]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - include/net/tcp.h
tcp: track min RTT using windowed min-filter
[mirror_ubuntu-zesty-kernel.git] / include / net / tcp.h
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Definitions for the TCP module.
7 *
8 * Version: @(#)tcp.h 1.0.5 05/23/93
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 *
13 * This program is free software; you can redistribute it and/or
14 * modify it under the terms of the GNU General Public License
15 * as published by the Free Software Foundation; either version
16 * 2 of the License, or (at your option) any later version.
17 */
18 #ifndef _TCP_H
19 #define _TCP_H
20
21 #define FASTRETRANS_DEBUG 1
22
23 #include <linux/list.h>
24 #include <linux/tcp.h>
25 #include <linux/bug.h>
26 #include <linux/slab.h>
27 #include <linux/cache.h>
28 #include <linux/percpu.h>
29 #include <linux/skbuff.h>
30 #include <linux/crypto.h>
31 #include <linux/cryptohash.h>
32 #include <linux/kref.h>
33 #include <linux/ktime.h>
34
35 #include <net/inet_connection_sock.h>
36 #include <net/inet_timewait_sock.h>
37 #include <net/inet_hashtables.h>
38 #include <net/checksum.h>
39 #include <net/request_sock.h>
40 #include <net/sock.h>
41 #include <net/snmp.h>
42 #include <net/ip.h>
43 #include <net/tcp_states.h>
44 #include <net/inet_ecn.h>
45 #include <net/dst.h>
46
47 #include <linux/seq_file.h>
48 #include <linux/memcontrol.h>
49
50 extern struct inet_hashinfo tcp_hashinfo;
51
52 extern struct percpu_counter tcp_orphan_count;
53 void tcp_time_wait(struct sock *sk, int state, int timeo);
54
55 #define MAX_TCP_HEADER (128 + MAX_HEADER)
56 #define MAX_TCP_OPTION_SPACE 40
57
58 /*
59 * Never offer a window over 32767 without using window scaling. Some
60 * poor stacks do signed 16bit maths!
61 */
62 #define MAX_TCP_WINDOW 32767U
63
64 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */
65 #define TCP_MIN_MSS 88U
66
67 /* The least MTU to use for probing */
68 #define TCP_BASE_MSS 1024
69
70 /* probing interval, default to 10 minutes as per RFC4821 */
71 #define TCP_PROBE_INTERVAL 600
72
73 /* Specify interval when tcp mtu probing will stop */
74 #define TCP_PROBE_THRESHOLD 8
75
76 /* After receiving this amount of duplicate ACKs fast retransmit starts. */
77 #define TCP_FASTRETRANS_THRESH 3
78
79 /* Maximal number of ACKs sent quickly to accelerate slow-start. */
80 #define TCP_MAX_QUICKACKS 16U
81
82 /* urg_data states */
83 #define TCP_URG_VALID 0x0100
84 #define TCP_URG_NOTYET 0x0200
85 #define TCP_URG_READ 0x0400
86
87 #define TCP_RETR1 3 /*
88 * This is how many retries it does before it
89 * tries to figure out if the gateway is
90 * down. Minimal RFC value is 3; it corresponds
91 * to ~3sec-8min depending on RTO.
92 */
93
94 #define TCP_RETR2 15 /*
95 * This should take at least
96 * 90 minutes to time out.
97 * RFC1122 says that the limit is 100 sec.
98 * 15 is ~13-30min depending on RTO.
99 */
100
101 #define TCP_SYN_RETRIES 6 /* This is how many retries are done
102 * when active opening a connection.
103 * RFC1122 says the minimum retry MUST
104 * be at least 180secs. Nevertheless
105 * this value is corresponding to
106 * 63secs of retransmission with the
107 * current initial RTO.
108 */
109
110 #define TCP_SYNACK_RETRIES 5 /* This is how may retries are done
111 * when passive opening a connection.
