #include <linux/cgroup-defs.h>
63 #include <linux/rbtree.h>
64 #include <linux/filter.h>
65 #include <linux/rculist_nulls.h>
66 #include <linux/poll.h>
67
68 #include <linux/atomic.h>
69 #include <linux/refcount.h>
70 #include <net/dst.h>
71 #include <net/checksum.h>
72 #include <net/tcp_states.h>
73 #include <linux/net_tstamp.h>
74 #include <net/smc.h>
75
76 /*
77 * This structure really needs to be cleaned up.
78 * Most of it is for TCP, and not used by any of
79 * the other protocols.
80 */
81
82 /* Define this to get the SOCK_DBG debugging facility. */
83 #define SOCK_DEBUGGING
84 #ifdef SOCK_DEBUGGING
85 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
86 printk(KERN_DEBUG msg); } while (0)
87 #else
88 /* Validate arguments and do nothing */
89 static inline __printf(2, 3)
90 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
91 {
92 }
93 #endif
94
95 /* This is the per-socket lock. The spinlock provides a synchronization
96 * between user contexts and software interrupt processing, whereas the
97 * mini-semaphore synchronizes multiple users amongst themselves.
98 */
99 typedef struct {
100 spinlock_t slock;
101 int owned;
102 wait_queue_head_t wq;
103 /*
104 * We express the mutex-alike socket_lock semantics
105 * to the lock validator by explicitly managing
106 * the slock as a lock variant (in addition to
107 * the slock itself):
108 */
109 #ifdef CONFIG_DEBUG_LOCK_ALLOC
110 struct lockdep_map dep_map;
111 #endif
112 } socket_lock_t;
113
114 struct sock;
115 struct proto;
116 struct net;
117
118 typedef __u32 __bitwise __portpair;
119 typedef __u64 __bitwise __addrpair;
120
121 /**
122 * struct sock_common - minimal network layer representation of sockets
123 * @skc_daddr: Foreign IPv4 addr
124 * @skc_rcv_saddr: Bound local IPv4 addr
125 * @skc_hash: hash value used with various protocol lookup tables
126 * @skc_u16hashes: two u16 hash values used by UDP lookup tables
127 * @skc_dport: placeholder for inet_dport/tw_dport
128 * @skc_num: placeholder for inet_num/tw_num
129 * @skc_family: network address family
130 * @skc_state: Connection state
131 * @skc_reuse: %SO_REUSEADDR setting
132 * @skc_reuseport: %SO_REUSEPORT setting
133 * @skc_bound_dev_if: bound device index if != 0
134 * @skc_bind_node: bind hash linkage for various protocol lookup tables
135 * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
136 * @skc_prot: protocol handlers inside a network family
137 * @skc_net: reference to the network namespace of this socket
138 * @skc_node: main hash linkage for various protocol lookup tables
139 * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
140 * @skc_tx_queue_mapping: tx queue number for this connection
141 * @skc_flags: place holder for sk_flags
142 * %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
143 * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
144 * @skc_incoming_cpu: record/match cpu processing incoming packets
145 * @skc_refcnt: reference count
146 *
147 * This is the minimal network layer representation of sockets, the header
148 * for struct sock and struct inet_timewait_sock.
149 */
150 struct sock_common {
151 /* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned
152 * address on 64bit arches : cf INET_MATCH()
153 */
154 union {
155 __addrpair skc_addrpair;
156 struct {
157 __be32 skc_daddr;
158 __be32 skc_rcv_saddr;
159 };
160 };
161 union {
162 unsigned int skc_hash;
163 __u16 skc_u16hashes[2];
164 };
165 /* skc_dport && skc_num must be grouped as well */
166 union {
167 __portpair skc_portpair;
168 struct {
169 __be16 skc_dport;
170 __u16 skc_num;
171 };
172 };
173
174 unsigned short skc_family;
175 volatile unsigned char skc_state;
176 unsigned char skc_reuse:4;
177 unsigned char skc_reuseport:1;
178 unsigned char skc_ipv6only:1;
179 unsigned char skc_net_refcnt:1;
180 int skc_bound_dev_if;
181 union {
182 struct hlist_node skc_bind_node;
183 struct hlist_node skc_portaddr_node;
184 };
185 struct proto *skc_prot;
186 possible_net_t skc_net;
187
188 #if IS_ENABLED(CONFIG_IPV6)
189 struct in6_addr skc_v6_daddr;
190 struct in6_addr skc_v6_rcv_saddr;
191 #endif
192
193 atomic64_t skc_cookie;
194
195 /* following fields are padding to force
196 * offset(struct sock, sk_refcnt) == 128 on 64bit arches
197 * assuming IPV6 is enabled. We use this padding differently
198 * for different kind of 'sockets'
199 */
200 union {
201 unsigned long skc_flags;
202 struct sock *skc_listener; /* request_sock */
203 struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */
204 };
205 /*
206 * fields between dontcopy_begin/dontcopy_end
207 * are not copied in sock_copy()
208 */
209 /* private: */
210 int skc_dontcopy_begin[0];
211 /* public: */
212 union {
213 struct hlist_node skc_node;
214 struct hlist_nulls_node skc_nulls_node;
215 };
216 int skc_tx_queue_mapping;
217 union {
218 int skc_incoming_cpu;
219 u32 skc_rcv_wnd;
220 u32 skc_tw_rcv_nxt; /* struct tcp_timewait_sock */
221 };
222
223 refcount_t skc_refcnt;
224 /* private: */
225 int skc_dontcopy_end[0];
226 union {
227 u32 skc_rxhash;
228 u32 skc_window_clamp;
229 u32 skc_tw_snd_nxt; /* struct tcp_timewait_sock */
230 };
231 /* public: */
232 };
233
234 /**
235 * struct sock - network layer representation of sockets
236 * @__sk_common: shared layout with inet_timewait_sock
237 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
238 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
239 * @sk_lock: synchronizer
240 * @sk_kern_sock: True if sock is using kernel lock classes
241 * @sk_rcvbuf: size of receive buffer in bytes
242 * @sk_wq: sock wait queue and async head
243 * @sk_rx_dst: receive input route used by early demux
244 * @sk_dst_cache: destination cache
245 * @sk_dst_pending_confirm: need to confirm neighbour
246 * @sk_policy: flow policy
247 * @sk_receive_queue: incoming packets
248 * @sk_wmem_alloc: transmit queue bytes committed
249 * @sk_tsq_flags: TCP Small Queues flags
250 * @sk_write_queue: Packet sending queue
251 * @sk_omem_alloc: "o" is "option" or "other"
252 * @sk_wmem_queued: persistent queue size
253 * @sk_forward_alloc: space allocated forward
254 * @sk_napi_id: id of the last napi context to receive data for sk
255 * @sk_ll_usec: usecs to busypoll when there is no data
256 * @sk_allocation: allocation mode
257 * @sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
258 * @sk_pacing_status: Pacing status (requested, handled by sch_fq)
259 * @sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
260 * @sk_sndbuf: size of send buffer in bytes
261 * @__sk_flags_offset: empty field used to determine location of bitfield
262 * @sk_padding: unused element for alignment
263 * @sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
264 * @sk_no_check_rx: allow zero checksum in RX packets
265 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
266 * @sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
267 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
268 * @sk_gso_max_size: Maximum GSO segment size to build
269 * @sk_gso_max_segs: Maximum number of GSO segments
270 * @sk_pacing_shift: scaling factor for TCP Small Queues
271 * @sk_lingertime: %SO_LINGER l_linger setting
272 * @sk_backlog: always used with the per-socket spinlock held
273 * @sk_callback_lock: used with the callbacks in the end of this struct
274 * @sk_error_queue: rarely used
275 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
276 * IPV6_ADDRFORM for instance)
277 * @sk_err: last error
278 * @sk_err_soft: errors that don't cause failure but are the cause of a
279 * persistent failure not just 'timed out'
280 * @sk_drops: raw/udp drops counter
281 * @sk_ack_backlog: current listen backlog
282 * @sk_max_ack_backlog: listen backlog set in listen()
283 * @sk_uid: user id of owner
284 * @sk_priority: %SO_PRIORITY setting
285 * @sk_type: socket type (%SOCK_STREAM, etc)
286 * @sk_protocol: which protocol this socket belongs in this network family
287 * @sk_peer_pid: &struct pid for this socket's peer
288 * @sk_peer_cred: %SO_PEERCRED setting
289 * @sk_rcvlowat: %SO_RCVLOWAT setting
290 * @sk_rcvtimeo: %SO_RCVTIMEO setting
291 * @sk_sndtimeo: %SO_SNDTIMEO setting
292 * @sk_txhash: computed flow hash for use on transmit
293 * @sk_filter: socket filtering instructions
294 * @sk_timer: sock cleanup timer
295 * @sk_stamp: time stamp of last packet received
296 * @sk_tsflags: SO_TIMESTAMPING socket options
297 * @sk_tskey: counter to disambiguate concurrent tstamp requests
298 * @sk_zckey: counter to order MSG_ZEROCOPY notifications
299 * @sk_socket: Identd and reporting IO signals
300 * @sk_user_data: RPC layer private data
301 * @sk_frag: cached page frag
302 * @sk_peek_off: current peek_offset value
303 * @sk_send_head: front of stuff to transmit
304 * @sk_security: used by security modules
305 * @sk_mark: generic packet mark
306 * @sk_cgrp_data: cgroup data for this cgroup
307 * @sk_memcg: this socket's memory cgroup association
308 * @sk_write_pending: a write to stream socket waits to start
309 * @sk_state_change: callback to indicate change in the state of the sock
310 * @sk_data_ready: callback to indicate there is data to be processed
311 * @sk_write_space: callback to indicate there is bf sending space available
312 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
313 * @sk_backlog_rcv: callback to process the backlog
314 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
315 * @sk_reuseport_cb: reuseport group container
316 * @sk_rcu: used during RCU grace period
317 */
318 struct sock {
319 /*
320 * Now struct inet_timewait_sock also uses sock_common, so please just
321 * don't add nothing before this first member (__sk_common) --acme
322 */
323 struct sock_common __sk_common;
324 #define sk_node __sk_common.skc_node
325 #define sk_nulls_node __sk_common.skc_nulls_node
326 #define sk_refcnt __sk_common.skc_refcnt
327 #define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping
328
329 #define sk_dontcopy_begin __sk_common.skc_dontcopy_begin
330 #define sk_dontcopy_end __sk_common.skc_dontcopy_end
331 #define sk_hash __sk_common.skc_hash
332 #define sk_portpair __sk_common.skc_portpair
333 #define sk_num __sk_common.skc_num
334 #define sk_dport __sk_common.skc_dport
335 #define sk_addrpair __sk_common.skc_addrpair
336 #define sk_daddr __sk_common.skc_daddr
337 #define sk_rcv_saddr __sk_common.skc_rcv_saddr
338 #define sk_family __sk_common.skc_family
339 #define sk_state __sk_common.skc_state
340 #define sk_reuse __sk_common.skc_reuse
341 #define sk_reuseport __sk_common.skc_reuseport
342 #define sk_ipv6only __sk_common.skc_ipv6only
343 #define sk_net_refcnt __sk_common.skc_net_refcnt
344 #define sk_bound_dev_if __sk_common.skc_bound_dev_if
345 #define sk_bind_node __sk_common.skc_bind_node
346 #define sk_prot __sk_common.skc_prot
347 #define sk_net __sk_common.skc_net
348 #define sk_v6_daddr __sk_common.skc_v6_daddr
349 #define sk_v6_rcv_saddr __sk_common.skc_v6_rcv_saddr
350 #define sk_cookie __sk_common.skc_cookie
351 #define sk_incoming_cpu __sk_common.skc_incoming_cpu
352 #define sk_flags __sk_common.skc_flags
353 #define sk_rxhash __sk_common.skc_rxhash
354
355 socket_lock_t sk_lock;
356 atomic_t sk_drops;
357 int sk_rcvlowat;
358 struct sk_buff_head sk_error_queue;
359 struct sk_buff_head sk_receive_queue;
360 /*
361 * The backlog queue is special, it is always used with
362 * the per-socket spinlock held and requires low latency
363 * access. Therefore we special case it's implementation.
