]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - include/net/sock.h
tcp: annotate sk->sk_sndbuf lockless reads
[mirror_ubuntu-jammy-kernel.git] / include / net / sock.h
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Definitions for the AF_INET socket handler.
8 *
9 * Version: @(#)sock.h 1.0.4 05/13/93
10 *
11 * Authors: Ross Biro
12 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13 * Corey Minyard <wf-rch!minyard@relay.EU.net>
14 * Florian La Roche <flla@stud.uni-sb.de>
15 *
16 * Fixes:
17 * Alan Cox : Volatiles in skbuff pointers. See
18 * skbuff comments. May be overdone,
19 * better to prove they can be removed
20 * than the reverse.
21 * Alan Cox : Added a zapped field for tcp to note
22 * a socket is reset and must stay shut up
23 * Alan Cox : New fields for options
24 * Pauline Middelink : identd support
25 * Alan Cox : Eliminate low level recv/recvfrom
26 * David S. Miller : New socket lookup architecture.
27 * Steve Whitehouse: Default routines for sock_ops
28 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made
29 * protinfo be just a void pointer, as the
30 * protocol specific parts were moved to
31 * respective headers and ipv4/v6, etc now
32 * use private slabcaches for its socks
33 * Pedro Hortas : New flags field for socket options
34 */
35 #ifndef _SOCK_H
36 #define _SOCK_H
37
38 #include <linux/hardirq.h>
39 #include <linux/kernel.h>
40 #include <linux/list.h>
41 #include <linux/list_nulls.h>
42 #include <linux/timer.h>
43 #include <linux/cache.h>
44 #include <linux/bitops.h>
45 #include <linux/lockdep.h>
46 #include <linux/netdevice.h>
47 #include <linux/skbuff.h> /* struct sk_buff */
48 #include <linux/mm.h>
49 #include <linux/security.h>
50 #include <linux/slab.h>
51 #include <linux/uaccess.h>
52 #include <linux/page_counter.h>
53 #include <linux/memcontrol.h>
54 #include <linux/static_key.h>
55 #include <linux/sched.h>
56 #include <linux/wait.h>
57 #include <linux/cgroup-defs.h>
58 #include <linux/rbtree.h>
59 #include <linux/filter.h>
60 #include <linux/rculist_nulls.h>
61 #include <linux/poll.h>
62
63 #include <linux/atomic.h>
64 #include <linux/refcount.h>
65 #include <net/dst.h>
66 #include <net/checksum.h>
67 #include <net/tcp_states.h>
68 #include <linux/net_tstamp.h>
69 #include <net/smc.h>
70 #include <net/l3mdev.h>
71
72 /*
73 * This structure really needs to be cleaned up.
74 * Most of it is for TCP, and not used by any of
75 * the other protocols.
76 */
77
78 /* Define this to get the SOCK_DBG debugging facility. */
79 #define SOCK_DEBUGGING
80 #ifdef SOCK_DEBUGGING
81 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
82 printk(KERN_DEBUG msg); } while (0)
83 #else
84 /* Validate arguments and do nothing */
85 static inline __printf(2, 3)
86 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
87 {
88 }
89 #endif
90
91 /* This is the per-socket lock. The spinlock provides a synchronization
92 * between user contexts and software interrupt processing, whereas the
93 * mini-semaphore synchronizes multiple users amongst themselves.
94 */
95 typedef struct {
96 spinlock_t slock;
97 int owned;
98 wait_queue_head_t wq;
99 /*
100 * We express the mutex-alike socket_lock semantics
101 * to the lock validator by explicitly managing
102 * the slock as a lock variant (in addition to
103 * the slock itself):
104 */
105 #ifdef CONFIG_DEBUG_LOCK_ALLOC
106 struct lockdep_map dep_map;
107 #endif
108 } socket_lock_t;
109
110 struct sock;
111 struct proto;
112 struct net;
113
114 typedef __u32 __bitwise __portpair;
115 typedef __u64 __bitwise __addrpair;
116
117 /**
118 * struct sock_common - minimal network layer representation of sockets
119 * @skc_daddr: Foreign IPv4 addr
120 * @skc_rcv_saddr: Bound local IPv4 addr
121 * @skc_hash: hash value used with various protocol lookup tables
122 * @skc_u16hashes: two u16 hash values used by UDP lookup tables
123 * @skc_dport: placeholder for inet_dport/tw_dport
124 * @skc_num: placeholder for inet_num/tw_num
125 * @skc_family: network address family
126 * @skc_state: Connection state
127 * @skc_reuse: %SO_REUSEADDR setting
128 * @skc_reuseport: %SO_REUSEPORT setting
129 * @skc_bound_dev_if: bound device index if != 0
130 * @skc_bind_node: bind hash linkage for various protocol lookup tables
131 * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
132 * @skc_prot: protocol handlers inside a network family
133 * @skc_net: reference to the network namespace of this socket
134 * @skc_node: main hash linkage for various protocol lookup tables
135 * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
136 * @skc_tx_queue_mapping: tx queue number for this connection
137 * @skc_rx_queue_mapping: rx queue number for this connection
138 * @skc_flags: place holder for sk_flags
139 * %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
140 * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
141 * @skc_incoming_cpu: record/match cpu processing incoming packets
142 * @skc_refcnt: reference count
143 *
144 * This is the minimal network layer representation of sockets, the header
145 * for struct sock and struct inet_timewait_sock.
146 */
147 struct sock_common {
148 /* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned
149 * address on 64bit arches : cf INET_MATCH()
150 */
151 union {
152 __addrpair skc_addrpair;
153 struct {
154 __be32 skc_daddr;
155 __be32 skc_rcv_saddr;
156 };
157 };
158 union {
159 unsigned int skc_hash;
160 __u16 skc_u16hashes[2];
161 };
162 /* skc_dport && skc_num must be grouped as well */
163 union {
164 __portpair skc_portpair;
165 struct {
166 __be16 skc_dport;
167 __u16 skc_num;
168 };
169 };
170
171 unsigned short skc_family;
172 volatile unsigned char skc_state;
173 unsigned char skc_reuse:4;
174 unsigned char skc_reuseport:1;
175 unsigned char skc_ipv6only:1;
176 unsigned char skc_net_refcnt:1;
177 int skc_bound_dev_if;
178 union {
179 struct hlist_node skc_bind_node;
180 struct hlist_node skc_portaddr_node;
181 };
182 struct proto *skc_prot;
183 possible_net_t skc_net;
184
185 #if IS_ENABLED(CONFIG_IPV6)
186 struct in6_addr skc_v6_daddr;
187 struct in6_addr skc_v6_rcv_saddr;
188 #endif
189
190 atomic64_t skc_cookie;
191
192 /* following fields are padding to force
193 * offset(struct sock, sk_refcnt) == 128 on 64bit arches
194 * assuming IPV6 is enabled. We use this padding differently
195 * for different kind of 'sockets'
196 */
197 union {
198 unsigned long skc_flags;
199 struct sock *skc_listener; /* request_sock */
200 struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */
201 };
202 /*
203 * fields between dontcopy_begin/dontcopy_end
204 * are not copied in sock_copy()
205 */
206 /* private: */
207 int skc_dontcopy_begin[0];
208 /* public: */
209 union {
210 struct hlist_node skc_node;
211 struct hlist_nulls_node skc_nulls_node;
212 };
213 unsigned short skc_tx_queue_mapping;
214 #ifdef CONFIG_XPS
215 unsigned short skc_rx_queue_mapping;
216 #endif
217 union {
218 int skc_incoming_cpu;
219 u32 skc_rcv_wnd;
220 u32 skc_tw_rcv_nxt; /* struct tcp_timewait_sock */
221 };
222
223 refcount_t skc_refcnt;
224 /* private: */
225 int skc_dontcopy_end[0];
226 union {
227 u32 skc_rxhash;
228 u32 skc_window_clamp;
229 u32 skc_tw_snd_nxt; /* struct tcp_timewait_sock */
230 };
231 /* public: */
232 };
233
234 struct bpf_sk_storage;
235
236 /**
237 * struct sock - network layer representation of sockets
238 * @__sk_common: shared layout with inet_timewait_sock
239 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
240 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
241 * @sk_lock: synchronizer
242 * @sk_kern_sock: True if sock is using kernel lock classes
243 * @sk_rcvbuf: size of receive buffer in bytes
244 * @sk_wq: sock wait queue and async head
245 * @sk_rx_dst: receive input route used by early demux
246 * @sk_dst_cache: destination cache
247 * @sk_dst_pending_confirm: need to confirm neighbour
248 * @sk_policy: flow policy
249 * @sk_receive_queue: incoming packets
250 * @sk_wmem_alloc: transmit queue bytes committed
251 * @sk_tsq_flags: TCP Small Queues flags
252 * @sk_write_queue: Packet sending queue
253 * @sk_omem_alloc: "o" is "option" or "other"
254 * @sk_wmem_queued: persistent queue size
255 * @sk_forward_alloc: space allocated forward
256 * @sk_napi_id: id of the last napi context to receive data for sk
257 * @sk_ll_usec: usecs to busypoll when there is no data
258 * @sk_allocation: allocation mode
259 * @sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
260 * @sk_pacing_status: Pacing status (requested, handled by sch_fq)
261 * @sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
262 * @sk_sndbuf: size of send buffer in bytes
263 * @__sk_flags_offset: empty field used to determine location of bitfield
264 * @sk_padding: unused element for alignment
265 * @sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
266 * @sk_no_check_rx: allow zero checksum in RX packets
267 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
268 * @sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
269 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
270 * @sk_gso_max_size: Maximum GSO segment size to build
271 * @sk_gso_max_segs: Maximum number of GSO segments
272 * @sk_pacing_shift: scaling factor for TCP Small Queues
273 * @sk_lingertime: %SO_LINGER l_linger setting
274 * @sk_backlog: always used with the per-socket spinlock held
275 * @sk_callback_lock: used with the callbacks in the end of this struct
276 * @sk_error_queue: rarely used
277 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
278 * IPV6_ADDRFORM for instance)
279 * @sk_err: last error
280 * @sk_err_soft: errors that don't cause failure but are the cause of a
281 * persistent failure not just 'timed out'
282 * @sk_drops: raw/udp drops counter
283 * @sk_ack_backlog: current listen backlog
284 * @sk_max_ack_backlog: listen backlog set in listen()
285 * @sk_uid: user id of owner
286 * @sk_priority: %SO_PRIORITY setting
287 * @sk_type: socket type (%SOCK_STREAM, etc)
288 * @sk_protocol: which protocol this socket belongs in this network family
289 * @sk_peer_pid: &struct pid for this socket's peer
