]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - include/net/tcp.h
09910641fcc3f8d23bc1630283680c134315e243
[mirror_ubuntu-eoan-kernel.git] / include / net / tcp.h
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Definitions for the TCP module.
8 *
9 * Version: @(#)tcp.h 1.0.5 05/23/93
10 *
11 * Authors: Ross Biro
12 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13 */
14 #ifndef _TCP_H
15 #define _TCP_H
16
17 #define FASTRETRANS_DEBUG 1
18
19 #include <linux/list.h>
20 #include <linux/tcp.h>
21 #include <linux/bug.h>
22 #include <linux/slab.h>
23 #include <linux/cache.h>
24 #include <linux/percpu.h>
25 #include <linux/skbuff.h>
26 #include <linux/cryptohash.h>
27 #include <linux/kref.h>
28 #include <linux/ktime.h>
29
30 #include <net/inet_connection_sock.h>
31 #include <net/inet_timewait_sock.h>
32 #include <net/inet_hashtables.h>
33 #include <net/checksum.h>
34 #include <net/request_sock.h>
35 #include <net/sock_reuseport.h>
36 #include <net/sock.h>
37 #include <net/snmp.h>
38 #include <net/ip.h>
39 #include <net/tcp_states.h>
40 #include <net/inet_ecn.h>
41 #include <net/dst.h>
42
43 #include <linux/seq_file.h>
44 #include <linux/memcontrol.h>
45 #include <linux/bpf-cgroup.h>
46 #include <linux/siphash.h>
47
48 extern struct inet_hashinfo tcp_hashinfo;
49
50 extern struct percpu_counter tcp_orphan_count;
51 void tcp_time_wait(struct sock *sk, int state, int timeo);
52
53 #define MAX_TCP_HEADER (128 + MAX_HEADER)
54 #define MAX_TCP_OPTION_SPACE 40
55 #define TCP_MIN_SND_MSS 48
56 #define TCP_MIN_GSO_SIZE (TCP_MIN_SND_MSS - MAX_TCP_OPTION_SPACE)
57
58 /*
59 * Never offer a window over 32767 without using window scaling. Some
60 * poor stacks do signed 16bit maths!
61 */
62 #define MAX_TCP_WINDOW 32767U
63
64 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */
65 #define TCP_MIN_MSS 88U
66
67 /* The least MTU to use for probing */
68 #define TCP_BASE_MSS 1024
69
70 /* probing interval, default to 10 minutes as per RFC4821 */
71 #define TCP_PROBE_INTERVAL 600
72
73 /* Specify interval when tcp mtu probing will stop */
74 #define TCP_PROBE_THRESHOLD 8
75
76 /* After receiving this amount of duplicate ACKs fast retransmit starts. */
77 #define TCP_FASTRETRANS_THRESH 3
78
79 /* Maximal number of ACKs sent quickly to accelerate slow-start. */
80 #define TCP_MAX_QUICKACKS 16U
81
82 /* Maximal number of window scale according to RFC1323 */
83 #define TCP_MAX_WSCALE 14U
84
85 /* urg_data states */
86 #define TCP_URG_VALID 0x0100
87 #define TCP_URG_NOTYET 0x0200
88 #define TCP_URG_READ 0x0400
89
90 #define TCP_RETR1 3 /*
91 * This is how many retries it does before it
92 * tries to figure out if the gateway is
93 * down. Minimal RFC value is 3; it corresponds
94 * to ~3sec-8min depending on RTO.
95 */
96
97 #define TCP_RETR2 15 /*
98 * This should take at least
99 * 90 minutes to time out.
100 * RFC1122 says that the limit is 100 sec.
101 * 15 is ~13-30min depending on RTO.
102 */
103
104 #define TCP_SYN_RETRIES 6 /* This is how many retries are done
105 * when active opening a connection.
106 * RFC1122 says the minimum retry MUST
107 * be at least 180secs. Nevertheless
108 * this value is corresponding to
109 * 63secs of retransmission with the
110 * current initial RTO.
111 */
112
113 #define TCP_SYNACK_RETRIES 5 /* This is how may retries are done
114 * when passive opening a connection.
115 * This is corresponding to 31secs of
116 * retransmission with the current
117 * initial RTO.
118 */
119
120 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
121 * state, about 60 seconds */
122 #define TCP_FIN_TIMEOUT TCP_TIMEWAIT_LEN
123 /* BSD style FIN_WAIT2 deadlock breaker.
124 * It used to be 3min, new value is 60sec,
125 * to combine FIN-WAIT-2 timeout with
126 * TIME-WAIT timer.
127 */
128
129 #define TCP_DELACK_MAX ((unsigned)(HZ/5)) /* maximal time to delay before sending an ACK */
130 #if HZ >= 100
131 #define TCP_DELACK_MIN ((unsigned)(HZ/25)) /* minimal time to delay before sending an ACK */
132 #define TCP_ATO_MIN ((unsigned)(HZ/25))
133 #else
134 #define TCP_DELACK_MIN 4U
135 #define TCP_ATO_MIN 4U
136 #endif
137 #define TCP_RTO_MAX ((unsigned)(120*HZ))
138 #define TCP_RTO_MIN ((unsigned)(HZ/5))
139 #define TCP_TIMEOUT_MIN (2U) /* Min timeout for TCP timers in jiffies */
140 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ)) /* RFC6298 2.1 initial RTO value */
141 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ)) /* RFC 1122 initial RTO value, now
142 * used as a fallback RTO for the
143 * initial data transmission if no
144 * valid RTT sample has been acquired,
145 * most likely due to retrans in 3WHS.
146 */
147
148 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
149 * for local resources.
150 */
151 #define TCP_KEEPALIVE_TIME (120*60*HZ) /* two hours */
152 #define TCP_KEEPALIVE_PROBES 9 /* Max of 9 keepalive probes */
153 #define TCP_KEEPALIVE_INTVL (75*HZ)
154
155 #define MAX_TCP_KEEPIDLE 32767
156 #define MAX_TCP_KEEPINTVL 32767
157 #define MAX_TCP_KEEPCNT 127
158 #define MAX_TCP_SYNCNT 127
159
160 #define TCP_SYNQ_INTERVAL (HZ/5) /* Period of SYNACK timer */
161
162 #define TCP_PAWS_24DAYS (60 * 60 * 24 * 24)
163 #define TCP_PAWS_MSL 60 /* Per-host timestamps are invalidated
164 * after this time. It should be equal
165 * (or greater than) TCP_TIMEWAIT_LEN
166 * to provide reliability equal to one
167 * provided by timewait state.
168 */
169 #define TCP_PAWS_WINDOW 1 /* Replay window for per-host
170 * timestamps. It must be less than
171 * minimal timewait lifetime.
172 */
173 /*
174 * TCP option
175 */
176
177 #define TCPOPT_NOP 1 /* Padding */
178 #define TCPOPT_EOL 0 /* End of options */
179 #define TCPOPT_MSS 2 /* Segment size negotiating */
180 #define TCPOPT_WINDOW 3 /* Window scaling */
181 #define TCPOPT_SACK_PERM 4 /* SACK Permitted */
182 #define TCPOPT_SACK 5 /* SACK Block */
183 #define TCPOPT_TIMESTAMP 8 /* Better RTT estimations/PAWS */
184 #define TCPOPT_MD5SIG 19 /* MD5 Signature (RFC2385) */
185 #define TCPOPT_FASTOPEN 34 /* Fast open (RFC7413) */
186 #define TCPOPT_EXP 254 /* Experimental */
187 /* Magic number to be after the option value for sharing TCP
188 * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
189 */
190 #define TCPOPT_FASTOPEN_MAGIC 0xF989
191 #define TCPOPT_SMC_MAGIC 0xE2D4C3D9
192
193 /*
194 * TCP option lengths
195 */
196
197 #define TCPOLEN_MSS 4
198 #define TCPOLEN_WINDOW 3
199 #define TCPOLEN_SACK_PERM 2
200 #define TCPOLEN_TIMESTAMP 10
201 #define TCPOLEN_MD5SIG 18
202 #define TCPOLEN_FASTOPEN_BASE 2
203 #define TCPOLEN_EXP_FASTOPEN_BASE 4
204 #define TCPOLEN_EXP_SMC_BASE 6
205
206 /* But this is what stacks really send out. */
207 #define TCPOLEN_TSTAMP_ALIGNED 12
208 #define TCPOLEN_WSCALE_ALIGNED 4
209 #define TCPOLEN_SACKPERM_ALIGNED 4
210 #define TCPOLEN_SACK_BASE 2
211 #define TCPOLEN_SACK_BASE_ALIGNED 4
212 #define TCPOLEN_SACK_PERBLOCK 8
213 #define TCPOLEN_MD5SIG_ALIGNED 20
214 #define TCPOLEN_MSS_ALIGNED 4
215 #define TCPOLEN_EXP_SMC_BASE_ALIGNED 8
216
217 /* Flags in tp->nonagle */
218 #define TCP_NAGLE_OFF 1 /* Nagle's algo is disabled */
219 #define TCP_NAGLE_CORK 2 /* Socket is corked */
220 #define TCP_NAGLE_PUSH 4 /* Cork is overridden for already queued data */
221
222 /* TCP thin-stream limits */
223 #define TCP_THIN_LINEAR_RETRIES 6 /* After 6 linear retries, do exp. backoff */
224
225 /* TCP initial congestion window as per rfc6928 */
226 #define TCP_INIT_CWND 10
227
228 /* Bit Flags for sysctl_tcp_fastopen */
229 #define TFO_CLIENT_ENABLE 1
230 #define TFO_SERVER_ENABLE 2
231 #define TFO_CLIENT_NO_COOKIE 4 /* Data in SYN w/o cookie option */
232
233 /* Accept SYN data w/o any cookie option */
234 #define TFO_SERVER_COOKIE_NOT_REQD 0x200
235
236 /* Force enable TFO on all listeners, i.e., not requiring the
237 * TCP_FASTOPEN socket option.