364 * Note : rmem_alloc is in this structure to fill a hole
365 * on 64bit arches, not because its logically part of
366 * backlog.
367 */
368 struct {
369 atomic_t rmem_alloc;
370 int len;
371 struct sk_buff *head;
372 struct sk_buff *tail;
373 } sk_backlog;
374 #define sk_rmem_alloc sk_backlog.rmem_alloc
375
376 int sk_forward_alloc;
377 #ifdef CONFIG_NET_RX_BUSY_POLL
378 unsigned int sk_ll_usec;
379 /* ===== mostly read cache line ===== */
380 unsigned int sk_napi_id;
381 #endif
382 int sk_rcvbuf;
383
384 struct sk_filter __rcu *sk_filter;
385 union {
386 struct socket_wq __rcu *sk_wq;
387 struct socket_wq *sk_wq_raw;
388 };
389 #ifdef CONFIG_XFRM
390 struct xfrm_policy __rcu *sk_policy[2];
391 #endif
392 struct dst_entry *sk_rx_dst;
393 struct dst_entry __rcu *sk_dst_cache;
394 atomic_t sk_omem_alloc;
395 int sk_sndbuf;
396
397 /* ===== cache line for TX ===== */
398 int sk_wmem_queued;
399 refcount_t sk_wmem_alloc;
400 unsigned long sk_tsq_flags;
401 union {
402 struct sk_buff *sk_send_head;
403 struct rb_root tcp_rtx_queue;
404 };
405 struct sk_buff_head sk_write_queue;
406 __s32 sk_peek_off;
407 int sk_write_pending;
408 __u32 sk_dst_pending_confirm;
409 u32 sk_pacing_status; /* see enum sk_pacing */
410 long sk_sndtimeo;
411 struct timer_list sk_timer;
412 __u32 sk_priority;
413 __u32 sk_mark;
414 u32 sk_pacing_rate; /* bytes per second */
415 u32 sk_max_pacing_rate;
416 struct page_frag sk_frag;
417 netdev_features_t sk_route_caps;
418 netdev_features_t sk_route_nocaps;
419 int sk_gso_type;
420 unsigned int sk_gso_max_size;
421 gfp_t sk_allocation;
422 __u32 sk_txhash;
423
424 /*
425 * Because of non atomicity rules, all
426 * changes are protected by socket lock.
427 */
428 unsigned int __sk_flags_offset[0];
429 #ifdef __BIG_ENDIAN_BITFIELD
430 #define SK_FL_PROTO_SHIFT 16
431 #define SK_FL_PROTO_MASK 0x00ff0000
432
433 #define SK_FL_TYPE_SHIFT 0
434 #define SK_FL_TYPE_MASK 0x0000ffff
435 #else
436 #define SK_FL_PROTO_SHIFT 8
437 #define SK_FL_PROTO_MASK 0x0000ff00
438
439 #define SK_FL_TYPE_SHIFT 16
440 #define SK_FL_TYPE_MASK 0xffff0000
441 #endif
442
443 unsigned int sk_padding : 1,
444 sk_kern_sock : 1,
445 sk_no_check_tx : 1,
446 sk_no_check_rx : 1,
447 sk_userlocks : 4,
448 sk_protocol : 8,
449 sk_type : 16;
450 #define SK_PROTOCOL_MAX U8_MAX
451 u16 sk_gso_max_segs;
452 u8 sk_pacing_shift;
453 unsigned long sk_lingertime;
454 struct proto *sk_prot_creator;
455 rwlock_t sk_callback_lock;
456 int sk_err,
457 sk_err_soft;
458 u32 sk_ack_backlog;
459 u32 sk_max_ack_backlog;
460 kuid_t sk_uid;
461 struct pid *sk_peer_pid;
462 const struct cred *sk_peer_cred;
463 long sk_rcvtimeo;
464 ktime_t sk_stamp;
465 u16 sk_tsflags;
466 u8 sk_shutdown;
467 u32 sk_tskey;
468 atomic_t sk_zckey;
469 struct socket *sk_socket;
470 void *sk_user_data;
471 #ifdef CONFIG_SECURITY
472 void *sk_security;
473 #endif
474 struct sock_cgroup_data sk_cgrp_data;
475 struct mem_cgroup *sk_memcg;
476 void (*sk_state_change)(struct sock *sk);
477 void (*sk_data_ready)(struct sock *sk);
478 void (*sk_write_space)(struct sock *sk);
479 void (*sk_error_report)(struct sock *sk);
480 int (*sk_backlog_rcv)(struct sock *sk,
481 struct sk_buff *skb);
482 void (*sk_destruct)(struct sock *sk);
483 struct sock_reuseport __rcu *sk_reuseport_cb;
484 struct rcu_head sk_rcu;
485 };
486
487 enum sk_pacing {
488 SK_PACING_NONE = 0,
489 SK_PACING_NEEDED = 1,
490 SK_PACING_FQ = 2,
491 };
492
493 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
494
495 #define rcu_dereference_sk_user_data(sk) rcu_dereference(__sk_user_data((sk)))
496 #define rcu_assign_sk_user_data(sk, ptr) rcu_assign_pointer(__sk_user_data((sk)), ptr)
497
498 /*
499 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
500 * or not whether his port will be reused by someone else. SK_FORCE_REUSE
501 * on a socket means that the socket will reuse everybody else's port
502 * without looking at the other's sk_reuse value.
503 */
504
505 #define SK_NO_REUSE 0
506 #define SK_CAN_REUSE 1
507 #define SK_FORCE_REUSE 2
508
509 int sk_set_peek_off(struct sock *sk, int val);
510
511 static inline int sk_peek_offset(struct sock *sk, int flags)
512 {
513 if (unlikely(flags & MSG_PEEK)) {
514 return READ_ONCE(sk->sk_peek_off);
515 }
516
517 return 0;
518 }
519
520 static inline void sk_peek_offset_bwd(struct sock *sk, int val)
521 {
522 s32 off = READ_ONCE(sk->sk_peek_off);
523
524 if (unlikely(off >= 0)) {
525 off = max_t(s32, off - val, 0);
526 WRITE_ONCE(sk->sk_peek_off, off);
527 }
528 }
529
530 static inline void sk_peek_offset_fwd(struct sock *sk, int val)
531 {
532 sk_peek_offset_bwd(sk, -val);
533 }
534
535 /*
536 * Hashed lists helper routines
537 */
538 static inline struct sock *sk_entry(const struct hlist_node *node)
539 {
540 return hlist_entry(node, struct sock, sk_node);
541 }
542
543 static inline struct sock *__sk_head(const struct hlist_head *head)
544 {
545 return hlist_entry(head->first, struct sock, sk_node);
546 }
547
548 static inline struct sock *sk_head(const struct hlist_head *head)
549 {
550 return hlist_empty(head) ? NULL : __sk_head(head);
551 }
552
553 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
554 {
555 return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
556 }
557
558 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
559 {
560 return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
561 }
562
563 static inline struct sock *sk_next(const struct sock *sk)
564 {
565 return hlist_entry_safe(sk->sk_node.next, struct sock, sk_node);
566 }
567
568 static inline struct sock *sk_nulls_next(const struct sock *sk)
569 {
570 return (!is_a_nulls(sk->sk_nulls_node.next)) ?