290 * @sk_peer_cred: %SO_PEERCRED setting
291 * @sk_rcvlowat: %SO_RCVLOWAT setting
292 * @sk_rcvtimeo: %SO_RCVTIMEO setting
293 * @sk_sndtimeo: %SO_SNDTIMEO setting
294 * @sk_txhash: computed flow hash for use on transmit
295 * @sk_filter: socket filtering instructions
296 * @sk_timer: sock cleanup timer
297 * @sk_stamp: time stamp of last packet received
298 * @sk_stamp_seq: lock for accessing sk_stamp on 32 bit architectures only
299 * @sk_tsflags: SO_TIMESTAMPING socket options
300 * @sk_tskey: counter to disambiguate concurrent tstamp requests
301 * @sk_zckey: counter to order MSG_ZEROCOPY notifications
302 * @sk_socket: Identd and reporting IO signals
303 * @sk_user_data: RPC layer private data
304 * @sk_frag: cached page frag
305 * @sk_peek_off: current peek_offset value
306 * @sk_send_head: front of stuff to transmit
307 * @sk_security: used by security modules
308 * @sk_mark: generic packet mark
309 * @sk_cgrp_data: cgroup data for this cgroup
310 * @sk_memcg: this socket's memory cgroup association
311 * @sk_write_pending: a write to stream socket waits to start
312 * @sk_state_change: callback to indicate change in the state of the sock
313 * @sk_data_ready: callback to indicate there is data to be processed
314 * @sk_write_space: callback to indicate there is bf sending space available
315 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
316 * @sk_backlog_rcv: callback to process the backlog
317 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
318 * @sk_reuseport_cb: reuseport group container
319 * @sk_rcu: used during RCU grace period
320 * @sk_clockid: clockid used by time-based scheduling (SO_TXTIME)
321 * @sk_txtime_deadline_mode: set deadline mode for SO_TXTIME
322 * @sk_txtime_unused: unused txtime flags
323 */
324 struct sock {
325 /*
326 * Now struct inet_timewait_sock also uses sock_common, so please just
327 * don't add nothing before this first member (__sk_common) --acme
328 */
329 struct sock_common __sk_common;
330 #define sk_node __sk_common.skc_node
331 #define sk_nulls_node __sk_common.skc_nulls_node
332 #define sk_refcnt __sk_common.skc_refcnt
333 #define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping
334 #ifdef CONFIG_XPS
335 #define sk_rx_queue_mapping __sk_common.skc_rx_queue_mapping
336 #endif
337
338 #define sk_dontcopy_begin __sk_common.skc_dontcopy_begin
339 #define sk_dontcopy_end __sk_common.skc_dontcopy_end
340 #define sk_hash __sk_common.skc_hash
341 #define sk_portpair __sk_common.skc_portpair
342 #define sk_num __sk_common.skc_num
343 #define sk_dport __sk_common.skc_dport
344 #define sk_addrpair __sk_common.skc_addrpair
345 #define sk_daddr __sk_common.skc_daddr
346 #define sk_rcv_saddr __sk_common.skc_rcv_saddr
347 #define sk_family __sk_common.skc_family
348 #define sk_state __sk_common.skc_state
349 #define sk_reuse __sk_common.skc_reuse
350 #define sk_reuseport __sk_common.skc_reuseport
351 #define sk_ipv6only __sk_common.skc_ipv6only
352 #define sk_net_refcnt __sk_common.skc_net_refcnt
353 #define sk_bound_dev_if __sk_common.skc_bound_dev_if
354 #define sk_bind_node __sk_common.skc_bind_node
355 #define sk_prot __sk_common.skc_prot
356 #define sk_net __sk_common.skc_net
357 #define sk_v6_daddr __sk_common.skc_v6_daddr
358 #define sk_v6_rcv_saddr __sk_common.skc_v6_rcv_saddr
359 #define sk_cookie __sk_common.skc_cookie
360 #define sk_incoming_cpu __sk_common.skc_incoming_cpu
361 #define sk_flags __sk_common.skc_flags
362 #define sk_rxhash __sk_common.skc_rxhash
363
364 socket_lock_t sk_lock;
365 atomic_t sk_drops;
366 int sk_rcvlowat;
367 struct sk_buff_head sk_error_queue;
368 struct sk_buff *sk_rx_skb_cache;
369 struct sk_buff_head sk_receive_queue;
370 /*
371 * The backlog queue is special, it is always used with
372 * the per-socket spinlock held and requires low latency
373 * access. Therefore we special case it's implementation.
374 * Note : rmem_alloc is in this structure to fill a hole
375 * on 64bit arches, not because its logically part of
376 * backlog.
377 */
378 struct {
379 atomic_t rmem_alloc;
380 int len;
381 struct sk_buff *head;
382 struct sk_buff *tail;
383 } sk_backlog;
384 #define sk_rmem_alloc sk_backlog.rmem_alloc
385
386 int sk_forward_alloc;
387 #ifdef CONFIG_NET_RX_BUSY_POLL
388 unsigned int sk_ll_usec;
389 /* ===== mostly read cache line ===== */
390 unsigned int sk_napi_id;
391 #endif
392 int sk_rcvbuf;
393
394 struct sk_filter __rcu *sk_filter;
395 union {
396 struct socket_wq __rcu *sk_wq;
397 struct socket_wq *sk_wq_raw;
398 };
399 #ifdef CONFIG_XFRM
400 struct xfrm_policy __rcu *sk_policy[2];
401 #endif
402 struct dst_entry *sk_rx_dst;
403 struct dst_entry __rcu *sk_dst_cache;
404 atomic_t sk_omem_alloc;
405 int sk_sndbuf;
406
407 /* ===== cache line for TX ===== */
408 int sk_wmem_queued;
409 refcount_t sk_wmem_alloc;
410 unsigned long sk_tsq_flags;
411 union {
412 struct sk_buff *sk_send_head;
413 struct rb_root tcp_rtx_queue;
414 };
415 struct sk_buff *sk_tx_skb_cache;
416 struct sk_buff_head sk_write_queue;
417 __s32 sk_peek_off;
418 int sk_write_pending;
419 __u32 sk_dst_pending_confirm;
420 u32 sk_pacing_status; /* see enum sk_pacing */
421 long sk_sndtimeo;
422 struct timer_list sk_timer;
423 __u32 sk_priority;
424 __u32 sk_mark;
425 unsigned long sk_pacing_rate; /* bytes per second */
426 unsigned long sk_max_pacing_rate;
427 struct page_frag sk_frag;
428 netdev_features_t sk_route_caps;
429 netdev_features_t sk_route_nocaps;
430 netdev_features_t sk_route_forced_caps;
431 int sk_gso_type;
432 unsigned int sk_gso_max_size;
433 gfp_t sk_allocation;
434 __u32 sk_txhash;
435
436 /*
437 * Because of non atomicity rules, all
438 * changes are protected by socket lock.
439 */
440 unsigned int __sk_flags_offset[0];
441 #ifdef __BIG_ENDIAN_BITFIELD
442 #define SK_FL_PROTO_SHIFT 16
443 #define SK_FL_PROTO_MASK 0x00ff0000
444
445 #define SK_FL_TYPE_SHIFT 0
446 #define SK_FL_TYPE_MASK 0x0000ffff
447 #else
448 #define SK_FL_PROTO_SHIFT 8
449 #define SK_FL_PROTO_MASK 0x0000ff00
450
451 #define SK_FL_TYPE_SHIFT 16
452 #define SK_FL_TYPE_MASK 0xffff0000
453 #endif
454
455 unsigned int sk_padding : 1,
456 sk_kern_sock : 1,
457 sk_no_check_tx : 1,
458 sk_no_check_rx : 1,
459 sk_userlocks : 4,
460 sk_protocol : 8,
461 sk_type : 16;
462 #define SK_PROTOCOL_MAX U8_MAX
463 u16 sk_gso_max_segs;
464 u8 sk_pacing_shift;
465 unsigned long sk_lingertime;
466 struct proto *sk_prot_creator;
467 rwlock_t sk_callback_lock;
468 int sk_err,
469 sk_err_soft;
470 u32 sk_ack_backlog;
471 u32 sk_max_ack_backlog;
472 kuid_t sk_uid;
473 struct pid *sk_peer_pid;
474 const struct cred *sk_peer_cred;
475 long sk_rcvtimeo;
476 ktime_t sk_stamp;
477 #if BITS_PER_LONG==32
478 seqlock_t sk_stamp_seq;
479 #endif
480 u16 sk_tsflags;
481 u8 sk_shutdown;
482 u32 sk_tskey;
483 atomic_t sk_zckey;
484
485 u8 sk_clockid;
486 u8 sk_txtime_deadline_mode : 1,
487 sk_txtime_report_errors : 1,
488 sk_txtime_unused : 6;
489
490 struct socket *sk_socket;
491 void *sk_user_data;
492 #ifdef CONFIG_SECURITY
493 void *sk_security;
494 #endif
495 struct sock_cgroup_data sk_cgrp_data;
496 struct mem_cgroup *sk_memcg;
497 void (*sk_state_change)(struct sock *sk);
498 void (*sk_data_ready)(struct sock *sk);
499 void (*sk_write_space)(struct sock *sk);
500 void (*sk_error_report)(struct sock *sk);
501 int (*sk_backlog_rcv)(struct sock *sk,
502 struct sk_buff *skb);
503 #ifdef CONFIG_SOCK_VALIDATE_XMIT
504 struct sk_buff* (*sk_validate_xmit_skb)(struct sock *sk,
505 struct net_device *dev,
506 struct sk_buff *skb);
507 #endif
508 void (*sk_destruct)(struct sock *sk);
509 struct sock_reuseport __rcu *sk_reuseport_cb;
510 #ifdef CONFIG_BPF_SYSCALL
511 struct bpf_sk_storage __rcu *sk_bpf_storage;
512 #endif
513 struct rcu_head sk_rcu;
514 };
515
516 enum sk_pacing {
517 SK_PACING_NONE = 0,
518 SK_PACING_NEEDED = 1,
519 SK_PACING_FQ = 2,
520 };
521
522 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
523
524 #define rcu_dereference_sk_user_data(sk) rcu_dereference(__sk_user_data((sk)))
525 #define rcu_assign_sk_user_data(sk, ptr) rcu_assign_pointer(__sk_user_data((sk)), ptr)
526
527 /*
528 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
529 * or not whether his port will be reused by someone else. SK_FORCE_REUSE
530 * on a socket means that the socket will reuse everybody else's port
531 * without looking at the other's sk_reuse value.
532 */
533
534 #define SK_NO_REUSE 0
535 #define SK_CAN_REUSE 1
536 #define SK_FORCE_REUSE 2
537
538 int sk_set_peek_off(struct sock *sk, int val);
539
540 static inline int sk_peek_offset(struct sock *sk, int flags)
541 {
542 if (unlikely(flags & MSG_PEEK)) {
543 return READ_ONCE(sk->sk_peek_off);
544 }
545
546 return 0;
547 }
548
549 static inline void sk_peek_offset_bwd(struct sock *sk, int val)
550 {
551 s32 off = READ_ONCE(sk->sk_peek_off);
552
553 if (unlikely(off >= 0)) {
554 off = max_t(s32, off - val, 0);
555 WRITE_ONCE(sk->sk_peek_off, off);
556 }
557 }
558
559 static inline void sk_peek_offset_fwd(struct sock *sk, int val)
560 {
561 sk_peek_offset_bwd(sk, -val);
562 }
563
564 /*
565 * Hashed lists helper routines
566 */
567 static inline struct sock *sk_entry(const struct hlist_node *node)
568 {
569 return hlist_entry(node, struct sock, sk_node);
570 }
571
572 static inline struct sock *__sk_head(const struct hlist_head *head)
573 {
574 return hlist_entry(head->first, struct sock, sk_node);
575 }
576
577 static inline struct sock *sk_head(const struct hlist_head *head)
578 {
579 return hlist_empty(head) ? NULL : __sk_head(head);
580 }
581
582 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
583 {
584 return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
585 }
586
587 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
588 {
589 return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
590 }
591
592 static inline struct sock *sk_next(const struct sock *sk)
593 {
594 return hlist_entry_safe(sk->sk_node.next, struct sock, sk_node);
595 }
596
597 static inline struct sock *sk_nulls_next(const struct sock *sk)
598 {
599 return (!is_a_nulls(sk->sk_nulls_node.next)) ?