112 * This is corresponding to 31secs of
113 * retransmission with the current
114 * initial RTO.
115 */
116
117 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
118 * state, about 60 seconds */
119 #define TCP_FIN_TIMEOUT TCP_TIMEWAIT_LEN
120 /* BSD style FIN_WAIT2 deadlock breaker.
121 * It used to be 3min, new value is 60sec,
122 * to combine FIN-WAIT-2 timeout with
123 * TIME-WAIT timer.
124 */
125
126 #define TCP_DELACK_MAX ((unsigned)(HZ/5)) /* maximal time to delay before sending an ACK */
127 #if HZ >= 100
128 #define TCP_DELACK_MIN ((unsigned)(HZ/25)) /* minimal time to delay before sending an ACK */
129 #define TCP_ATO_MIN ((unsigned)(HZ/25))
130 #else
131 #define TCP_DELACK_MIN 4U
132 #define TCP_ATO_MIN 4U
133 #endif
134 #define TCP_RTO_MAX ((unsigned)(120*HZ))
135 #define TCP_RTO_MIN ((unsigned)(HZ/5))
136 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ)) /* RFC6298 2.1 initial RTO value */
137 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ)) /* RFC 1122 initial RTO value, now
138 * used as a fallback RTO for the
139 * initial data transmission if no
140 * valid RTT sample has been acquired,
141 * most likely due to retrans in 3WHS.
142 */
143
144 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
145 * for local resources.
146 */
147
148 #define TCP_KEEPALIVE_TIME (120*60*HZ) /* two hours */
149 #define TCP_KEEPALIVE_PROBES 9 /* Max of 9 keepalive probes */
150 #define TCP_KEEPALIVE_INTVL (75*HZ)
151
152 #define MAX_TCP_KEEPIDLE 32767
153 #define MAX_TCP_KEEPINTVL 32767
154 #define MAX_TCP_KEEPCNT 127
155 #define MAX_TCP_SYNCNT 127
156
157 #define TCP_SYNQ_INTERVAL (HZ/5) /* Period of SYNACK timer */
158
159 #define TCP_PAWS_24DAYS (60 * 60 * 24 * 24)
160 #define TCP_PAWS_MSL 60 /* Per-host timestamps are invalidated
161 * after this time. It should be equal
162 * (or greater than) TCP_TIMEWAIT_LEN
163 * to provide reliability equal to one
164 * provided by timewait state.
165 */
166 #define TCP_PAWS_WINDOW 1 /* Replay window for per-host
167 * timestamps. It must be less than
168 * minimal timewait lifetime.
169 */
170 /*
171 * TCP option
172 */
173
174 #define TCPOPT_NOP 1 /* Padding */
175 #define TCPOPT_EOL 0 /* End of options */
176 #define TCPOPT_MSS 2 /* Segment size negotiating */
177 #define TCPOPT_WINDOW 3 /* Window scaling */
178 #define TCPOPT_SACK_PERM 4 /* SACK Permitted */
179 #define TCPOPT_SACK 5 /* SACK Block */
180 #define TCPOPT_TIMESTAMP 8 /* Better RTT estimations/PAWS */
181 #define TCPOPT_MD5SIG 19 /* MD5 Signature (RFC2385) */
182 #define TCPOPT_FASTOPEN 34 /* Fast open (RFC7413) */
183 #define TCPOPT_EXP 254 /* Experimental */
184 /* Magic number to be after the option value for sharing TCP
185 * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
186 */
187 #define TCPOPT_FASTOPEN_MAGIC 0xF989
188
189 /*
190 * TCP option lengths
191 */
192
193 #define TCPOLEN_MSS 4
194 #define TCPOLEN_WINDOW 3
195 #define TCPOLEN_SACK_PERM 2
196 #define TCPOLEN_TIMESTAMP 10
197 #define TCPOLEN_MD5SIG 18
198 #define TCPOLEN_FASTOPEN_BASE 2
199 #define TCPOLEN_EXP_FASTOPEN_BASE 4
200
201 /* But this is what stacks really send out. */
202 #define TCPOLEN_TSTAMP_ALIGNED 12
203 #define TCPOLEN_WSCALE_ALIGNED 4
204 #define TCPOLEN_SACKPERM_ALIGNED 4
205 #define TCPOLEN_SACK_BASE 2
206 #define TCPOLEN_SACK_BASE_ALIGNED 4
207 #define TCPOLEN_SACK_PERBLOCK 8
208 #define TCPOLEN_MD5SIG_ALIGNED 20
209 #define TCPOLEN_MSS_ALIGNED 4
210
211 /* Flags in tp->nonagle */
