]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - include/net/sock.h
Merge branch 'timers-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-bionic-kernel.git] / include / net / sock.h
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Definitions for the AF_INET socket handler.
7 *
8 * Version: @(#)sock.h 1.0.4 05/13/93
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche <flla@stud.uni-sb.de>
14 *
15 * Fixes:
16 * Alan Cox : Volatiles in skbuff pointers. See
17 * skbuff comments. May be overdone,
18 * better to prove they can be removed
19 * than the reverse.
20 * Alan Cox : Added a zapped field for tcp to note
21 * a socket is reset and must stay shut up
22 * Alan Cox : New fields for options
23 * Pauline Middelink : identd support
24 * Alan Cox : Eliminate low level recv/recvfrom
25 * David S. Miller : New socket lookup architecture.
26 * Steve Whitehouse: Default routines for sock_ops
27 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made
28 * protinfo be just a void pointer, as the
29 * protocol specific parts were moved to
30 * respective headers and ipv4/v6, etc now
31 * use private slabcaches for its socks
32 * Pedro Hortas : New flags field for socket options
33 *
34 *
35 * This program is free software; you can redistribute it and/or
36 * modify it under the terms of the GNU General Public License
37 * as published by the Free Software Foundation; either version
38 * 2 of the License, or (at your option) any later version.
39 */
40 #ifndef _SOCK_H
41 #define _SOCK_H
42
43 #include <linux/hardirq.h>
44 #include <linux/kernel.h>
45 #include <linux/list.h>
46 #include <linux/list_nulls.h>
47 #include <linux/timer.h>
48 #include <linux/cache.h>
49 #include <linux/bitops.h>
50 #include <linux/lockdep.h>
51 #include <linux/netdevice.h>
52 #include <linux/skbuff.h> /* struct sk_buff */
53 #include <linux/mm.h>
54 #include <linux/security.h>
55 #include <linux/slab.h>
56 #include <linux/uaccess.h>
57 #include <linux/page_counter.h>
58 #include <linux/memcontrol.h>
59 #include <linux/static_key.h>
60 #include <linux/sched.h>
61 #include <linux/wait.h>
62 #include <linux/cgroup-defs.h>
63
64 #include <linux/filter.h>
65 #include <linux/rculist_nulls.h>
66 #include <linux/poll.h>
67
68 #include <linux/atomic.h>
69 #include <net/dst.h>
70 #include <net/checksum.h>
71 #include <net/tcp_states.h>
72 #include <linux/net_tstamp.h>
73 #include <net/smc.h>
74
75 /*
76 * This structure really needs to be cleaned up.
77 * Most of it is for TCP, and not used by any of
78 * the other protocols.
79 */
80
81 /* Define this to get the SOCK_DBG debugging facility. */
82 #define SOCK_DEBUGGING
83 #ifdef SOCK_DEBUGGING
84 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
85 printk(KERN_DEBUG msg); } while (0)
86 #else
87 /* Validate arguments and do nothing */
88 static inline __printf(2, 3)
89 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
90 {
91 }
92 #endif
93
94 /* This is the per-socket lock. The spinlock provides a synchronization
95 * between user contexts and software interrupt processing, whereas the
96 * mini-semaphore synchronizes multiple users amongst themselves.
97 */
98 typedef struct {
99 spinlock_t slock;
100 int owned;
101 wait_queue_head_t wq;
102 /*
103 * We express the mutex-alike socket_lock semantics
104 * to the lock validator by explicitly managing
105 * the slock as a lock variant (in addition to
106 * the slock itself):
107 */
108 #ifdef CONFIG_DEBUG_LOCK_ALLOC
109 struct lockdep_map dep_map;
110 #endif
111 } socket_lock_t;
112
113 struct sock;
114 struct proto;
115 struct net;
116
117 typedef __u32 __bitwise __portpair;
118 typedef __u64 __bitwise __addrpair;
119
120 /**
121 * struct sock_common - minimal network layer representation of sockets
122 * @skc_daddr: Foreign IPv4 addr
123 * @skc_rcv_saddr: Bound local IPv4 addr
124 * @skc_hash: hash value used with various protocol lookup tables
125 * @skc_u16hashes: two u16 hash values used by UDP lookup tables
126 * @skc_dport: placeholder for inet_dport/tw_dport
127 * @skc_num: placeholder for inet_num/tw_num
128 * @skc_family: network address family
129 * @skc_state: Connection state
130 * @skc_reuse: %SO_REUSEADDR setting
131 * @skc_reuseport: %SO_REUSEPORT setting
132 * @skc_bound_dev_if: bound device index if != 0
133 * @skc_bind_node: bind hash linkage for various protocol lookup tables
134 * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
135 * @skc_prot: protocol handlers inside a network family
136 * @skc_net: reference to the network namespace of this socket
137 * @skc_node: main hash linkage for various protocol lookup tables
138 * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
139 * @skc_tx_queue_mapping: tx queue number for this connection
140 * @skc_flags: place holder for sk_flags
141 * %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
142 * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
143 * @skc_incoming_cpu: record/match cpu processing incoming packets
144 * @skc_refcnt: reference count
145 *
146 * This is the minimal network layer representation of sockets, the header
147 * for struct sock and struct inet_timewait_sock.
148 */
149 struct sock_common {
150 /* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned
151 * address on 64bit arches : cf INET_MATCH()
152 */
153 union {
154 __addrpair skc_addrpair;
155 struct {
156 __be32 skc_daddr;
157 __be32 skc_rcv_saddr;
158 };
159 };
160 union {
161 unsigned int skc_hash;
162 __u16 skc_u16hashes[2];
163 };
164 /* skc_dport && skc_num must be grouped as well */
165 union {
166 __portpair skc_portpair;
167 struct {
168 __be16 skc_dport;
169 __u16 skc_num;
170 };
171 };
172
173 unsigned short skc_family;
174 volatile unsigned char skc_state;
175 unsigned char skc_reuse:4;
176 unsigned char skc_reuseport:1;
177 unsigned char skc_ipv6only:1;
178 unsigned char skc_net_refcnt:1;
179 int skc_bound_dev_if;
180 union {
181 struct hlist_node skc_bind_node;
182 struct hlist_node skc_portaddr_node;
183 };
184 struct proto *skc_prot;
185 possible_net_t skc_net;
186
187 #if IS_ENABLED(CONFIG_IPV6)
188 struct in6_addr skc_v6_daddr;
189 struct in6_addr skc_v6_rcv_saddr;
190 #endif
191
192 atomic64_t skc_cookie;
193
194 /* following fields are padding to force
195 * offset(struct sock, sk_refcnt) == 128 on 64bit arches
196 * assuming IPV6 is enabled. We use this padding differently
197 * for different kind of 'sockets'
198 */
199 union {
200 unsigned long skc_flags;
201 struct sock *skc_listener; /* request_sock */
202 struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */
203 };
204 /*
205 * fields between dontcopy_begin/dontcopy_end
206 * are not copied in sock_copy()
207 */
208 /* private: */
209 int skc_dontcopy_begin[0];
210 /* public: */
211 union {
212 struct hlist_node skc_node;
213 struct hlist_nulls_node skc_nulls_node;
214 };
215 int skc_tx_queue_mapping;
216 union {
217 int skc_incoming_cpu;
218 u32 skc_rcv_wnd;
219 u32 skc_tw_rcv_nxt; /* struct tcp_timewait_sock */
220 };
221
222 atomic_t skc_refcnt;
223 /* private: */
224 int skc_dontcopy_end[0];
225 union {
226 u32 skc_rxhash;
227 u32 skc_window_clamp;
228 u32 skc_tw_snd_nxt; /* struct tcp_timewait_sock */
229 };
230 /* public: */
231 };
232
233 /**
234 * struct sock - network layer representation of sockets
235 * @__sk_common: shared layout with inet_timewait_sock
236 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
237 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
238 * @sk_lock: synchronizer
239 * @sk_kern_sock: True if sock is using kernel lock classes
240 * @sk_rcvbuf: size of receive buffer in bytes
241 * @sk_wq: sock wait queue and async head
242 * @sk_rx_dst: receive input route used by early demux
243 * @sk_dst_cache: destination cache
244 * @sk_dst_pending_confirm: need to confirm neighbour
245 * @sk_policy: flow policy
246 * @sk_receive_queue: incoming packets
247 * @sk_wmem_alloc: transmit queue bytes committed
248 * @sk_write_queue: Packet sending queue
249 * @sk_omem_alloc: "o" is "option" or "other"
250 * @sk_wmem_queued: persistent queue size
251 * @sk_forward_alloc: space allocated forward
252 * @sk_napi_id: id of the last napi context to receive data for sk
253 * @sk_ll_usec: usecs to busypoll when there is no data
254 * @sk_allocation: allocation mode
255 * @sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
256 * @sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
257 * @sk_sndbuf: size of send buffer in bytes
258 * @sk_padding: unused element for alignment