238 */
239 #define TFO_SERVER_WO_SOCKOPT1 0x400
240
241
242 /* sysctl variables for tcp */
243 extern int sysctl_tcp_max_orphans;
244 extern long sysctl_tcp_mem[3];
245
246 #define TCP_RACK_LOSS_DETECTION 0x1 /* Use RACK to detect losses */
247 #define TCP_RACK_STATIC_REO_WND 0x2 /* Use static RACK reo wnd */
248 #define TCP_RACK_NO_DUPTHRESH 0x4 /* Do not use DUPACK threshold in RACK */
249
250 extern atomic_long_t tcp_memory_allocated;
251 extern struct percpu_counter tcp_sockets_allocated;
252 extern unsigned long tcp_memory_pressure;
253
254 /* optimized version of sk_under_memory_pressure() for TCP sockets */
255 static inline bool tcp_under_memory_pressure(const struct sock *sk)
256 {
257 if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
258 mem_cgroup_under_socket_pressure(sk->sk_memcg))
259 return true;
260
261 return tcp_memory_pressure;
262 }
263 /*
264 * The next routines deal with comparing 32 bit unsigned ints
265 * and worry about wraparound (automatic with unsigned arithmetic).
266 */
267
268 static inline bool before(__u32 seq1, __u32 seq2)
269 {
270 return (__s32)(seq1-seq2) < 0;
271 }
272 #define after(seq2, seq1) before(seq1, seq2)
273
274 /* is s2<=s1<=s3 ? */
275 static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
276 {
277 return seq3 - seq2 >= seq1 - seq2;
278 }
279
280 static inline bool tcp_out_of_memory(struct sock *sk)
281 {
282 if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
283 sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
284 return true;
285 return false;
286 }
287
288 void sk_forced_mem_schedule(struct sock *sk, int size);
289
290 static inline bool tcp_too_many_orphans(struct sock *sk, int shift)
291 {
292 struct percpu_counter *ocp = sk->sk_prot->orphan_count;
293 int orphans = percpu_counter_read_positive(ocp);
294
295 if (orphans << shift > sysctl_tcp_max_orphans) {
296 orphans = percpu_counter_sum_positive(ocp);
297 if (orphans << shift > sysctl_tcp_max_orphans)
298 return true;
299 }
300 return false;
301 }
302
303 bool tcp_check_oom(struct sock *sk, int shift);
304
305
306 extern struct proto tcp_prot;
307
308 #define TCP_INC_STATS(net, field) SNMP_INC_STATS((net)->mib.tcp_statistics, field)
309 #define __TCP_INC_STATS(net, field) __SNMP_INC_STATS((net)->mib.tcp_statistics, field)
310 #define TCP_DEC_STATS(net, field) SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
311 #define TCP_ADD_STATS(net, field, val) SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
312
313 void tcp_tasklet_init(void);
314
315 int tcp_v4_err(struct sk_buff *skb, u32);
316
317 void tcp_shutdown(struct sock *sk, int how);
318
319 int tcp_v4_early_demux(struct sk_buff *skb);
320 int tcp_v4_rcv(struct sk_buff *skb);
321
322 int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw);
323 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
324 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size);
325 int tcp_sendpage(struct sock *sk, struct page *page, int offset, size_t size,
326 int flags);
327 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
328 size_t size, int flags);
329 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
330 size_t size, int flags);
331 void tcp_release_cb(struct sock *sk);
332 void tcp_wfree(struct sk_buff *skb);
333 void tcp_write_timer_handler(struct sock *sk);
334 void tcp_delack_timer_handler(struct sock *sk);
335 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg);
336 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb);
337 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb);
338 void tcp_rcv_space_adjust(struct sock *sk);
339 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
340 void tcp_twsk_destructor(struct sock *sk);
341 ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
342 struct pipe_inode_info *pipe, size_t len,
343 unsigned int flags);
344
345 void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks);
346 static inline void tcp_dec_quickack_mode(struct sock *sk,
347 const unsigned int pkts)
348 {
349 struct inet_connection_sock *icsk = inet_csk(sk);
350
351 if (icsk->icsk_ack.quick) {
352 if (pkts >= icsk->icsk_ack.quick) {
353 icsk->icsk_ack.quick = 0;
354 /* Leaving quickack mode we deflate ATO. */
355 icsk->icsk_ack.ato = TCP_ATO_MIN;
356 } else
357 icsk->icsk_ack.quick -= pkts;
358 }
359 }
360
361 #define TCP_ECN_OK 1
362 #define TCP_ECN_QUEUE_CWR 2
363 #define TCP_ECN_DEMAND_CWR 4
364 #define TCP_ECN_SEEN 8
365
366 enum tcp_tw_status {
367 TCP_TW_SUCCESS = 0,
368 TCP_TW_RST = 1,
369 TCP_TW_ACK = 2,
370 TCP_TW_SYN = 3
371 };
372
373
374 enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
375 struct sk_buff *skb,
376 const struct tcphdr *th);
377 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
378 struct request_sock *req, bool fastopen,
379 bool *lost_race);
380 int tcp_child_process(struct sock *parent, struct sock *child,
381 struct sk_buff *skb);
382 void tcp_enter_loss(struct sock *sk);
383 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag);
384 void tcp_clear_retrans(struct tcp_sock *tp);
385 void tcp_update_metrics(struct sock *sk);
386 void tcp_init_metrics(struct sock *sk);
387 void tcp_metrics_init(void);
388 bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst);
389 void tcp_close(struct sock *sk, long timeout);
390 void tcp_init_sock(struct sock *sk);
391 void tcp_init_transfer(struct sock *sk, int bpf_op);
392 __poll_t tcp_poll(struct file *file, struct socket *sock,
393 struct poll_table_struct *wait);
394 int tcp_getsockopt(struct sock *sk, int level, int optname,
395 char __user *optval, int __user *optlen);
396 int tcp_setsockopt(struct sock *sk, int level, int optname,
397 char __user *optval, unsigned int optlen);
398 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
399 char __user *optval, int __user *optlen);
400 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
401 char __user *optval, unsigned int optlen);
402 void tcp_set_keepalive(struct sock *sk, int val);
403 void tcp_syn_ack_timeout(const struct request_sock *req);
404 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
405 int flags, int *addr_len);
406 int tcp_set_rcvlowat(struct sock *sk, int val);
407 void tcp_data_ready(struct sock *sk);
408 #ifdef CONFIG_MMU
409 int tcp_mmap(struct file *file, struct socket *sock,
410 struct vm_area_struct *vma);
411 #endif
412 void tcp_parse_options(const struct net *net, const struct sk_buff *skb,
413 struct tcp_options_received *opt_rx,
414 int estab, struct tcp_fastopen_cookie *foc);
415 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th);
416
417 /*
418 * TCP v4 functions exported for the inet6 API
419 */
420
421 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
422 void tcp_v4_mtu_reduced(struct sock *sk);
423 void tcp_req_err(struct sock *sk, u32 seq, bool abort);
424 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
425 struct sock *tcp_create_openreq_child(const struct sock *sk,
426 struct request_sock *req,
427 struct sk_buff *skb);
428 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
429 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
430 struct request_sock *req,
431 struct dst_entry *dst,
432 struct request_sock *req_unhash,
433 bool *own_req);
434 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
435 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
436 int tcp_connect(struct sock *sk);
437 enum tcp_synack_type {
438 TCP_SYNACK_NORMAL,
439 TCP_SYNACK_FASTOPEN,
440 TCP_SYNACK_COOKIE,
441 };
442 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
443 struct request_sock *req,
444 struct tcp_fastopen_cookie *foc,
445 enum tcp_synack_type synack_type);
446 int tcp_disconnect(struct sock *sk, int flags);
447
448 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
449 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
450 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
451
452 /* From syncookies.c */
453 struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
454 struct request_sock *req,
455 struct dst_entry *dst, u32 tsoff);
456 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
457 u32 cookie);
458 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
459 #ifdef CONFIG_SYN_COOKIES
460
461 /* Syncookies use a monotonic timer which increments every 60 seconds.
462 * This counter is used both as a hash input and partially encoded into
463 * the cookie value. A cookie is only validated further if the delta
464 * between the current counter value and the encoded one is less than this,
465 * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
466 * the counter advances immediately after a cookie is generated).
467 */
468 #define MAX_SYNCOOKIE_AGE 2
469 #define TCP_SYNCOOKIE_PERIOD (60 * HZ)
470 #define TCP_SYNCOOKIE_VALID (MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD)
471
472 /* syncookies: remember time of last synqueue overflow
473 * But do not dirty this field too often (once per second is enough)
474 * It is racy as we do not hold a lock, but race is very minor.
475 */
476 static inline void tcp_synq_overflow(const struct sock *sk)
477 {
478 unsigned int last_overflow;
479 unsigned int now = jiffies;
480
481 if (sk->sk_reuseport) {
482 struct sock_reuseport *reuse;
483
484 reuse = rcu_dereference(sk->sk_reuseport_cb);
485 if (likely(reuse)) {
486 last_overflow = READ_ONCE(reuse->synq_overflow_ts);
487 if (!time_between32(now, last_overflow,
488 last_overflow + HZ))
489 WRITE_ONCE(reuse->synq_overflow_ts, now);
490 return;
491 }
492 }
493
494 last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
495 if (!time_between32(now, last_overflow, last_overflow + HZ))
496 WRITE_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp, now);
497 }
498
499 /* syncookies: no recent synqueue overflow on this listening socket? */
500 static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
501 {
502 unsigned int last_overflow;
503 unsigned int now = jiffies;
504
505 if (sk->sk_reuseport) {
506 struct sock_reuseport *reuse;
507
508 reuse = rcu_dereference(sk->sk_reuseport_cb);
509 if (likely(reuse)) {
510 last_overflow = READ_ONCE(reuse->synq_overflow_ts);
511 return !time_between32(now, last_overflow - HZ,
512 last_overflow +
513 TCP_SYNCOOKIE_VALID);
514 }
515 }
516
517 last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
518
519 /* If last_overflow <= jiffies <= last_overflow + TCP_SYNCOOKIE_VALID,
520 * then we're under synflood. However, we have to use
521 * 'last_overflow - HZ' as lower bound. That's because a concurrent
522 * tcp_synq_overflow() could update .ts_recent_stamp after we read
523 * jiffies but before we store .ts_recent_stamp into last_overflow,
524 * which could lead to rejecting a valid syncookie.