212 #define TCP_NAGLE_OFF 1 /* Nagle's algo is disabled */
213 #define TCP_NAGLE_CORK 2 /* Socket is corked */
214 #define TCP_NAGLE_PUSH 4 /* Cork is overridden for already queued data */
215
216 /* TCP thin-stream limits */
217 #define TCP_THIN_LINEAR_RETRIES 6 /* After 6 linear retries, do exp. backoff */
218
219 /* TCP initial congestion window as per draft-hkchu-tcpm-initcwnd-01 */
220 #define TCP_INIT_CWND 10
221
222 /* Bit Flags for sysctl_tcp_fastopen */
223 #define TFO_CLIENT_ENABLE 1
224 #define TFO_SERVER_ENABLE 2
225 #define TFO_CLIENT_NO_COOKIE 4 /* Data in SYN w/o cookie option */
226
227 /* Accept SYN data w/o any cookie option */
228 #define TFO_SERVER_COOKIE_NOT_REQD 0x200
229
230 /* Force enable TFO on all listeners, i.e., not requiring the
231 * TCP_FASTOPEN socket option. SOCKOPT1/2 determine how to set max_qlen.
232 */
233 #define TFO_SERVER_WO_SOCKOPT1 0x400
234 #define TFO_SERVER_WO_SOCKOPT2 0x800
235
236 extern struct inet_timewait_death_row tcp_death_row;
237
238 /* sysctl variables for tcp */
239 extern int sysctl_tcp_timestamps;
240 extern int sysctl_tcp_window_scaling;
241 extern int sysctl_tcp_sack;
242 extern int sysctl_tcp_fin_timeout;
243 extern int sysctl_tcp_keepalive_time;
244 extern int sysctl_tcp_keepalive_probes;
245 extern int sysctl_tcp_keepalive_intvl;
246 extern int sysctl_tcp_syn_retries;
247 extern int sysctl_tcp_synack_retries;
248 extern int sysctl_tcp_retries1;
249 extern int sysctl_tcp_retries2;
250 extern int sysctl_tcp_orphan_retries;
251 extern int sysctl_tcp_syncookies;
252 extern int sysctl_tcp_fastopen;
253 extern int sysctl_tcp_retrans_collapse;
254 extern int sysctl_tcp_stdurg;
255 extern int sysctl_tcp_rfc1337;
256 extern int sysctl_tcp_abort_on_overflow;
257 extern int sysctl_tcp_max_orphans;
258 extern int sysctl_tcp_fack;
259 extern int sysctl_tcp_reordering;
260 extern int sysctl_tcp_max_reordering;
261 extern int sysctl_tcp_dsack;
262 extern long sysctl_tcp_mem[3];
263 extern int sysctl_tcp_wmem[3];
264 extern int sysctl_tcp_rmem[3];
265 extern int sysctl_tcp_app_win;
266 extern int sysctl_tcp_adv_win_scale;
267 extern int sysctl_tcp_tw_reuse;
268 extern int sysctl_tcp_frto;
269 extern int sysctl_tcp_low_latency;
270 extern int sysctl_tcp_nometrics_save;
271 extern int sysctl_tcp_moderate_rcvbuf;
272 extern int sysctl_tcp_tso_win_divisor;
273 extern int sysctl_tcp_workaround_signed_windows;
274 extern int sysctl_tcp_slow_start_after_idle;
275 extern int sysctl_tcp_thin_linear_timeouts;
276 extern int sysctl_tcp_thin_dupack;
277 extern int sysctl_tcp_early_retrans;
278 extern int sysctl_tcp_limit_output_bytes;
279 extern int sysctl_tcp_challenge_ack_limit;
280 extern unsigned int sysctl_tcp_notsent_lowat;
281 extern int sysctl_tcp_min_tso_segs;
282 extern int sysctl_tcp_min_rtt_wlen;
283 extern int sysctl_tcp_autocorking;
284 extern int sysctl_tcp_invalid_ratelimit;
285 extern int sysctl_tcp_pacing_ss_ratio;
286 extern int sysctl_tcp_pacing_ca_ratio;
287
288 extern atomic_long_t tcp_memory_allocated;
289 extern struct percpu_counter tcp_sockets_allocated;
290 extern int tcp_memory_pressure;
291
292 /* optimized version of sk_under_memory_pressure() for TCP sockets */
293 static inline bool tcp_under_memory_pressure(const struct sock *sk)
294 {
295 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
296 return !!sk->sk_cgrp->memory_pressure;
297
298 return tcp_memory_pressure;
299 }
300 /*