259 * @sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
260 * @sk_no_check_rx: allow zero checksum in RX packets
261 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
262 * @sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
263 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
264 * @sk_gso_max_size: Maximum GSO segment size to build
265 * @sk_gso_max_segs: Maximum number of GSO segments
266 * @sk_lingertime: %SO_LINGER l_linger setting
267 * @sk_backlog: always used with the per-socket spinlock held
268 * @sk_callback_lock: used with the callbacks in the end of this struct
269 * @sk_error_queue: rarely used
270 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
271 * IPV6_ADDRFORM for instance)
272 * @sk_err: last error
273 * @sk_err_soft: errors that don't cause failure but are the cause of a
274 * persistent failure not just 'timed out'
275 * @sk_drops: raw/udp drops counter
276 * @sk_ack_backlog: current listen backlog
277 * @sk_max_ack_backlog: listen backlog set in listen()
278 * @sk_priority: %SO_PRIORITY setting
279 * @sk_type: socket type (%SOCK_STREAM, etc)
280 * @sk_protocol: which protocol this socket belongs in this network family
281 * @sk_peer_pid: &struct pid for this socket's peer
282 * @sk_peer_cred: %SO_PEERCRED setting
283 * @sk_rcvlowat: %SO_RCVLOWAT setting
284 * @sk_rcvtimeo: %SO_RCVTIMEO setting
285 * @sk_sndtimeo: %SO_SNDTIMEO setting
286 * @sk_txhash: computed flow hash for use on transmit
287 * @sk_filter: socket filtering instructions
288 * @sk_timer: sock cleanup timer
289 * @sk_stamp: time stamp of last packet received
290 * @sk_tsflags: SO_TIMESTAMPING socket options
291 * @sk_tskey: counter to disambiguate concurrent tstamp requests
292 * @sk_socket: Identd and reporting IO signals
293 * @sk_user_data: RPC layer private data
294 * @sk_frag: cached page frag
295 * @sk_peek_off: current peek_offset value
296 * @sk_send_head: front of stuff to transmit
297 * @sk_security: used by security modules
298 * @sk_mark: generic packet mark
299 * @sk_cgrp_data: cgroup data for this cgroup
300 * @sk_memcg: this socket's memory cgroup association
301 * @sk_write_pending: a write to stream socket waits to start
302 * @sk_state_change: callback to indicate change in the state of the sock
303 * @sk_data_ready: callback to indicate there is data to be processed
304 * @sk_write_space: callback to indicate there is bf sending space available
305 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
306 * @sk_backlog_rcv: callback to process the backlog
307 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
308 * @sk_reuseport_cb: reuseport group container
309 * @sk_rcu: used during RCU grace period
310 */
311 struct sock {
312 /*
313 * Now struct inet_timewait_sock also uses sock_common, so please just
314 * don't add nothing before this first member (__sk_common) --acme
315 */
316 struct sock_common __sk_common;
317 #define sk_node __sk_common.skc_node
318 #define sk_nulls_node __sk_common.skc_nulls_node
319 #define sk_refcnt __sk_common.skc_refcnt
320 #define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping
321
322 #define sk_dontcopy_begin __sk_common.skc_dontcopy_begin
323 #define sk_dontcopy_end __sk_common.skc_dontcopy_end
324 #define sk_hash __sk_common.skc_hash
325 #define sk_portpair __sk_common.skc_portpair
326 #define sk_num __sk_common.skc_num
327 #define sk_dport __sk_common.skc_dport
328 #define sk_addrpair __sk_common.skc_addrpair
329 #define sk_daddr __sk_common.skc_daddr
330 #define sk_rcv_saddr __sk_common.skc_rcv_saddr
331 #define sk_family __sk_common.skc_family
332 #define sk_state __sk_common.skc_state
333 #define sk_reuse __sk_common.skc_reuse
334 #define sk_reuseport __sk_common.skc_reuseport
335 #define sk_ipv6only __sk_common.skc_ipv6only
336 #define sk_net_refcnt __sk_common.skc_net_refcnt
337 #define sk_bound_dev_if __sk_common.skc_bound_dev_if
338 #define sk_bind_node __sk_common.skc_bind_node
339 #define sk_prot __sk_common.skc_prot
340 #define sk_net __sk_common.skc_net
341 #define sk_v6_daddr __sk_common.skc_v6_daddr
342 #define sk_v6_rcv_saddr __sk_common.skc_v6_rcv_saddr
343 #define sk_cookie __sk_common.skc_cookie
344 #define sk_incoming_cpu __sk_common.skc_incoming_cpu
345 #define sk_flags __sk_common.skc_flags
346 #define sk_rxhash __sk_common.skc_rxhash
347
348 socket_lock_t sk_lock;
349 atomic_t sk_drops;
350 int sk_rcvlowat;
351 struct sk_buff_head sk_error_queue;
352 struct sk_buff_head sk_receive_queue;
353 /*
354 * The backlog queue is special, it is always used with
355 * the per-socket spinlock held and requires low latency
356 * access. Therefore we special case it's implementation.
357 * Note : rmem_alloc is in this structure to fill a hole
358 * on 64bit arches, not because its logically part of
359 * backlog.
360 */
361 struct {
362 atomic_t rmem_alloc;
363 int len;
364 struct sk_buff *head;
365 struct sk_buff *tail;
366 } sk_backlog;
367 #define sk_rmem_alloc sk_backlog.rmem_alloc
368
369 int sk_forward_alloc;
370 #ifdef CONFIG_NET_RX_BUSY_POLL
371 unsigned int sk_ll_usec;
372 /* ===== mostly read cache line ===== */
373 unsigned int sk_napi_id;
374 #endif
375 int sk_rcvbuf;
376
377 struct sk_filter __rcu *sk_filter;
378 union {
379 struct socket_wq __rcu *sk_wq;
380 struct socket_wq *sk_wq_raw;
381 };
382 #ifdef CONFIG_XFRM
383 struct xfrm_policy __rcu *sk_policy[2];
384 #endif
385 struct dst_entry *sk_rx_dst;
386 struct dst_entry __rcu *sk_dst_cache;
387 atomic_t sk_omem_alloc;
388 int sk_sndbuf;
389
390 /* ===== cache line for TX ===== */
391 int sk_wmem_queued;
392 atomic_t sk_wmem_alloc;
393 unsigned long sk_tsq_flags;
394 struct sk_buff *sk_send_head;
395 struct sk_buff_head sk_write_queue;
396 __s32 sk_peek_off;
397 int sk_write_pending;
398 __u32 sk_dst_pending_confirm;
399 /* Note: 32bit hole on 64bit arches */
400 long sk_sndtimeo;
401 struct timer_list sk_timer;
402 __u32 sk_priority;
403 __u32 sk_mark;
404 u32 sk_pacing_rate; /* bytes per second */
405 u32 sk_max_pacing_rate;
406 struct page_frag sk_frag;
407 netdev_features_t sk_route_caps;
408 netdev_features_t sk_route_nocaps;
409 int sk_gso_type;
410 unsigned int sk_gso_max_size;
411 gfp_t sk_allocation;
412 __u32 sk_txhash;
413
414 /*
415 * Because of non atomicity rules, all
416 * changes are protected by socket lock.
417 */
418 unsigned int __sk_flags_offset[0];
419 #ifdef __BIG_ENDIAN_BITFIELD
420 #define SK_FL_PROTO_SHIFT 16
421 #define SK_FL_PROTO_MASK 0x00ff0000
422
423 #define SK_FL_TYPE_SHIFT 0
424 #define SK_FL_TYPE_MASK 0x0000ffff
425 #else
426 #define SK_FL_PROTO_SHIFT 8
427 #define SK_FL_PROTO_MASK 0x0000ff00
428
429 #define SK_FL_TYPE_SHIFT 16
430 #define SK_FL_TYPE_MASK 0xffff0000
431 #endif
432
433 kmemcheck_bitfield_begin(flags);
434 unsigned int sk_padding : 1,
435 sk_kern_sock : 1,
436 sk_no_check_tx : 1,
437 sk_no_check_rx : 1,
438 sk_userlocks : 4,
439 sk_protocol : 8,
440 sk_type : 16;
441 #define SK_PROTOCOL_MAX U8_MAX
442 kmemcheck_bitfield_end(flags);
443
444 u16 sk_gso_max_segs;
445 unsigned long sk_lingertime;
446 struct proto *sk_prot_creator;
447 rwlock_t sk_callback_lock;
448 int sk_err,
449 sk_err_soft;
450 u32 sk_ack_backlog;
451 u32 sk_max_ack_backlog;
452 kuid_t sk_uid;
453 struct pid *sk_peer_pid;
454 const struct cred *sk_peer_cred;
455 long sk_rcvtimeo;
456 ktime_t sk_stamp;
457 u16 sk_tsflags;
458 u8 sk_shutdown;
459 u32 sk_tskey;
460 struct socket *sk_socket;
461 void *sk_user_data;
462 #ifdef CONFIG_SECURITY
463 void *sk_security;
464 #endif
465 struct sock_cgroup_data sk_cgrp_data;
466 struct mem_cgroup *sk_memcg;
467 void (*sk_state_change)(struct sock *sk);
468 void (*sk_data_ready)(struct sock *sk);
469 void (*sk_write_space)(struct sock *sk);
470 void (*sk_error_report)(struct sock *sk);
471 int (*sk_backlog_rcv)(struct sock *sk,
472 struct sk_buff *skb);
473 void (*sk_destruct)(struct sock *sk);
474 struct sock_reuseport __rcu *sk_reuseport_cb;
475 struct rcu_head sk_rcu;
476 };
477
478 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
479
480 #define rcu_dereference_sk_user_data(sk) rcu_dereference(__sk_user_data((sk)))
481 #define rcu_assign_sk_user_data(sk, ptr) rcu_assign_pointer(__sk_user_data((sk)), ptr)
482
483 /*
484 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
485 * or not whether his port will be reused by someone else. SK_FORCE_REUSE
486 * on a socket means that the socket will reuse everybody else's port
487 * without looking at the other's sk_reuse value.