600 hlist_nulls_entry(sk->sk_nulls_node.next,
601 struct sock, sk_nulls_node) :
602 NULL;
603 }
604
605 static inline bool sk_unhashed(const struct sock *sk)
606 {
607 return hlist_unhashed(&sk->sk_node);
608 }
609
610 static inline bool sk_hashed(const struct sock *sk)
611 {
612 return !sk_unhashed(sk);
613 }
614
615 static inline void sk_node_init(struct hlist_node *node)
616 {
617 node->pprev = NULL;
618 }
619
620 static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
621 {
622 node->pprev = NULL;
623 }
624
625 static inline void __sk_del_node(struct sock *sk)
626 {
627 __hlist_del(&sk->sk_node);
628 }
629
630 /* NB: equivalent to hlist_del_init_rcu */
631 static inline bool __sk_del_node_init(struct sock *sk)
632 {
633 if (sk_hashed(sk)) {
634 __sk_del_node(sk);
635 sk_node_init(&sk->sk_node);
636 return true;
637 }
638 return false;
639 }
640
641 /* Grab socket reference count. This operation is valid only
642 when sk is ALREADY grabbed f.e. it is found in hash table
643 or a list and the lookup is made under lock preventing hash table
644 modifications.
645 */
646
647 static __always_inline void sock_hold(struct sock *sk)
648 {
649 refcount_inc(&sk->sk_refcnt);
650 }
651
652 /* Ungrab socket in the context, which assumes that socket refcnt
653 cannot hit zero, f.e. it is true in context of any socketcall.
654 */
655 static __always_inline void __sock_put(struct sock *sk)
656 {
657 refcount_dec(&sk->sk_refcnt);
658 }
659
660 static inline bool sk_del_node_init(struct sock *sk)
661 {
662 bool rc = __sk_del_node_init(sk);
663
664 if (rc) {
665 /* paranoid for a while -acme */
666 WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
667 __sock_put(sk);
668 }
669 return rc;
670 }
671 #define sk_del_node_init_rcu(sk) sk_del_node_init(sk)
672
673 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
674 {
675 if (sk_hashed(sk)) {
676 hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
677 return true;
678 }
679 return false;
680 }
681
682 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
683 {
684 bool rc = __sk_nulls_del_node_init_rcu(sk);
685
686 if (rc) {
687 /* paranoid for a while -acme */
688 WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
689 __sock_put(sk);
690 }
691 return rc;
692 }
693
694 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
695 {
696 hlist_add_head(&sk->sk_node, list);
697 }
698
699 static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
700 {
701 sock_hold(sk);
702 __sk_add_node(sk, list);
703 }
704
705 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
706 {
707 sock_hold(sk);
708 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
709 sk->sk_family == AF_INET6)
710 hlist_add_tail_rcu(&sk->sk_node, list);
711 else
712 hlist_add_head_rcu(&sk->sk_node, list);
713 }
714
715 static inline void sk_add_node_tail_rcu(struct sock *sk, struct hlist_head *list)
716 {
717 sock_hold(sk);
718 hlist_add_tail_rcu(&sk->sk_node, list);
719 }
720
721 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
722 {
723 hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
724 }
725
726 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
727 {
728 sock_hold(sk);
729 __sk_nulls_add_node_rcu(sk, list);
730 }
731
732 static inline void __sk_del_bind_node(struct sock *sk)
733 {
734 __hlist_del(&sk->sk_bind_node);
735 }
736
737 static inline void sk_add_bind_node(struct sock *sk,
738 struct hlist_head *list)
739 {
740 hlist_add_head(&sk->sk_bind_node, list);
741 }
742
743 #define sk_for_each(__sk, list) \
744 hlist_for_each_entry(__sk, list, sk_node)
745 #define sk_for_each_rcu(__sk, list) \
746 hlist_for_each_entry_rcu(__sk, list, sk_node)
747 #define sk_nulls_for_each(__sk, node, list) \
748 hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
749 #define sk_nulls_for_each_rcu(__sk, node, list) \
750 hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
751 #define sk_for_each_from(__sk) \
752 hlist_for_each_entry_from(__sk, sk_node)
753 #define sk_nulls_for_each_from(__sk, node) \
754 if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
755 hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
756 #define sk_for_each_safe(__sk, tmp, list) \
757 hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
758 #define sk_for_each_bound(__sk, list) \
759 hlist_for_each_entry(__sk, list, sk_bind_node)
760
761 /**
762 * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset
763 * @tpos: the type * to use as a loop cursor.
764 * @pos: the &struct hlist_node to use as a loop cursor.
765 * @head: the head for your list.
766 * @offset: offset of hlist_node within the struct.
767 *
768 */
769 #define sk_for_each_entry_offset_rcu(tpos, pos, head, offset) \
770 for (pos = rcu_dereference(hlist_first_rcu(head)); \
771 pos != NULL && \
772 ({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;}); \
773 pos = rcu_dereference(hlist_next_rcu(pos)))
774
775 static inline struct user_namespace *sk_user_ns(struct sock *sk)
776 {
777 /* Careful only use this in a context where these parameters
778 * can not change and must all be valid, such as recvmsg from
779 * userspace.
780 */
781 return sk->sk_socket->file->f_cred->user_ns;
782 }
783
784 /* Sock flags */
785 enum sock_flags {
786 SOCK_DEAD,
787 SOCK_DONE,
788 SOCK_URGINLINE,
789 SOCK_KEEPOPEN,
790 SOCK_LINGER,
791 SOCK_DESTROY,
792 SOCK_BROADCAST,
793 SOCK_TIMESTAMP,
794 SOCK_ZAPPED,
795 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
796 SOCK_DBG, /* %SO_DEBUG setting */
797 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
798 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
799 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
800 SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
801 SOCK_MEMALLOC, /* VM depends on this socket for swapping */
802 SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */
803 SOCK_FASYNC, /* fasync() active */
804 SOCK_RXQ_OVFL,
805 SOCK_ZEROCOPY, /* buffers from userspace */
806 SOCK_WIFI_STATUS, /* push wifi status to userspace */
807 SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
808 * Will use last 4 bytes of packet sent from
809 * user-space instead.
810 */
811 SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
812 SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
813 SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */
814 SOCK_TXTIME,
815 SOCK_XDP, /* XDP is attached */
816 SOCK_TSTAMP_NEW, /* Indicates 64 bit timestamps always */
817 };
818
819 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
820
821 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
822 {
823 nsk->sk_flags = osk->sk_flags;
824 }
825
826 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
827 {
828 __set_bit(flag, &sk->sk_flags);
829 }
830
831 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
832 {
833 __clear_bit(flag, &sk->sk_flags);
834 }
835
836 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
837 {
838 return test_bit(flag, &sk->sk_flags);
839 }
840
841 #ifdef CONFIG_NET
842 DECLARE_STATIC_KEY_FALSE(memalloc_socks_key);
843 static inline int sk_memalloc_socks(void)
844 {
845 return static_branch_unlikely(&memalloc_socks_key);
846 }
847 #else
848
849 static inline int sk_memalloc_socks(void)
850 {
851 return 0;
852 }
853
854 #endif
855
856 static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask)
857 {
858 return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC);
859 }
860
861 static inline void sk_acceptq_removed(struct sock *sk)
862 {
863 sk->sk_ack_backlog--;
864 }
865
866 static inline void sk_acceptq_added(struct sock *sk)
867 {
868 sk->sk_ack_backlog++;
869 }
870
871 static inline bool sk_acceptq_is_full(const struct sock *sk)
872 {
873 return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
874 }
875
876 /*
877 * Compute minimal free write space needed to queue new packets.
878 */
879 static inline int sk_stream_min_wspace(const struct sock *sk)
880 {
881 return sk->sk_wmem_queued >> 1;
882 }
883
884 static inline int sk_stream_wspace(const struct sock *sk)
885 {
886 return READ_ONCE(sk->sk_sndbuf) - sk->sk_wmem_queued;
887 }
888
889 void sk_stream_write_space(struct sock *sk);
890
891 /* OOB backlog add */
892 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
893 {
894 /* dont let skb dst not refcounted, we are going to leave rcu lock */
895 skb_dst_force(skb);
896
897 if (!sk->sk_backlog.tail)
898 sk->sk_backlog.head = skb;
899 else
900 sk->sk_backlog.tail->next = skb;
901
902 sk->sk_backlog.tail = skb;
903 skb->next = NULL;
904 }
905
906 /*
907 * Take into account size of receive queue and backlog queue
908 * Do not take into account this skb truesize,
909 * to allow even a single big packet to come.
910 */
911 static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
912 {
913 unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
914
915 return qsize > limit;
916 }
917
918 /* The per-socket spinlock must be held here. */
919 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
920 unsigned int limit)
921 {
922 if (sk_rcvqueues_full(sk, limit))
923 return -ENOBUFS;
924
925 /*
926 * If the skb was allocated from pfmemalloc reserves, only
927 * allow SOCK_MEMALLOC sockets to use it as this socket is
928 * helping free memory
929 */
930 if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
931 return -ENOMEM;
932
933 __sk_add_backlog(sk, skb);
934 sk->sk_backlog.len += skb->truesize;
935 return 0;
936 }
937
938 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
939
940 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
941 {
942 if (sk_memalloc_socks() && skb_pfmemalloc(skb))
943 return __sk_backlog_rcv(sk, skb);
944
945 return sk->sk_backlog_rcv(sk, skb);
946 }
947
948 static inline void sk_incoming_cpu_update(struct sock *sk)
949 {
950 int cpu = raw_smp_processor_id();
951
952 if (unlikely(sk->sk_incoming_cpu != cpu))
953 sk->sk_incoming_cpu = cpu;
954 }
955
956 static inline void sock_rps_record_flow_hash(__u32 hash)
957 {
958 #ifdef CONFIG_RPS
959 struct rps_sock_flow_table *sock_flow_table;
960
961 rcu_read_lock();
962 sock_flow_table = rcu_dereference(rps_sock_flow_table);
963 rps_record_sock_flow(sock_flow_table, hash);
964 rcu_read_unlock();
965 #endif
966 }
967
968 static inline void sock_rps_record_flow(const struct sock *sk)
969 {
970 #ifdef CONFIG_RPS
971 if (static_branch_unlikely(&rfs_needed)) {
972 /* Reading sk->sk_rxhash might incur an expensive cache line
973 * miss.