525 */
526 return !time_between32(now, last_overflow - HZ,
527 last_overflow + TCP_SYNCOOKIE_VALID);
528 }
529
530 static inline u32 tcp_cookie_time(void)
531 {
532 u64 val = get_jiffies_64();
533
534 do_div(val, TCP_SYNCOOKIE_PERIOD);
535 return val;
536 }
537
538 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
539 u16 *mssp);
540 __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss);
541 u64 cookie_init_timestamp(struct request_sock *req);
542 bool cookie_timestamp_decode(const struct net *net,
543 struct tcp_options_received *opt);
544 bool cookie_ecn_ok(const struct tcp_options_received *opt,
545 const struct net *net, const struct dst_entry *dst);
546
547 /* From net/ipv6/syncookies.c */
548 int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th,
549 u32 cookie);
550 struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
551
552 u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
553 const struct tcphdr *th, u16 *mssp);
554 __u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss);
555 #endif
556 /* tcp_output.c */
557
558 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
559 int nonagle);
560 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
561 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
562 void tcp_retransmit_timer(struct sock *sk);
563 void tcp_xmit_retransmit_queue(struct sock *);
564 void tcp_simple_retransmit(struct sock *);
565 void tcp_enter_recovery(struct sock *sk, bool ece_ack);
566 int tcp_trim_head(struct sock *, struct sk_buff *, u32);
567 enum tcp_queue {
568 TCP_FRAG_IN_WRITE_QUEUE,
569 TCP_FRAG_IN_RTX_QUEUE,
570 };
571 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
572 struct sk_buff *skb, u32 len,
573 unsigned int mss_now, gfp_t gfp);
574
575 void tcp_send_probe0(struct sock *);
576 void tcp_send_partial(struct sock *);
577 int tcp_write_wakeup(struct sock *, int mib);
578 void tcp_send_fin(struct sock *sk);
579 void tcp_send_active_reset(struct sock *sk, gfp_t priority);
580 int tcp_send_synack(struct sock *);
581 void tcp_push_one(struct sock *, unsigned int mss_now);
582 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt);
583 void tcp_send_ack(struct sock *sk);
584 void tcp_send_delayed_ack(struct sock *sk);
585 void tcp_send_loss_probe(struct sock *sk);
586 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto);
587 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
588 const struct sk_buff *next_skb);
589
590 /* tcp_input.c */
591 void tcp_rearm_rto(struct sock *sk);
592 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req);
593 void tcp_reset(struct sock *sk);
594 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb);
595 void tcp_fin(struct sock *sk);
596
597 /* tcp_timer.c */
598 void tcp_init_xmit_timers(struct sock *);
599 static inline void tcp_clear_xmit_timers(struct sock *sk)
600 {
601 if (hrtimer_try_to_cancel(&tcp_sk(sk)->pacing_timer) == 1)
602 __sock_put(sk);
603
604 if (hrtimer_try_to_cancel(&tcp_sk(sk)->compressed_ack_timer) == 1)
605 __sock_put(sk);
606
607 inet_csk_clear_xmit_timers(sk);
608 }
609
610 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
611 unsigned int tcp_current_mss(struct sock *sk);
612
613 /* Bound MSS / TSO packet size with the half of the window */
614 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
615 {
616 int cutoff;
617
618 /* When peer uses tiny windows, there is no use in packetizing
619 * to sub-MSS pieces for the sake of SWS or making sure there
620 * are enough packets in the pipe for fast recovery.
621 *
622 * On the other hand, for extremely large MSS devices, handling
623 * smaller than MSS windows in this way does make sense.
624 */
625 if (tp->max_window > TCP_MSS_DEFAULT)
626 cutoff = (tp->max_window >> 1);
627 else
628 cutoff = tp->max_window;
629
630 if (cutoff && pktsize > cutoff)
631 return max_t(int, cutoff, 68U - tp->tcp_header_len);
632 else
633 return pktsize;
634 }
635
636 /* tcp.c */
637 void tcp_get_info(struct sock *, struct tcp_info *);
638
639 /* Read 'sendfile()'-style from a TCP socket */
640 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
641 sk_read_actor_t recv_actor);
642
643 void tcp_initialize_rcv_mss(struct sock *sk);
644
645 int tcp_mtu_to_mss(struct sock *sk, int pmtu);
646 int tcp_mss_to_mtu(struct sock *sk, int mss);
647 void tcp_mtup_init(struct sock *sk);
648 void tcp_init_buffer_space(struct sock *sk);
649
650 static inline void tcp_bound_rto(const struct sock *sk)
651 {
652 if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
653 inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
654 }
655
656 static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
657 {
658 return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
659 }
660
661 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
662 {
663 tp->pred_flags = htonl((tp->tcp_header_len << 26) |
664 ntohl(TCP_FLAG_ACK) |
665 snd_wnd);
666 }
667
668 static inline void tcp_fast_path_on(struct tcp_sock *tp)
669 {
670 __tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
671 }
672
673 static inline void tcp_fast_path_check(struct sock *sk)
674 {
675 struct tcp_sock *tp = tcp_sk(sk);
676
677 if (RB_EMPTY_ROOT(&tp->out_of_order_queue) &&
678 tp->rcv_wnd &&
679 atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
680 !tp->urg_data)
681 tcp_fast_path_on(tp);
682 }
683
684 /* Compute the actual rto_min value */
685 static inline u32 tcp_rto_min(struct sock *sk)
686 {
687 const struct dst_entry *dst = __sk_dst_get(sk);
688 u32 rto_min = TCP_RTO_MIN;
689
690 if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
691 rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
692 return rto_min;
693 }
694
695 static inline u32 tcp_rto_min_us(struct sock *sk)
696 {
697 return jiffies_to_usecs(tcp_rto_min(sk));
698 }
699
700 static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
701 {
702 return dst_metric_locked(dst, RTAX_CC_ALGO);
703 }
704
705 /* Minimum RTT in usec. ~0 means not available. */
706 static inline u32 tcp_min_rtt(const struct tcp_sock *tp)
707 {
708 return minmax_get(&tp->rtt_min);
709 }
710
711 /* Compute the actual receive window we are currently advertising.
712 * Rcv_nxt can be after the window if our peer push more data
713 * than the offered window.
714 */
715 static inline u32 tcp_receive_window(const struct tcp_sock *tp)
716 {
717 s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
718
719 if (win < 0)
720 win = 0;
721 return (u32) win;
722 }
723
724 /* Choose a new window, without checks for shrinking, and without
725 * scaling applied to the result. The caller does these things
726 * if necessary. This is a "raw" window selection.
727 */
728 u32 __tcp_select_window(struct sock *sk);
729
730 void tcp_send_window_probe(struct sock *sk);
731
732 /* TCP uses 32bit jiffies to save some space.
733 * Note that this is different from tcp_time_stamp, which
734 * historically has been the same until linux-4.13.
735 */
736 #define tcp_jiffies32 ((u32)jiffies)
737
738 /*
739 * Deliver a 32bit value for TCP timestamp option (RFC 7323)
740 * It is no longer tied to jiffies, but to 1 ms clock.
741 * Note: double check if you want to use tcp_jiffies32 instead of this.
742 */
743 #define TCP_TS_HZ 1000
744
745 static inline u64 tcp_clock_ns(void)
746 {
747 return ktime_get_ns();
748 }
749
750 static inline u64 tcp_clock_us(void)
751 {
752 return div_u64(tcp_clock_ns(), NSEC_PER_USEC);
753 }
754
755 /* This should only be used in contexts where tp->tcp_mstamp is up to date */
756 static inline u32 tcp_time_stamp(const struct tcp_sock *tp)
757 {
758 return div_u64(tp->tcp_mstamp, USEC_PER_SEC / TCP_TS_HZ);
759 }
760
761 /* Could use tcp_clock_us() / 1000, but this version uses a single divide */
762 static inline u32 tcp_time_stamp_raw(void)
763 {
764 return div_u64(tcp_clock_ns(), NSEC_PER_SEC / TCP_TS_HZ);
765 }
766
767 void tcp_mstamp_refresh(struct tcp_sock *tp);
768
769 static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0)
770 {
771 return max_t(s64, t1 - t0, 0);
772 }
773
774 static inline u32 tcp_skb_timestamp(const struct sk_buff *skb)
775 {
776 return div_u64(skb->skb_mstamp_ns, NSEC_PER_SEC / TCP_TS_HZ);
777 }
778
779 /* provide the departure time in us unit */
780 static inline u64 tcp_skb_timestamp_us(const struct sk_buff *skb)
781 {
782 return div_u64(skb->skb_mstamp_ns, NSEC_PER_USEC);
783 }
784
785
786 #define tcp_flag_byte(th) (((u_int8_t *)th)[13])
787
788 #define TCPHDR_FIN 0x01
789 #define TCPHDR_SYN 0x02
790 #define TCPHDR_RST 0x04
791 #define TCPHDR_PSH 0x08
792 #define TCPHDR_ACK 0x10
793 #define TCPHDR_URG 0x20
794 #define TCPHDR_ECE 0x40
795 #define TCPHDR_CWR 0x80
796
797 #define TCPHDR_SYN_ECN (TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR)
798
799 /* This is what the send packet queuing engine uses to pass
800 * TCP per-packet control information to the transmission code.
801 * We also store the host-order sequence numbers in here too.
802 * This is 44 bytes if IPV6 is enabled.