571 hlist_nulls_entry(sk->sk_nulls_node.next,
572 struct sock, sk_nulls_node) :
573 NULL;
574 }
575
576 static inline bool sk_unhashed(const struct sock *sk)
577 {
578 return hlist_unhashed(&sk->sk_node);
579 }
580
581 static inline bool sk_hashed(const struct sock *sk)
582 {
583 return !sk_unhashed(sk);
584 }
585
586 static inline void sk_node_init(struct hlist_node *node)
587 {
588 node->pprev = NULL;
589 }
590
591 static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
592 {
593 node->pprev = NULL;
594 }
595
596 static inline void __sk_del_node(struct sock *sk)
597 {
598 __hlist_del(&sk->sk_node);
599 }
600
601 /* NB: equivalent to hlist_del_init_rcu */
602 static inline bool __sk_del_node_init(struct sock *sk)
603 {
604 if (sk_hashed(sk)) {
605 __sk_del_node(sk);
606 sk_node_init(&sk->sk_node);
607 return true;
608 }
609 return false;
610 }
611
612 /* Grab socket reference count. This operation is valid only
613 when sk is ALREADY grabbed f.e. it is found in hash table
614 or a list and the lookup is made under lock preventing hash table
615 modifications.
616 */
617
618 static __always_inline void sock_hold(struct sock *sk)
619 {
620 refcount_inc(&sk->sk_refcnt);
621 }
622
623 /* Ungrab socket in the context, which assumes that socket refcnt
624 cannot hit zero, f.e. it is true in context of any socketcall.
625 */
626 static __always_inline void __sock_put(struct sock *sk)
627 {
628 refcount_dec(&sk->sk_refcnt);
629 }
630
631 static inline bool sk_del_node_init(struct sock *sk)
632 {
633 bool rc = __sk_del_node_init(sk);
634
635 if (rc) {
636 /* paranoid for a while -acme */
637 WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
638 __sock_put(sk);
639 }
640 return rc;
641 }
642 #define sk_del_node_init_rcu(sk) sk_del_node_init(sk)
643
644 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
645 {
646 if (sk_hashed(sk)) {
647 hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
648 return true;
649 }
650 return false;
651 }
652
653 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
654 {
655 bool rc = __sk_nulls_del_node_init_rcu(sk);
656
657 if (rc) {
658 /* paranoid for a while -acme */
659 WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
660 __sock_put(sk);
661 }
662 return rc;
663 }
664
665 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
666 {
667 hlist_add_head(&sk->sk_node, list);
668 }
669
670 static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
671 {
672 sock_hold(sk);
673 __sk_add_node(sk, list);
674 }
675
676 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
677 {
678 sock_hold(sk);
679 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
680 sk->sk_family == AF_INET6)
681 hlist_add_tail_rcu(&sk->sk_node, list);
682 else
683 hlist_add_head_rcu(&sk->sk_node, list);
684 }
685
686 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
687 {
688 hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
689 }
690
691 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
692 {
693 sock_hold(sk);
694 __sk_nulls_add_node_rcu(sk, list);
695 }
696
697 static inline void __sk_del_bind_node(struct sock *sk)
698 {
699 __hlist_del(&sk->sk_bind_node);
700 }
701
702 static inline void sk_add_bind_node(struct sock *sk,
703 struct hlist_head *list)
704 {
705 hlist_add_head(&sk->sk_bind_node, list);
706 }
707
708 #define sk_for_each(__sk, list) \
709 hlist_for_each_entry(__sk, list, sk_node)
710 #define sk_for_each_rcu(__sk, list) \
711 hlist_for_each_entry_rcu(__sk, list, sk_node)
712 #define sk_nulls_for_each(__sk, node, list) \
713 hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
714 #define sk_nulls_for_each_rcu(__sk, node, list) \
715 hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
716 #define sk_for_each_from(__sk) \
717 hlist_for_each_entry_from(__sk, sk_node)
718 #define sk_nulls_for_each_from(__sk, node) \
719 if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
720 hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
721 #define sk_for_each_safe(__sk, tmp, list) \
722 hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
723 #define sk_for_each_bound(__sk, list) \
724 hlist_for_each_entry(__sk, list, sk_bind_node)
725
726 /**
727 * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset
728 * @tpos: the type * to use as a loop cursor.
729 * @pos: the &struct hlist_node to use as a loop cursor.
730 * @head: the head for your list.
731 * @offset: offset of hlist_node within the struct.
732 *
733 */
734 #define sk_for_each_entry_offset_rcu(tpos, pos, head, offset) \
735 for (pos = rcu_dereference(hlist_first_rcu(head)); \
736 pos != NULL && \
737 ({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;}); \
738 pos = rcu_dereference(hlist_next_rcu(pos)))
739
740 static inline struct user_namespace *sk_user_ns(struct sock *sk)
741 {
742 /* Careful only use this in a context where these parameters
743 * can not change and must all be valid, such as recvmsg from
744 * userspace.
745 */
746 return sk->sk_socket->file->f_cred->user_ns;
747 }
748
749 /* Sock flags */
750 enum sock_flags {
751 SOCK_DEAD,
752 SOCK_DONE,
753 SOCK_URGINLINE,
754 SOCK_KEEPOPEN,
755 SOCK_LINGER,
756 SOCK_DESTROY,
757 SOCK_BROADCAST,
758 SOCK_TIMESTAMP,
759 SOCK_ZAPPED,
760 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
761 SOCK_DBG, /* %SO_DEBUG setting */
762 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
763 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
764 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
765 SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
766 SOCK_MEMALLOC, /* VM depends on this socket for swapping */
767 SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */
768 SOCK_FASYNC, /* fasync() active */
769 SOCK_RXQ_OVFL,
770 SOCK_ZEROCOPY, /* buffers from userspace */
771 SOCK_WIFI_STATUS, /* push wifi status to userspace */
772 SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
773 * Will use last 4 bytes of packet sent from
774 * user-space instead.
775 */
776 SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
777 SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
778 SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */
779 };
780
781 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
782
783 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
784 {
785 nsk->sk_flags = osk->sk_flags;
786 }
787
788 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
789 {
790 __set_bit(flag, &sk->sk_flags);
791 }
792
793 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
794 {
795 __clear_bit(flag, &sk->sk_flags);
796 }
797
798 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
799 {
800 return test_bit(flag, &sk->sk_flags);
801 }
802
803 #ifdef CONFIG_NET
804 extern struct static_key memalloc_socks;
805 static inline int sk_memalloc_socks(void)
806 {
807 return static_key_false(&memalloc_socks);
808 }
809 #else
810
811 static inline int sk_memalloc_socks(void)
812 {
813 return 0;
814 }
815
816 #endif
817
818 static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask)
819 {
820 return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC);
821 }
822
823 static inline void sk_acceptq_removed(struct sock *sk)
824 {
825 sk->sk_ack_backlog--;
826 }
827
828 static inline void sk_acceptq_added(struct sock *sk)
829 {
830 sk->sk_ack_backlog++;
831 }
832
833 static inline bool sk_acceptq_is_full(const struct sock *sk)
834 {
835 return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
836 }
837
838 /*
839 * Compute minimal free write space needed to queue new packets.
840 */
841 static inline int sk_stream_min_wspace(const struct sock *sk)
842 {
843 return sk->sk_wmem_queued >> 1;
844 }
845
846 static inline int sk_stream_wspace(const struct sock *sk)
847 {
848 return sk->sk_sndbuf - sk->sk_wmem_queued;
849 }
850
851 void sk_stream_write_space(struct sock *sk);
852
853 /* OOB backlog add */
854 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
855 {
856 /* dont let skb dst not refcounted, we are going to leave rcu lock */
857 skb_dst_force(skb);
858
859 if (!sk->sk_backlog.tail)
860 sk->sk_backlog.head = skb;
861 else
862 sk->sk_backlog.tail->next = skb;
863
864 sk->sk_backlog.tail = skb;
865 skb->next = NULL;
866 }
867
868 /*
869 * Take into account size of receive queue and backlog queue
870 * Do not take into account this skb truesize,
871 * to allow even a single big packet to come.
872 */
873 static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
874 {
875 unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
876
877 return qsize > limit;
878 }
879
880 /* The per-socket spinlock must be held here. */
881 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
882 unsigned int limit)
883 {
884 if (sk_rcvqueues_full(sk, limit))
885 return -ENOBUFS;
886
887 /*
888 * If the skb was allocated from pfmemalloc reserves, only
889 * allow SOCK_MEMALLOC sockets to use it as this socket is
890 * helping free memory
891 */
892 if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
893 return -ENOMEM;
894
895 __sk_add_backlog(sk, skb);
896 sk->sk_backlog.len += skb->truesize;
897 return 0;
898 }
899
900 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
901
902 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
903 {
904 if (sk_memalloc_socks() && skb_pfmemalloc(skb))
905 return __sk_backlog_rcv(sk, skb);
906
907 return sk->sk_backlog_rcv(sk, skb);
908 }
909
910 static inline void sk_incoming_cpu_update(struct sock *sk)
911 {
912 int cpu = raw_smp_processor_id();
913
914 if (unlikely(sk->sk_incoming_cpu != cpu))
915 sk->sk_incoming_cpu = cpu;
916 }
917
918 static inline void sock_rps_record_flow_hash(__u32 hash)
919 {
920 #ifdef CONFIG_RPS
921 struct rps_sock_flow_table *sock_flow_table;
922
923 rcu_read_lock();
924 sock_flow_table = rcu_dereference(rps_sock_flow_table);
925 rps_record_sock_flow(sock_flow_table, hash);
926 rcu_read_unlock();
927 #endif
928 }
929
930 static inline void sock_rps_record_flow(const struct sock *sk)
931 {
932 #ifdef CONFIG_RPS
933 if (static_key_false(&rfs_needed)) {
934 /* Reading sk->sk_rxhash might incur an expensive cache line
935 * miss.
936 *
937 * TCP_ESTABLISHED does cover almost all states where RFS
938 * might be useful, and is cheaper [1] than testing :
939 * IPv4: inet_sk(sk)->inet_daddr
940 * IPv6: ipv6_addr_any(&sk->sk_v6_daddr)
941 * OR an additional socket flag
942 * [1] : sk_state and sk_prot are in the same cache line.