488 */
489
490 #define SK_NO_REUSE 0
491 #define SK_CAN_REUSE 1
492 #define SK_FORCE_REUSE 2
493
494 int sk_set_peek_off(struct sock *sk, int val);
495
496 static inline int sk_peek_offset(struct sock *sk, int flags)
497 {
498 if (unlikely(flags & MSG_PEEK)) {
499 s32 off = READ_ONCE(sk->sk_peek_off);
500 if (off >= 0)
501 return off;
502 }
503
504 return 0;
505 }
506
507 static inline void sk_peek_offset_bwd(struct sock *sk, int val)
508 {
509 s32 off = READ_ONCE(sk->sk_peek_off);
510
511 if (unlikely(off >= 0)) {
512 off = max_t(s32, off - val, 0);
513 WRITE_ONCE(sk->sk_peek_off, off);
514 }
515 }
516
517 static inline void sk_peek_offset_fwd(struct sock *sk, int val)
518 {
519 sk_peek_offset_bwd(sk, -val);
520 }
521
522 /*
523 * Hashed lists helper routines
524 */
525 static inline struct sock *sk_entry(const struct hlist_node *node)
526 {
527 return hlist_entry(node, struct sock, sk_node);
528 }
529
530 static inline struct sock *__sk_head(const struct hlist_head *head)
531 {
532 return hlist_entry(head->first, struct sock, sk_node);
533 }
534
535 static inline struct sock *sk_head(const struct hlist_head *head)
536 {
537 return hlist_empty(head) ? NULL : __sk_head(head);
538 }
539
540 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
541 {
542 return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
543 }
544
545 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
546 {
547 return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
548 }
549
550 static inline struct sock *sk_next(const struct sock *sk)
551 {
552 return hlist_entry_safe(sk->sk_node.next, struct sock, sk_node);
553 }
554
555 static inline struct sock *sk_nulls_next(const struct sock *sk)
556 {
557 return (!is_a_nulls(sk->sk_nulls_node.next)) ?
558 hlist_nulls_entry(sk->sk_nulls_node.next,
559 struct sock, sk_nulls_node) :
560 NULL;
561 }
562
563 static inline bool sk_unhashed(const struct sock *sk)
564 {
565 return hlist_unhashed(&sk->sk_node);
566 }
567
568 static inline bool sk_hashed(const struct sock *sk)
569 {
570 return !sk_unhashed(sk);
571 }
572
573 static inline void sk_node_init(struct hlist_node *node)
574 {
575 node->pprev = NULL;
576 }
577
578 static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
579 {
580 node->pprev = NULL;
581 }
582
583 static inline void __sk_del_node(struct sock *sk)
584 {
585 __hlist_del(&sk->sk_node);
586 }
587
588 /* NB: equivalent to hlist_del_init_rcu */
589 static inline bool __sk_del_node_init(struct sock *sk)
590 {
591 if (sk_hashed(sk)) {
592 __sk_del_node(sk);
593 sk_node_init(&sk->sk_node);
594 return true;
595 }
596 return false;
597 }
598
599 /* Grab socket reference count. This operation is valid only
600 when sk is ALREADY grabbed f.e. it is found in hash table
601 or a list and the lookup is made under lock preventing hash table
602 modifications.
603 */
604
605 static __always_inline void sock_hold(struct sock *sk)
606 {
607 atomic_inc(&sk->sk_refcnt);
608 }
609
610 /* Ungrab socket in the context, which assumes that socket refcnt
611 cannot hit zero, f.e. it is true in context of any socketcall.
612 */
613 static __always_inline void __sock_put(struct sock *sk)
614 {
615 atomic_dec(&sk->sk_refcnt);
616 }
617
618 static inline bool sk_del_node_init(struct sock *sk)
619 {
620 bool rc = __sk_del_node_init(sk);
621
622 if (rc) {
623 /* paranoid for a while -acme */
624 WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
625 __sock_put(sk);
626 }
627 return rc;
628 }
629 #define sk_del_node_init_rcu(sk) sk_del_node_init(sk)
630
631 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
632 {
633 if (sk_hashed(sk)) {
634 hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
635 return true;
636 }
637 return false;
638 }
639
640 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
641 {
642 bool rc = __sk_nulls_del_node_init_rcu(sk);
643
644 if (rc) {
645 /* paranoid for a while -acme */
646 WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
647 __sock_put(sk);
648 }
649 return rc;
650 }
651
652 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
653 {
654 hlist_add_head(&sk->sk_node, list);
655 }
656
657 static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
658 {
659 sock_hold(sk);
660 __sk_add_node(sk, list);
661 }
662
663 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
664 {
665 sock_hold(sk);
666 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
667 sk->sk_family == AF_INET6)
668 hlist_add_tail_rcu(&sk->sk_node, list);
669 else
670 hlist_add_head_rcu(&sk->sk_node, list);
671 }
672
673 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
674 {
675 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
676 sk->sk_family == AF_INET6)
677 hlist_nulls_add_tail_rcu(&sk->sk_nulls_node, list);
678 else
679 hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
680 }
681
682 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
683 {
684 sock_hold(sk);
685 __sk_nulls_add_node_rcu(sk, list);
686 }
687
688 static inline void __sk_del_bind_node(struct sock *sk)
689 {
690 __hlist_del(&sk->sk_bind_node);
691 }
692
693 static inline void sk_add_bind_node(struct sock *sk,
694 struct hlist_head *list)
695 {
696 hlist_add_head(&sk->sk_bind_node, list);
697 }
698
699 #define sk_for_each(__sk, list) \
700 hlist_for_each_entry(__sk, list, sk_node)
701 #define sk_for_each_rcu(__sk, list) \
702 hlist_for_each_entry_rcu(__sk, list, sk_node)
703 #define sk_nulls_for_each(__sk, node, list) \
704 hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
705 #define sk_nulls_for_each_rcu(__sk, node, list) \
706 hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
707 #define sk_for_each_from(__sk) \
708 hlist_for_each_entry_from(__sk, sk_node)
709 #define sk_nulls_for_each_from(__sk, node) \
710 if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
711 hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
712 #define sk_for_each_safe(__sk, tmp, list) \
713 hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
714 #define sk_for_each_bound(__sk, list) \
715 hlist_for_each_entry(__sk, list, sk_bind_node)
716
717 /**
718 * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset
719 * @tpos: the type * to use as a loop cursor.
720 * @pos: the &struct hlist_node to use as a loop cursor.
721 * @head: the head for your list.
722 * @offset: offset of hlist_node within the struct.
723 *
724 */
725 #define sk_for_each_entry_offset_rcu(tpos, pos, head, offset) \
726 for (pos = rcu_dereference((head)->first); \
727 pos != NULL && \
728 ({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;}); \
729 pos = rcu_dereference(pos->next))
730
731 static inline struct user_namespace *sk_user_ns(struct sock *sk)
732 {
733 /* Careful only use this in a context where these parameters
734 * can not change and must all be valid, such as recvmsg from
735 * userspace.
736 */
737 return sk->sk_socket->file->f_cred->user_ns;
738 }
739
740 /* Sock flags */
741 enum sock_flags {
742 SOCK_DEAD,
743 SOCK_DONE,
744 SOCK_URGINLINE,
745 SOCK_KEEPOPEN,
746 SOCK_LINGER,
747 SOCK_DESTROY,
748 SOCK_BROADCAST,
749 SOCK_TIMESTAMP,
750 SOCK_ZAPPED,
751 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
752 SOCK_DBG, /* %SO_DEBUG setting */
753 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
754 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
755 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
756 SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
757 SOCK_MEMALLOC, /* VM depends on this socket for swapping */
758 SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */
759 SOCK_FASYNC, /* fasync() active */
760 SOCK_RXQ_OVFL,
761 SOCK_ZEROCOPY, /* buffers from userspace */
762 SOCK_WIFI_STATUS, /* push wifi status to userspace */
763 SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
764 * Will use last 4 bytes of packet sent from
765 * user-space instead.
766 */
767 SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
768 SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
769 SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */
770 };
771
772 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
773
774 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
775 {
776 nsk->sk_flags = osk->sk_flags;
777 }
778
779 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
780 {
781 __set_bit(flag, &sk->sk_flags);
782 }
783
784 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
785 {
786 __clear_bit(flag, &sk->sk_flags);
787 }
788
789 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
790 {
791 return test_bit(flag, &sk->sk_flags);
792 }
793
794 #ifdef CONFIG_NET
795 extern struct static_key memalloc_socks;
796 static inline int sk_memalloc_socks(void)
797 {
798 return static_key_false(&memalloc_socks);
799 }
800 #else
801
802 static inline int sk_memalloc_socks(void)
803 {
804 return 0;
805 }
806
807 #endif
808
809 static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask)
810 {
811 return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC);
812 }
813
814 static inline void sk_acceptq_removed(struct sock *sk)
815 {
816 sk->sk_ack_backlog--;
817 }
818
819 static inline void sk_acceptq_added(struct sock *sk)
820 {
821 sk->sk_ack_backlog++;
822 }
823
824 static inline bool sk_acceptq_is_full(const struct sock *sk)
825 {
826 return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
827 }
828
829 /*
830 * Compute minimal free write space needed to queue new packets.
831 */
832 static inline int sk_stream_min_wspace(const struct sock *sk)
833 {
834 return sk->sk_wmem_queued >> 1;
835 }
836
837 static inline int sk_stream_wspace(const struct sock *sk)
838 {
839 return sk->sk_sndbuf - sk->sk_wmem_queued;
840 }
841
842 void sk_stream_write_space(struct sock *sk);
843
844 /* OOB backlog add */
845 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
846 {
847 /* dont let skb dst not refcounted, we are going to leave rcu lock */
848 skb_dst_force_safe(skb);
849
850 if (!sk->sk_backlog.tail)
851 sk->sk_backlog.head = skb;
852 else
853 sk->sk_backlog.tail->next = skb;
854
855 sk->sk_backlog.tail = skb;
856 skb->next = NULL;
857 }
858
859 /*
860 * Take into account size of receive queue and backlog queue
861 * Do not take into account this skb truesize,
862 * to allow even a single big packet to come.