974 *
975 * TCP_ESTABLISHED does cover almost all states where RFS
976 * might be useful, and is cheaper [1] than testing :
977 * IPv4: inet_sk(sk)->inet_daddr
978 * IPv6: ipv6_addr_any(&sk->sk_v6_daddr)
979 * OR an additional socket flag
980 * [1] : sk_state and sk_prot are in the same cache line.
981 */
982 if (sk->sk_state == TCP_ESTABLISHED)
983 sock_rps_record_flow_hash(sk->sk_rxhash);
984 }
985 #endif
986 }
987
988 static inline void sock_rps_save_rxhash(struct sock *sk,
989 const struct sk_buff *skb)
990 {
991 #ifdef CONFIG_RPS
992 if (unlikely(sk->sk_rxhash != skb->hash))
993 sk->sk_rxhash = skb->hash;
994 #endif
995 }
996
997 static inline void sock_rps_reset_rxhash(struct sock *sk)
998 {
999 #ifdef CONFIG_RPS
1000 sk->sk_rxhash = 0;
1001 #endif
1002 }
1003
1004 #define sk_wait_event(__sk, __timeo, __condition, __wait) \
1005 ({ int __rc; \
1006 release_sock(__sk); \
1007 __rc = __condition; \
1008 if (!__rc) { \
1009 *(__timeo) = wait_woken(__wait, \
1010 TASK_INTERRUPTIBLE, \
1011 *(__timeo)); \
1012 } \
1013 sched_annotate_sleep(); \
1014 lock_sock(__sk); \
1015 __rc = __condition; \
1016 __rc; \
1017 })
1018
1019 int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
1020 int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
1021 void sk_stream_wait_close(struct sock *sk, long timeo_p);
1022 int sk_stream_error(struct sock *sk, int flags, int err);
1023 void sk_stream_kill_queues(struct sock *sk);
1024 void sk_set_memalloc(struct sock *sk);
1025 void sk_clear_memalloc(struct sock *sk);
1026
1027 void __sk_flush_backlog(struct sock *sk);
1028
1029 static inline bool sk_flush_backlog(struct sock *sk)
1030 {
1031 if (unlikely(READ_ONCE(sk->sk_backlog.tail))) {
1032 __sk_flush_backlog(sk);
1033 return true;
1034 }
1035 return false;
1036 }
1037
1038 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb);
1039
1040 struct request_sock_ops;
1041 struct timewait_sock_ops;
1042 struct inet_hashinfo;
1043 struct raw_hashinfo;
1044 struct smc_hashinfo;
1045 struct module;
1046
1047 /*
1048 * caches using SLAB_TYPESAFE_BY_RCU should let .next pointer from nulls nodes
1049 * un-modified. Special care is taken when initializing object to zero.
1050 */
1051 static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1052 {
1053 if (offsetof(struct sock, sk_node.next) != 0)
1054 memset(sk, 0, offsetof(struct sock, sk_node.next));
1055 memset(&sk->sk_node.pprev, 0,
1056 size - offsetof(struct sock, sk_node.pprev));
1057 }
1058
1059 /* Networking protocol blocks we attach to sockets.
1060 * socket layer -> transport layer interface
1061 */
1062 struct proto {
1063 void (*close)(struct sock *sk,
1064 long timeout);
1065 int (*pre_connect)(struct sock *sk,
1066 struct sockaddr *uaddr,
1067 int addr_len);
1068 int (*connect)(struct sock *sk,
1069 struct sockaddr *uaddr,
1070 int addr_len);
1071 int (*disconnect)(struct sock *sk, int flags);
1072
1073 struct sock * (*accept)(struct sock *sk, int flags, int *err,
1074 bool kern);
1075
1076 int (*ioctl)(struct sock *sk, int cmd,
1077 unsigned long arg);
1078 int (*init)(struct sock *sk);
1079 void (*destroy)(struct sock *sk);
1080 void (*shutdown)(struct sock *sk, int how);
1081 int (*setsockopt)(struct sock *sk, int level,
1082 int optname, char __user *optval,
1083 unsigned int optlen);
1084 int (*getsockopt)(struct sock *sk, int level,
1085 int optname, char __user *optval,
1086 int __user *option);
1087 void (*keepalive)(struct sock *sk, int valbool);
1088 #ifdef CONFIG_COMPAT
1089 int (*compat_setsockopt)(struct sock *sk,
1090 int level,
1091 int optname, char __user *optval,
1092 unsigned int optlen);
1093 int (*compat_getsockopt)(struct sock *sk,
1094 int level,
1095 int optname, char __user *optval,
1096 int __user *option);
1097 int (*compat_ioctl)(struct sock *sk,
1098 unsigned int cmd, unsigned long arg);
1099 #endif
1100 int (*sendmsg)(struct sock *sk, struct msghdr *msg,
1101 size_t len);
1102 int (*recvmsg)(struct sock *sk, struct msghdr *msg,
1103 size_t len, int noblock, int flags,
1104 int *addr_len);
1105 int (*sendpage)(struct sock *sk, struct page *page,
1106 int offset, size_t size, int flags);
1107 int (*bind)(struct sock *sk,
1108 struct sockaddr *uaddr, int addr_len);
1109
1110 int (*backlog_rcv) (struct sock *sk,
1111 struct sk_buff *skb);
1112
1113 void (*release_cb)(struct sock *sk);
1114
1115 /* Keeping track of sk's, looking them up, and port selection methods. */
1116 int (*hash)(struct sock *sk);
1117 void (*unhash)(struct sock *sk);
1118 void (*rehash)(struct sock *sk);
1119 int (*get_port)(struct sock *sk, unsigned short snum);
1120
1121 /* Keeping track of sockets in use */
1122 #ifdef CONFIG_PROC_FS
1123 unsigned int inuse_idx;
1124 #endif
1125
1126 bool (*stream_memory_free)(const struct sock *sk, int wake);
1127 bool (*stream_memory_read)(const struct sock *sk);
1128 /* Memory pressure */
1129 void (*enter_memory_pressure)(struct sock *sk);
1130 void (*leave_memory_pressure)(struct sock *sk);
1131 atomic_long_t *memory_allocated; /* Current allocated memory. */
1132 struct percpu_counter *sockets_allocated; /* Current number of sockets. */
1133 /*
1134 * Pressure flag: try to collapse.
1135 * Technical note: it is used by multiple contexts non atomically.
1136 * All the __sk_mem_schedule() is of this nature: accounting
1137 * is strict, actions are advisory and have some latency.
1138 */
1139 unsigned long *memory_pressure;
1140 long *sysctl_mem;
1141
1142 int *sysctl_wmem;
1143 int *sysctl_rmem;
1144 u32 sysctl_wmem_offset;
1145 u32 sysctl_rmem_offset;
1146
1147 int max_header;
1148 bool no_autobind;
1149
1150 struct kmem_cache *slab;
1151 unsigned int obj_size;
1152 slab_flags_t slab_flags;
1153 unsigned int useroffset; /* Usercopy region offset */
1154 unsigned int usersize; /* Usercopy region size */
1155
1156 struct percpu_counter *orphan_count;
1157
1158 struct request_sock_ops *rsk_prot;
1159 struct timewait_sock_ops *twsk_prot;
1160
1161 union {
1162 struct inet_hashinfo *hashinfo;
1163 struct udp_table *udp_table;
1164 struct raw_hashinfo *raw_hash;
1165 struct smc_hashinfo *smc_hash;
1166 } h;
1167
1168 struct module *owner;
1169
1170 char name[32];
1171
1172 struct list_head node;
1173 #ifdef SOCK_REFCNT_DEBUG
1174 atomic_t socks;
1175 #endif
1176 int (*diag_destroy)(struct sock *sk, int err);
1177 } __randomize_layout;
1178
1179 int proto_register(struct proto *prot, int alloc_slab);
1180 void proto_unregister(struct proto *prot);
1181 int sock_load_diag_module(int family, int protocol);
1182
1183 #ifdef SOCK_REFCNT_DEBUG
1184 static inline void sk_refcnt_debug_inc(struct sock *sk)
1185 {
1186 atomic_inc(&sk->sk_prot->socks);
1187 }
1188
1189 static inline void sk_refcnt_debug_dec(struct sock *sk)
1190 {
1191 atomic_dec(&sk->sk_prot->socks);
1192 printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1193 sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1194 }
1195
1196 static inline void sk_refcnt_debug_release(const struct sock *sk)
1197 {
1198 if (refcount_read(&sk->sk_refcnt) != 1)
1199 printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1200 sk->sk_prot->name, sk, refcount_read(&sk->sk_refcnt));
1201 }
1202 #else /* SOCK_REFCNT_DEBUG */
1203 #define sk_refcnt_debug_inc(sk) do { } while (0)
1204 #define sk_refcnt_debug_dec(sk) do { } while (0)
1205 #define sk_refcnt_debug_release(sk) do { } while (0)
1206 #endif /* SOCK_REFCNT_DEBUG */
1207
1208 static inline bool __sk_stream_memory_free(const struct sock *sk, int wake)
1209 {
1210 if (sk->sk_wmem_queued >= READ_ONCE(sk->sk_sndbuf))
1211 return false;
1212
1213 return sk->sk_prot->stream_memory_free ?