301 * The next routines deal with comparing 32 bit unsigned ints
302 * and worry about wraparound (automatic with unsigned arithmetic).
303 */
304
305 static inline bool before(__u32 seq1, __u32 seq2)
306 {
307 return (__s32)(seq1-seq2) < 0;
308 }
309 #define after(seq2, seq1) before(seq1, seq2)
310
311 /* is s2<=s1<=s3 ? */
312 static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
313 {
314 return seq3 - seq2 >= seq1 - seq2;
315 }
316
317 static inline bool tcp_out_of_memory(struct sock *sk)
318 {
319 if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
320 sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
321 return true;
322 return false;
323 }
324
325 void sk_forced_mem_schedule(struct sock *sk, int size);
326
327 static inline bool tcp_too_many_orphans(struct sock *sk, int shift)
328 {
329 struct percpu_counter *ocp = sk->sk_prot->orphan_count;
330 int orphans = percpu_counter_read_positive(ocp);
331
332 if (orphans << shift > sysctl_tcp_max_orphans) {
333 orphans = percpu_counter_sum_positive(ocp);
334 if (orphans << shift > sysctl_tcp_max_orphans)
335 return true;
336 }
337 return false;
338 }
339
340 bool tcp_check_oom(struct sock *sk, int shift);
341
342
343 extern struct proto tcp_prot;
344
345 #define TCP_INC_STATS(net, field) SNMP_INC_STATS((net)->mib.tcp_statistics, field)
346 #define TCP_INC_STATS_BH(net, field) SNMP_INC_STATS_BH((net)->mib.tcp_statistics, field)
347 #define TCP_DEC_STATS(net, field) SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
348 #define TCP_ADD_STATS_USER(net, field, val) SNMP_ADD_STATS_USER((net)->mib.tcp_statistics, field, val)
349 #define TCP_ADD_STATS(net, field, val) SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
350
351 void tcp_tasklet_init(void);
352
353 void tcp_v4_err(struct sk_buff *skb, u32);
354
355 void tcp_shutdown(struct sock *sk, int how);
356
357 void tcp_v4_early_demux(struct sk_buff *skb);
358 int tcp_v4_rcv(struct sk_buff *skb);
359
360 int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw);
361 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
362 int tcp_sendpage(struct sock *sk, struct page *page, int offset, size_t size,
363 int flags);
364 void tcp_release_cb(struct sock *sk);
365 void tcp_wfree(struct sk_buff *skb);
366 void tcp_write_timer_handler(struct sock *sk);
367 void tcp_delack_timer_handler(struct sock *sk);
368 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg);
369 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb);
370 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
371 const struct tcphdr *th, unsigned int len);
372 void tcp_rcv_space_adjust(struct sock *sk);
373 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
374 void tcp_twsk_destructor(struct sock *sk);
375 ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
376 struct pipe_inode_info *pipe, size_t len,
377 unsigned int flags);
378
379 static inline void tcp_dec_quickack_mode(struct sock *sk,
380 const unsigned int pkts)
381 {
382 struct inet_connection_sock *icsk = inet_csk(sk);
383
384 if (icsk->icsk_ack.quick) {
385 if (pkts >= icsk->icsk_ack.quick) {
386 icsk->icsk_ack.quick = 0;
387 /* Leaving quickack mode we deflate ATO. */
388 icsk->icsk_ack.ato = TCP_ATO_MIN;
389 } else
390 icsk->icsk_ack.quick -= pkts;
391 }
392 }
393
394 #define TCP_ECN_OK 1
395 #define TCP_ECN_QUEUE_CWR 2
396 #define TCP_ECN_DEMAND_CWR 4
397 #define TCP_ECN_SEEN 8
398
399 enum tcp_tw_status {
400 TCP_TW_SUCCESS = 0,
401 TCP_TW_RST = 1,