863 */
864 static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
865 {
866 unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
867
868 return qsize > limit;
869 }
870
871 /* The per-socket spinlock must be held here. */
872 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
873 unsigned int limit)
874 {
875 if (sk_rcvqueues_full(sk, limit))
876 return -ENOBUFS;
877
878 /*
879 * If the skb was allocated from pfmemalloc reserves, only
880 * allow SOCK_MEMALLOC sockets to use it as this socket is
881 * helping free memory
882 */
883 if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
884 return -ENOMEM;
885
886 __sk_add_backlog(sk, skb);
887 sk->sk_backlog.len += skb->truesize;
888 return 0;
889 }
890
891 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
892
893 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
894 {
895 if (sk_memalloc_socks() && skb_pfmemalloc(skb))
896 return __sk_backlog_rcv(sk, skb);
897
898 return sk->sk_backlog_rcv(sk, skb);
899 }
900
901 static inline void sk_incoming_cpu_update(struct sock *sk)
902 {
903 sk->sk_incoming_cpu = raw_smp_processor_id();
904 }
905
906 static inline void sock_rps_record_flow_hash(__u32 hash)
907 {
908 #ifdef CONFIG_RPS
909 struct rps_sock_flow_table *sock_flow_table;
910
911 rcu_read_lock();
912 sock_flow_table = rcu_dereference(rps_sock_flow_table);
913 rps_record_sock_flow(sock_flow_table, hash);
914 rcu_read_unlock();
915 #endif
916 }
917
918 static inline void sock_rps_record_flow(const struct sock *sk)
919 {
920 #ifdef CONFIG_RPS
921 if (static_key_false(&rfs_needed)) {
922 /* Reading sk->sk_rxhash might incur an expensive cache line
923 * miss.
924 *
925 * TCP_ESTABLISHED does cover almost all states where RFS
926 * might be useful, and is cheaper [1] than testing :
927 * IPv4: inet_sk(sk)->inet_daddr
928 * IPv6: ipv6_addr_any(&sk->sk_v6_daddr)
929 * OR an additional socket flag
930 * [1] : sk_state and sk_prot are in the same cache line.
931 */
932 if (sk->sk_state == TCP_ESTABLISHED)
933 sock_rps_record_flow_hash(sk->sk_rxhash);
934 }
935 #endif
936 }
937
938 static inline void sock_rps_save_rxhash(struct sock *sk,
939 const struct sk_buff *skb)
940 {
941 #ifdef CONFIG_RPS
942 if (unlikely(sk->sk_rxhash != skb->hash))
943 sk->sk_rxhash = skb->hash;
944 #endif
945 }
946
947 static inline void sock_rps_reset_rxhash(struct sock *sk)
948 {
949 #ifdef CONFIG_RPS
950 sk->sk_rxhash = 0;
951 #endif
952 }
953
954 #define sk_wait_event(__sk, __timeo, __condition, __wait) \
955 ({ int __rc; \
956 release_sock(__sk); \
957 __rc = __condition; \
958 if (!__rc) { \
959 *(__timeo) = wait_woken(__wait, \
960 TASK_INTERRUPTIBLE, \
961 *(__timeo)); \
962 } \
963 sched_annotate_sleep(); \
964 lock_sock(__sk); \
965 __rc = __condition; \
966 __rc; \
967 })
968
969 int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
970 int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
971 void sk_stream_wait_close(struct sock *sk, long timeo_p);
972 int sk_stream_error(struct sock *sk, int flags, int err);
973 void sk_stream_kill_queues(struct sock *sk);
974 void sk_set_memalloc(struct sock *sk);
975 void sk_clear_memalloc(struct sock *sk);
976
977 void __sk_flush_backlog(struct sock *sk);
978
979 static inline bool sk_flush_backlog(struct sock *sk)
980 {
981 if (unlikely(READ_ONCE(sk->sk_backlog.tail))) {
982 __sk_flush_backlog(sk);
983 return true;
984 }
985 return false;
986 }
987
988 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb);
989
990 struct request_sock_ops;
991 struct timewait_sock_ops;
992 struct inet_hashinfo;
993 struct raw_hashinfo;
994 struct smc_hashinfo;
995 struct module;
996
997 /*
998 * caches using SLAB_TYPESAFE_BY_RCU should let .next pointer from nulls nodes
999 * un-modified. Special care is taken when initializing object to zero.
1000 */
1001 static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1002 {
1003 if (offsetof(struct sock, sk_node.next) != 0)
1004 memset(sk, 0, offsetof(struct sock, sk_node.next));
1005 memset(&sk->sk_node.pprev, 0,
1006 size - offsetof(struct sock, sk_node.pprev));
1007 }
1008
1009 /* Networking protocol blocks we attach to sockets.
1010 * socket layer -> transport layer interface
1011 */
1012 struct proto {
1013 void (*close)(struct sock *sk,
1014 long timeout);
1015 int (*connect)(struct sock *sk,
1016 struct sockaddr *uaddr,
1017 int addr_len);
1018 int (*disconnect)(struct sock *sk, int flags);
1019
1020 struct sock * (*accept)(struct sock *sk, int flags, int *err,
1021 bool kern);
1022
1023 int (*ioctl)(struct sock *sk, int cmd,
1024 unsigned long arg);
1025 int (*init)(struct sock *sk);
1026 void (*destroy)(struct sock *sk);
1027 void (*shutdown)(struct sock *sk, int how);
1028 int (*setsockopt)(struct sock *sk, int level,
1029 int optname, char __user *optval,
1030 unsigned int optlen);
1031 int (*getsockopt)(struct sock *sk, int level,
1032 int optname, char __user *optval,
1033 int __user *option);
1034 void (*keepalive)(struct sock *sk, int valbool);
1035 #ifdef CONFIG_COMPAT
1036 int (*compat_setsockopt)(struct sock *sk,
1037 int level,
1038 int optname, char __user *optval,
1039 unsigned int optlen);
1040 int (*compat_getsockopt)(struct sock *sk,
1041 int level,
1042 int optname, char __user *optval,
1043 int __user *option);
1044 int (*compat_ioctl)(struct sock *sk,
1045 unsigned int cmd, unsigned long arg);
1046 #endif
1047 int (*sendmsg)(struct sock *sk, struct msghdr *msg,
1048 size_t len);
1049 int (*recvmsg)(struct sock *sk, struct msghdr *msg,
1050 size_t len, int noblock, int flags,
1051 int *addr_len);
1052 int (*sendpage)(struct sock *sk, struct page *page,
1053 int offset, size_t size, int flags);
1054 int (*bind)(struct sock *sk,
1055 struct sockaddr *uaddr, int addr_len);
1056
1057 int (*backlog_rcv) (struct sock *sk,
1058 struct sk_buff *skb);
1059
1060 void (*release_cb)(struct sock *sk);
1061
1062 /* Keeping track of sk's, looking them up, and port selection methods. */
1063 int (*hash)(struct sock *sk);
1064 void (*unhash)(struct sock *sk);
1065 void (*rehash)(struct sock *sk);
1066 int (*get_port)(struct sock *sk, unsigned short snum);
1067
1068 /* Keeping track of sockets in use */
1069 #ifdef CONFIG_PROC_FS
1070 unsigned int inuse_idx;
1071 #endif
1072
1073 bool (*stream_memory_free)(const struct sock *sk);
1074 /* Memory pressure */
1075 void (*enter_memory_pressure)(struct sock *sk);
1076 atomic_long_t *memory_allocated; /* Current allocated memory. */
1077 struct percpu_counter *sockets_allocated; /* Current number of sockets. */
1078 /*
1079 * Pressure flag: try to collapse.
1080 * Technical note: it is used by multiple contexts non atomically.
1081 * All the __sk_mem_schedule() is of this nature: accounting
1082 * is strict, actions are advisory and have some latency.
1083 */
1084 int *memory_pressure;
1085 long *sysctl_mem;
1086 int *sysctl_wmem;
1087 int *sysctl_rmem;
1088 int max_header;
1089 bool no_autobind;
1090
1091 struct kmem_cache *slab;
1092 unsigned int obj_size;
1093 int slab_flags;
1094
1095 struct percpu_counter *orphan_count;
1096
1097 struct request_sock_ops *rsk_prot;
1098 struct timewait_sock_ops *twsk_prot;
1099
1100 union {
1101 struct inet_hashinfo *hashinfo;
1102 struct udp_table *udp_table;
1103 struct raw_hashinfo *raw_hash;
1104 struct smc_hashinfo *smc_hash;
1105 } h;
1106
1107 struct module *owner;
1108
1109 char name[32];
1110
1111 struct list_head node;
1112 #ifdef SOCK_REFCNT_DEBUG
1113 atomic_t socks;
1114 #endif
1115 int (*diag_destroy)(struct sock *sk, int err);
1116 };
1117
1118 int proto_register(struct proto *prot, int alloc_slab);
1119 void proto_unregister(struct proto *prot);
1120
1121 #ifdef SOCK_REFCNT_DEBUG
1122 static inline void sk_refcnt_debug_inc(struct sock *sk)
1123 {
1124 atomic_inc(&sk->sk_prot->socks);
1125 }
1126
1127 static inline void sk_refcnt_debug_dec(struct sock *sk)
1128 {
1129 atomic_dec(&sk->sk_prot->socks);
1130 printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1131 sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1132 }
1133
1134 static inline void sk_refcnt_debug_release(const struct sock *sk)
1135 {
1136 if (atomic_read(&sk->sk_refcnt) != 1)
1137 printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1138 sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt));
1139 }
1140 #else /* SOCK_REFCNT_DEBUG */
1141 #define sk_refcnt_debug_inc(sk) do { } while (0)
1142 #define sk_refcnt_debug_dec(sk) do { } while (0)
1143 #define sk_refcnt_debug_release(sk) do { } while (0)
1144 #endif /* SOCK_REFCNT_DEBUG */
1145
1146 static inline bool sk_stream_memory_free(const struct sock *sk)
1147 {
1148 if (sk->sk_wmem_queued >= sk->sk_sndbuf)
1149 return false;
1150
1151 return sk->sk_prot->stream_memory_free ?