1214 sk->sk_prot->stream_memory_free(sk, wake) : true;
1215 }
1216
1217 static inline bool sk_stream_memory_free(const struct sock *sk)
1218 {
1219 return __sk_stream_memory_free(sk, 0);
1220 }
1221
1222 static inline bool __sk_stream_is_writeable(const struct sock *sk, int wake)
1223 {
1224 return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1225 __sk_stream_memory_free(sk, wake);
1226 }
1227
1228 static inline bool sk_stream_is_writeable(const struct sock *sk)
1229 {
1230 return __sk_stream_is_writeable(sk, 0);
1231 }
1232
1233 static inline int sk_under_cgroup_hierarchy(struct sock *sk,
1234 struct cgroup *ancestor)
1235 {
1236 #ifdef CONFIG_SOCK_CGROUP_DATA
1237 return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data),
1238 ancestor);
1239 #else
1240 return -ENOTSUPP;
1241 #endif
1242 }
1243
1244 static inline bool sk_has_memory_pressure(const struct sock *sk)
1245 {
1246 return sk->sk_prot->memory_pressure != NULL;
1247 }
1248
1249 static inline bool sk_under_memory_pressure(const struct sock *sk)
1250 {
1251 if (!sk->sk_prot->memory_pressure)
1252 return false;
1253
1254 if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
1255 mem_cgroup_under_socket_pressure(sk->sk_memcg))
1256 return true;
1257
1258 return !!*sk->sk_prot->memory_pressure;
1259 }
1260
1261 static inline long
1262 sk_memory_allocated(const struct sock *sk)
1263 {
1264 return atomic_long_read(sk->sk_prot->memory_allocated);
1265 }
1266
1267 static inline long
1268 sk_memory_allocated_add(struct sock *sk, int amt)
1269 {
1270 return atomic_long_add_return(amt, sk->sk_prot->memory_allocated);
1271 }
1272
1273 static inline void
1274 sk_memory_allocated_sub(struct sock *sk, int amt)
1275 {
1276 atomic_long_sub(amt, sk->sk_prot->memory_allocated);
1277 }
1278
1279 static inline void sk_sockets_allocated_dec(struct sock *sk)
1280 {
1281 percpu_counter_dec(sk->sk_prot->sockets_allocated);
1282 }
1283
1284 static inline void sk_sockets_allocated_inc(struct sock *sk)
1285 {
1286 percpu_counter_inc(sk->sk_prot->sockets_allocated);
1287 }
1288
1289 static inline u64
1290 sk_sockets_allocated_read_positive(struct sock *sk)
1291 {
1292 return percpu_counter_read_positive(sk->sk_prot->sockets_allocated);
1293 }
1294
1295 static inline int
1296 proto_sockets_allocated_sum_positive(struct proto *prot)
1297 {
1298 return percpu_counter_sum_positive(prot->sockets_allocated);
1299 }
1300
1301 static inline long
1302 proto_memory_allocated(struct proto *prot)
1303 {
1304 return atomic_long_read(prot->memory_allocated);
1305 }
1306
1307 static inline bool
1308 proto_memory_pressure(struct proto *prot)
1309 {
1310 if (!prot->memory_pressure)
1311 return false;
1312 return !!*prot->memory_pressure;
1313 }
1314
1315
1316 #ifdef CONFIG_PROC_FS
1317 /* Called with local bh disabled */
1318 void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
1319 int sock_prot_inuse_get(struct net *net, struct proto *proto);
1320 int sock_inuse_get(struct net *net);
1321 #else
1322 static inline void sock_prot_inuse_add(struct net *net, struct proto *prot,
1323 int inc)
1324 {
1325 }
1326 #endif
1327
1328
1329 /* With per-bucket locks this operation is not-atomic, so that
1330 * this version is not worse.
1331 */
1332 static inline int __sk_prot_rehash(struct sock *sk)
1333 {
1334 sk->sk_prot->unhash(sk);
1335 return sk->sk_prot->hash(sk);
1336 }
1337
1338 /* About 10 seconds */
1339 #define SOCK_DESTROY_TIME (10*HZ)
1340
1341 /* Sockets 0-1023 can't be bound to unless you are superuser */
1342 #define PROT_SOCK 1024
1343
1344 #define SHUTDOWN_MASK 3
1345 #define RCV_SHUTDOWN 1
1346 #define SEND_SHUTDOWN 2
1347
1348 #define SOCK_SNDBUF_LOCK 1
1349 #define SOCK_RCVBUF_LOCK 2
1350 #define SOCK_BINDADDR_LOCK 4
1351 #define SOCK_BINDPORT_LOCK 8
1352
1353 struct socket_alloc {
1354 struct socket socket;
1355 struct inode vfs_inode;
1356 };
1357
1358 static inline struct socket *SOCKET_I(struct inode *inode)
1359 {
1360 return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1361 }
1362
1363 static inline struct inode *SOCK_INODE(struct socket *socket)
1364 {
1365 return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1366 }
1367
1368 /*
1369 * Functions for memory accounting
1370 */
1371 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind);
1372 int __sk_mem_schedule(struct sock *sk, int size, int kind);
1373 void __sk_mem_reduce_allocated(struct sock *sk, int amount);
1374 void __sk_mem_reclaim(struct sock *sk, int amount);
1375
1376 /* We used to have PAGE_SIZE here, but systems with 64KB pages
1377 * do not necessarily have 16x time more memory than 4KB ones.
1378 */
1379 #define SK_MEM_QUANTUM 4096
1380 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1381 #define SK_MEM_SEND 0
1382 #define SK_MEM_RECV 1
1383
1384 /* sysctl_mem values are in pages, we convert them in SK_MEM_QUANTUM units */
1385 static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1386 {
1387 long val = sk->sk_prot->sysctl_mem[index];
1388
1389 #if PAGE_SIZE > SK_MEM_QUANTUM
1390 val <<= PAGE_SHIFT - SK_MEM_QUANTUM_SHIFT;
1391 #elif PAGE_SIZE < SK_MEM_QUANTUM
1392 val >>= SK_MEM_QUANTUM_SHIFT - PAGE_SHIFT;
1393 #endif
1394 return val;
1395 }
1396
1397 static inline int sk_mem_pages(int amt)
1398 {
1399 return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1400 }
1401
1402 static inline bool sk_has_account(struct sock *sk)
1403 {
1404 /* return true if protocol supports memory accounting */
1405 return !!sk->sk_prot->memory_allocated;
1406 }
1407
1408 static inline bool sk_wmem_schedule(struct sock *sk, int size)
1409 {
1410 if (!sk_has_account(sk))
1411 return true;
1412 return size <= sk->sk_forward_alloc ||
1413 __sk_mem_schedule(sk, size, SK_MEM_SEND);
1414 }
1415
1416 static inline bool
1417 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1418 {
1419 if (!sk_has_account(sk))
1420 return true;
1421 return size<= sk->sk_forward_alloc ||
1422 __sk_mem_schedule(sk, size, SK_MEM_RECV) ||
1423 skb_pfmemalloc(skb);
1424 }
1425
1426 static inline void sk_mem_reclaim(struct sock *sk)
1427 {
1428 if (!sk_has_account(sk))
1429 return;
1430 if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
1431 __sk_mem_reclaim(sk, sk->sk_forward_alloc);
1432 }
1433
1434 static inline void sk_mem_reclaim_partial(struct sock *sk)
1435 {
1436 if (!sk_has_account(sk))
1437 return;
1438 if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
1439 __sk_mem_reclaim(sk, sk->sk_forward_alloc - 1);
1440 }
1441
1442 static inline void sk_mem_charge(struct sock *sk, int size)
1443 {
1444 if (!sk_has_account(sk))
1445 return;
1446 sk->sk_forward_alloc -= size;
1447 }
1448
1449 static inline void sk_mem_uncharge(struct sock *sk, int size)
1450 {
1451 if (!sk_has_account(sk))
1452 return;
1453 sk->sk_forward_alloc += size;
1454
1455 /* Avoid a possible overflow.
1456 * TCP send queues can make this happen, if sk_mem_reclaim()
1457 * is not called and more than 2 GBytes are released at once.
1458 *
1459 * If we reach 2 MBytes, reclaim 1 MBytes right now, there is
1460 * no need to hold that much forward allocation anyway.
1461 */
1462 if (unlikely(sk->sk_forward_alloc >= 1 << 21))
1463 __sk_mem_reclaim(sk, 1 << 20);
1464 }
1465
1466 DECLARE_STATIC_KEY_FALSE(tcp_tx_skb_cache_key);
1467 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1468 {
1469 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1470 sk->sk_wmem_queued -= skb->truesize;
1471 sk_mem_uncharge(sk, skb->truesize);
1472 if (static_branch_unlikely(&tcp_tx_skb_cache_key) &&
1473 !sk->sk_tx_skb_cache && !skb_cloned(skb)) {
1474 skb_zcopy_clear(skb, true);
1475 sk->sk_tx_skb_cache = skb;
1476 return;
1477 }
1478 __kfree_skb(skb);
1479 }
1480
1481 static inline void sock_release_ownership(struct sock *sk)
1482 {
1483 if (sk->sk_lock.owned) {
1484 sk->sk_lock.owned = 0;
1485
1486 /* The sk_lock has mutex_unlock() semantics: */
1487 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
1488 }
1489 }
1490
1491 /*
1492 * Macro so as to not evaluate some arguments when
1493 * lockdep is not enabled.
1494 *
1495 * Mark both the sk_lock and the sk_lock.slock as a
1496 * per-address-family lock class.
1497 */
1498 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) \
1499 do { \
1500 sk->sk_lock.owned = 0; \
1501 init_waitqueue_head(&sk->sk_lock.wq); \
1502 spin_lock_init(&(sk)->sk_lock.slock); \
1503 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \
1504 sizeof((sk)->sk_lock)); \
1505 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \
1506 (skey), (sname)); \
1507 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \
1508 } while (0)
1509
1510 #ifdef CONFIG_LOCKDEP
1511 static inline bool lockdep_sock_is_held(const struct sock *sk)
1512 {
1513 return lockdep_is_held(&sk->sk_lock) ||
1514 lockdep_is_held(&sk->sk_lock.slock);
1515 }
1516 #endif
1517
1518 void lock_sock_nested(struct sock *sk, int subclass);
1519
1520 static inline void lock_sock(struct sock *sk)
1521 {
1522 lock_sock_nested(sk, 0);
1523 }
1524
1525 void __release_sock(struct sock *sk);
1526 void release_sock(struct sock *sk);
1527
1528 /* BH context may only use the following locking interface. */
1529 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock))
1530 #define bh_lock_sock_nested(__sk) \
1531 spin_lock_nested(&((__sk)->sk_lock.slock), \
1532 SINGLE_DEPTH_NESTING)
1533 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock))
1534
1535 bool lock_sock_fast(struct sock *sk);
1536 /**
1537 * unlock_sock_fast - complement of lock_sock_fast
1538 * @sk: socket
1539 * @slow: slow mode
1540 *
1541 * fast unlock socket for user context.
1542 * If slow mode is on, we call regular release_sock()
1543 */
1544 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1545 {
1546 if (slow)
1547 release_sock(sk);
1548 else
1549 spin_unlock_bh(&sk->sk_lock.slock);
1550 }
1551
1552 /* Used by processes to "lock" a socket state, so that
1553 * interrupts and bottom half handlers won't change it
1554 * from under us. It essentially blocks any incoming
1555 * packets, so that we won't get any new data or any
1556 * packets that change the state of the socket.
1557 *
1558 * While locked, BH processing will add new packets to
1559 * the backlog queue. This queue is processed by the
1560 * owner of the socket lock right before it is released.
1561 *
1562 * Since ~2.3.5 it is also exclusive sleep lock serializing
1563 * accesses from user process context.