402 TCP_TW_ACK = 2,
403 TCP_TW_SYN = 3
404 };
405
406
407 enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
408 struct sk_buff *skb,
409 const struct tcphdr *th);
410 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
411 struct request_sock *req, bool fastopen);
412 int tcp_child_process(struct sock *parent, struct sock *child,
413 struct sk_buff *skb);
414 void tcp_enter_loss(struct sock *sk);
415 void tcp_clear_retrans(struct tcp_sock *tp);
416 void tcp_update_metrics(struct sock *sk);
417 void tcp_init_metrics(struct sock *sk);
418 void tcp_metrics_init(void);
419 bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst,
420 bool paws_check, bool timestamps);
421 bool tcp_remember_stamp(struct sock *sk);
422 bool tcp_tw_remember_stamp(struct inet_timewait_sock *tw);
423 void tcp_fetch_timewait_stamp(struct sock *sk, struct dst_entry *dst);
424 void tcp_disable_fack(struct tcp_sock *tp);
425 void tcp_close(struct sock *sk, long timeout);
426 void tcp_init_sock(struct sock *sk);
427 unsigned int tcp_poll(struct file *file, struct socket *sock,
428 struct poll_table_struct *wait);
429 int tcp_getsockopt(struct sock *sk, int level, int optname,
430 char __user *optval, int __user *optlen);
431 int tcp_setsockopt(struct sock *sk, int level, int optname,
432 char __user *optval, unsigned int optlen);
433 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
434 char __user *optval, int __user *optlen);
435 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
436 char __user *optval, unsigned int optlen);
437 void tcp_set_keepalive(struct sock *sk, int val);
438 void tcp_syn_ack_timeout(const struct request_sock *req);
439 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
440 int flags, int *addr_len);
441 void tcp_parse_options(const struct sk_buff *skb,
442 struct tcp_options_received *opt_rx,
443 int estab, struct tcp_fastopen_cookie *foc);
444 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th);
445
446 /*
447 * TCP v4 functions exported for the inet6 API
448 */
449
450 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
451 void tcp_v4_mtu_reduced(struct sock *sk);
452 void tcp_req_err(struct sock *sk, u32 seq);
453 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
454 struct sock *tcp_create_openreq_child(const struct sock *sk,
455 struct request_sock *req,
456 struct sk_buff *skb);
457 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
458 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
459 struct request_sock *req,
460 struct dst_entry *dst);
461 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
462 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
463 int tcp_connect(struct sock *sk);
464 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
465 struct request_sock *req,
466 struct tcp_fastopen_cookie *foc,
467 bool attach_req);
468 int tcp_disconnect(struct sock *sk, int flags);
469
470 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
471 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
472 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
473
474 /* From syncookies.c */
475 struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
476 struct request_sock *req,
477 struct dst_entry *dst);
478 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
479 u32 cookie);
480 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
481 #ifdef CONFIG_SYN_COOKIES
482
483 /* Syncookies use a monotonic timer which increments every 60 seconds.