803 * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
804 */
805 struct tcp_skb_cb {
806 __u32 seq; /* Starting sequence number */
807 __u32 end_seq; /* SEQ + FIN + SYN + datalen */
808 union {
809 /* Note : tcp_tw_isn is used in input path only
810 * (isn chosen by tcp_timewait_state_process())
811 *
812 * tcp_gso_segs/size are used in write queue only,
813 * cf tcp_skb_pcount()/tcp_skb_mss()
814 */
815 __u32 tcp_tw_isn;
816 struct {
817 u16 tcp_gso_segs;
818 u16 tcp_gso_size;
819 };
820 };
821 __u8 tcp_flags; /* TCP header flags. (tcp[13]) */
822
823 __u8 sacked; /* State flags for SACK. */
824 #define TCPCB_SACKED_ACKED 0x01 /* SKB ACK'd by a SACK block */
825 #define TCPCB_SACKED_RETRANS 0x02 /* SKB retransmitted */
826 #define TCPCB_LOST 0x04 /* SKB is lost */
827 #define TCPCB_TAGBITS 0x07 /* All tag bits */
828 #define TCPCB_REPAIRED 0x10 /* SKB repaired (no skb_mstamp_ns) */
829 #define TCPCB_EVER_RETRANS 0x80 /* Ever retransmitted frame */
830 #define TCPCB_RETRANS (TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS| \
831 TCPCB_REPAIRED)
832
833 __u8 ip_dsfield; /* IPv4 tos or IPv6 dsfield */
834 __u8 txstamp_ack:1, /* Record TX timestamp for ack? */
835 eor:1, /* Is skb MSG_EOR marked? */
836 has_rxtstamp:1, /* SKB has a RX timestamp */
837 unused:5;
838 __u32 ack_seq; /* Sequence number ACK'd */
839 union {
840 struct {
841 /* There is space for up to 24 bytes */
842 __u32 in_flight:30,/* Bytes in flight at transmit */
843 is_app_limited:1, /* cwnd not fully used? */
844 unused:1;
845 /* pkts S/ACKed so far upon tx of skb, incl retrans: */
846 __u32 delivered;
847 /* start of send pipeline phase */
848 u64 first_tx_mstamp;
849 /* when we reached the "delivered" count */
850 u64 delivered_mstamp;
851 } tx; /* only used for outgoing skbs */
852 union {
853 struct inet_skb_parm h4;
854 #if IS_ENABLED(CONFIG_IPV6)
855 struct inet6_skb_parm h6;
856 #endif
857 } header; /* For incoming skbs */
858 struct {
859 __u32 flags;
860 struct sock *sk_redir;
861 void *data_end;
862 } bpf;
863 };
864 };
865
866 #define TCP_SKB_CB(__skb) ((struct tcp_skb_cb *)&((__skb)->cb[0]))
867
868 static inline void bpf_compute_data_end_sk_skb(struct sk_buff *skb)
869 {
870 TCP_SKB_CB(skb)->bpf.data_end = skb->data + skb_headlen(skb);
871 }
872
873 static inline bool tcp_skb_bpf_ingress(const struct sk_buff *skb)
874 {
875 return TCP_SKB_CB(skb)->bpf.flags & BPF_F_INGRESS;
876 }
877
878 static inline struct sock *tcp_skb_bpf_redirect_fetch(struct sk_buff *skb)
879 {
880 return TCP_SKB_CB(skb)->bpf.sk_redir;
881 }
882
883 static inline void tcp_skb_bpf_redirect_clear(struct sk_buff *skb)
884 {
885 TCP_SKB_CB(skb)->bpf.sk_redir = NULL;
886 }
887
888 #if IS_ENABLED(CONFIG_IPV6)
889 /* This is the variant of inet6_iif() that must be used by TCP,
890 * as TCP moves IP6CB into a different location in skb->cb[]
891 */
892 static inline int tcp_v6_iif(const struct sk_buff *skb)
893 {
894 return TCP_SKB_CB(skb)->header.h6.iif;
895 }
896
897 static inline int tcp_v6_iif_l3_slave(const struct sk_buff *skb)
898 {
899 bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags);
900
901 return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif;
902 }
903
904 /* TCP_SKB_CB reference means this can not be used from early demux */
905 static inline int tcp_v6_sdif(const struct sk_buff *skb)
906 {
907 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
908 if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags))
909 return TCP_SKB_CB(skb)->header.h6.iif;
910 #endif
911 return 0;
912 }
913 #endif
914
915 static inline bool inet_exact_dif_match(struct net *net, struct sk_buff *skb)
916 {
917 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
918 if (!net->ipv4.sysctl_tcp_l3mdev_accept &&
919 skb && ipv4_l3mdev_skb(IPCB(skb)->flags))
920 return true;
921 #endif
922 return false;
923 }
924
925 /* TCP_SKB_CB reference means this can not be used from early demux */
926 static inline int tcp_v4_sdif(struct sk_buff *skb)
927 {
928 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
929 if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags))
930 return TCP_SKB_CB(skb)->header.h4.iif;
931 #endif
932 return 0;
933 }
934
935 /* Due to TSO, an SKB can be composed of multiple actual
936 * packets. To keep these tracked properly, we use this.
937 */
938 static inline int tcp_skb_pcount(const struct sk_buff *skb)
939 {
940 return TCP_SKB_CB(skb)->tcp_gso_segs;
941 }
942
943 static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
944 {
945 TCP_SKB_CB(skb)->tcp_gso_segs = segs;
946 }
947
948 static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
949 {
950 TCP_SKB_CB(skb)->tcp_gso_segs += segs;
951 }
952
953 /* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */
954 static inline int tcp_skb_mss(const struct sk_buff *skb)
955 {
956 return TCP_SKB_CB(skb)->tcp_gso_size;
957 }
958
959 static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb)
960 {
961 return likely(!TCP_SKB_CB(skb)->eor);
962 }
963
964 /* Events passed to congestion control interface */
965 enum tcp_ca_event {
966 CA_EVENT_TX_START, /* first transmit when no packets in flight */
967 CA_EVENT_CWND_RESTART, /* congestion window restart */
968 CA_EVENT_COMPLETE_CWR, /* end of congestion recovery */
969 CA_EVENT_LOSS, /* loss timeout */
970 CA_EVENT_ECN_NO_CE, /* ECT set, but not CE marked */
971 CA_EVENT_ECN_IS_CE, /* received CE marked IP packet */
972 };
973
974 /* Information about inbound ACK, passed to cong_ops->in_ack_event() */
975 enum tcp_ca_ack_event_flags {
976 CA_ACK_SLOWPATH = (1 << 0), /* In slow path processing */
977 CA_ACK_WIN_UPDATE = (1 << 1), /* ACK updated window */
978 CA_ACK_ECE = (1 << 2), /* ECE bit is set on ack */
979 };
980
981 /*
982 * Interface for adding new TCP congestion control handlers
983 */
984 #define TCP_CA_NAME_MAX 16
985 #define TCP_CA_MAX 128
986 #define TCP_CA_BUF_MAX (TCP_CA_NAME_MAX*TCP_CA_MAX)
987
988 #define TCP_CA_UNSPEC 0
989
990 /* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
991 #define TCP_CONG_NON_RESTRICTED 0x1
992 /* Requires ECN/ECT set on all packets */
993 #define TCP_CONG_NEEDS_ECN 0x2
994
995 union tcp_cc_info;
996
997 struct ack_sample {
998 u32 pkts_acked;
999 s32 rtt_us;
1000 u32 in_flight;
1001 };
1002
1003 /* A rate sample measures the number of (original/retransmitted) data
1004 * packets delivered "delivered" over an interval of time "interval_us".
1005 * The tcp_rate.c code fills in the rate sample, and congestion
1006 * control modules that define a cong_control function to run at the end
1007 * of ACK processing can optionally chose to consult this sample when
1008 * setting cwnd and pacing rate.
1009 * A sample is invalid if "delivered" or "interval_us" is negative.
1010 */
1011 struct rate_sample {
1012 u64 prior_mstamp; /* starting timestamp for interval */
1013 u32 prior_delivered; /* tp->delivered at "prior_mstamp" */
1014 s32 delivered; /* number of packets delivered over interval */
1015 long interval_us; /* time for tp->delivered to incr "delivered" */
1016 u32 snd_interval_us; /* snd interval for delivered packets */
1017 u32 rcv_interval_us; /* rcv interval for delivered packets */
1018 long rtt_us; /* RTT of last (S)ACKed packet (or -1) */
1019 int losses; /* number of packets marked lost upon ACK */
1020 u32 acked_sacked; /* number of packets newly (S)ACKed upon ACK */
1021 u32 prior_in_flight; /* in flight before this ACK */
1022 bool is_app_limited; /* is sample from packet with bubble in pipe? */
1023 bool is_retrans; /* is sample from retransmission? */
1024 bool is_ack_delayed; /* is this (likely) a delayed ACK? */
1025 };
1026
1027 struct tcp_congestion_ops {
1028 struct list_head list;
1029 u32 key;
1030 u32 flags;
1031
1032 /* initialize private data (optional) */
1033 void (*init)(struct sock *sk);
1034 /* cleanup private data (optional) */
1035 void (*release)(struct sock *sk);
1036
1037 /* return slow start threshold (required) */
1038 u32 (*ssthresh)(struct sock *sk);
1039 /* do new cwnd calculation (required) */
1040 void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
1041 /* call before changing ca_state (optional) */
1042 void (*set_state)(struct sock *sk, u8 new_state);
1043 /* call when cwnd event occurs (optional) */
1044 void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
1045 /* call when ack arrives (optional) */
1046 void (*in_ack_event)(struct sock *sk, u32 flags);
1047 /* new value of cwnd after loss (required) */
1048 u32 (*undo_cwnd)(struct sock *sk);
1049 /* hook for packet ack accounting (optional) */
1050 void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample);
1051 /* override sysctl_tcp_min_tso_segs */
1052 u32 (*min_tso_segs)(struct sock *sk);
1053 /* returns the multiplier used in tcp_sndbuf_expand (optional) */
1054 u32 (*sndbuf_expand)(struct sock *sk);
1055 /* call when packets are delivered to update cwnd and pacing rate,
1056 * after all the ca_state processing. (optional)
1057 */
1058 void (*cong_control)(struct sock *sk, const struct rate_sample *rs);
1059 /* get info for inet_diag (optional) */
1060 size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
1061 union tcp_cc_info *info);
1062
1063 char name[TCP_CA_NAME_MAX];
1064 struct module *owner;
1065 };
1066
1067 int tcp_register_congestion_control(struct tcp_congestion_ops *type);
1068 void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
1069
1070 void tcp_assign_congestion_control(struct sock *sk);
1071 void tcp_init_congestion_control(struct sock *sk);
1072 void tcp_cleanup_congestion_control(struct sock *sk);
1073 int tcp_set_default_congestion_control(struct net *net, const char *name);
1074 void tcp_get_default_congestion_control(struct net *net, char *name);
1075 void tcp_get_available_congestion_control(char *buf, size_t len);
1076 void tcp_get_allowed_congestion_control(char *buf, size_t len);
1077 int tcp_set_allowed_congestion_control(char *allowed);
1078 int tcp_set_congestion_control(struct sock *sk, const char *name, bool load,
1079 bool reinit, bool cap_net_admin);
1080 u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
1081 void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
1082
1083 u32 tcp_reno_ssthresh(struct sock *sk);
1084 u32 tcp_reno_undo_cwnd(struct sock *sk);
1085 void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
1086 extern struct tcp_congestion_ops tcp_reno;
1087
1088 struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
1089 u32 tcp_ca_get_key_by_name(struct net *net, const char *name, bool *ecn_ca);
1090 #ifdef CONFIG_INET
1091 char *tcp_ca_get_name_by_key(u32 key, char *buffer);
1092 #else
1093 static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
1094 {
1095 return NULL;
1096 }
1097 #endif
1098
1099 static inline bool tcp_ca_needs_ecn(const struct sock *sk)
1100 {
1101 const struct inet_connection_sock *icsk = inet_csk(sk);
1102
1103 return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
1104 }
1105
1106 static inline void tcp_set_ca_state(struct sock *sk, const u8 ca_state)
1107 {
1108 struct inet_connection_sock *icsk = inet_csk(sk);
1109
1110 if (icsk->icsk_ca_ops->set_state)
1111 icsk->icsk_ca_ops->set_state(sk, ca_state);
1112 icsk->icsk_ca_state = ca_state;
1113 }
1114
1115 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
1116 {
1117 const struct inet_connection_sock *icsk = inet_csk(sk);
1118
1119 if (icsk->icsk_ca_ops->cwnd_event)
1120 icsk->icsk_ca_ops->cwnd_event(sk, event);
1121 }
1122
1123 /* From tcp_rate.c */
1124 void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb);
1125 void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb,
1126 struct rate_sample *rs);
1127 void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost,
1128 bool is_sack_reneg, struct rate_sample *rs);
1129 void tcp_rate_check_app_limited(struct sock *sk);
1130
1131 /* These functions determine how the current flow behaves in respect of SACK
1132 * handling. SACK is negotiated with the peer, and therefore it can vary
1133 * between different flows.