1152 sk->sk_prot->stream_memory_free(sk) : true;
1153 }
1154
1155 static inline bool sk_stream_is_writeable(const struct sock *sk)
1156 {
1157 return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1158 sk_stream_memory_free(sk);
1159 }
1160
1161 static inline int sk_under_cgroup_hierarchy(struct sock *sk,
1162 struct cgroup *ancestor)
1163 {
1164 #ifdef CONFIG_SOCK_CGROUP_DATA
1165 return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data),
1166 ancestor);
1167 #else
1168 return -ENOTSUPP;
1169 #endif
1170 }
1171
1172 static inline bool sk_has_memory_pressure(const struct sock *sk)
1173 {
1174 return sk->sk_prot->memory_pressure != NULL;
1175 }
1176
1177 static inline bool sk_under_memory_pressure(const struct sock *sk)
1178 {
1179 if (!sk->sk_prot->memory_pressure)
1180 return false;
1181
1182 if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
1183 mem_cgroup_under_socket_pressure(sk->sk_memcg))
1184 return true;
1185
1186 return !!*sk->sk_prot->memory_pressure;
1187 }
1188
1189 static inline void sk_leave_memory_pressure(struct sock *sk)
1190 {
1191 int *memory_pressure = sk->sk_prot->memory_pressure;
1192
1193 if (!memory_pressure)
1194 return;
1195
1196 if (*memory_pressure)
1197 *memory_pressure = 0;
1198 }
1199
1200 static inline void sk_enter_memory_pressure(struct sock *sk)
1201 {
1202 if (!sk->sk_prot->enter_memory_pressure)
1203 return;
1204
1205 sk->sk_prot->enter_memory_pressure(sk);
1206 }
1207
1208 static inline long
1209 sk_memory_allocated(const struct sock *sk)
1210 {
1211 return atomic_long_read(sk->sk_prot->memory_allocated);
1212 }
1213
1214 static inline long
1215 sk_memory_allocated_add(struct sock *sk, int amt)
1216 {
1217 return atomic_long_add_return(amt, sk->sk_prot->memory_allocated);
1218 }
1219
1220 static inline void
1221 sk_memory_allocated_sub(struct sock *sk, int amt)
1222 {
1223 atomic_long_sub(amt, sk->sk_prot->memory_allocated);
1224 }
1225
1226 static inline void sk_sockets_allocated_dec(struct sock *sk)
1227 {
1228 percpu_counter_dec(sk->sk_prot->sockets_allocated);
1229 }
1230
1231 static inline void sk_sockets_allocated_inc(struct sock *sk)
1232 {
1233 percpu_counter_inc(sk->sk_prot->sockets_allocated);
1234 }
1235
1236 static inline int
1237 sk_sockets_allocated_read_positive(struct sock *sk)
1238 {
1239 return percpu_counter_read_positive(sk->sk_prot->sockets_allocated);
1240 }
1241
1242 static inline int
1243 proto_sockets_allocated_sum_positive(struct proto *prot)
1244 {
1245 return percpu_counter_sum_positive(prot->sockets_allocated);
1246 }
1247
1248 static inline long
1249 proto_memory_allocated(struct proto *prot)
1250 {
1251 return atomic_long_read(prot->memory_allocated);
1252 }
1253
1254 static inline bool
1255 proto_memory_pressure(struct proto *prot)
1256 {
1257 if (!prot->memory_pressure)
1258 return false;
1259 return !!*prot->memory_pressure;
1260 }
1261
1262
1263 #ifdef CONFIG_PROC_FS
1264 /* Called with local bh disabled */
1265 void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
1266 int sock_prot_inuse_get(struct net *net, struct proto *proto);
1267 #else
1268 static inline void sock_prot_inuse_add(struct net *net, struct proto *prot,
1269 int inc)
1270 {
1271 }
1272 #endif
1273
1274
1275 /* With per-bucket locks this operation is not-atomic, so that
1276 * this version is not worse.
1277 */
1278 static inline int __sk_prot_rehash(struct sock *sk)
1279 {
1280 sk->sk_prot->unhash(sk);
1281 return sk->sk_prot->hash(sk);
1282 }
1283
1284 /* About 10 seconds */
1285 #define SOCK_DESTROY_TIME (10*HZ)
1286
1287 /* Sockets 0-1023 can't be bound to unless you are superuser */
1288 #define PROT_SOCK 1024
1289
1290 #define SHUTDOWN_MASK 3
1291 #define RCV_SHUTDOWN 1
1292 #define SEND_SHUTDOWN 2
1293
1294 #define SOCK_SNDBUF_LOCK 1
1295 #define SOCK_RCVBUF_LOCK 2
1296 #define SOCK_BINDADDR_LOCK 4
1297 #define SOCK_BINDPORT_LOCK 8
1298
1299 struct socket_alloc {
1300 struct socket socket;
1301 struct inode vfs_inode;
1302 };
1303
1304 static inline struct socket *SOCKET_I(struct inode *inode)
1305 {
1306 return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1307 }
1308
1309 static inline struct inode *SOCK_INODE(struct socket *socket)
1310 {
1311 return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1312 }
1313
1314 /*
1315 * Functions for memory accounting
1316 */
1317 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind);
1318 int __sk_mem_schedule(struct sock *sk, int size, int kind);
1319 void __sk_mem_reduce_allocated(struct sock *sk, int amount);
1320 void __sk_mem_reclaim(struct sock *sk, int amount);
1321
1322 /* We used to have PAGE_SIZE here, but systems with 64KB pages
1323 * do not necessarily have 16x time more memory than 4KB ones.
1324 */
1325 #define SK_MEM_QUANTUM 4096
1326 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1327 #define SK_MEM_SEND 0
1328 #define SK_MEM_RECV 1
1329
1330 /* sysctl_mem values are in pages, we convert them in SK_MEM_QUANTUM units */
1331 static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1332 {
1333 long val = sk->sk_prot->sysctl_mem[index];
1334
1335 #if PAGE_SIZE > SK_MEM_QUANTUM
1336 val <<= PAGE_SHIFT - SK_MEM_QUANTUM_SHIFT;
1337 #elif PAGE_SIZE < SK_MEM_QUANTUM
1338 val >>= SK_MEM_QUANTUM_SHIFT - PAGE_SHIFT;
1339 #endif
1340 return val;
1341 }
1342
1343 static inline int sk_mem_pages(int amt)
1344 {
1345 return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1346 }
1347
1348 static inline bool sk_has_account(struct sock *sk)
1349 {
1350 /* return true if protocol supports memory accounting */
1351 return !!sk->sk_prot->memory_allocated;
1352 }
1353
1354 static inline bool sk_wmem_schedule(struct sock *sk, int size)
1355 {
1356 if (!sk_has_account(sk))
1357 return true;
1358 return size <= sk->sk_forward_alloc ||
1359 __sk_mem_schedule(sk, size, SK_MEM_SEND);
1360 }
1361
1362 static inline bool
1363 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1364 {
1365 if (!sk_has_account(sk))
1366 return true;
1367 return size<= sk->sk_forward_alloc ||
1368 __sk_mem_schedule(sk, size, SK_MEM_RECV) ||
1369 skb_pfmemalloc(skb);
1370 }
1371
1372 static inline void sk_mem_reclaim(struct sock *sk)
1373 {
1374 if (!sk_has_account(sk))
1375 return;
1376 if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
1377 __sk_mem_reclaim(sk, sk->sk_forward_alloc);
1378 }
1379
1380 static inline void sk_mem_reclaim_partial(struct sock *sk)
1381 {
1382 if (!sk_has_account(sk))
1383 return;
1384 if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
1385 __sk_mem_reclaim(sk, sk->sk_forward_alloc - 1);
1386 }
1387
1388 static inline void sk_mem_charge(struct sock *sk, int size)
1389 {
1390 if (!sk_has_account(sk))
1391 return;
1392 sk->sk_forward_alloc -= size;
1393 }
1394
1395 static inline void sk_mem_uncharge(struct sock *sk, int size)
1396 {
1397 if (!sk_has_account(sk))
1398 return;
1399 sk->sk_forward_alloc += size;
1400
1401 /* Avoid a possible overflow.
1402 * TCP send queues can make this happen, if sk_mem_reclaim()
1403 * is not called and more than 2 GBytes are released at once.
1404 *
1405 * If we reach 2 MBytes, reclaim 1 MBytes right now, there is
1406 * no need to hold that much forward allocation anyway.
1407 */
1408 if (unlikely(sk->sk_forward_alloc >= 1 << 21))
1409 __sk_mem_reclaim(sk, 1 << 20);
1410 }
1411
1412 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1413 {
1414 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1415 sk->sk_wmem_queued -= skb->truesize;
1416 sk_mem_uncharge(sk, skb->truesize);
1417 __kfree_skb(skb);
1418 }
1419
1420 static inline void sock_release_ownership(struct sock *sk)
1421 {
1422 if (sk->sk_lock.owned) {
1423 sk->sk_lock.owned = 0;
1424
1425 /* The sk_lock has mutex_unlock() semantics: */
1426 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
1427 }
1428 }
1429
1430 /*
1431 * Macro so as to not evaluate some arguments when
1432 * lockdep is not enabled.
1433 *
1434 * Mark both the sk_lock and the sk_lock.slock as a
1435 * per-address-family lock class.
1436 */
1437 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) \
1438 do { \
1439 sk->sk_lock.owned = 0; \
1440 init_waitqueue_head(&sk->sk_lock.wq); \
1441 spin_lock_init(&(sk)->sk_lock.slock); \
1442 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \
1443 sizeof((sk)->sk_lock)); \
1444 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \
1445 (skey), (sname)); \
1446 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \
1447 } while (0)
1448
1449 #ifdef CONFIG_LOCKDEP
1450 static inline bool lockdep_sock_is_held(const struct sock *csk)
1451 {
1452 struct sock *sk = (struct sock *)csk;
1453
1454 return lockdep_is_held(&sk->sk_lock) ||
1455 lockdep_is_held(&sk->sk_lock.slock);
1456 }
1457 #endif
1458
1459 void lock_sock_nested(struct sock *sk, int subclass);
1460
1461 static inline void lock_sock(struct sock *sk)
1462 {
1463 lock_sock_nested(sk, 0);
1464 }
1465
1466 void release_sock(struct sock *sk);
1467
1468 /* BH context may only use the following locking interface. */
1469 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock))
1470 #define bh_lock_sock_nested(__sk) \
1471 spin_lock_nested(&((__sk)->sk_lock.slock), \
1472 SINGLE_DEPTH_NESTING)
1473 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock))
1474
1475 bool lock_sock_fast(struct sock *sk);
1476 /**
1477 * unlock_sock_fast - complement of lock_sock_fast
1478 * @sk: socket
1479 * @slow: slow mode
1480 *
1481 * fast unlock socket for user context.