943 */
944 if (sk->sk_state == TCP_ESTABLISHED)
945 sock_rps_record_flow_hash(sk->sk_rxhash);
946 }
947 #endif
948 }
949
950 static inline void sock_rps_save_rxhash(struct sock *sk,
951 const struct sk_buff *skb)
952 {
953 #ifdef CONFIG_RPS
954 if (unlikely(sk->sk_rxhash != skb->hash))
955 sk->sk_rxhash = skb->hash;
956 #endif
957 }
958
959 static inline void sock_rps_reset_rxhash(struct sock *sk)
960 {
961 #ifdef CONFIG_RPS
962 sk->sk_rxhash = 0;
963 #endif
964 }
965
966 #define sk_wait_event(__sk, __timeo, __condition, __wait) \
967 ({ int __rc; \
968 release_sock(__sk); \
969 __rc = __condition; \
970 if (!__rc) { \
971 *(__timeo) = wait_woken(__wait, \
972 TASK_INTERRUPTIBLE, \
973 *(__timeo)); \
974 } \
975 sched_annotate_sleep(); \
976 lock_sock(__sk); \
977 __rc = __condition; \
978 __rc; \
979 })
980
981 int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
982 int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
983 void sk_stream_wait_close(struct sock *sk, long timeo_p);
984 int sk_stream_error(struct sock *sk, int flags, int err);
985 void sk_stream_kill_queues(struct sock *sk);
986 void sk_set_memalloc(struct sock *sk);
987 void sk_clear_memalloc(struct sock *sk);
988
989 void __sk_flush_backlog(struct sock *sk);
990
991 static inline bool sk_flush_backlog(struct sock *sk)
992 {
993 if (unlikely(READ_ONCE(sk->sk_backlog.tail))) {
994 __sk_flush_backlog(sk);
995 return true;
996 }
997 return false;
998 }
999
1000 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb);
1001
1002 struct request_sock_ops;
1003 struct timewait_sock_ops;
1004 struct inet_hashinfo;
1005 struct raw_hashinfo;
1006 struct smc_hashinfo;
1007 struct module;
1008
1009 /*
1010 * caches using SLAB_TYPESAFE_BY_RCU should let .next pointer from nulls nodes
1011 * un-modified. Special care is taken when initializing object to zero.
1012 */
1013 static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1014 {
1015 if (offsetof(struct sock, sk_node.next) != 0)
1016 memset(sk, 0, offsetof(struct sock, sk_node.next));
1017 memset(&sk->sk_node.pprev, 0,
1018 size - offsetof(struct sock, sk_node.pprev));
1019 }
1020
1021 /* Networking protocol blocks we attach to sockets.
1022 * socket layer -> transport layer interface
1023 */
1024 struct proto {
1025 void (*close)(struct sock *sk,
1026 long timeout);
1027 int (*connect)(struct sock *sk,
1028 struct sockaddr *uaddr,
1029 int addr_len);
1030 int (*disconnect)(struct sock *sk, int flags);
1031
1032 struct sock * (*accept)(struct sock *sk, int flags, int *err,
1033 bool kern);
1034
1035 int (*ioctl)(struct sock *sk, int cmd,
1036 unsigned long arg);
1037 int (*init)(struct sock *sk);
1038 void (*destroy)(struct sock *sk);
1039 void (*shutdown)(struct sock *sk, int how);
1040 int (*setsockopt)(struct sock *sk, int level,
1041 int optname, char __user *optval,
1042 unsigned int optlen);
1043 int (*getsockopt)(struct sock *sk, int level,
1044 int optname, char __user *optval,
1045 int __user *option);
1046 void (*keepalive)(struct sock *sk, int valbool);
1047 #ifdef CONFIG_COMPAT
1048 int (*compat_setsockopt)(struct sock *sk,
1049 int level,
1050 int optname, char __user *optval,
1051 unsigned int optlen);
1052 int (*compat_getsockopt)(struct sock *sk,
1053 int level,
1054 int optname, char __user *optval,
1055 int __user *option);
1056 int (*compat_ioctl)(struct sock *sk,
1057 unsigned int cmd, unsigned long arg);
1058 #endif
1059 int (*sendmsg)(struct sock *sk, struct msghdr *msg,
1060 size_t len);
1061 int (*recvmsg)(struct sock *sk, struct msghdr *msg,
1062 size_t len, int noblock, int flags,
1063 int *addr_len);
1064 int (*sendpage)(struct sock *sk, struct page *page,
1065 int offset, size_t size, int flags);
1066 int (*bind)(struct sock *sk,
1067 struct sockaddr *uaddr, int addr_len);
1068
1069 int (*backlog_rcv) (struct sock *sk,
1070 struct sk_buff *skb);
1071
1072 void (*release_cb)(struct sock *sk);
1073
1074 /* Keeping track of sk's, looking them up, and port selection methods. */
1075 int (*hash)(struct sock *sk);
1076 void (*unhash)(struct sock *sk);
1077 void (*rehash)(struct sock *sk);
1078 int (*get_port)(struct sock *sk, unsigned short snum);
1079
1080 /* Keeping track of sockets in use */
1081 #ifdef CONFIG_PROC_FS
1082 unsigned int inuse_idx;
1083 #endif
1084
1085 bool (*stream_memory_free)(const struct sock *sk);
1086 /* Memory pressure */
1087 void (*enter_memory_pressure)(struct sock *sk);
1088 void (*leave_memory_pressure)(struct sock *sk);
1089 atomic_long_t *memory_allocated; /* Current allocated memory. */
1090 struct percpu_counter *sockets_allocated; /* Current number of sockets. */
1091 /*
1092 * Pressure flag: try to collapse.
1093 * Technical note: it is used by multiple contexts non atomically.
1094 * All the __sk_mem_schedule() is of this nature: accounting
1095 * is strict, actions are advisory and have some latency.
1096 */
1097 unsigned long *memory_pressure;
1098 long *sysctl_mem;
1099
1100 int *sysctl_wmem;
1101 int *sysctl_rmem;
1102 u32 sysctl_wmem_offset;
1103 u32 sysctl_rmem_offset;
1104
1105 int max_header;
1106 bool no_autobind;
1107
1108 struct kmem_cache *slab;
1109 unsigned int obj_size;
1110 slab_flags_t slab_flags;
1111
1112 struct percpu_counter *orphan_count;
1113
1114 struct request_sock_ops *rsk_prot;
1115 struct timewait_sock_ops *twsk_prot;
1116
1117 union {
1118 struct inet_hashinfo *hashinfo;
1119 struct udp_table *udp_table;
1120 struct raw_hashinfo *raw_hash;
1121 struct smc_hashinfo *smc_hash;
1122 } h;
1123
1124 struct module *owner;
1125
1126 char name[32];
1127
1128 struct list_head node;
1129 #ifdef SOCK_REFCNT_DEBUG
1130 atomic_t socks;
1131 #endif
1132 int (*diag_destroy)(struct sock *sk, int err);
1133 } __randomize_layout;
1134
1135 int proto_register(struct proto *prot, int alloc_slab);
1136 void proto_unregister(struct proto *prot);
1137
1138 #ifdef SOCK_REFCNT_DEBUG
1139 static inline void sk_refcnt_debug_inc(struct sock *sk)
1140 {
1141 atomic_inc(&sk->sk_prot->socks);
1142 }
1143
1144 static inline void sk_refcnt_debug_dec(struct sock *sk)
1145 {
1146 atomic_dec(&sk->sk_prot->socks);
1147 printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1148 sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1149 }
1150
1151 static inline void sk_refcnt_debug_release(const struct sock *sk)
1152 {
1153 if (refcount_read(&sk->sk_refcnt) != 1)
1154 printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1155 sk->sk_prot->name, sk, refcount_read(&sk->sk_refcnt));
1156 }
1157 #else /* SOCK_REFCNT_DEBUG */
1158 #define sk_refcnt_debug_inc(sk) do { } while (0)
1159 #define sk_refcnt_debug_dec(sk) do { } while (0)
1160 #define sk_refcnt_debug_release(sk) do { } while (0)
1161 #endif /* SOCK_REFCNT_DEBUG */
1162
1163 static inline bool sk_stream_memory_free(const struct sock *sk)
1164 {
1165 if (sk->sk_wmem_queued >= sk->sk_sndbuf)
1166 return false;
1167
1168 return sk->sk_prot->stream_memory_free ?