1564 */
1565
1566 static inline void sock_owned_by_me(const struct sock *sk)
1567 {
1568 #ifdef CONFIG_LOCKDEP
1569 WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks);
1570 #endif
1571 }
1572
1573 static inline bool sock_owned_by_user(const struct sock *sk)
1574 {
1575 sock_owned_by_me(sk);
1576 return sk->sk_lock.owned;
1577 }
1578
1579 static inline bool sock_owned_by_user_nocheck(const struct sock *sk)
1580 {
1581 return sk->sk_lock.owned;
1582 }
1583
1584 /* no reclassification while locks are held */
1585 static inline bool sock_allow_reclassification(const struct sock *csk)
1586 {
1587 struct sock *sk = (struct sock *)csk;
1588
1589 return !sk->sk_lock.owned && !spin_is_locked(&sk->sk_lock.slock);
1590 }
1591
1592 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1593 struct proto *prot, int kern);
1594 void sk_free(struct sock *sk);
1595 void sk_destruct(struct sock *sk);
1596 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1597 void sk_free_unlock_clone(struct sock *sk);
1598
1599 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1600 gfp_t priority);
1601 void __sock_wfree(struct sk_buff *skb);
1602 void sock_wfree(struct sk_buff *skb);
1603 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
1604 gfp_t priority);
1605 void skb_orphan_partial(struct sk_buff *skb);
1606 void sock_rfree(struct sk_buff *skb);
1607 void sock_efree(struct sk_buff *skb);
1608 #ifdef CONFIG_INET
1609 void sock_edemux(struct sk_buff *skb);
1610 #else
1611 #define sock_edemux sock_efree
1612 #endif
1613
1614 int sock_setsockopt(struct socket *sock, int level, int op,
1615 char __user *optval, unsigned int optlen);
1616
1617 int sock_getsockopt(struct socket *sock, int level, int op,
1618 char __user *optval, int __user *optlen);
1619 int sock_gettstamp(struct socket *sock, void __user *userstamp,
1620 bool timeval, bool time32);
1621 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1622 int noblock, int *errcode);
1623 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1624 unsigned long data_len, int noblock,
1625 int *errcode, int max_page_order);
1626 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1627 void sock_kfree_s(struct sock *sk, void *mem, int size);
1628 void sock_kzfree_s(struct sock *sk, void *mem, int size);
1629 void sk_send_sigurg(struct sock *sk);
1630
1631 struct sockcm_cookie {
1632 u64 transmit_time;
1633 u32 mark;
1634 u16 tsflags;
1635 };
1636
1637 static inline void sockcm_init(struct sockcm_cookie *sockc,
1638 const struct sock *sk)
1639 {
1640 *sockc = (struct sockcm_cookie) { .tsflags = sk->sk_tsflags };
1641 }
1642
1643 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
1644 struct sockcm_cookie *sockc);
1645 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1646 struct sockcm_cookie *sockc);
1647
1648 /*
1649 * Functions to fill in entries in struct proto_ops when a protocol
1650 * does not implement a particular function.
1651 */
1652 int sock_no_bind(struct socket *, struct sockaddr *, int);
1653 int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1654 int sock_no_socketpair(struct socket *, struct socket *);
1655 int sock_no_accept(struct socket *, struct socket *, int, bool);
1656 int sock_no_getname(struct socket *, struct sockaddr *, int);
1657 int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1658 int sock_no_listen(struct socket *, int);
1659 int sock_no_shutdown(struct socket *, int);
1660 int sock_no_getsockopt(struct socket *, int , int, char __user *, int __user *);
1661 int sock_no_setsockopt(struct socket *, int, int, char __user *, unsigned int);
1662 int sock_no_sendmsg(struct socket *, struct msghdr *, size_t);
1663 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t len);
1664 int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int);
1665 int sock_no_mmap(struct file *file, struct socket *sock,
1666 struct vm_area_struct *vma);
1667 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset,
1668 size_t size, int flags);
1669 ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page,
1670 int offset, size_t size, int flags);
1671
1672 /*
1673 * Functions to fill in entries in struct proto_ops when a protocol
1674 * uses the inet style.
1675 */
1676 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1677 char __user *optval, int __user *optlen);
1678 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1679 int flags);
1680 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1681 char __user *optval, unsigned int optlen);
1682 int compat_sock_common_getsockopt(struct socket *sock, int level,
1683 int optname, char __user *optval, int __user *optlen);
1684 int compat_sock_common_setsockopt(struct socket *sock, int level,
1685 int optname, char __user *optval, unsigned int optlen);
1686
1687 void sk_common_release(struct sock *sk);
1688
1689 /*
1690 * Default socket callbacks and setup code
1691 */
1692
1693 /* Initialise core socket variables */
1694 void sock_init_data(struct socket *sock, struct sock *sk);
1695
1696 /*
1697 * Socket reference counting postulates.
1698 *
1699 * * Each user of socket SHOULD hold a reference count.
1700 * * Each access point to socket (an hash table bucket, reference from a list,
1701 * running timer, skb in flight MUST hold a reference count.
1702 * * When reference count hits 0, it means it will never increase back.
1703 * * When reference count hits 0, it means that no references from
1704 * outside exist to this socket and current process on current CPU
1705 * is last user and may/should destroy this socket.
1706 * * sk_free is called from any context: process, BH, IRQ. When
1707 * it is called, socket has no references from outside -> sk_free
1708 * may release descendant resources allocated by the socket, but
1709 * to the time when it is called, socket is NOT referenced by any
1710 * hash tables, lists etc.
1711 * * Packets, delivered from outside (from network or from another process)
1712 * and enqueued on receive/error queues SHOULD NOT grab reference count,
1713 * when they sit in queue. Otherwise, packets will leak to hole, when
1714 * socket is looked up by one cpu and unhasing is made by another CPU.
1715 * It is true for udp/raw, netlink (leak to receive and error queues), tcp
1716 * (leak to backlog). Packet socket does all the processing inside
1717 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1718 * use separate SMP lock, so that they are prone too.
1719 */
1720
1721 /* Ungrab socket and destroy it, if it was the last reference. */
1722 static inline void sock_put(struct sock *sk)
1723 {
1724 if (refcount_dec_and_test(&sk->sk_refcnt))
1725 sk_free(sk);
1726 }
1727 /* Generic version of sock_put(), dealing with all sockets
1728 * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...)
1729 */
1730 void sock_gen_put(struct sock *sk);
1731
1732 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested,
1733 unsigned int trim_cap, bool refcounted);
1734 static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1735 const int nested)
1736 {
1737 return __sk_receive_skb(sk, skb, nested, 1, true);
1738 }
1739
1740 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1741 {
1742 /* sk_tx_queue_mapping accept only upto a 16-bit value */
1743 if (WARN_ON_ONCE((unsigned short)tx_queue >= USHRT_MAX))
1744 return;
1745 sk->sk_tx_queue_mapping = tx_queue;
1746 }
1747
1748 #define NO_QUEUE_MAPPING USHRT_MAX
1749
1750 static inline void sk_tx_queue_clear(struct sock *sk)
1751 {
1752 sk->sk_tx_queue_mapping = NO_QUEUE_MAPPING;
1753 }
1754
1755 static inline int sk_tx_queue_get(const struct sock *sk)
1756 {
1757 if (sk && sk->sk_tx_queue_mapping != NO_QUEUE_MAPPING)
1758 return sk->sk_tx_queue_mapping;
1759
1760 return -1;
1761 }
1762
1763 static inline void sk_rx_queue_set(struct sock *sk, const struct sk_buff *skb)
1764 {
1765 #ifdef CONFIG_XPS
1766 if (skb_rx_queue_recorded(skb)) {
1767 u16 rx_queue = skb_get_rx_queue(skb);
1768
1769 if (WARN_ON_ONCE(rx_queue == NO_QUEUE_MAPPING))
1770 return;
1771
1772 sk->sk_rx_queue_mapping = rx_queue;
1773 }
1774 #endif
1775 }
1776
1777 static inline void sk_rx_queue_clear(struct sock *sk)
1778 {
1779 #ifdef CONFIG_XPS
1780 sk->sk_rx_queue_mapping = NO_QUEUE_MAPPING;
1781 #endif
1782 }
1783
1784 #ifdef CONFIG_XPS
1785 static inline int sk_rx_queue_get(const struct sock *sk)
1786 {
1787 if (sk && sk->sk_rx_queue_mapping != NO_QUEUE_MAPPING)
1788 return sk->sk_rx_queue_mapping;
1789
1790 return -1;
1791 }
1792 #endif
1793
1794 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1795 {
1796 sk_tx_queue_clear(sk);
1797 sk->sk_socket = sock;
1798 }
1799
1800 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1801 {
1802 BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1803 return &rcu_dereference_raw(sk->sk_wq)->wait;
1804 }
1805 /* Detach socket from process context.
1806 * Announce socket dead, detach it from wait queue and inode.
1807 * Note that parent inode held reference count on this struct sock,
1808 * we do not release it in this function, because protocol
1809 * probably wants some additional cleanups or even continuing
1810 * to work with this socket (TCP).