1134 *
1135 * tcp_is_sack - SACK enabled
1136 * tcp_is_reno - No SACK
1137 */
1138 static inline int tcp_is_sack(const struct tcp_sock *tp)
1139 {
1140 return likely(tp->rx_opt.sack_ok);
1141 }
1142
1143 static inline bool tcp_is_reno(const struct tcp_sock *tp)
1144 {
1145 return !tcp_is_sack(tp);
1146 }
1147
1148 static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
1149 {
1150 return tp->sacked_out + tp->lost_out;
1151 }
1152
1153 /* This determines how many packets are "in the network" to the best
1154 * of our knowledge. In many cases it is conservative, but where
1155 * detailed information is available from the receiver (via SACK
1156 * blocks etc.) we can make more aggressive calculations.
1157 *
1158 * Use this for decisions involving congestion control, use just
1159 * tp->packets_out to determine if the send queue is empty or not.
1160 *
1161 * Read this equation as:
1162 *
1163 * "Packets sent once on transmission queue" MINUS
1164 * "Packets left network, but not honestly ACKed yet" PLUS
1165 * "Packets fast retransmitted"
1166 */
1167 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
1168 {
1169 return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
1170 }
1171
1172 #define TCP_INFINITE_SSTHRESH 0x7fffffff
1173
1174 static inline bool tcp_in_slow_start(const struct tcp_sock *tp)
1175 {
1176 return tp->snd_cwnd < tp->snd_ssthresh;
1177 }
1178
1179 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
1180 {
1181 return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
1182 }
1183
1184 static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
1185 {
1186 return (TCPF_CA_CWR | TCPF_CA_Recovery) &
1187 (1 << inet_csk(sk)->icsk_ca_state);
1188 }
1189
1190 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
1191 * The exception is cwnd reduction phase, when cwnd is decreasing towards
1192 * ssthresh.
1193 */
1194 static inline __u32 tcp_current_ssthresh(const struct sock *sk)
1195 {
1196 const struct tcp_sock *tp = tcp_sk(sk);
1197
1198 if (tcp_in_cwnd_reduction(sk))
1199 return tp->snd_ssthresh;
1200 else
1201 return max(tp->snd_ssthresh,
1202 ((tp->snd_cwnd >> 1) +
1203 (tp->snd_cwnd >> 2)));
1204 }
1205
1206 /* Use define here intentionally to get WARN_ON location shown at the caller */
1207 #define tcp_verify_left_out(tp) WARN_ON(tcp_left_out(tp) > tp->packets_out)
1208
1209 void tcp_enter_cwr(struct sock *sk);
1210 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
1211
1212 /* The maximum number of MSS of available cwnd for which TSO defers
1213 * sending if not using sysctl_tcp_tso_win_divisor.
1214 */
1215 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
1216 {
1217 return 3;
1218 }
1219
1220 /* Returns end sequence number of the receiver's advertised window */
1221 static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1222 {
1223 return tp->snd_una + tp->snd_wnd;
1224 }
1225
1226 /* We follow the spirit of RFC2861 to validate cwnd but implement a more
1227 * flexible approach. The RFC suggests cwnd should not be raised unless
1228 * it was fully used previously. And that's exactly what we do in
1229 * congestion avoidance mode. But in slow start we allow cwnd to grow
1230 * as long as the application has used half the cwnd.
1231 * Example :
1232 * cwnd is 10 (IW10), but application sends 9 frames.
1233 * We allow cwnd to reach 18 when all frames are ACKed.
1234 * This check is safe because it's as aggressive as slow start which already
1235 * risks 100% overshoot. The advantage is that we discourage application to
1236 * either send more filler packets or data to artificially blow up the cwnd
1237 * usage, and allow application-limited process to probe bw more aggressively.
1238 */
1239 static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1240 {
1241 const struct tcp_sock *tp = tcp_sk(sk);
1242
1243 /* If in slow start, ensure cwnd grows to twice what was ACKed. */
1244 if (tcp_in_slow_start(tp))
1245 return tp->snd_cwnd < 2 * tp->max_packets_out;
1246
1247 return tp->is_cwnd_limited;
1248 }
1249
1250 /* BBR congestion control needs pacing.
1251 * Same remark for SO_MAX_PACING_RATE.
1252 * sch_fq packet scheduler is efficiently handling pacing,
1253 * but is not always installed/used.
1254 * Return true if TCP stack should pace packets itself.
1255 */
1256 static inline bool tcp_needs_internal_pacing(const struct sock *sk)
1257 {
1258 return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED;
1259 }
1260
1261 /* Return in jiffies the delay before one skb is sent.
1262 * If @skb is NULL, we look at EDT for next packet being sent on the socket.
1263 */
1264 static inline unsigned long tcp_pacing_delay(const struct sock *sk,
1265 const struct sk_buff *skb)
1266 {
1267 s64 pacing_delay = skb ? skb->tstamp : tcp_sk(sk)->tcp_wstamp_ns;
1268
1269 pacing_delay -= tcp_sk(sk)->tcp_clock_cache;
1270
1271 return pacing_delay > 0 ? nsecs_to_jiffies(pacing_delay) : 0;
1272 }
1273
1274 static inline void tcp_reset_xmit_timer(struct sock *sk,
1275 const int what,
1276 unsigned long when,
1277 const unsigned long max_when,
1278 const struct sk_buff *skb)
1279 {
1280 inet_csk_reset_xmit_timer(sk, what, when + tcp_pacing_delay(sk, skb),
1281 max_when);
1282 }
1283
1284 /* Something is really bad, we could not queue an additional packet,
1285 * because qdisc is full or receiver sent a 0 window, or we are paced.
1286 * We do not want to add fuel to the fire, or abort too early,
1287 * so make sure the timer we arm now is at least 200ms in the future,
1288 * regardless of current icsk_rto value (as it could be ~2ms)
1289 */
1290 static inline unsigned long tcp_probe0_base(const struct sock *sk)
1291 {
1292 return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN);
1293 }
1294
1295 /* Variant of inet_csk_rto_backoff() used for zero window probes */
1296 static inline unsigned long tcp_probe0_when(const struct sock *sk,
1297 unsigned long max_when)
1298 {
1299 u64 when = (u64)tcp_probe0_base(sk) << inet_csk(sk)->icsk_backoff;
1300
1301 return (unsigned long)min_t(u64, when, max_when);
1302 }
1303
1304 static inline void tcp_check_probe_timer(struct sock *sk)
1305 {
1306 if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending)
1307 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1308 tcp_probe0_base(sk), TCP_RTO_MAX,
1309 NULL);
1310 }
1311
1312 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1313 {
1314 tp->snd_wl1 = seq;
1315 }
1316
1317 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1318 {
1319 tp->snd_wl1 = seq;
1320 }
1321
1322 /*
1323 * Calculate(/check) TCP checksum
1324 */
1325 static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1326 __be32 daddr, __wsum base)
1327 {
1328 return csum_tcpudp_magic(saddr, daddr, len, IPPROTO_TCP, base);
1329 }
1330
1331 static inline bool tcp_checksum_complete(struct sk_buff *skb)
1332 {
1333 return !skb_csum_unnecessary(skb) &&
1334 __skb_checksum_complete(skb);
1335 }
1336
1337 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb);
1338 int tcp_filter(struct sock *sk, struct sk_buff *skb);
1339 void tcp_set_state(struct sock *sk, int state);
1340 void tcp_done(struct sock *sk);
1341 int tcp_abort(struct sock *sk, int err);
1342
1343 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1344 {
1345 rx_opt->dsack = 0;
1346 rx_opt->num_sacks = 0;
1347 }
1348
1349 u32 tcp_default_init_rwnd(u32 mss);
1350 void tcp_cwnd_restart(struct sock *sk, s32 delta);
1351
1352 static inline void tcp_slow_start_after_idle_check(struct sock *sk)
1353 {
1354 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1355 struct tcp_sock *tp = tcp_sk(sk);
1356 s32 delta;
1357
1358 if (!sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle || tp->packets_out ||
1359 ca_ops->cong_control)
1360 return;
1361 delta = tcp_jiffies32 - tp->lsndtime;
1362 if (delta > inet_csk(sk)->icsk_rto)
1363 tcp_cwnd_restart(sk, delta);
1364 }
1365
1366 /* Determine a window scaling and initial window to offer. */
1367 void tcp_select_initial_window(const struct sock *sk, int __space,
1368 __u32 mss, __u32 *rcv_wnd,
1369 __u32 *window_clamp, int wscale_ok,
1370 __u8 *rcv_wscale, __u32 init_rcv_wnd);
1371
1372 static inline int tcp_win_from_space(const struct sock *sk, int space)
1373 {
1374 int tcp_adv_win_scale = sock_net(sk)->ipv4.sysctl_tcp_adv_win_scale;
1375
1376 return tcp_adv_win_scale <= 0 ?