1169 sk->sk_prot->stream_memory_free(sk) : true;
1170 }
1171
1172 static inline bool sk_stream_is_writeable(const struct sock *sk)
1173 {
1174 return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1175 sk_stream_memory_free(sk);
1176 }
1177
1178 static inline int sk_under_cgroup_hierarchy(struct sock *sk,
1179 struct cgroup *ancestor)
1180 {
1181 #ifdef CONFIG_SOCK_CGROUP_DATA
1182 return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data),
1183 ancestor);
1184 #else
1185 return -ENOTSUPP;
1186 #endif
1187 }
1188
1189 static inline bool sk_has_memory_pressure(const struct sock *sk)
1190 {
1191 return sk->sk_prot->memory_pressure != NULL;
1192 }
1193
1194 static inline bool sk_under_memory_pressure(const struct sock *sk)
1195 {
1196 if (!sk->sk_prot->memory_pressure)
1197 return false;
1198
1199 if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
1200 mem_cgroup_under_socket_pressure(sk->sk_memcg))
1201 return true;
1202
1203 return !!*sk->sk_prot->memory_pressure;
1204 }
1205
1206 static inline long
1207 sk_memory_allocated(const struct sock *sk)
1208 {
1209 return atomic_long_read(sk->sk_prot->memory_allocated);
1210 }
1211
1212 static inline long
1213 sk_memory_allocated_add(struct sock *sk, int amt)
1214 {
1215 return atomic_long_add_return(amt, sk->sk_prot->memory_allocated);
1216 }
1217
1218 static inline void
1219 sk_memory_allocated_sub(struct sock *sk, int amt)
1220 {
1221 atomic_long_sub(amt, sk->sk_prot->memory_allocated);
1222 }
1223
1224 static inline void sk_sockets_allocated_dec(struct sock *sk)
1225 {
1226 percpu_counter_dec(sk->sk_prot->sockets_allocated);
1227 }
1228
1229 static inline void sk_sockets_allocated_inc(struct sock *sk)
1230 {
1231 percpu_counter_inc(sk->sk_prot->sockets_allocated);
1232 }
1233
1234 static inline int
1235 sk_sockets_allocated_read_positive(struct sock *sk)
1236 {
1237 return percpu_counter_read_positive(sk->sk_prot->sockets_allocated);
1238 }
1239
1240 static inline int
1241 proto_sockets_allocated_sum_positive(struct proto *prot)
1242 {
1243 return percpu_counter_sum_positive(prot->sockets_allocated);
1244 }
1245
1246 static inline long
1247 proto_memory_allocated(struct proto *prot)
1248 {
1249 return atomic_long_read(prot->memory_allocated);
1250 }
1251
1252 static inline bool
1253 proto_memory_pressure(struct proto *prot)
1254 {
1255 if (!prot->memory_pressure)
1256 return false;
1257 return !!*prot->memory_pressure;
1258 }
1259
1260
1261 #ifdef CONFIG_PROC_FS
1262 /* Called with local bh disabled */
1263 void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
1264 int sock_prot_inuse_get(struct net *net, struct proto *proto);
1265 #else
1266 static inline void sock_prot_inuse_add(struct net *net, struct proto *prot,
1267 int inc)
1268 {
1269 }
1270 #endif
1271
1272
1273 /* With per-bucket locks this operation is not-atomic, so that
1274 * this version is not worse.
1275 */
1276 static inline int __sk_prot_rehash(struct sock *sk)
1277 {
1278 sk->sk_prot->unhash(sk);
1279 return sk->sk_prot->hash(sk);
1280 }
1281
1282 /* About 10 seconds */
1283 #define SOCK_DESTROY_TIME (10*HZ)
1284
1285 /* Sockets 0-1023 can't be bound to unless you are superuser */
1286 #define PROT_SOCK 1024
1287
1288 #define SHUTDOWN_MASK 3
1289 #define RCV_SHUTDOWN 1
1290 #define SEND_SHUTDOWN 2
1291
1292 #define SOCK_SNDBUF_LOCK 1
1293 #define SOCK_RCVBUF_LOCK 2
1294 #define SOCK_BINDADDR_LOCK 4
1295 #define SOCK_BINDPORT_LOCK 8
1296
1297 struct socket_alloc {
1298 struct socket socket;
1299 struct inode vfs_inode;
1300 };
1301
1302 static inline struct socket *SOCKET_I(struct inode *inode)
1303 {
1304 return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1305 }
1306
1307 static inline struct inode *SOCK_INODE(struct socket *socket)
1308 {
1309 return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1310 }
1311
1312 /*
1313 * Functions for memory accounting
1314 */
1315 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind);
1316 int __sk_mem_schedule(struct sock *sk, int size, int kind);
1317 void __sk_mem_reduce_allocated(struct sock *sk, int amount);
1318 void __sk_mem_reclaim(struct sock *sk, int amount);
1319
1320 /* We used to have PAGE_SIZE here, but systems with 64KB pages
1321 * do not necessarily have 16x time more memory than 4KB ones.
1322 */
1323 #define SK_MEM_QUANTUM 4096
1324 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1325 #define SK_MEM_SEND 0
1326 #define SK_MEM_RECV 1
1327
1328 /* sysctl_mem values are in pages, we convert them in SK_MEM_QUANTUM units */
1329 static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1330 {
1331 long val = sk->sk_prot->sysctl_mem[index];
1332
1333 #if PAGE_SIZE > SK_MEM_QUANTUM
1334 val <<= PAGE_SHIFT - SK_MEM_QUANTUM_SHIFT;
1335 #elif PAGE_SIZE < SK_MEM_QUANTUM
1336 val >>= SK_MEM_QUANTUM_SHIFT - PAGE_SHIFT;
1337 #endif
1338 return val;
1339 }
1340
1341 static inline int sk_mem_pages(int amt)
1342 {
1343 return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1344 }
1345
1346 static inline bool sk_has_account(struct sock *sk)
1347 {
1348 /* return true if protocol supports memory accounting */
1349 return !!sk->sk_prot->memory_allocated;
1350 }
1351
1352 static inline bool sk_wmem_schedule(struct sock *sk, int size)
1353 {
1354 if (!sk_has_account(sk))
1355 return true;
1356 return size <= sk->sk_forward_alloc ||
1357 __sk_mem_schedule(sk, size, SK_MEM_SEND);
1358 }
1359
1360 static inline bool
1361 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1362 {
1363 if (!sk_has_account(sk))
1364 return true;
1365 return size<= sk->sk_forward_alloc ||
1366 __sk_mem_schedule(sk, size, SK_MEM_RECV) ||
1367 skb_pfmemalloc(skb);
1368 }
1369
1370 static inline void sk_mem_reclaim(struct sock *sk)
1371 {
1372 if (!sk_has_account(sk))
1373 return;
1374 if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
1375 __sk_mem_reclaim(sk, sk->sk_forward_alloc);
1376 }
1377
1378 static inline void sk_mem_reclaim_partial(struct sock *sk)
1379 {
1380 if (!sk_has_account(sk))
1381 return;
1382 if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
1383 __sk_mem_reclaim(sk, sk->sk_forward_alloc - 1);
1384 }
1385
1386 static inline void sk_mem_charge(struct sock *sk, int size)
1387 {
1388 if (!sk_has_account(sk))
1389 return;
1390 sk->sk_forward_alloc -= size;
1391 }
1392
1393 static inline void sk_mem_uncharge(struct sock *sk, int size)
1394 {
1395 if (!sk_has_account(sk))
1396 return;
1397 sk->sk_forward_alloc += size;
1398
1399 /* Avoid a possible overflow.
1400 * TCP send queues can make this happen, if sk_mem_reclaim()
1401 * is not called and more than 2 GBytes are released at once.
1402 *
1403 * If we reach 2 MBytes, reclaim 1 MBytes right now, there is
1404 * no need to hold that much forward allocation anyway.
1405 */
1406 if (unlikely(sk->sk_forward_alloc >= 1 << 21))
1407 __sk_mem_reclaim(sk, 1 << 20);
1408 }
1409
1410 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1411 {
1412 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1413 sk->sk_wmem_queued -= skb->truesize;
1414 sk_mem_uncharge(sk, skb->truesize);
1415 __kfree_skb(skb);
1416 }
1417
1418 static inline void sock_release_ownership(struct sock *sk)
1419 {
1420 if (sk->sk_lock.owned) {
1421 sk->sk_lock.owned = 0;
1422
1423 /* The sk_lock has mutex_unlock() semantics: */
1424 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
1425 }
1426 }
1427
1428 /*
1429 * Macro so as to not evaluate some arguments when
1430 * lockdep is not enabled.
1431 *
1432 * Mark both the sk_lock and the sk_lock.slock as a
1433 * per-address-family lock class.
1434 */
1435 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) \
1436 do { \
1437 sk->sk_lock.owned = 0; \
1438 init_waitqueue_head(&sk->sk_lock.wq); \
1439 spin_lock_init(&(sk)->sk_lock.slock); \
1440 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \
1441 sizeof((sk)->sk_lock)); \
1442 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \
1443 (skey), (sname)); \
1444 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \
1445 } while (0)
1446
1447 #ifdef CONFIG_LOCKDEP
1448 static inline bool lockdep_sock_is_held(const struct sock *csk)
1449 {
1450 struct sock *sk = (struct sock *)csk;
1451
1452 return lockdep_is_held(&sk->sk_lock) ||
1453 lockdep_is_held(&sk->sk_lock.slock);
1454 }
1455 #endif
1456
1457 void lock_sock_nested(struct sock *sk, int subclass);
1458
1459 static inline void lock_sock(struct sock *sk)
1460 {
1461 lock_sock_nested(sk, 0);
1462 }
1463
1464 void release_sock(struct sock *sk);
1465
1466 /* BH context may only use the following locking interface. */
1467 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock))
1468 #define bh_lock_sock_nested(__sk) \
1469 spin_lock_nested(&((__sk)->sk_lock.slock), \
1470 SINGLE_DEPTH_NESTING)
1471 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock))
1472
1473 bool lock_sock_fast(struct sock *sk);
1474 /**
1475 * unlock_sock_fast - complement of lock_sock_fast
1476 * @sk: socket
1477 * @slow: slow mode
1478 *
1479 * fast unlock socket for user context.
1480 * If slow mode is on, we call regular release_sock()
1481 */
1482 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1483 {
1484 if (slow)
1485 release_sock(sk);
1486 else
1487 spin_unlock_bh(&sk->sk_lock.slock);
1488 }
1489
1490 /* Used by processes to "lock" a socket state, so that
1491 * interrupts and bottom half handlers won't change it
1492 * from under us. It essentially blocks any incoming
1493 * packets, so that we won't get any new data or any
1494 * packets that change the state of the socket.
1495 *
1496 * While locked, BH processing will add new packets to
1497 * the backlog queue. This queue is processed by the
1498 * owner of the socket lock right before it is released.
1499 *
1500 * Since ~2.3.5 it is also exclusive sleep lock serializing
1501 * accesses from user process context.