1482 * If slow mode is on, we call regular release_sock()
1483 */
1484 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1485 {
1486 if (slow)
1487 release_sock(sk);
1488 else
1489 spin_unlock_bh(&sk->sk_lock.slock);
1490 }
1491
1492 /* Used by processes to "lock" a socket state, so that
1493 * interrupts and bottom half handlers won't change it
1494 * from under us. It essentially blocks any incoming
1495 * packets, so that we won't get any new data or any
1496 * packets that change the state of the socket.
1497 *
1498 * While locked, BH processing will add new packets to
1499 * the backlog queue. This queue is processed by the
1500 * owner of the socket lock right before it is released.
1501 *
1502 * Since ~2.3.5 it is also exclusive sleep lock serializing
1503 * accesses from user process context.
1504 */
1505
1506 static inline void sock_owned_by_me(const struct sock *sk)
1507 {
1508 #ifdef CONFIG_LOCKDEP
1509 WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks);
1510 #endif
1511 }
1512
1513 static inline bool sock_owned_by_user(const struct sock *sk)
1514 {
1515 sock_owned_by_me(sk);
1516 return sk->sk_lock.owned;
1517 }
1518
1519 /* no reclassification while locks are held */
1520 static inline bool sock_allow_reclassification(const struct sock *csk)
1521 {
1522 struct sock *sk = (struct sock *)csk;
1523
1524 return !sk->sk_lock.owned && !spin_is_locked(&sk->sk_lock.slock);
1525 }
1526
1527 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1528 struct proto *prot, int kern);
1529 void sk_free(struct sock *sk);
1530 void sk_destruct(struct sock *sk);
1531 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1532 void sk_free_unlock_clone(struct sock *sk);
1533
1534 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1535 gfp_t priority);
1536 void __sock_wfree(struct sk_buff *skb);
1537 void sock_wfree(struct sk_buff *skb);
1538 void skb_orphan_partial(struct sk_buff *skb);
1539 void sock_rfree(struct sk_buff *skb);
1540 void sock_efree(struct sk_buff *skb);
1541 #ifdef CONFIG_INET
1542 void sock_edemux(struct sk_buff *skb);
1543 #else
1544 #define sock_edemux sock_efree
1545 #endif
1546
1547 int sock_setsockopt(struct socket *sock, int level, int op,
1548 char __user *optval, unsigned int optlen);
1549
1550 int sock_getsockopt(struct socket *sock, int level, int op,
1551 char __user *optval, int __user *optlen);
1552 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1553 int noblock, int *errcode);
1554 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1555 unsigned long data_len, int noblock,
1556 int *errcode, int max_page_order);
1557 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1558 void sock_kfree_s(struct sock *sk, void *mem, int size);
1559 void sock_kzfree_s(struct sock *sk, void *mem, int size);
1560 void sk_send_sigurg(struct sock *sk);
1561
1562 struct sockcm_cookie {
1563 u32 mark;
1564 u16 tsflags;
1565 };
1566
1567 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
1568 struct sockcm_cookie *sockc);
1569 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1570 struct sockcm_cookie *sockc);
1571
1572 /*
1573 * Functions to fill in entries in struct proto_ops when a protocol
1574 * does not implement a particular function.
1575 */
1576 int sock_no_bind(struct socket *, struct sockaddr *, int);
1577 int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1578 int sock_no_socketpair(struct socket *, struct socket *);
1579 int sock_no_accept(struct socket *, struct socket *, int, bool);
1580 int sock_no_getname(struct socket *, struct sockaddr *, int *, int);
1581 unsigned int sock_no_poll(struct file *, struct socket *,
1582 struct poll_table_struct *);
1583 int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1584 int sock_no_listen(struct socket *, int);
1585 int sock_no_shutdown(struct socket *, int);
1586 int sock_no_getsockopt(struct socket *, int , int, char __user *, int __user *);
1587 int sock_no_setsockopt(struct socket *, int, int, char __user *, unsigned int);
1588 int sock_no_sendmsg(struct socket *, struct msghdr *, size_t);
1589 int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int);
1590 int sock_no_mmap(struct file *file, struct socket *sock,
1591 struct vm_area_struct *vma);
1592 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset,
1593 size_t size, int flags);
1594
1595 /*
1596 * Functions to fill in entries in struct proto_ops when a protocol
1597 * uses the inet style.
1598 */
1599 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1600 char __user *optval, int __user *optlen);
1601 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1602 int flags);
1603 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1604 char __user *optval, unsigned int optlen);
1605 int compat_sock_common_getsockopt(struct socket *sock, int level,
1606 int optname, char __user *optval, int __user *optlen);
1607 int compat_sock_common_setsockopt(struct socket *sock, int level,
1608 int optname, char __user *optval, unsigned int optlen);
1609
1610 void sk_common_release(struct sock *sk);
1611
1612 /*
1613 * Default socket callbacks and setup code
1614 */
1615
1616 /* Initialise core socket variables */
1617 void sock_init_data(struct socket *sock, struct sock *sk);
1618
1619 /*
1620 * Socket reference counting postulates.
1621 *
1622 * * Each user of socket SHOULD hold a reference count.
1623 * * Each access point to socket (an hash table bucket, reference from a list,
1624 * running timer, skb in flight MUST hold a reference count.
1625 * * When reference count hits 0, it means it will never increase back.
1626 * * When reference count hits 0, it means that no references from
1627 * outside exist to this socket and current process on current CPU
1628 * is last user and may/should destroy this socket.
1629 * * sk_free is called from any context: process, BH, IRQ. When
1630 * it is called, socket has no references from outside -> sk_free
1631 * may release descendant resources allocated by the socket, but
1632 * to the time when it is called, socket is NOT referenced by any
1633 * hash tables, lists etc.
1634 * * Packets, delivered from outside (from network or from another process)
1635 * and enqueued on receive/error queues SHOULD NOT grab reference count,
1636 * when they sit in queue. Otherwise, packets will leak to hole, when
1637 * socket is looked up by one cpu and unhasing is made by another CPU.
1638 * It is true for udp/raw, netlink (leak to receive and error queues), tcp
1639 * (leak to backlog). Packet socket does all the processing inside
1640 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1641 * use separate SMP lock, so that they are prone too.
1642 */
1643
1644 /* Ungrab socket and destroy it, if it was the last reference. */
1645 static inline void sock_put(struct sock *sk)
1646 {
1647 if (atomic_dec_and_test(&sk->sk_refcnt))
1648 sk_free(sk);
1649 }
1650 /* Generic version of sock_put(), dealing with all sockets
1651 * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...)
1652 */
1653 void sock_gen_put(struct sock *sk);
1654
1655 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested,
1656 unsigned int trim_cap, bool refcounted);
1657 static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1658 const int nested)
1659 {
1660 return __sk_receive_skb(sk, skb, nested, 1, true);
1661 }
1662
1663 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1664 {
1665 sk->sk_tx_queue_mapping = tx_queue;
1666 }
1667
1668 static inline void sk_tx_queue_clear(struct sock *sk)
1669 {
1670 sk->sk_tx_queue_mapping = -1;
1671 }
1672
1673 static inline int sk_tx_queue_get(const struct sock *sk)
1674 {
1675 return sk ? sk->sk_tx_queue_mapping : -1;
1676 }
1677
1678 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1679 {
1680 sk_tx_queue_clear(sk);
1681 sk->sk_socket = sock;
1682 }
1683
1684 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1685 {
1686 BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1687 return &rcu_dereference_raw(sk->sk_wq)->wait;
1688 }
1689 /* Detach socket from process context.
1690 * Announce socket dead, detach it from wait queue and inode.
1691 * Note that parent inode held reference count on this struct sock,
1692 * we do not release it in this function, because protocol
1693 * probably wants some additional cleanups or even continuing
1694 * to work with this socket (TCP).