1377 (space>>(-tcp_adv_win_scale)) :
1378 space - (space>>tcp_adv_win_scale);
1379 }
1380
1381 /* Note: caller must be prepared to deal with negative returns */
1382 static inline int tcp_space(const struct sock *sk)
1383 {
1384 return tcp_win_from_space(sk, sk->sk_rcvbuf - sk->sk_backlog.len -
1385 atomic_read(&sk->sk_rmem_alloc));
1386 }
1387
1388 static inline int tcp_full_space(const struct sock *sk)
1389 {
1390 return tcp_win_from_space(sk, sk->sk_rcvbuf);
1391 }
1392
1393 extern void tcp_openreq_init_rwin(struct request_sock *req,
1394 const struct sock *sk_listener,
1395 const struct dst_entry *dst);
1396
1397 void tcp_enter_memory_pressure(struct sock *sk);
1398 void tcp_leave_memory_pressure(struct sock *sk);
1399
1400 static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1401 {
1402 struct net *net = sock_net((struct sock *)tp);
1403
1404 return tp->keepalive_intvl ? : net->ipv4.sysctl_tcp_keepalive_intvl;
1405 }
1406
1407 static inline int keepalive_time_when(const struct tcp_sock *tp)
1408 {
1409 struct net *net = sock_net((struct sock *)tp);
1410
1411 return tp->keepalive_time ? : net->ipv4.sysctl_tcp_keepalive_time;
1412 }
1413
1414 static inline int keepalive_probes(const struct tcp_sock *tp)
1415 {
1416 struct net *net = sock_net((struct sock *)tp);
1417
1418 return tp->keepalive_probes ? : net->ipv4.sysctl_tcp_keepalive_probes;
1419 }
1420
1421 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1422 {
1423 const struct inet_connection_sock *icsk = &tp->inet_conn;
1424
1425 return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime,
1426 tcp_jiffies32 - tp->rcv_tstamp);
1427 }
1428
1429 static inline int tcp_fin_time(const struct sock *sk)
1430 {
1431 int fin_timeout = tcp_sk(sk)->linger2 ? : sock_net(sk)->ipv4.sysctl_tcp_fin_timeout;
1432 const int rto = inet_csk(sk)->icsk_rto;
1433
1434 if (fin_timeout < (rto << 2) - (rto >> 1))
1435 fin_timeout = (rto << 2) - (rto >> 1);
1436
1437 return fin_timeout;
1438 }
1439
1440 static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1441 int paws_win)
1442 {
1443 if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1444 return true;
1445 if (unlikely(!time_before32(ktime_get_seconds(),
1446 rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS)))
1447 return true;
1448 /*
1449 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1450 * then following tcp messages have valid values. Ignore 0 value,
1451 * or else 'negative' tsval might forbid us to accept their packets.
1452 */
1453 if (!rx_opt->ts_recent)
1454 return true;
1455 return false;
1456 }
1457
1458 static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1459 int rst)
1460 {
1461 if (tcp_paws_check(rx_opt, 0))
1462 return false;
1463
1464 /* RST segments are not recommended to carry timestamp,
1465 and, if they do, it is recommended to ignore PAWS because
1466 "their cleanup function should take precedence over timestamps."
1467 Certainly, it is mistake. It is necessary to understand the reasons
1468 of this constraint to relax it: if peer reboots, clock may go
1469 out-of-sync and half-open connections will not be reset.
1470 Actually, the problem would be not existing if all
1471 the implementations followed draft about maintaining clock
1472 via reboots. Linux-2.2 DOES NOT!
1473
1474 However, we can relax time bounds for RST segments to MSL.
1475 */
1476 if (rst && !time_before32(ktime_get_seconds(),
1477 rx_opt->ts_recent_stamp + TCP_PAWS_MSL))
1478 return false;
1479 return true;
1480 }
1481
1482 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
1483 int mib_idx, u32 *last_oow_ack_time);
1484
1485 static inline void tcp_mib_init(struct net *net)
1486 {
1487 /* See RFC 2012 */
1488 TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1);
1489 TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1490 TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1491 TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1);
1492 }
1493
1494 /* from STCP */
1495 static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1496 {
1497 tp->lost_skb_hint = NULL;
1498 }
1499
1500 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1501 {
1502 tcp_clear_retrans_hints_partial(tp);
1503 tp->retransmit_skb_hint = NULL;
1504 }
1505
1506 union tcp_md5_addr {
1507 struct in_addr a4;
1508 #if IS_ENABLED(CONFIG_IPV6)
1509 struct in6_addr a6;
1510 #endif
1511 };
1512
1513 /* - key database */
1514 struct tcp_md5sig_key {
1515 struct hlist_node node;
1516 u8 keylen;
1517 u8 family; /* AF_INET or AF_INET6 */
1518 union tcp_md5_addr addr;
1519 u8 prefixlen;
1520 u8 key[TCP_MD5SIG_MAXKEYLEN];
1521 struct rcu_head rcu;
1522 };
1523
1524 /* - sock block */
1525 struct tcp_md5sig_info {
1526 struct hlist_head head;
1527 struct rcu_head rcu;
1528 };
1529
1530 /* - pseudo header */
1531 struct tcp4_pseudohdr {
1532 __be32 saddr;
1533 __be32 daddr;
1534 __u8 pad;
1535 __u8 protocol;
1536 __be16 len;
1537 };
1538
1539 struct tcp6_pseudohdr {
1540 struct in6_addr saddr;
1541 struct in6_addr daddr;
1542 __be32 len;
1543 __be32 protocol; /* including padding */
1544 };
1545
1546 union tcp_md5sum_block {
1547 struct tcp4_pseudohdr ip4;
1548 #if IS_ENABLED(CONFIG_IPV6)
1549 struct tcp6_pseudohdr ip6;
1550 #endif
1551 };
1552
1553 /* - pool: digest algorithm, hash description and scratch buffer */
1554 struct tcp_md5sig_pool {
1555 struct ahash_request *md5_req;
1556 void *scratch;
1557 };
1558
1559 /* - functions */
1560 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1561 const struct sock *sk, const struct sk_buff *skb);
1562 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1563 int family, u8 prefixlen, const u8 *newkey, u8 newkeylen,
1564 gfp_t gfp);
1565 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1566 int family, u8 prefixlen);
1567 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1568 const struct sock *addr_sk);
1569
1570 #ifdef CONFIG_TCP_MD5SIG
1571 #include <linux/jump_label.h>
1572 extern struct static_key_false tcp_md5_needed;
1573 struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk,
1574 const union tcp_md5_addr *addr,
1575 int family);
1576 static inline struct tcp_md5sig_key *
1577 tcp_md5_do_lookup(const struct sock *sk,
1578 const union tcp_md5_addr *addr,
1579 int family)
1580 {
1581 if (!static_branch_unlikely(&tcp_md5_needed))
1582 return NULL;
1583 return __tcp_md5_do_lookup(sk, addr, family);
1584 }
1585
1586 #define tcp_twsk_md5_key(twsk) ((twsk)->tw_md5_key)
1587 #else
1588 static inline struct tcp_md5sig_key *tcp_md5_do_lookup(const struct sock *sk,
1589 const union tcp_md5_addr *addr,
1590 int family)
1591 {
1592 return NULL;
1593 }
1594 #define tcp_twsk_md5_key(twsk) NULL
1595 #endif
1596
1597 bool tcp_alloc_md5sig_pool(void);
1598
1599 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void);
1600 static inline void tcp_put_md5sig_pool(void)
1601 {
1602 local_bh_enable();
1603 }
1604
1605 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *,
1606 unsigned int header_len);
1607 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp,
1608 const struct tcp_md5sig_key *key);
1609
1610 /* From tcp_fastopen.c */
1611 void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1612 struct tcp_fastopen_cookie *cookie);
1613 void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1614 struct tcp_fastopen_cookie *cookie, bool syn_lost,
1615 u16 try_exp);
1616 struct tcp_fastopen_request {
1617 /* Fast Open cookie. Size 0 means a cookie request */
1618 struct tcp_fastopen_cookie cookie;
1619 struct msghdr *data; /* data in MSG_FASTOPEN */
1620 size_t size;
1621 int copied; /* queued in tcp_connect() */
1622 struct ubuf_info *uarg;
1623 };
1624 void tcp_free_fastopen_req(struct tcp_sock *tp);
1625 void tcp_fastopen_destroy_cipher(struct sock *sk);
1626 void tcp_fastopen_ctx_destroy(struct net *net);
1627 int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk,
1628 void *primary_key, void *backup_key);
1629 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb);
1630 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
1631 struct request_sock *req,
1632 struct tcp_fastopen_cookie *foc,
1633 const struct dst_entry *dst);
1634 void tcp_fastopen_init_key_once(struct net *net);
1635 bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
1636 struct tcp_fastopen_cookie *cookie);
1637 bool tcp_fastopen_defer_connect(struct sock *sk, int *err);
1638 #define TCP_FASTOPEN_KEY_LENGTH sizeof(siphash_key_t)
1639 #define TCP_FASTOPEN_KEY_MAX 2
1640 #define TCP_FASTOPEN_KEY_BUF_LENGTH \
1641 (TCP_FASTOPEN_KEY_LENGTH * TCP_FASTOPEN_KEY_MAX)
1642
1643 /* Fastopen key context */
1644 struct tcp_fastopen_context {
1645 siphash_key_t key[TCP_FASTOPEN_KEY_MAX];
1646 int num;
1647 struct rcu_head rcu;
1648 };
1649
1650 extern unsigned int sysctl_tcp_fastopen_blackhole_timeout;
1651 void tcp_fastopen_active_disable(struct sock *sk);
1652 bool tcp_fastopen_active_should_disable(struct sock *sk);
1653 void tcp_fastopen_active_disable_ofo_check(struct sock *sk);
1654 void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired);
1655
1656 /* Caller needs to wrap with rcu_read_(un)lock() */
1657 static inline
1658 struct tcp_fastopen_context *tcp_fastopen_get_ctx(const struct sock *sk)
1659 {
1660 struct tcp_fastopen_context *ctx;
1661
1662 ctx = rcu_dereference(inet_csk(sk)->icsk_accept_queue.fastopenq.ctx);
1663 if (!ctx)
1664 ctx = rcu_dereference(sock_net(sk)->ipv4.tcp_fastopen_ctx);
1665 return ctx;
1666 }
1667
1668 static inline
1669 bool tcp_fastopen_cookie_match(const struct tcp_fastopen_cookie *foc,
1670 const struct tcp_fastopen_cookie *orig)
1671 {
1672 if (orig->len == TCP_FASTOPEN_COOKIE_SIZE &&
1673 orig->len == foc->len &&
1674 !memcmp(orig->val, foc->val, foc->len))
1675 return true;
1676 return false;
1677 }
1678
1679 static inline
1680 int tcp_fastopen_context_len(const struct tcp_fastopen_context *ctx)
1681 {
1682 return ctx->num;
1683 }
1684
1685 /* Latencies incurred by various limits for a sender. They are
1686 * chronograph-like stats that are mutually exclusive.