1811 */
1812 static inline void sock_orphan(struct sock *sk)
1813 {
1814 write_lock_bh(&sk->sk_callback_lock);
1815 sock_set_flag(sk, SOCK_DEAD);
1816 sk_set_socket(sk, NULL);
1817 sk->sk_wq = NULL;
1818 write_unlock_bh(&sk->sk_callback_lock);
1819 }
1820
1821 static inline void sock_graft(struct sock *sk, struct socket *parent)
1822 {
1823 WARN_ON(parent->sk);
1824 write_lock_bh(&sk->sk_callback_lock);
1825 rcu_assign_pointer(sk->sk_wq, &parent->wq);
1826 parent->sk = sk;
1827 sk_set_socket(sk, parent);
1828 sk->sk_uid = SOCK_INODE(parent)->i_uid;
1829 security_sock_graft(sk, parent);
1830 write_unlock_bh(&sk->sk_callback_lock);
1831 }
1832
1833 kuid_t sock_i_uid(struct sock *sk);
1834 unsigned long sock_i_ino(struct sock *sk);
1835
1836 static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk)
1837 {
1838 return sk ? sk->sk_uid : make_kuid(net->user_ns, 0);
1839 }
1840
1841 static inline u32 net_tx_rndhash(void)
1842 {
1843 u32 v = prandom_u32();
1844
1845 return v ?: 1;
1846 }
1847
1848 static inline void sk_set_txhash(struct sock *sk)
1849 {
1850 sk->sk_txhash = net_tx_rndhash();
1851 }
1852
1853 static inline void sk_rethink_txhash(struct sock *sk)
1854 {
1855 if (sk->sk_txhash)
1856 sk_set_txhash(sk);
1857 }
1858
1859 static inline struct dst_entry *
1860 __sk_dst_get(struct sock *sk)
1861 {
1862 return rcu_dereference_check(sk->sk_dst_cache,
1863 lockdep_sock_is_held(sk));
1864 }
1865
1866 static inline struct dst_entry *
1867 sk_dst_get(struct sock *sk)
1868 {
1869 struct dst_entry *dst;
1870
1871 rcu_read_lock();
1872 dst = rcu_dereference(sk->sk_dst_cache);
1873 if (dst && !atomic_inc_not_zero(&dst->__refcnt))
1874 dst = NULL;
1875 rcu_read_unlock();
1876 return dst;
1877 }
1878
1879 static inline void dst_negative_advice(struct sock *sk)
1880 {
1881 struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1882
1883 sk_rethink_txhash(sk);
1884
1885 if (dst && dst->ops->negative_advice) {
1886 ndst = dst->ops->negative_advice(dst);
1887
1888 if (ndst != dst) {
1889 rcu_assign_pointer(sk->sk_dst_cache, ndst);
1890 sk_tx_queue_clear(sk);
1891 sk->sk_dst_pending_confirm = 0;
1892 }
1893 }
1894 }
1895
1896 static inline void
1897 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
1898 {
1899 struct dst_entry *old_dst;
1900
1901 sk_tx_queue_clear(sk);
1902 sk->sk_dst_pending_confirm = 0;
1903 old_dst = rcu_dereference_protected(sk->sk_dst_cache,
1904 lockdep_sock_is_held(sk));
1905 rcu_assign_pointer(sk->sk_dst_cache, dst);
1906 dst_release(old_dst);
1907 }
1908
1909 static inline void
1910 sk_dst_set(struct sock *sk, struct dst_entry *dst)
1911 {
1912 struct dst_entry *old_dst;
1913
1914 sk_tx_queue_clear(sk);
1915 sk->sk_dst_pending_confirm = 0;
1916 old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst);
1917 dst_release(old_dst);
1918 }
1919
1920 static inline void
1921 __sk_dst_reset(struct sock *sk)
1922 {
1923 __sk_dst_set(sk, NULL);
1924 }
1925
1926 static inline void
1927 sk_dst_reset(struct sock *sk)
1928 {
1929 sk_dst_set(sk, NULL);
1930 }
1931
1932 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1933
1934 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1935
1936 static inline void sk_dst_confirm(struct sock *sk)
1937 {
1938 if (!sk->sk_dst_pending_confirm)
1939 sk->sk_dst_pending_confirm = 1;
1940 }
1941
1942 static inline void sock_confirm_neigh(struct sk_buff *skb, struct neighbour *n)
1943 {
1944 if (skb_get_dst_pending_confirm(skb)) {
1945 struct sock *sk = skb->sk;
1946 unsigned long now = jiffies;
1947
1948 /* avoid dirtying neighbour */
1949 if (n->confirmed != now)
1950 n->confirmed = now;
1951 if (sk && sk->sk_dst_pending_confirm)
1952 sk->sk_dst_pending_confirm = 0;
1953 }
1954 }
1955
1956 bool sk_mc_loop(struct sock *sk);
1957
1958 static inline bool sk_can_gso(const struct sock *sk)
1959 {
1960 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1961 }
1962
1963 void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
1964
1965 static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
1966 {
1967 sk->sk_route_nocaps |= flags;
1968 sk->sk_route_caps &= ~flags;
1969 }
1970
1971 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
1972 struct iov_iter *from, char *to,
1973 int copy, int offset)
1974 {
1975 if (skb->ip_summed == CHECKSUM_NONE) {
1976 __wsum csum = 0;
1977 if (!csum_and_copy_from_iter_full(to, copy, &csum, from))
1978 return -EFAULT;
1979 skb->csum = csum_block_add(skb->csum, csum, offset);
1980 } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1981 if (!copy_from_iter_full_nocache(to, copy, from))
1982 return -EFAULT;
1983 } else if (!copy_from_iter_full(to, copy, from))
1984 return -EFAULT;
1985
1986 return 0;
1987 }
1988
1989 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
1990 struct iov_iter *from, int copy)
1991 {
1992 int err, offset = skb->len;
1993
1994 err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
1995 copy, offset);
1996 if (err)
1997 __skb_trim(skb, offset);
1998
1999 return err;
2000 }
2001
2002 static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from,
2003 struct sk_buff *skb,
2004 struct page *page,
2005 int off, int copy)
2006 {
2007 int err;
2008
2009 err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
2010 copy, skb->len);
2011 if (err)
2012 return err;
2013
2014 skb->len += copy;
2015 skb->data_len += copy;
2016 skb->truesize += copy;
2017 sk->sk_wmem_queued += copy;
2018 sk_mem_charge(sk, copy);
2019 return 0;
2020 }
2021
2022 /**
2023 * sk_wmem_alloc_get - returns write allocations
2024 * @sk: socket
2025 *
2026 * Returns sk_wmem_alloc minus initial offset of one
2027 */
2028 static inline int sk_wmem_alloc_get(const struct sock *sk)
2029 {
2030 return refcount_read(&sk->sk_wmem_alloc) - 1;
2031 }
2032
2033 /**
2034 * sk_rmem_alloc_get - returns read allocations
2035 * @sk: socket
2036 *
2037 * Returns sk_rmem_alloc
2038 */
2039 static inline int sk_rmem_alloc_get(const struct sock *sk)
2040 {
2041 return atomic_read(&sk->sk_rmem_alloc);
2042 }
2043
2044 /**
2045 * sk_has_allocations - check if allocations are outstanding
2046 * @sk: socket
2047 *
2048 * Returns true if socket has write or read allocations
2049 */
2050 static inline bool sk_has_allocations(const struct sock *sk)
2051 {
2052 return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
2053 }
2054
2055 /**
2056 * skwq_has_sleeper - check if there are any waiting processes
2057 * @wq: struct socket_wq
2058 *
2059 * Returns true if socket_wq has waiting processes
2060 *
2061 * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory
2062 * barrier call. They were added due to the race found within the tcp code.
2063 *
2064 * Consider following tcp code paths::
2065 *
2066 * CPU1 CPU2
2067 * sys_select receive packet
2068 * ... ...
2069 * __add_wait_queue update tp->rcv_nxt
2070 * ... ...
2071 * tp->rcv_nxt check sock_def_readable
2072 * ... {
2073 * schedule rcu_read_lock();
2074 * wq = rcu_dereference(sk->sk_wq);
2075 * if (wq && waitqueue_active(&wq->wait))
2076 * wake_up_interruptible(&wq->wait)
2077 * ...
2078 * }
2079 *
2080 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
2081 * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1
2082 * could then endup calling schedule and sleep forever if there are no more
2083 * data on the socket.
2084 *
2085 */
2086 static inline bool skwq_has_sleeper(struct socket_wq *wq)
2087 {
2088 return wq && wq_has_sleeper(&wq->wait);
2089 }
2090
2091 /**
2092 * sock_poll_wait - place memory barrier behind the poll_wait call.
2093 * @filp: file
2094 * @sock: socket to wait on
2095 * @p: poll_table
2096 *
2097 * See the comments in the wq_has_sleeper function.
2098 */
2099 static inline void sock_poll_wait(struct file *filp, struct socket *sock,
2100 poll_table *p)
2101 {
2102 if (!poll_does_not_wait(p)) {
2103 poll_wait(filp, &sock->wq.wait, p);
2104 /* We need to be sure we are in sync with the
2105 * socket flags modification.
2106 *
2107 * This memory barrier is paired in the wq_has_sleeper.
2108 */
2109 smp_mb();
2110 }
2111 }
2112
2113 static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
2114 {
2115 if (sk->sk_txhash) {
2116 skb->l4_hash = 1;
2117 skb->hash = sk->sk_txhash;
2118 }
2119 }
2120
2121 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk);
2122
2123 /*
2124 * Queue a received datagram if it will fit. Stream and sequenced
2125 * protocols can't normally use this as they need to fit buffers in
2126 * and play with them.
2127 *
2128 * Inlined as it's very short and called for pretty much every
2129 * packet ever received.
2130 */
2131 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
2132 {
2133 skb_orphan(skb);
2134 skb->sk = sk;
2135 skb->destructor = sock_rfree;
2136 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
2137 sk_mem_charge(sk, skb->truesize);
2138 }
2139
2140 void sk_reset_timer(struct sock *sk, struct timer_list *timer,
2141 unsigned long expires);
2142
2143 void sk_stop_timer(struct sock *sk, struct timer_list *timer);
2144
2145 int __sk_queue_drop_skb(struct sock *sk, struct sk_buff_head *sk_queue,
2146 struct sk_buff *skb, unsigned int flags,
2147 void (*destructor)(struct sock *sk,
2148 struct sk_buff *skb));
2149 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2150 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2151
2152 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
2153 struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
2154
2155 /*
2156 * Recover an error report and clear atomically
2157 */
2158
2159 static inline int sock_error(struct sock *sk)
2160 {
2161 int err;
2162 if (likely(!sk->sk_err))
2163 return 0;
2164 err = xchg(&sk->sk_err, 0);
2165 return -err;
2166 }
2167
2168 static inline unsigned long sock_wspace(struct sock *sk)
2169 {
2170 int amt = 0;
2171
2172 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2173 amt = sk->sk_sndbuf - refcount_read(&sk->sk_wmem_alloc);
2174 if (amt < 0)
2175 amt = 0;
2176 }
2177 return amt;
2178 }
2179
2180 /* Note:
2181 * We use sk->sk_wq_raw, from contexts knowing this
2182 * pointer is not NULL and cannot disappear/change.
2183 */
2184 static inline void sk_set_bit(int nr, struct sock *sk)
2185 {
2186 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2187 !sock_flag(sk, SOCK_FASYNC))
2188 return;
2189
2190 set_bit(nr, &sk->sk_wq_raw->flags);
2191 }
2192
2193 static inline void sk_clear_bit(int nr, struct sock *sk)
2194 {
2195 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2196 !sock_flag(sk, SOCK_FASYNC))
2197 return;
2198
2199 clear_bit(nr, &sk->sk_wq_raw->flags);
2200 }
2201
2202 static inline void sk_wake_async(const struct sock *sk, int how, int band)
2203 {
2204 if (sock_flag(sk, SOCK_FASYNC)) {
2205 rcu_read_lock();
2206 sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
2207 rcu_read_unlock();
2208 }
2209 }
2210
2211 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2212 * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2213 * Note: for send buffers, TCP works better if we can build two skbs at
2214 * minimum.
2215 */
2216 #define TCP_SKB_MIN_TRUESIZE (2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2217
2218 #define SOCK_MIN_SNDBUF (TCP_SKB_MIN_TRUESIZE * 2)
2219 #define SOCK_MIN_RCVBUF TCP_SKB_MIN_TRUESIZE
2220
2221 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2222 {
2223 u32 val;
2224
2225 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
2226 return;
2227
2228 val = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2229
2230 WRITE_ONCE(sk->sk_sndbuf, max_t(u32, val, SOCK_MIN_SNDBUF));
2231 }
2232
2233 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
2234 bool force_schedule);
2235
2236 /**
2237 * sk_page_frag - return an appropriate page_frag
2238 * @sk: socket
2239 *
2240 * If socket allocation mode allows current thread to sleep, it means its
2241 * safe to use the per task page_frag instead of the per socket one.
2242 */
2243 static inline struct page_frag *sk_page_frag(struct sock *sk)
2244 {
2245 if (gfpflags_allow_blocking(sk->sk_allocation))
2246 return &current->task_frag;
2247
2248 return &sk->sk_frag;
2249 }
2250
2251 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2252
2253 /*
2254 * Default write policy as shown to user space via poll/select/SIGIO
2255 */
2256 static inline bool sock_writeable(const struct sock *sk)
2257 {
2258 return refcount_read(&sk->sk_wmem_alloc) < (READ_ONCE(sk->sk_sndbuf) >> 1);
2259 }
2260
2261 static inline gfp_t gfp_any(void)
2262 {
2263 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2264 }
2265
2266 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2267 {
2268 return noblock ? 0 : sk->sk_rcvtimeo;
2269 }
2270
2271 static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2272 {
2273 return noblock ? 0 : sk->sk_sndtimeo;
2274 }
2275
2276 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2277 {
2278 int v = waitall ? len : min_t(int, READ_ONCE(sk->sk_rcvlowat), len);
2279
2280 return v ?: 1;
2281 }
2282
2283 /* Alas, with timeout socket operations are not restartable.