1695 */
1696 static inline void sock_orphan(struct sock *sk)
1697 {
1698 write_lock_bh(&sk->sk_callback_lock);
1699 sock_set_flag(sk, SOCK_DEAD);
1700 sk_set_socket(sk, NULL);
1701 sk->sk_wq = NULL;
1702 write_unlock_bh(&sk->sk_callback_lock);
1703 }
1704
1705 static inline void sock_graft(struct sock *sk, struct socket *parent)
1706 {
1707 write_lock_bh(&sk->sk_callback_lock);
1708 sk->sk_wq = parent->wq;
1709 parent->sk = sk;
1710 sk_set_socket(sk, parent);
1711 sk->sk_uid = SOCK_INODE(parent)->i_uid;
1712 security_sock_graft(sk, parent);
1713 write_unlock_bh(&sk->sk_callback_lock);
1714 }
1715
1716 kuid_t sock_i_uid(struct sock *sk);
1717 unsigned long sock_i_ino(struct sock *sk);
1718
1719 static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk)
1720 {
1721 return sk ? sk->sk_uid : make_kuid(net->user_ns, 0);
1722 }
1723
1724 static inline u32 net_tx_rndhash(void)
1725 {
1726 u32 v = prandom_u32();
1727
1728 return v ?: 1;
1729 }
1730
1731 static inline void sk_set_txhash(struct sock *sk)
1732 {
1733 sk->sk_txhash = net_tx_rndhash();
1734 }
1735
1736 static inline void sk_rethink_txhash(struct sock *sk)
1737 {
1738 if (sk->sk_txhash)
1739 sk_set_txhash(sk);
1740 }
1741
1742 static inline struct dst_entry *
1743 __sk_dst_get(struct sock *sk)
1744 {
1745 return rcu_dereference_check(sk->sk_dst_cache,
1746 lockdep_sock_is_held(sk));
1747 }
1748
1749 static inline struct dst_entry *
1750 sk_dst_get(struct sock *sk)
1751 {
1752 struct dst_entry *dst;
1753
1754 rcu_read_lock();
1755 dst = rcu_dereference(sk->sk_dst_cache);
1756 if (dst && !atomic_inc_not_zero(&dst->__refcnt))
1757 dst = NULL;
1758 rcu_read_unlock();
1759 return dst;
1760 }
1761
1762 static inline void dst_negative_advice(struct sock *sk)
1763 {
1764 struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1765
1766 sk_rethink_txhash(sk);
1767
1768 if (dst && dst->ops->negative_advice) {
1769 ndst = dst->ops->negative_advice(dst);
1770
1771 if (ndst != dst) {
1772 rcu_assign_pointer(sk->sk_dst_cache, ndst);
1773 sk_tx_queue_clear(sk);
1774 sk->sk_dst_pending_confirm = 0;
1775 }
1776 }
1777 }
1778
1779 static inline void
1780 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
1781 {
1782 struct dst_entry *old_dst;
1783
1784 sk_tx_queue_clear(sk);
1785 sk->sk_dst_pending_confirm = 0;
1786 old_dst = rcu_dereference_protected(sk->sk_dst_cache,
1787 lockdep_sock_is_held(sk));
1788 rcu_assign_pointer(sk->sk_dst_cache, dst);
1789 dst_release(old_dst);
1790 }
1791
1792 static inline void
1793 sk_dst_set(struct sock *sk, struct dst_entry *dst)
1794 {
1795 struct dst_entry *old_dst;
1796
1797 sk_tx_queue_clear(sk);
1798 sk->sk_dst_pending_confirm = 0;
1799 old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst);
1800 dst_release(old_dst);
1801 }
1802
1803 static inline void
1804 __sk_dst_reset(struct sock *sk)
1805 {
1806 __sk_dst_set(sk, NULL);
1807 }
1808
1809 static inline void
1810 sk_dst_reset(struct sock *sk)
1811 {
1812 sk_dst_set(sk, NULL);
1813 }
1814
1815 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1816
1817 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1818
1819 static inline void sk_dst_confirm(struct sock *sk)
1820 {
1821 if (!sk->sk_dst_pending_confirm)
1822 sk->sk_dst_pending_confirm = 1;
1823 }
1824
1825 static inline void sock_confirm_neigh(struct sk_buff *skb, struct neighbour *n)
1826 {
1827 if (skb_get_dst_pending_confirm(skb)) {
1828 struct sock *sk = skb->sk;
1829 unsigned long now = jiffies;
1830
1831 /* avoid dirtying neighbour */
1832 if (n->confirmed != now)
1833 n->confirmed = now;
1834 if (sk && sk->sk_dst_pending_confirm)
1835 sk->sk_dst_pending_confirm = 0;
1836 }
1837 }
1838
1839 bool sk_mc_loop(struct sock *sk);
1840
1841 static inline bool sk_can_gso(const struct sock *sk)
1842 {
1843 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1844 }
1845
1846 void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
1847
1848 static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
1849 {
1850 sk->sk_route_nocaps |= flags;
1851 sk->sk_route_caps &= ~flags;
1852 }
1853
1854 static inline bool sk_check_csum_caps(struct sock *sk)
1855 {
1856 return (sk->sk_route_caps & NETIF_F_HW_CSUM) ||
1857 (sk->sk_family == PF_INET &&
1858 (sk->sk_route_caps & NETIF_F_IP_CSUM)) ||
1859 (sk->sk_family == PF_INET6 &&
1860 (sk->sk_route_caps & NETIF_F_IPV6_CSUM));
1861 }
1862
1863 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
1864 struct iov_iter *from, char *to,
1865 int copy, int offset)
1866 {
1867 if (skb->ip_summed == CHECKSUM_NONE) {
1868 __wsum csum = 0;
1869 if (!csum_and_copy_from_iter_full(to, copy, &csum, from))
1870 return -EFAULT;
1871 skb->csum = csum_block_add(skb->csum, csum, offset);
1872 } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1873 if (!copy_from_iter_full_nocache(to, copy, from))
1874 return -EFAULT;
1875 } else if (!copy_from_iter_full(to, copy, from))
1876 return -EFAULT;
1877
1878 return 0;
1879 }
1880
1881 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
1882 struct iov_iter *from, int copy)
1883 {
1884 int err, offset = skb->len;
1885
1886 err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
1887 copy, offset);
1888 if (err)
1889 __skb_trim(skb, offset);
1890
1891 return err;
1892 }
1893
1894 static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from,
1895 struct sk_buff *skb,
1896 struct page *page,
1897 int off, int copy)
1898 {
1899 int err;
1900
1901 err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
1902 copy, skb->len);
1903 if (err)
1904 return err;
1905
1906 skb->len += copy;
1907 skb->data_len += copy;
1908 skb->truesize += copy;
1909 sk->sk_wmem_queued += copy;
1910 sk_mem_charge(sk, copy);
1911 return 0;
1912 }
1913
1914 /**
1915 * sk_wmem_alloc_get - returns write allocations
1916 * @sk: socket
1917 *
1918 * Returns sk_wmem_alloc minus initial offset of one
1919 */
1920 static inline int sk_wmem_alloc_get(const struct sock *sk)
1921 {
1922 return atomic_read(&sk->sk_wmem_alloc) - 1;
1923 }
1924
1925 /**
1926 * sk_rmem_alloc_get - returns read allocations
1927 * @sk: socket
1928 *
1929 * Returns sk_rmem_alloc
1930 */
1931 static inline int sk_rmem_alloc_get(const struct sock *sk)
1932 {
1933 return atomic_read(&sk->sk_rmem_alloc);
1934 }
1935
1936 /**
1937 * sk_has_allocations - check if allocations are outstanding
1938 * @sk: socket
1939 *
1940 * Returns true if socket has write or read allocations
1941 */
1942 static inline bool sk_has_allocations(const struct sock *sk)
1943 {
1944 return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
1945 }
1946
1947 /**
1948 * skwq_has_sleeper - check if there are any waiting processes
1949 * @wq: struct socket_wq
1950 *
1951 * Returns true if socket_wq has waiting processes
1952 *
1953 * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory
1954 * barrier call. They were added due to the race found within the tcp code.
1955 *
1956 * Consider following tcp code paths:
1957 *
1958 * CPU1 CPU2
1959 *
1960 * sys_select receive packet
1961 * ... ...
1962 * __add_wait_queue update tp->rcv_nxt
1963 * ... ...
1964 * tp->rcv_nxt check sock_def_readable
1965 * ... {
1966 * schedule rcu_read_lock();
1967 * wq = rcu_dereference(sk->sk_wq);
1968 * if (wq && waitqueue_active(&wq->wait))
1969 * wake_up_interruptible(&wq->wait)
1970 * ...
1971 * }
1972 *
1973 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
1974 * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1
1975 * could then endup calling schedule and sleep forever if there are no more
1976 * data on the socket.
1977 *
1978 */
1979 static inline bool skwq_has_sleeper(struct socket_wq *wq)
1980 {
1981 return wq && wq_has_sleeper(&wq->wait);
1982 }
1983
1984 /**
1985 * sock_poll_wait - place memory barrier behind the poll_wait call.
1986 * @filp: file
1987 * @wait_address: socket wait queue
1988 * @p: poll_table
1989 *
1990 * See the comments in the wq_has_sleeper function.
1991 */
1992 static inline void sock_poll_wait(struct file *filp,
1993 wait_queue_head_t *wait_address, poll_table *p)
1994 {
1995 if (!poll_does_not_wait(p) && wait_address) {
1996 poll_wait(filp, wait_address, p);
1997 /* We need to be sure we are in sync with the
1998 * socket flags modification.
1999 *
2000 * This memory barrier is paired in the wq_has_sleeper.
2001 */
2002 smp_mb();
2003 }
2004 }
2005
2006 static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
2007 {
2008 if (sk->sk_txhash) {
2009 skb->l4_hash = 1;
2010 skb->hash = sk->sk_txhash;
2011 }
2012 }
2013
2014 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk);
2015
2016 /*
2017 * Queue a received datagram if it will fit. Stream and sequenced
2018 * protocols can't normally use this as they need to fit buffers in
2019 * and play with them.
2020 *
2021 * Inlined as it's very short and called for pretty much every
2022 * packet ever received.
2023 */
2024 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
2025 {
2026 skb_orphan(skb);
2027 skb->sk = sk;
2028 skb->destructor = sock_rfree;
2029 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
2030 sk_mem_charge(sk, skb->truesize);
2031 }
2032
2033 void sk_reset_timer(struct sock *sk, struct timer_list *timer,
2034 unsigned long expires);
2035
2036 void sk_stop_timer(struct sock *sk, struct timer_list *timer);
2037
2038 int __sk_queue_drop_skb(struct sock *sk, struct sk_buff *skb,
2039 unsigned int flags,
2040 void (*destructor)(struct sock *sk,
2041 struct sk_buff *skb));
2042 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2043 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2044
2045 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
2046 struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
2047
2048 /*
2049 * Recover an error report and clear atomically
2050 */
2051
2052 static inline int sock_error(struct sock *sk)
2053 {
2054 int err;
2055 if (likely(!sk->sk_err))
2056 return 0;
2057 err = xchg(&sk->sk_err, 0);
2058 return -err;
2059 }
2060
2061 static inline unsigned long sock_wspace(struct sock *sk)
2062 {
2063 int amt = 0;
2064
2065 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2066 amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
2067 if (amt < 0)
2068 amt = 0;
2069 }
2070 return amt;
2071 }
2072
2073 /* Note:
2074 * We use sk->sk_wq_raw, from contexts knowing this
2075 * pointer is not NULL and cannot disappear/change.