1502 */
1503
1504 static inline void sock_owned_by_me(const struct sock *sk)
1505 {
1506 #ifdef CONFIG_LOCKDEP
1507 WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks);
1508 #endif
1509 }
1510
1511 static inline bool sock_owned_by_user(const struct sock *sk)
1512 {
1513 sock_owned_by_me(sk);
1514 return sk->sk_lock.owned;
1515 }
1516
1517 static inline bool sock_owned_by_user_nocheck(const struct sock *sk)
1518 {
1519 return sk->sk_lock.owned;
1520 }
1521
1522 /* no reclassification while locks are held */
1523 static inline bool sock_allow_reclassification(const struct sock *csk)
1524 {
1525 struct sock *sk = (struct sock *)csk;
1526
1527 return !sk->sk_lock.owned && !spin_is_locked(&sk->sk_lock.slock);
1528 }
1529
1530 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1531 struct proto *prot, int kern);
1532 void sk_free(struct sock *sk);
1533 void sk_destruct(struct sock *sk);
1534 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1535 void sk_free_unlock_clone(struct sock *sk);
1536
1537 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1538 gfp_t priority);
1539 void __sock_wfree(struct sk_buff *skb);
1540 void sock_wfree(struct sk_buff *skb);
1541 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
1542 gfp_t priority);
1543 void skb_orphan_partial(struct sk_buff *skb);
1544 void sock_rfree(struct sk_buff *skb);
1545 void sock_efree(struct sk_buff *skb);
1546 #ifdef CONFIG_INET
1547 void sock_edemux(struct sk_buff *skb);
1548 #else
1549 #define sock_edemux sock_efree
1550 #endif
1551
1552 int sock_setsockopt(struct socket *sock, int level, int op,
1553 char __user *optval, unsigned int optlen);
1554
1555 int sock_getsockopt(struct socket *sock, int level, int op,
1556 char __user *optval, int __user *optlen);
1557 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1558 int noblock, int *errcode);
1559 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1560 unsigned long data_len, int noblock,
1561 int *errcode, int max_page_order);
1562 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1563 void sock_kfree_s(struct sock *sk, void *mem, int size);
1564 void sock_kzfree_s(struct sock *sk, void *mem, int size);
1565 void sk_send_sigurg(struct sock *sk);
1566
1567 struct sockcm_cookie {
1568 u32 mark;
1569 u16 tsflags;
1570 };
1571
1572 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
1573 struct sockcm_cookie *sockc);
1574 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1575 struct sockcm_cookie *sockc);
1576
1577 /*
1578 * Functions to fill in entries in struct proto_ops when a protocol
1579 * does not implement a particular function.
1580 */
1581 int sock_no_bind(struct socket *, struct sockaddr *, int);
1582 int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1583 int sock_no_socketpair(struct socket *, struct socket *);
1584 int sock_no_accept(struct socket *, struct socket *, int, bool);
1585 int sock_no_getname(struct socket *, struct sockaddr *, int *, int);
1586 unsigned int sock_no_poll(struct file *, struct socket *,
1587 struct poll_table_struct *);
1588 int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1589 int sock_no_listen(struct socket *, int);
1590 int sock_no_shutdown(struct socket *, int);
1591 int sock_no_getsockopt(struct socket *, int , int, char __user *, int __user *);
1592 int sock_no_setsockopt(struct socket *, int, int, char __user *, unsigned int);
1593 int sock_no_sendmsg(struct socket *, struct msghdr *, size_t);
1594 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t len);
1595 int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int);
1596 int sock_no_mmap(struct file *file, struct socket *sock,
1597 struct vm_area_struct *vma);
1598 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset,
1599 size_t size, int flags);
1600 ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page,
1601 int offset, size_t size, int flags);
1602
1603 /*
1604 * Functions to fill in entries in struct proto_ops when a protocol
1605 * uses the inet style.
1606 */
1607 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1608 char __user *optval, int __user *optlen);
1609 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1610 int flags);
1611 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1612 char __user *optval, unsigned int optlen);
1613 int compat_sock_common_getsockopt(struct socket *sock, int level,
1614 int optname, char __user *optval, int __user *optlen);
1615 int compat_sock_common_setsockopt(struct socket *sock, int level,
1616 int optname, char __user *optval, unsigned int optlen);
1617
1618 void sk_common_release(struct sock *sk);
1619
1620 /*
1621 * Default socket callbacks and setup code
1622 */
1623
1624 /* Initialise core socket variables */
1625 void sock_init_data(struct socket *sock, struct sock *sk);
1626
1627 /*
1628 * Socket reference counting postulates.
1629 *
1630 * * Each user of socket SHOULD hold a reference count.
1631 * * Each access point to socket (an hash table bucket, reference from a list,
1632 * running timer, skb in flight MUST hold a reference count.
1633 * * When reference count hits 0, it means it will never increase back.
1634 * * When reference count hits 0, it means that no references from
1635 * outside exist to this socket and current process on current CPU
1636 * is last user and may/should destroy this socket.
1637 * * sk_free is called from any context: process, BH, IRQ. When
1638 * it is called, socket has no references from outside -> sk_free
1639 * may release descendant resources allocated by the socket, but
1640 * to the time when it is called, socket is NOT referenced by any
1641 * hash tables, lists etc.
1642 * * Packets, delivered from outside (from network or from another process)
1643 * and enqueued on receive/error queues SHOULD NOT grab reference count,
1644 * when they sit in queue. Otherwise, packets will leak to hole, when
1645 * socket is looked up by one cpu and unhasing is made by another CPU.
1646 * It is true for udp/raw, netlink (leak to receive and error queues), tcp
1647 * (leak to backlog). Packet socket does all the processing inside
1648 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1649 * use separate SMP lock, so that they are prone too.
1650 */
1651
1652 /* Ungrab socket and destroy it, if it was the last reference. */
1653 static inline void sock_put(struct sock *sk)
1654 {
1655 if (refcount_dec_and_test(&sk->sk_refcnt))
1656 sk_free(sk);
1657 }
1658 /* Generic version of sock_put(), dealing with all sockets
1659 * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...)
1660 */
1661 void sock_gen_put(struct sock *sk);
1662
1663 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested,
1664 unsigned int trim_cap, bool refcounted);
1665 static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1666 const int nested)
1667 {
1668 return __sk_receive_skb(sk, skb, nested, 1, true);
1669 }
1670
1671 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1672 {
1673 sk->sk_tx_queue_mapping = tx_queue;
1674 }
1675
1676 static inline void sk_tx_queue_clear(struct sock *sk)
1677 {
1678 sk->sk_tx_queue_mapping = -1;
1679 }
1680
1681 static inline int sk_tx_queue_get(const struct sock *sk)
1682 {
1683 return sk ? sk->sk_tx_queue_mapping : -1;
1684 }
1685
1686 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1687 {
1688 sk_tx_queue_clear(sk);
1689 sk->sk_socket = sock;
1690 }
1691
1692 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1693 {
1694 BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1695 return &rcu_dereference_raw(sk->sk_wq)->wait;
1696 }
1697 /* Detach socket from process context.
1698 * Announce socket dead, detach it from wait queue and inode.
1699 * Note that parent inode held reference count on this struct sock,
1700 * we do not release it in this function, because protocol
1701 * probably wants some additional cleanups or even continuing
1702 * to work with this socket (TCP).