1687 */
1688 enum tcp_chrono {
1689 TCP_CHRONO_UNSPEC,
1690 TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */
1691 TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */
1692 TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */
1693 __TCP_CHRONO_MAX,
1694 };
1695
1696 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type);
1697 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type);
1698
1699 /* This helper is needed, because skb->tcp_tsorted_anchor uses
1700 * the same memory storage than skb->destructor/_skb_refdst
1701 */
1702 static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb)
1703 {
1704 skb->destructor = NULL;
1705 skb->_skb_refdst = 0UL;
1706 }
1707
1708 #define tcp_skb_tsorted_save(skb) { \
1709 unsigned long _save = skb->_skb_refdst; \
1710 skb->_skb_refdst = 0UL;
1711
1712 #define tcp_skb_tsorted_restore(skb) \
1713 skb->_skb_refdst = _save; \
1714 }
1715
1716 void tcp_write_queue_purge(struct sock *sk);
1717
1718 static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk)
1719 {
1720 return skb_rb_first(&sk->tcp_rtx_queue);
1721 }
1722
1723 static inline struct sk_buff *tcp_rtx_queue_tail(const struct sock *sk)
1724 {
1725 return skb_rb_last(&sk->tcp_rtx_queue);
1726 }
1727
1728 static inline struct sk_buff *tcp_write_queue_head(const struct sock *sk)
1729 {
1730 return skb_peek(&sk->sk_write_queue);
1731 }
1732
1733 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
1734 {
1735 return skb_peek_tail(&sk->sk_write_queue);
1736 }
1737
1738 #define tcp_for_write_queue_from_safe(skb, tmp, sk) \
1739 skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1740
1741 static inline struct sk_buff *tcp_send_head(const struct sock *sk)
1742 {
1743 return skb_peek(&sk->sk_write_queue);
1744 }
1745
1746 static inline bool tcp_skb_is_last(const struct sock *sk,
1747 const struct sk_buff *skb)
1748 {
1749 return skb_queue_is_last(&sk->sk_write_queue, skb);
1750 }
1751
1752 static inline bool tcp_write_queue_empty(const struct sock *sk)
1753 {
1754 return skb_queue_empty(&sk->sk_write_queue);
1755 }
1756
1757 static inline bool tcp_rtx_queue_empty(const struct sock *sk)
1758 {
1759 return RB_EMPTY_ROOT(&sk->tcp_rtx_queue);
1760 }
1761
1762 static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk)
1763 {
1764 return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk);
1765 }
1766
1767 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1768 {
1769 __skb_queue_tail(&sk->sk_write_queue, skb);
1770
1771 /* Queue it, remembering where we must start sending. */
1772 if (sk->sk_write_queue.next == skb)
1773 tcp_chrono_start(sk, TCP_CHRONO_BUSY);
1774 }
1775
1776 /* Insert new before skb on the write queue of sk. */
1777 static inline void tcp_insert_write_queue_before(struct sk_buff *new,
1778 struct sk_buff *skb,
1779 struct sock *sk)
1780 {
1781 __skb_queue_before(&sk->sk_write_queue, skb, new);
1782 }
1783
1784 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
1785 {
1786 tcp_skb_tsorted_anchor_cleanup(skb);
1787 __skb_unlink(skb, &sk->sk_write_queue);
1788 }
1789
1790 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb);
1791
1792 static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk)
1793 {
1794 tcp_skb_tsorted_anchor_cleanup(skb);
1795 rb_erase(&skb->rbnode, &sk->tcp_rtx_queue);
1796 }
1797
1798 static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk)
1799 {
1800 list_del(&skb->tcp_tsorted_anchor);
1801 tcp_rtx_queue_unlink(skb, sk);
1802 sk_wmem_free_skb(sk, skb);
1803 }
1804
1805 static inline void tcp_push_pending_frames(struct sock *sk)
1806 {
1807 if (tcp_send_head(sk)) {
1808 struct tcp_sock *tp = tcp_sk(sk);
1809
1810 __tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
1811 }
1812 }
1813
1814 /* Start sequence of the skb just after the highest skb with SACKed
1815 * bit, valid only if sacked_out > 0 or when the caller has ensured
1816 * validity by itself.
1817 */
1818 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
1819 {
1820 if (!tp->sacked_out)
1821 return tp->snd_una;
1822
1823 if (tp->highest_sack == NULL)
1824 return tp->snd_nxt;
1825
1826 return TCP_SKB_CB(tp->highest_sack)->seq;
1827 }
1828
1829 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
1830 {
1831 tcp_sk(sk)->highest_sack = skb_rb_next(skb);
1832 }
1833
1834 static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
1835 {
1836 return tcp_sk(sk)->highest_sack;
1837 }
1838
1839 static inline void tcp_highest_sack_reset(struct sock *sk)
1840 {
1841 tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk);
1842 }
1843
1844 /* Called when old skb is about to be deleted and replaced by new skb */
1845 static inline void tcp_highest_sack_replace(struct sock *sk,
1846 struct sk_buff *old,
1847 struct sk_buff *new)
1848 {
1849 if (old == tcp_highest_sack(sk))
1850 tcp_sk(sk)->highest_sack = new;
1851 }
1852
1853 /* This helper checks if socket has IP_TRANSPARENT set */
1854 static inline bool inet_sk_transparent(const struct sock *sk)
1855 {
1856 switch (sk->sk_state) {
1857 case TCP_TIME_WAIT:
1858 return inet_twsk(sk)->tw_transparent;
1859 case TCP_NEW_SYN_RECV:
1860 return inet_rsk(inet_reqsk(sk))->no_srccheck;
1861 }
1862 return inet_sk(sk)->transparent;
1863 }
1864
1865 /* Determines whether this is a thin stream (which may suffer from
1866 * increased latency). Used to trigger latency-reducing mechanisms.
1867 */
1868 static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
1869 {
1870 return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
1871 }
1872
1873 /* /proc */
1874 enum tcp_seq_states {
1875 TCP_SEQ_STATE_LISTENING,
1876 TCP_SEQ_STATE_ESTABLISHED,
1877 };
1878
1879 void *tcp_seq_start(struct seq_file *seq, loff_t *pos);
1880 void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos);
1881 void tcp_seq_stop(struct seq_file *seq, void *v);
1882
1883 struct tcp_seq_afinfo {
1884 sa_family_t family;
1885 };
1886
1887 struct tcp_iter_state {
1888 struct seq_net_private p;
1889 enum tcp_seq_states state;
1890 struct sock *syn_wait_sk;
1891 int bucket, offset, sbucket, num;
1892 loff_t last_pos;
1893 };
1894
1895 extern struct request_sock_ops tcp_request_sock_ops;
1896 extern struct request_sock_ops tcp6_request_sock_ops;
1897
1898 void tcp_v4_destroy_sock(struct sock *sk);
1899
1900 struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
1901 netdev_features_t features);
1902 struct sk_buff *tcp_gro_receive(struct list_head *head, struct sk_buff *skb);
1903 int tcp_gro_complete(struct sk_buff *skb);
1904
1905 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
1906
1907 static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
1908 {
1909 struct net *net = sock_net((struct sock *)tp);
1910 return tp->notsent_lowat ?: net->ipv4.sysctl_tcp_notsent_lowat;
1911 }
1912
1913 /* @wake is one when sk_stream_write_space() calls us.
1914 * This sends EPOLLOUT only if notsent_bytes is half the limit.
1915 * This mimics the strategy used in sock_def_write_space().