2076 */
2077 static inline void sk_set_bit(int nr, struct sock *sk)
2078 {
2079 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2080 !sock_flag(sk, SOCK_FASYNC))
2081 return;
2082
2083 set_bit(nr, &sk->sk_wq_raw->flags);
2084 }
2085
2086 static inline void sk_clear_bit(int nr, struct sock *sk)
2087 {
2088 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2089 !sock_flag(sk, SOCK_FASYNC))
2090 return;
2091
2092 clear_bit(nr, &sk->sk_wq_raw->flags);
2093 }
2094
2095 static inline void sk_wake_async(const struct sock *sk, int how, int band)
2096 {
2097 if (sock_flag(sk, SOCK_FASYNC)) {
2098 rcu_read_lock();
2099 sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
2100 rcu_read_unlock();
2101 }
2102 }
2103
2104 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2105 * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2106 * Note: for send buffers, TCP works better if we can build two skbs at
2107 * minimum.
2108 */
2109 #define TCP_SKB_MIN_TRUESIZE (2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2110
2111 #define SOCK_MIN_SNDBUF (TCP_SKB_MIN_TRUESIZE * 2)
2112 #define SOCK_MIN_RCVBUF TCP_SKB_MIN_TRUESIZE
2113
2114 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2115 {
2116 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
2117 sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2118 sk->sk_sndbuf = max_t(u32, sk->sk_sndbuf, SOCK_MIN_SNDBUF);
2119 }
2120 }
2121
2122 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
2123 bool force_schedule);
2124
2125 /**
2126 * sk_page_frag - return an appropriate page_frag
2127 * @sk: socket
2128 *
2129 * If socket allocation mode allows current thread to sleep, it means its
2130 * safe to use the per task page_frag instead of the per socket one.
2131 */
2132 static inline struct page_frag *sk_page_frag(struct sock *sk)
2133 {
2134 if (gfpflags_allow_blocking(sk->sk_allocation))
2135 return &current->task_frag;
2136
2137 return &sk->sk_frag;
2138 }
2139
2140 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2141
2142 /*
2143 * Default write policy as shown to user space via poll/select/SIGIO
2144 */
2145 static inline bool sock_writeable(const struct sock *sk)
2146 {
2147 return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1);
2148 }
2149
2150 static inline gfp_t gfp_any(void)
2151 {
2152 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2153 }
2154
2155 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2156 {
2157 return noblock ? 0 : sk->sk_rcvtimeo;
2158 }
2159
2160 static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2161 {
2162 return noblock ? 0 : sk->sk_sndtimeo;
2163 }
2164
2165 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2166 {
2167 return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
2168 }
2169
2170 /* Alas, with timeout socket operations are not restartable.
2171 * Compare this to poll().
2172 */
2173 static inline int sock_intr_errno(long timeo)
2174 {
2175 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2176 }
2177
2178 struct sock_skb_cb {
2179 u32 dropcount;
2180 };
2181
2182 /* Store sock_skb_cb at the end of skb->cb[] so protocol families
2183 * using skb->cb[] would keep using it directly and utilize its
2184 * alignement guarantee.
2185 */
2186 #define SOCK_SKB_CB_OFFSET ((FIELD_SIZEOF(struct sk_buff, cb) - \
2187 sizeof(struct sock_skb_cb)))
2188
2189 #define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \
2190 SOCK_SKB_CB_OFFSET))
2191
2192 #define sock_skb_cb_check_size(size) \
2193 BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET)
2194
2195 static inline void
2196 sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb)
2197 {
2198 SOCK_SKB_CB(skb)->dropcount = sock_flag(sk, SOCK_RXQ_OVFL) ?
2199 atomic_read(&sk->sk_drops) : 0;
2200 }
2201
2202 static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb)
2203 {
2204 int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2205
2206 atomic_add(segs, &sk->sk_drops);
2207 }
2208
2209 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2210 struct sk_buff *skb);
2211 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2212 struct sk_buff *skb);
2213
2214 static inline void
2215 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2216 {
2217 ktime_t kt = skb->tstamp;
2218 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2219
2220 /*
2221 * generate control messages if
2222 * - receive time stamping in software requested
2223 * - software time stamp available and wanted
2224 * - hardware time stamps available and wanted
2225 */
2226 if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2227 (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2228 (kt && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2229 (hwtstamps->hwtstamp &&
2230 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
2231 __sock_recv_timestamp(msg, sk, skb);
2232 else
2233 sk->sk_stamp = kt;
2234
2235 if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2236 __sock_recv_wifi_status(msg, sk, skb);
2237 }
2238
2239 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2240 struct sk_buff *skb);
2241
2242 #define SK_DEFAULT_STAMP (-1L * NSEC_PER_SEC)
2243 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2244 struct sk_buff *skb)
2245 {
2246 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL) | \
2247 (1UL << SOCK_RCVTSTAMP))
2248 #define TSFLAGS_ANY (SOF_TIMESTAMPING_SOFTWARE | \
2249 SOF_TIMESTAMPING_RAW_HARDWARE)
2250
2251 if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY)
2252 __sock_recv_ts_and_drops(msg, sk, skb);
2253 else if (unlikely(sock_flag(sk, SOCK_TIMESTAMP)))
2254 sk->sk_stamp = skb->tstamp;
2255 else if (unlikely(sk->sk_stamp == SK_DEFAULT_STAMP))
2256 sk->sk_stamp = 0;
2257 }
2258
2259 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags);
2260
2261 /**
2262 * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2263 * @sk: socket sending this packet
2264 * @tsflags: timestamping flags to use
2265 * @tx_flags: completed with instructions for time stamping
2266 *
2267 * Note : callers should take care of initial *tx_flags value (usually 0)
2268 */
2269 static inline void sock_tx_timestamp(const struct sock *sk, __u16 tsflags,
2270 __u8 *tx_flags)
2271 {
2272 if (unlikely(tsflags))
2273 __sock_tx_timestamp(tsflags, tx_flags);
2274 if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS)))
2275 *tx_flags |= SKBTX_WIFI_STATUS;
2276 }
2277
2278 /**
2279 * sk_eat_skb - Release a skb if it is no longer needed
2280 * @sk: socket to eat this skb from
2281 * @skb: socket buffer to eat
2282 *
2283 * This routine must be called with interrupts disabled or with the socket
2284 * locked so that the sk_buff queue operation is ok.
2285 */
2286 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
2287 {
2288 __skb_unlink(skb, &sk->sk_receive_queue);
2289 __kfree_skb(skb);
2290 }
2291
2292 static inline
2293 struct net *sock_net(const struct sock *sk)
2294 {
2295 return read_pnet(&sk->sk_net);
2296 }
2297
2298 static inline
2299 void sock_net_set(struct sock *sk, struct net *net)
2300 {
2301 write_pnet(&sk->sk_net, net);
2302 }
2303
2304 static inline struct sock *skb_steal_sock(struct sk_buff *skb)
2305 {
2306 if (skb->sk) {
2307 struct sock *sk = skb->sk;
2308
2309 skb->destructor = NULL;
2310 skb->sk = NULL;
2311 return sk;
2312 }
2313 return NULL;
2314 }
2315
2316 /* This helper checks if a socket is a full socket,
2317 * ie _not_ a timewait or request socket.
2318 */
2319 static inline bool sk_fullsock(const struct sock *sk)
2320 {
2321 return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV);
2322 }
2323
2324 /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV
2325 * SYNACK messages can be attached to either ones (depending on SYNCOOKIE)
2326 */
2327 static inline bool sk_listener(const struct sock *sk)
2328 {
2329 return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV);
2330 }
2331
2332 /**
2333 * sk_state_load - read sk->sk_state for lockless contexts
2334 * @sk: socket pointer
2335 *
2336 * Paired with sk_state_store(). Used in places we do not hold socket lock :
2337 * tcp_diag_get_info(), tcp_get_info(), tcp_poll(), get_tcp4_sock() ...
2338 */
2339 static inline int sk_state_load(const struct sock *sk)
2340 {
2341 return smp_load_acquire(&sk->sk_state);
2342 }
2343
2344 /**
2345 * sk_state_store - update sk->sk_state
2346 * @sk: socket pointer
2347 * @newstate: new state
2348 *
2349 * Paired with sk_state_load(). Should be used in contexts where
2350 * state change might impact lockless readers.
2351 */
2352 static inline void sk_state_store(struct sock *sk, int newstate)
2353 {
2354 smp_store_release(&sk->sk_state, newstate);
2355 }
2356
2357 void sock_enable_timestamp(struct sock *sk, int flag);
2358 int sock_get_timestamp(struct sock *, struct timeval __user *);
2359 int sock_get_timestampns(struct sock *, struct timespec __user *);
2360 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2361 int type);
2362
2363 bool sk_ns_capable(const struct sock *sk,
2364 struct user_namespace *user_ns, int cap);
2365 bool sk_capable(const struct sock *sk, int cap);
2366 bool sk_net_capable(const struct sock *sk, int cap);
2367
2368 void sk_get_meminfo(const struct sock *sk, u32 *meminfo);
2369
2370 extern __u32 sysctl_wmem_max;
2371 extern __u32 sysctl_rmem_max;
2372
2373 extern int sysctl_tstamp_allow_data;
2374 extern int sysctl_optmem_max;
2375
2376 extern __u32 sysctl_wmem_default;
2377 extern __u32 sysctl_rmem_default;
2378
2379 #endif /* _SOCK_H */