1703 */
1704 static inline void sock_orphan(struct sock *sk)
1705 {
1706 write_lock_bh(&sk->sk_callback_lock);
1707 sock_set_flag(sk, SOCK_DEAD);
1708 sk_set_socket(sk, NULL);
1709 sk->sk_wq = NULL;
1710 write_unlock_bh(&sk->sk_callback_lock);
1711 }
1712
1713 static inline void sock_graft(struct sock *sk, struct socket *parent)
1714 {
1715 WARN_ON(parent->sk);
1716 write_lock_bh(&sk->sk_callback_lock);
1717 sk->sk_wq = parent->wq;
1718 parent->sk = sk;
1719 sk_set_socket(sk, parent);
1720 sk->sk_uid = SOCK_INODE(parent)->i_uid;
1721 security_sock_graft(sk, parent);
1722 write_unlock_bh(&sk->sk_callback_lock);
1723 }
1724
1725 kuid_t sock_i_uid(struct sock *sk);
1726 unsigned long sock_i_ino(struct sock *sk);
1727
1728 static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk)
1729 {
1730 return sk ? sk->sk_uid : make_kuid(net->user_ns, 0);
1731 }
1732
1733 static inline u32 net_tx_rndhash(void)
1734 {
1735 u32 v = prandom_u32();
1736
1737 return v ?: 1;
1738 }
1739
1740 static inline void sk_set_txhash(struct sock *sk)
1741 {
1742 sk->sk_txhash = net_tx_rndhash();
1743 }
1744
1745 static inline void sk_rethink_txhash(struct sock *sk)
1746 {
1747 if (sk->sk_txhash)
1748 sk_set_txhash(sk);
1749 }
1750
1751 static inline struct dst_entry *
1752 __sk_dst_get(struct sock *sk)
1753 {
1754 return rcu_dereference_check(sk->sk_dst_cache,
1755 lockdep_sock_is_held(sk));
1756 }
1757
1758 static inline struct dst_entry *
1759 sk_dst_get(struct sock *sk)
1760 {
1761 struct dst_entry *dst;
1762
1763 rcu_read_lock();
1764 dst = rcu_dereference(sk->sk_dst_cache);
1765 if (dst && !atomic_inc_not_zero(&dst->__refcnt))
1766 dst = NULL;
1767 rcu_read_unlock();
1768 return dst;
1769 }
1770
1771 static inline void dst_negative_advice(struct sock *sk)
1772 {
1773 struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1774
1775 sk_rethink_txhash(sk);
1776
1777 if (dst && dst->ops->negative_advice) {
1778 ndst = dst->ops->negative_advice(dst);
1779
1780 if (ndst != dst) {
1781 rcu_assign_pointer(sk->sk_dst_cache, ndst);
1782 sk_tx_queue_clear(sk);
1783 sk->sk_dst_pending_confirm = 0;
1784 }
1785 }
1786 }
1787
1788 static inline void
1789 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
1790 {
1791 struct dst_entry *old_dst;
1792
1793 sk_tx_queue_clear(sk);
1794 sk->sk_dst_pending_confirm = 0;
1795 old_dst = rcu_dereference_protected(sk->sk_dst_cache,
1796 lockdep_sock_is_held(sk));
1797 rcu_assign_pointer(sk->sk_dst_cache, dst);
1798 dst_release(old_dst);
1799 }
1800
1801 static inline void
1802 sk_dst_set(struct sock *sk, struct dst_entry *dst)
1803 {
1804 struct dst_entry *old_dst;
1805
1806 sk_tx_queue_clear(sk);
1807 sk->sk_dst_pending_confirm = 0;
1808 old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst);
1809 dst_release(old_dst);
1810 }
1811
1812 static inline void
1813 __sk_dst_reset(struct sock *sk)
1814 {
1815 __sk_dst_set(sk, NULL);
1816 }
1817
1818 static inline void
1819 sk_dst_reset(struct sock *sk)
1820 {
1821 sk_dst_set(sk, NULL);
1822 }
1823
1824 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1825
1826 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1827
1828 static inline void sk_dst_confirm(struct sock *sk)
1829 {
1830 if (!sk->sk_dst_pending_confirm)
1831 sk->sk_dst_pending_confirm = 1;
1832 }
1833
1834 static inline void sock_confirm_neigh(struct sk_buff *skb, struct neighbour *n)
1835 {
1836 if (skb_get_dst_pending_confirm(skb)) {
1837 struct sock *sk = skb->sk;
1838 unsigned long now = jiffies;
1839
1840 /* avoid dirtying neighbour */
1841 if (n->confirmed != now)
1842 n->confirmed = now;
1843 if (sk && sk->sk_dst_pending_confirm)
1844 sk->sk_dst_pending_confirm = 0;
1845 }
1846 }
1847
1848 bool sk_mc_loop(struct sock *sk);
1849
1850 static inline bool sk_can_gso(const struct sock *sk)
1851 {
1852 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1853 }
1854
1855 void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
1856
1857 static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
1858 {
1859 sk->sk_route_nocaps |= flags;
1860 sk->sk_route_caps &= ~flags;
1861 }
1862
1863 static inline bool sk_check_csum_caps(struct sock *sk)
1864 {
1865 return (sk->sk_route_caps & NETIF_F_HW_CSUM) ||
1866 (sk->sk_family == PF_INET &&
1867 (sk->sk_route_caps & NETIF_F_IP_CSUM)) ||
1868 (sk->sk_family == PF_INET6 &&
1869 (sk->sk_route_caps & NETIF_F_IPV6_CSUM));
1870 }
1871
1872 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
1873 struct iov_iter *from, char *to,
1874 int copy, int offset)
1875 {
1876 if (skb->ip_summed == CHECKSUM_NONE) {
1877 __wsum csum = 0;
1878 if (!csum_and_copy_from_iter_full(to, copy, &csum, from))
1879 return -EFAULT;
1880 skb->csum = csum_block_add(skb->csum, csum, offset);
1881 } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1882 if (!copy_from_iter_full_nocache(to, copy, from))
1883 return -EFAULT;
1884 } else if (!copy_from_iter_full(to, copy, from))
1885 return -EFAULT;
1886
1887 return 0;
1888 }
1889
1890 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
1891 struct iov_iter *from, int copy)
1892 {
1893 int err, offset = skb->len;
1894
1895 err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
1896 copy, offset);
1897 if (err)
1898 __skb_trim(skb, offset);
1899
1900 return err;
1901 }
1902
1903 static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from,
1904 struct sk_buff *skb,
1905 struct page *page,
1906 int off, int copy)
1907 {
1908 int err;
1909
1910 err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
1911 copy, skb->len);
1912 if (err)
1913 return err;
1914
1915 skb->len += copy;
1916 skb->data_len += copy;
1917 skb->truesize += copy;
1918 sk->sk_wmem_queued += copy;
1919 sk_mem_charge(sk, copy);
1920 return 0;
1921 }
1922
1923 /**
1924 * sk_wmem_alloc_get - returns write allocations
1925 * @sk: socket
1926 *
1927 * Returns sk_wmem_alloc minus initial offset of one
1928 */
1929 static inline int sk_wmem_alloc_get(const struct sock *sk)
1930 {
1931 return refcount_read(&sk->sk_wmem_alloc) - 1;
1932 }
1933
1934 /**
1935 * sk_rmem_alloc_get - returns read allocations
1936 * @sk: socket
1937 *
1938 * Returns sk_rmem_alloc
1939 */
1940 static inline int sk_rmem_alloc_get(const struct sock *sk)
1941 {
1942 return atomic_read(&sk->sk_rmem_alloc);
1943 }
1944
1945 /**
1946 * sk_has_allocations - check if allocations are outstanding
1947 * @sk: socket
1948 *
1949 * Returns true if socket has write or read allocations
1950 */
1951 static inline bool sk_has_allocations(const struct sock *sk)
1952 {
1953 return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
1954 }
1955
1956 /**
1957 * skwq_has_sleeper - check if there are any waiting processes
1958 * @wq: struct socket_wq
1959 *
1960 * Returns true if socket_wq has waiting processes
1961 *
1962 * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory
1963 * barrier call. They were added due to the race found within the tcp code.
1964 *
1965 * Consider following tcp code paths::
1966 *
1967 * CPU1 CPU2
1968 * sys_select receive packet
1969 * ... ...
1970 * __add_wait_queue update tp->rcv_nxt
1971 * ... ...
1972 * tp->rcv_nxt check sock_def_readable
1973 * ... {
1974 * schedule rcu_read_lock();
1975 * wq = rcu_dereference(sk->sk_wq);
1976 * if (wq && waitqueue_active(&wq->wait))
1977 * wake_up_interruptible(&wq->wait)
1978 * ...
1979 * }
1980 *
1981 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
1982 * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1
1983 * could then endup calling schedule and sleep forever if there are no more
1984 * data on the socket.
1985 *
1986 */
1987 static inline bool skwq_has_sleeper(struct socket_wq *wq)
1988 {
1989 return wq && wq_has_sleeper(&wq->wait);
1990 }
1991
1992 /**
1993 * sock_poll_wait - place memory barrier behind the poll_wait call.
1994 * @filp: file
1995 * @wait_address: socket wait queue
1996 * @p: poll_table
1997 *
1998 * See the comments in the wq_has_sleeper function.
1999 */
2000 static inline void sock_poll_wait(struct file *filp,
2001 wait_queue_head_t *wait_address, poll_table *p)
2002 {
2003 if (!poll_does_not_wait(p) && wait_address) {
2004 poll_wait(filp, wait_address, p);
2005 /* We need to be sure we are in sync with the
2006 * socket flags modification.
2007 *
2008 * This memory barrier is paired in the wq_has_sleeper.
2009 */
2010 smp_mb();
2011 }
2012 }
2013
2014 static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
2015 {
2016 if (sk->sk_txhash) {
2017 skb->l4_hash = 1;
2018 skb->hash = sk->sk_txhash;
2019 }
2020 }
2021
2022 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk);
2023
2024 /*
2025 * Queue a received datagram if it will fit. Stream and sequenced
2026 * protocols can't normally use this as they need to fit buffers in
2027 * and play with them.
2028 *
2029 * Inlined as it's very short and called for pretty much every
2030 * packet ever received.
2031 */
2032 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
2033 {
2034 skb_orphan(skb);
2035 skb->sk = sk;
2036 skb->destructor = sock_rfree;
2037 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
2038 sk_mem_charge(sk, skb->truesize);
2039 }
2040
2041 void sk_reset_timer(struct sock *sk, struct timer_list *timer,
2042 unsigned long expires);
2043
2044 void sk_stop_timer(struct sock *sk, struct timer_list *timer);
2045
2046 int __sk_queue_drop_skb(struct sock *sk, struct sk_buff_head *sk_queue,
2047 struct sk_buff *skb, unsigned int flags,
2048 void (*destructor)(struct sock *sk,
2049 struct sk_buff *skb));
2050 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2051 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2052
2053 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
2054 struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
2055
2056 /*
2057 * Recover an error report and clear atomically
2058 */
2059
2060 static inline int sock_error(struct sock *sk)
2061 {
2062 int err;
2063 if (likely(!sk->sk_err))
2064 return 0;
2065 err = xchg(&sk->sk_err, 0);
2066 return -err;
2067 }
2068
2069 static inline unsigned long sock_wspace(struct sock *sk)
2070 {
2071 int amt = 0;
2072
2073 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2074 amt = sk->sk_sndbuf - refcount_read(&sk->sk_wmem_alloc);
2075 if (amt < 0)
2076 amt = 0;
2077 }
2078 return amt;
2079 }
2080
2081 /* Note:
2082 * We use sk->sk_wq_raw, from contexts knowing this
2083 * pointer is not NULL and cannot disappear/change.
2084 */
2085 static inline void sk_set_bit(int nr, struct sock *sk)
2086 {
2087 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2088 !sock_flag(sk, SOCK_FASYNC))
2089 return;
2090
2091 set_bit(nr, &sk->sk_wq_raw->flags);
2092 }
2093
2094 static inline void sk_clear_bit(int nr, struct sock *sk)
2095 {
2096 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2097 !sock_flag(sk, SOCK_FASYNC))
2098 return;
2099
2100 clear_bit(nr, &sk->sk_wq_raw->flags);
2101 }
2102
2103 static inline void sk_wake_async(const struct sock *sk, int how, int band)
2104 {
2105 if (sock_flag(sk, SOCK_FASYNC)) {
2106 rcu_read_lock();
2107 sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
2108 rcu_read_unlock();
2109 }
2110 }
2111
2112 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2113 * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2114 * Note: for send buffers, TCP works better if we can build two skbs at
2115 * minimum.