1916 */
1917 static inline bool tcp_stream_memory_free(const struct sock *sk, int wake)
1918 {
1919 const struct tcp_sock *tp = tcp_sk(sk);
1920 u32 notsent_bytes = tp->write_seq - tp->snd_nxt;
1921
1922 return (notsent_bytes << wake) < tcp_notsent_lowat(tp);
1923 }
1924
1925 #ifdef CONFIG_PROC_FS
1926 int tcp4_proc_init(void);
1927 void tcp4_proc_exit(void);
1928 #endif
1929
1930 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req);
1931 int tcp_conn_request(struct request_sock_ops *rsk_ops,
1932 const struct tcp_request_sock_ops *af_ops,
1933 struct sock *sk, struct sk_buff *skb);
1934
1935 /* TCP af-specific functions */
1936 struct tcp_sock_af_ops {
1937 #ifdef CONFIG_TCP_MD5SIG
1938 struct tcp_md5sig_key *(*md5_lookup) (const struct sock *sk,
1939 const struct sock *addr_sk);
1940 int (*calc_md5_hash)(char *location,
1941 const struct tcp_md5sig_key *md5,
1942 const struct sock *sk,
1943 const struct sk_buff *skb);
1944 int (*md5_parse)(struct sock *sk,
1945 int optname,
1946 char __user *optval,
1947 int optlen);
1948 #endif
1949 };
1950
1951 struct tcp_request_sock_ops {
1952 u16 mss_clamp;
1953 #ifdef CONFIG_TCP_MD5SIG
1954 struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk,
1955 const struct sock *addr_sk);
1956 int (*calc_md5_hash) (char *location,
1957 const struct tcp_md5sig_key *md5,
1958 const struct sock *sk,
1959 const struct sk_buff *skb);
1960 #endif
1961 void (*init_req)(struct request_sock *req,
1962 const struct sock *sk_listener,
1963 struct sk_buff *skb);
1964 #ifdef CONFIG_SYN_COOKIES
1965 __u32 (*cookie_init_seq)(const struct sk_buff *skb,
1966 __u16 *mss);
1967 #endif
1968 struct dst_entry *(*route_req)(const struct sock *sk, struct flowi *fl,
1969 const struct request_sock *req);
1970 u32 (*init_seq)(const struct sk_buff *skb);
1971 u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb);
1972 int (*send_synack)(const struct sock *sk, struct dst_entry *dst,
1973 struct flowi *fl, struct request_sock *req,
1974 struct tcp_fastopen_cookie *foc,
1975 enum tcp_synack_type synack_type);
1976 };
1977
1978 #ifdef CONFIG_SYN_COOKIES
1979 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
1980 const struct sock *sk, struct sk_buff *skb,
1981 __u16 *mss)
1982 {
1983 tcp_synq_overflow(sk);
1984 __NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
1985 return ops->cookie_init_seq(skb, mss);
1986 }
1987 #else
1988 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
1989 const struct sock *sk, struct sk_buff *skb,
1990 __u16 *mss)
1991 {
1992 return 0;
1993 }
1994 #endif
1995
1996 int tcpv4_offload_init(void);
1997
1998 void tcp_v4_init(void);
1999 void tcp_init(void);
2000
2001 /* tcp_recovery.c */
2002 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb);
2003 void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced);
2004 extern s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb,
2005 u32 reo_wnd);
2006 extern void tcp_rack_mark_lost(struct sock *sk);
2007 extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq,
2008 u64 xmit_time);
2009 extern void tcp_rack_reo_timeout(struct sock *sk);
2010 extern void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs);
2011
2012 /* At how many usecs into the future should the RTO fire? */
2013 static inline s64 tcp_rto_delta_us(const struct sock *sk)
2014 {
2015 const struct sk_buff *skb = tcp_rtx_queue_head(sk);
2016 u32 rto = inet_csk(sk)->icsk_rto;
2017 u64 rto_time_stamp_us = tcp_skb_timestamp_us(skb) + jiffies_to_usecs(rto);
2018
2019 return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp;
2020 }
2021
2022 /*
2023 * Save and compile IPv4 options, return a pointer to it
2024 */
2025 static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net,
2026 struct sk_buff *skb)
2027 {
2028 const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
2029 struct ip_options_rcu *dopt = NULL;
2030
2031 if (opt->optlen) {
2032 int opt_size = sizeof(*dopt) + opt->optlen;
2033
2034 dopt = kmalloc(opt_size, GFP_ATOMIC);
2035 if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) {
2036 kfree(dopt);
2037 dopt = NULL;
2038 }
2039 }
2040 return dopt;
2041 }
2042
2043 /* locally generated TCP pure ACKs have skb->truesize == 2
2044 * (check tcp_send_ack() in net/ipv4/tcp_output.c )
2045 * This is much faster than dissecting the packet to find out.
2046 * (Think of GRE encapsulations, IPv4, IPv6, ...)
2047 */
2048 static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
2049 {
2050 return skb->truesize == 2;
2051 }
2052
2053 static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
2054 {
2055 skb->truesize = 2;
2056 }
2057
2058 static inline int tcp_inq(struct sock *sk)
2059 {
2060 struct tcp_sock *tp = tcp_sk(sk);
2061 int answ;
2062
2063 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
2064 answ = 0;
2065 } else if (sock_flag(sk, SOCK_URGINLINE) ||
2066 !tp->urg_data ||
2067 before(tp->urg_seq, tp->copied_seq) ||
2068 !before(tp->urg_seq, tp->rcv_nxt)) {
2069
2070 answ = tp->rcv_nxt - tp->copied_seq;
2071
2072 /* Subtract 1, if FIN was received */
2073 if (answ && sock_flag(sk, SOCK_DONE))
2074 answ--;
2075 } else {
2076 answ = tp->urg_seq - tp->copied_seq;
2077 }
2078
2079 return answ;
2080 }
2081
2082 int tcp_peek_len(struct socket *sock);
2083
2084 static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb)
2085 {
2086 u16 segs_in;
2087
2088 segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2089 tp->segs_in += segs_in;
2090 if (skb->len > tcp_hdrlen(skb))
2091 tp->data_segs_in += segs_in;
2092 }
2093
2094 /*
2095 * TCP listen path runs lockless.
2096 * We forced "struct sock" to be const qualified to make sure
2097 * we don't modify one of its field by mistake.
2098 * Here, we increment sk_drops which is an atomic_t, so we can safely
2099 * make sock writable again.
2100 */
2101 static inline void tcp_listendrop(const struct sock *sk)
2102 {
2103 atomic_inc(&((struct sock *)sk)->sk_drops);
2104 __NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS);
2105 }
2106
2107 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer);
2108
2109 /*
2110 * Interface for adding Upper Level Protocols over TCP
2111 */
2112
2113 #define TCP_ULP_NAME_MAX 16
2114 #define TCP_ULP_MAX 128
2115 #define TCP_ULP_BUF_MAX (TCP_ULP_NAME_MAX*TCP_ULP_MAX)
2116
2117 struct tcp_ulp_ops {
2118 struct list_head list;
2119
2120 /* initialize ulp */
2121 int (*init)(struct sock *sk);
2122 /* update ulp */
2123 void (*update)(struct sock *sk, struct proto *p);
2124 /* cleanup ulp */
2125 void (*release)(struct sock *sk);
2126
2127 char name[TCP_ULP_NAME_MAX];
2128 struct module *owner;
2129 };
2130 int tcp_register_ulp(struct tcp_ulp_ops *type);
2131 void tcp_unregister_ulp(struct tcp_ulp_ops *type);
2132 int tcp_set_ulp(struct sock *sk, const char *name);
2133 void tcp_get_available_ulp(char *buf, size_t len);
2134 void tcp_cleanup_ulp(struct sock *sk);
2135 void tcp_update_ulp(struct sock *sk, struct proto *p);
2136
2137 #define MODULE_ALIAS_TCP_ULP(name) \
2138 __MODULE_INFO(alias, alias_userspace, name); \
2139 __MODULE_INFO(alias, alias_tcp_ulp, "tcp-ulp-" name)
2140
2141 struct sk_msg;
2142 struct sk_psock;
2143
2144 int tcp_bpf_init(struct sock *sk);
2145 void tcp_bpf_reinit(struct sock *sk);
2146 int tcp_bpf_sendmsg_redir(struct sock *sk, struct sk_msg *msg, u32 bytes,
2147 int flags);
2148 int tcp_bpf_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
2149 int nonblock, int flags, int *addr_len);
2150 int __tcp_bpf_recvmsg(struct sock *sk, struct sk_psock *psock,
2151 struct msghdr *msg, int len, int flags);
2152
2153 /* Call BPF_SOCK_OPS program that returns an int. If the return value
2154 * is < 0, then the BPF op failed (for example if the loaded BPF
2155 * program does not support the chosen operation or there is no BPF
2156 * program loaded).
2157 */
2158 #ifdef CONFIG_BPF
2159 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2160 {
2161 struct bpf_sock_ops_kern sock_ops;
2162 int ret;
2163
2164 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
2165 if (sk_fullsock(sk)) {
2166 sock_ops.is_fullsock = 1;
2167 sock_owned_by_me(sk);
2168 }
2169
2170 sock_ops.sk = sk;
2171 sock_ops.op = op;
2172 if (nargs > 0)
2173 memcpy(sock_ops.args, args, nargs * sizeof(*args));
2174
2175 ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
2176 if (ret == 0)
2177 ret = sock_ops.reply;
2178 else
2179 ret = -1;
2180 return ret;
2181 }
2182
2183 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2184 {
2185 u32 args[2] = {arg1, arg2};
2186
2187 return tcp_call_bpf(sk, op, 2, args);
2188 }
2189
2190 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2191 u32 arg3)
2192 {
2193 u32 args[3] = {arg1, arg2, arg3};
2194
2195 return tcp_call_bpf(sk, op, 3, args);
2196 }
2197
2198 #else
2199 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2200 {
2201 return -EPERM;
2202 }
2203
2204 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2205 {
2206 return -EPERM;
2207 }
2208
2209 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2210 u32 arg3)
2211 {
2212 return -EPERM;
2213 }
2214
2215 #endif
2216
2217 static inline u32 tcp_timeout_init(struct sock *sk)
2218 {
2219 int timeout;
2220
2221 timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL);
2222
2223 if (timeout <= 0)
2224 timeout = TCP_TIMEOUT_INIT;
2225 return timeout;
2226 }
2227
2228 static inline u32 tcp_rwnd_init_bpf(struct sock *sk)
2229 {
2230 int rwnd;
2231
2232 rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT, 0, NULL);
2233
2234 if (rwnd < 0)
2235 rwnd = 0;
2236 return rwnd;
2237 }
2238
2239 static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk)
2240 {
2241 return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN, 0, NULL) == 1);
2242 }
2243
2244 static inline void tcp_bpf_rtt(struct sock *sk)
2245 {
2246 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_RTT_CB_FLAG))
2247 tcp_call_bpf(sk, BPF_SOCK_OPS_RTT_CB, 0, NULL);
2248 }
2249
2250 #if IS_ENABLED(CONFIG_SMC)
2251 extern struct static_key_false tcp_have_smc;
2252 #endif
2253
2254 #if IS_ENABLED(CONFIG_TLS_DEVICE)
2255 void clean_acked_data_enable(struct inet_connection_sock *icsk,
2256 void (*cad)(struct sock *sk, u32 ack_seq));
2257 void clean_acked_data_disable(struct inet_connection_sock *icsk);
2258 void clean_acked_data_flush(void);
2259 #endif
2260
2261 DECLARE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
2262 static inline void tcp_add_tx_delay(struct sk_buff *skb,
2263 const struct tcp_sock *tp)
2264 {
2265 if (static_branch_unlikely(&tcp_tx_delay_enabled))
2266 skb->skb_mstamp_ns += (u64)tp->tcp_tx_delay * NSEC_PER_USEC;
2267 }
2268
2269 /* Compute Earliest Departure Time for some control packets
2270 * like ACK or RST for TIME_WAIT or non ESTABLISHED sockets.
2271 */
2272 static inline u64 tcp_transmit_time(const struct sock *sk)
2273 {
2274 if (static_branch_unlikely(&tcp_tx_delay_enabled)) {
2275 u32 delay = (sk->sk_state == TCP_TIME_WAIT) ?
2276 tcp_twsk(sk)->tw_tx_delay : tcp_sk(sk)->tcp_tx_delay;
2277
2278 return tcp_clock_ns() + (u64)delay * NSEC_PER_USEC;
2279 }
2280 return 0;
2281 }
2282
2283 #endif /* _TCP_H */