2284 * Compare this to poll().
2285 */
2286 static inline int sock_intr_errno(long timeo)
2287 {
2288 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2289 }
2290
2291 struct sock_skb_cb {
2292 u32 dropcount;
2293 };
2294
2295 /* Store sock_skb_cb at the end of skb->cb[] so protocol families
2296 * using skb->cb[] would keep using it directly and utilize its
2297 * alignement guarantee.
2298 */
2299 #define SOCK_SKB_CB_OFFSET ((FIELD_SIZEOF(struct sk_buff, cb) - \
2300 sizeof(struct sock_skb_cb)))
2301
2302 #define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \
2303 SOCK_SKB_CB_OFFSET))
2304
2305 #define sock_skb_cb_check_size(size) \
2306 BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET)
2307
2308 static inline void
2309 sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb)
2310 {
2311 SOCK_SKB_CB(skb)->dropcount = sock_flag(sk, SOCK_RXQ_OVFL) ?
2312 atomic_read(&sk->sk_drops) : 0;
2313 }
2314
2315 static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb)
2316 {
2317 int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2318
2319 atomic_add(segs, &sk->sk_drops);
2320 }
2321
2322 static inline ktime_t sock_read_timestamp(struct sock *sk)
2323 {
2324 #if BITS_PER_LONG==32
2325 unsigned int seq;
2326 ktime_t kt;
2327
2328 do {
2329 seq = read_seqbegin(&sk->sk_stamp_seq);
2330 kt = sk->sk_stamp;
2331 } while (read_seqretry(&sk->sk_stamp_seq, seq));
2332
2333 return kt;
2334 #else
2335 return sk->sk_stamp;
2336 #endif
2337 }
2338
2339 static inline void sock_write_timestamp(struct sock *sk, ktime_t kt)
2340 {
2341 #if BITS_PER_LONG==32
2342 write_seqlock(&sk->sk_stamp_seq);
2343 sk->sk_stamp = kt;
2344 write_sequnlock(&sk->sk_stamp_seq);
2345 #else
2346 sk->sk_stamp = kt;
2347 #endif
2348 }
2349
2350 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2351 struct sk_buff *skb);
2352 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2353 struct sk_buff *skb);
2354
2355 static inline void
2356 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2357 {
2358 ktime_t kt = skb->tstamp;
2359 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2360
2361 /*
2362 * generate control messages if
2363 * - receive time stamping in software requested
2364 * - software time stamp available and wanted
2365 * - hardware time stamps available and wanted
2366 */
2367 if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2368 (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2369 (kt && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2370 (hwtstamps->hwtstamp &&
2371 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
2372 __sock_recv_timestamp(msg, sk, skb);
2373 else
2374 sock_write_timestamp(sk, kt);
2375
2376 if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2377 __sock_recv_wifi_status(msg, sk, skb);
2378 }
2379
2380 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2381 struct sk_buff *skb);
2382
2383 #define SK_DEFAULT_STAMP (-1L * NSEC_PER_SEC)
2384 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2385 struct sk_buff *skb)
2386 {
2387 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL) | \
2388 (1UL << SOCK_RCVTSTAMP))
2389 #define TSFLAGS_ANY (SOF_TIMESTAMPING_SOFTWARE | \
2390 SOF_TIMESTAMPING_RAW_HARDWARE)
2391
2392 if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY)
2393 __sock_recv_ts_and_drops(msg, sk, skb);
2394 else if (unlikely(sock_flag(sk, SOCK_TIMESTAMP)))
2395 sock_write_timestamp(sk, skb->tstamp);
2396 else if (unlikely(sk->sk_stamp == SK_DEFAULT_STAMP))
2397 sock_write_timestamp(sk, 0);
2398 }
2399
2400 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags);
2401
2402 /**
2403 * _sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2404 * @sk: socket sending this packet
2405 * @tsflags: timestamping flags to use
2406 * @tx_flags: completed with instructions for time stamping
2407 * @tskey: filled in with next sk_tskey (not for TCP, which uses seqno)
2408 *
2409 * Note: callers should take care of initial ``*tx_flags`` value (usually 0)
2410 */
2411 static inline void _sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2412 __u8 *tx_flags, __u32 *tskey)
2413 {
2414 if (unlikely(tsflags)) {
2415 __sock_tx_timestamp(tsflags, tx_flags);
2416 if (tsflags & SOF_TIMESTAMPING_OPT_ID && tskey &&
2417 tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
2418 *tskey = sk->sk_tskey++;
2419 }
2420 if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS)))
2421 *tx_flags |= SKBTX_WIFI_STATUS;
2422 }
2423
2424 static inline void sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2425 __u8 *tx_flags)
2426 {
2427 _sock_tx_timestamp(sk, tsflags, tx_flags, NULL);
2428 }
2429
2430 static inline void skb_setup_tx_timestamp(struct sk_buff *skb, __u16 tsflags)
2431 {
2432 _sock_tx_timestamp(skb->sk, tsflags, &skb_shinfo(skb)->tx_flags,
2433 &skb_shinfo(skb)->tskey);
2434 }
2435
2436 /**
2437 * sk_eat_skb - Release a skb if it is no longer needed
2438 * @sk: socket to eat this skb from
2439 * @skb: socket buffer to eat
2440 *
2441 * This routine must be called with interrupts disabled or with the socket
2442 * locked so that the sk_buff queue operation is ok.
2443 */
2444 DECLARE_STATIC_KEY_FALSE(tcp_rx_skb_cache_key);
2445 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
2446 {
2447 __skb_unlink(skb, &sk->sk_receive_queue);
2448 if (static_branch_unlikely(&tcp_rx_skb_cache_key) &&
2449 !sk->sk_rx_skb_cache) {
2450 sk->sk_rx_skb_cache = skb;
2451 skb_orphan(skb);
2452 return;
2453 }
2454 __kfree_skb(skb);
2455 }
2456
2457 static inline
2458 struct net *sock_net(const struct sock *sk)
2459 {
2460 return read_pnet(&sk->sk_net);
2461 }
2462
2463 static inline
2464 void sock_net_set(struct sock *sk, struct net *net)
2465 {
2466 write_pnet(&sk->sk_net, net);
2467 }
2468
2469 static inline struct sock *skb_steal_sock(struct sk_buff *skb)
2470 {
2471 if (skb->sk) {
2472 struct sock *sk = skb->sk;
2473
2474 skb->destructor = NULL;
2475 skb->sk = NULL;
2476 return sk;
2477 }
2478 return NULL;
2479 }
2480
2481 /* This helper checks if a socket is a full socket,
2482 * ie _not_ a timewait or request socket.
2483 */
2484 static inline bool sk_fullsock(const struct sock *sk)
2485 {
2486 return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV);
2487 }
2488
2489 /* Checks if this SKB belongs to an HW offloaded socket
2490 * and whether any SW fallbacks are required based on dev.
2491 * Check decrypted mark in case skb_orphan() cleared socket.
2492 */
2493 static inline struct sk_buff *sk_validate_xmit_skb(struct sk_buff *skb,
2494 struct net_device *dev)
2495 {
2496 #ifdef CONFIG_SOCK_VALIDATE_XMIT
2497 struct sock *sk = skb->sk;
2498
2499 if (sk && sk_fullsock(sk) && sk->sk_validate_xmit_skb) {
2500 skb = sk->sk_validate_xmit_skb(sk, dev, skb);
2501 #ifdef CONFIG_TLS_DEVICE
2502 } else if (unlikely(skb->decrypted)) {
2503 pr_warn_ratelimited("unencrypted skb with no associated socket - dropping\n");
2504 kfree_skb(skb);
2505 skb = NULL;
2506 #endif
2507 }
2508 #endif
2509
2510 return skb;
2511 }
2512
2513 /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV
2514 * SYNACK messages can be attached to either ones (depending on SYNCOOKIE)
2515 */
2516 static inline bool sk_listener(const struct sock *sk)
2517 {
2518 return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV);
2519 }
2520
2521 void sock_enable_timestamp(struct sock *sk, int flag);
2522 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2523 int type);
2524
2525 bool sk_ns_capable(const struct sock *sk,
2526 struct user_namespace *user_ns, int cap);
2527 bool sk_capable(const struct sock *sk, int cap);
2528 bool sk_net_capable(const struct sock *sk, int cap);
2529
2530 void sk_get_meminfo(const struct sock *sk, u32 *meminfo);
2531
2532 /* Take into consideration the size of the struct sk_buff overhead in the
2533 * determination of these values, since that is non-constant across
2534 * platforms. This makes socket queueing behavior and performance
2535 * not depend upon such differences.
2536 */
2537 #define _SK_MEM_PACKETS 256
2538 #define _SK_MEM_OVERHEAD SKB_TRUESIZE(256)
2539 #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2540 #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2541
2542 extern __u32 sysctl_wmem_max;
2543 extern __u32 sysctl_rmem_max;
2544
2545 extern int sysctl_tstamp_allow_data;
2546 extern int sysctl_optmem_max;
2547
2548 extern __u32 sysctl_wmem_default;
2549 extern __u32 sysctl_rmem_default;
2550
2551 DECLARE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
2552
2553 static inline int sk_get_wmem0(const struct sock *sk, const struct proto *proto)
2554 {
2555 /* Does this proto have per netns sysctl_wmem ? */
2556 if (proto->sysctl_wmem_offset)
2557 return *(int *)((void *)sock_net(sk) + proto->sysctl_wmem_offset);
2558
2559 return *proto->sysctl_wmem;
2560 }
2561
2562 static inline int sk_get_rmem0(const struct sock *sk, const struct proto *proto)
2563 {
2564 /* Does this proto have per netns sysctl_rmem ? */
2565 if (proto->sysctl_rmem_offset)
2566 return *(int *)((void *)sock_net(sk) + proto->sysctl_rmem_offset);
2567
2568 return *proto->sysctl_rmem;
2569 }
2570
2571 /* Default TCP Small queue budget is ~1 ms of data (1sec >> 10)
2572 * Some wifi drivers need to tweak it to get more chunks.
2573 * They can use this helper from their ndo_start_xmit()
2574 */
2575 static inline void sk_pacing_shift_update(struct sock *sk, int val)
2576 {
2577 if (!sk || !sk_fullsock(sk) || sk->sk_pacing_shift == val)
2578 return;
2579 sk->sk_pacing_shift = val;
2580 }
2581
2582 /* if a socket is bound to a device, check that the given device
2583 * index is either the same or that the socket is bound to an L3
2584 * master device and the given device index is also enslaved to
2585 * that L3 master
2586 */
2587 static inline bool sk_dev_equal_l3scope(struct sock *sk, int dif)
2588 {
2589 int mdif;
2590
2591 if (!sk->sk_bound_dev_if || sk->sk_bound_dev_if == dif)
2592 return true;
2593
2594 mdif = l3mdev_master_ifindex_by_index(sock_net(sk), dif);
2595 if (mdif && mdif == sk->sk_bound_dev_if)
2596 return true;
2597
2598 return false;
2599 }
2600
2601 #endif /* _SOCK_H */