2116 */
2117 #define TCP_SKB_MIN_TRUESIZE (2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2118
2119 #define SOCK_MIN_SNDBUF (TCP_SKB_MIN_TRUESIZE * 2)
2120 #define SOCK_MIN_RCVBUF TCP_SKB_MIN_TRUESIZE
2121
2122 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2123 {
2124 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
2125 sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2126 sk->sk_sndbuf = max_t(u32, sk->sk_sndbuf, SOCK_MIN_SNDBUF);
2127 }
2128 }
2129
2130 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
2131 bool force_schedule);
2132
2133 /**
2134 * sk_page_frag - return an appropriate page_frag
2135 * @sk: socket
2136 *
2137 * If socket allocation mode allows current thread to sleep, it means its
2138 * safe to use the per task page_frag instead of the per socket one.
2139 */
2140 static inline struct page_frag *sk_page_frag(struct sock *sk)
2141 {
2142 if (gfpflags_allow_blocking(sk->sk_allocation))
2143 return &current->task_frag;
2144
2145 return &sk->sk_frag;
2146 }
2147
2148 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2149
2150 /*
2151 * Default write policy as shown to user space via poll/select/SIGIO
2152 */
2153 static inline bool sock_writeable(const struct sock *sk)
2154 {
2155 return refcount_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1);
2156 }
2157
2158 static inline gfp_t gfp_any(void)
2159 {
2160 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2161 }
2162
2163 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2164 {
2165 return noblock ? 0 : sk->sk_rcvtimeo;
2166 }
2167
2168 static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2169 {
2170 return noblock ? 0 : sk->sk_sndtimeo;
2171 }
2172
2173 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2174 {
2175 return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
2176 }
2177
2178 /* Alas, with timeout socket operations are not restartable.
2179 * Compare this to poll().
2180 */
2181 static inline int sock_intr_errno(long timeo)
2182 {
2183 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2184 }
2185
2186 struct sock_skb_cb {
2187 u32 dropcount;
2188 };
2189
2190 /* Store sock_skb_cb at the end of skb->cb[] so protocol families
2191 * using skb->cb[] would keep using it directly and utilize its
2192 * alignement guarantee.
2193 */
2194 #define SOCK_SKB_CB_OFFSET ((FIELD_SIZEOF(struct sk_buff, cb) - \
2195 sizeof(struct sock_skb_cb)))
2196
2197 #define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \
2198 SOCK_SKB_CB_OFFSET))
2199
2200 #define sock_skb_cb_check_size(size) \
2201 BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET)
2202
2203 static inline void
2204 sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb)
2205 {
2206 SOCK_SKB_CB(skb)->dropcount = sock_flag(sk, SOCK_RXQ_OVFL) ?
2207 atomic_read(&sk->sk_drops) : 0;
2208 }
2209
2210 static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb)
2211 {
2212 int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2213
2214 atomic_add(segs, &sk->sk_drops);
2215 }
2216
2217 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2218 struct sk_buff *skb);
2219 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2220 struct sk_buff *skb);
2221
2222 static inline void
2223 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2224 {
2225 ktime_t kt = skb->tstamp;
2226 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2227
2228 /*
2229 * generate control messages if
2230 * - receive time stamping in software requested
2231 * - software time stamp available and wanted
2232 * - hardware time stamps available and wanted
2233 */
2234 if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2235 (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2236 (kt && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2237 (hwtstamps->hwtstamp &&
2238 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
2239 __sock_recv_timestamp(msg, sk, skb);
2240 else
2241 sk->sk_stamp = kt;
2242
2243 if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2244 __sock_recv_wifi_status(msg, sk, skb);
2245 }
2246
2247 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2248 struct sk_buff *skb);
2249
2250 #define SK_DEFAULT_STAMP (-1L * NSEC_PER_SEC)
2251 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2252 struct sk_buff *skb)
2253 {
2254 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL) | \
2255 (1UL << SOCK_RCVTSTAMP))
2256 #define TSFLAGS_ANY (SOF_TIMESTAMPING_SOFTWARE | \
2257 SOF_TIMESTAMPING_RAW_HARDWARE)
2258
2259 if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY)
2260 __sock_recv_ts_and_drops(msg, sk, skb);
2261 else if (unlikely(sock_flag(sk, SOCK_TIMESTAMP)))
2262 sk->sk_stamp = skb->tstamp;
2263 else if (unlikely(sk->sk_stamp == SK_DEFAULT_STAMP))
2264 sk->sk_stamp = 0;
2265 }
2266
2267 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags);
2268
2269 /**
2270 * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2271 * @sk: socket sending this packet
2272 * @tsflags: timestamping flags to use
2273 * @tx_flags: completed with instructions for time stamping
2274 *
2275 * Note: callers should take care of initial ``*tx_flags`` value (usually 0)
2276 */
2277 static inline void sock_tx_timestamp(const struct sock *sk, __u16 tsflags,
2278 __u8 *tx_flags)
2279 {
2280 if (unlikely(tsflags))
2281 __sock_tx_timestamp(tsflags, tx_flags);
2282 if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS)))
2283 *tx_flags |= SKBTX_WIFI_STATUS;
2284 }
2285
2286 /**
2287 * sk_eat_skb - Release a skb if it is no longer needed
2288 * @sk: socket to eat this skb from
2289 * @skb: socket buffer to eat
2290 *
2291 * This routine must be called with interrupts disabled or with the socket
2292 * locked so that the sk_buff queue operation is ok.
2293 */
2294 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
2295 {
2296 __skb_unlink(skb, &sk->sk_receive_queue);
2297 __kfree_skb(skb);
2298 }
2299
2300 static inline
2301 struct net *sock_net(const struct sock *sk)
2302 {
2303 return read_pnet(&sk->sk_net);
2304 }
2305
2306 static inline
2307 void sock_net_set(struct sock *sk, struct net *net)
2308 {
2309 write_pnet(&sk->sk_net, net);
2310 }
2311
2312 static inline struct sock *skb_steal_sock(struct sk_buff *skb)
2313 {
2314 if (skb->sk) {
2315 struct sock *sk = skb->sk;
2316
2317 skb->destructor = NULL;
2318 skb->sk = NULL;
2319 return sk;
2320 }
2321 return NULL;
2322 }
2323
2324 /* This helper checks if a socket is a full socket,
2325 * ie _not_ a timewait or request socket.
2326 */
2327 static inline bool sk_fullsock(const struct sock *sk)
2328 {
2329 return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV);
2330 }
2331
2332 /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV
2333 * SYNACK messages can be attached to either ones (depending on SYNCOOKIE)
2334 */
2335 static inline bool sk_listener(const struct sock *sk)
2336 {
2337 return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV);
2338 }
2339
2340 /**
2341 * sk_state_load - read sk->sk_state for lockless contexts
2342 * @sk: socket pointer
2343 *
2344 * Paired with sk_state_store(). Used in places we do not hold socket lock :
2345 * tcp_diag_get_info(), tcp_get_info(), tcp_poll(), get_tcp4_sock() ...
2346 */
2347 static inline int sk_state_load(const struct sock *sk)
2348 {
2349 return smp_load_acquire(&sk->sk_state);
2350 }
2351
2352 /**
2353 * sk_state_store - update sk->sk_state
2354 * @sk: socket pointer
2355 * @newstate: new state
2356 *
2357 * Paired with sk_state_load(). Should be used in contexts where
2358 * state change might impact lockless readers.
2359 */
2360 static inline void sk_state_store(struct sock *sk, int newstate)
2361 {
2362 smp_store_release(&sk->sk_state, newstate);
2363 }
2364
2365 void sock_enable_timestamp(struct sock *sk, int flag);
2366 int sock_get_timestamp(struct sock *, struct timeval __user *);
2367 int sock_get_timestampns(struct sock *, struct timespec __user *);
2368 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2369 int type);
2370
2371 bool sk_ns_capable(const struct sock *sk,
2372 struct user_namespace *user_ns, int cap);
2373 bool sk_capable(const struct sock *sk, int cap);
2374 bool sk_net_capable(const struct sock *sk, int cap);
2375
2376 void sk_get_meminfo(const struct sock *sk, u32 *meminfo);
2377
2378 /* Take into consideration the size of the struct sk_buff overhead in the
2379 * determination of these values, since that is non-constant across
2380 * platforms. This makes socket queueing behavior and performance
2381 * not depend upon such differences.
2382 */
2383 #define _SK_MEM_PACKETS 256
2384 #define _SK_MEM_OVERHEAD SKB_TRUESIZE(256)
2385 #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2386 #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2387
2388 extern __u32 sysctl_wmem_max;
2389 extern __u32 sysctl_rmem_max;
2390
2391 extern int sysctl_tstamp_allow_data;
2392 extern int sysctl_optmem_max;
2393
2394 extern __u32 sysctl_wmem_default;
2395 extern __u32 sysctl_rmem_default;
2396
2397 static inline int sk_get_wmem0(const struct sock *sk, const struct proto *proto)
2398 {
2399 /* Does this proto have per netns sysctl_wmem ? */
2400 if (proto->sysctl_wmem_offset)
2401 return *(int *)((void *)sock_net(sk) + proto->sysctl_wmem_offset);
2402
2403 return *proto->sysctl_wmem;
2404 }
2405
2406 static inline int sk_get_rmem0(const struct sock *sk, const struct proto *proto)
2407 {
2408 /* Does this proto have per netns sysctl_rmem ? */
2409 if (proto->sysctl_rmem_offset)
2410 return *(int *)((void *)sock_net(sk) + proto->sysctl_rmem_offset);
2411
2412 return *proto->sysctl_rmem;
2413 }
2414
2415 #endif /* _SOCK_H */