484 * This counter is used both as a hash input and partially encoded into
485 * the cookie value. A cookie is only validated further if the delta
486 * between the current counter value and the encoded one is less than this,
487 * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
488 * the counter advances immediately after a cookie is generated).
489 */
490 #define MAX_SYNCOOKIE_AGE 2
491 #define TCP_SYNCOOKIE_PERIOD (60 * HZ)
492 #define TCP_SYNCOOKIE_VALID (MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD)
493
494 /* syncookies: remember time of last synqueue overflow
495 * But do not dirty this field too often (once per second is enough)
496 * It is racy as we do not hold a lock, but race is very minor.
497 */
498 static inline void tcp_synq_overflow(const struct sock *sk)
499 {
500 unsigned long last_overflow = tcp_sk(sk)->rx_opt.ts_recent_stamp;
501 unsigned long now = jiffies;
502
503 if (time_after(now, last_overflow + HZ))
504 tcp_sk(sk)->rx_opt.ts_recent_stamp = now;
505 }
506
507 /* syncookies: no recent synqueue overflow on this listening socket? */
508 static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
509 {
510 unsigned long last_overflow = tcp_sk(sk)->rx_opt.ts_recent_stamp;
511
512 return time_after(jiffies, last_overflow + TCP_SYNCOOKIE_VALID);
513 }
514
515 static inline u32 tcp_cookie_time(void)
516 {
517 u64 val = get_jiffies_64();
518
519 do_div(val, TCP_SYNCOOKIE_PERIOD);
520 return val;
521 }
522
523 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
524 u16 *mssp);
525 __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss);
526 __u32 cookie_init_timestamp(struct request_sock *req);
527 bool cookie_timestamp_decode(struct tcp_options_received *opt);
528 bool cookie_ecn_ok(const struct tcp_options_received *opt,
529 const struct net *net, const struct dst_entry *dst);
530
531 /* From net/ipv6/syncookies.c */
532 int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th,
533 u32 cookie);
534 struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
535
536 u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
537 const struct tcphdr *th, u16 *mssp);
538 __u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss);
539 #endif
540 /* tcp_output.c */
541
542 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
543 int nonagle);
544 bool tcp_may_send_now(struct sock *sk);
545 int __tcp_retransmit_skb(struct sock *, struct sk_buff *);
546 int tcp_retransmit_skb(struct sock *, struct sk_buff *);
547 void tcp_retransmit_timer(struct sock *sk);
548 void tcp_xmit_retransmit_queue(struct sock *);
549 void tcp_simple_retransmit(struct sock *);
550 int tcp_trim_head(struct sock *, struct sk_buff *, u32);
551 int tcp_fragment(struct sock *, struct sk_buff *, u32, unsigned int, gfp_t);
552
553 void tcp_send_probe0(struct sock *);
554 void tcp_send_partial(struct sock *);
555 int tcp_write_wakeup(struct sock *, int mib);
556 void tcp_send_fin(struct sock *sk);
557 void tcp_send_active_reset(struct sock *sk, gfp_t priority);
558 int tcp_send_synack(struct sock *);
559 void tcp_push_one(struct sock *, unsigned int mss_now);
560 void tcp_send_ack(struct sock *sk);
561 void tcp_send_delayed_ack(struct sock *sk);
562 void tcp_send_loss_probe(struct sock *sk);
563 bool tcp_schedule_loss_probe(struct sock *sk);
564
565 /* tcp_input.c */
566 void tcp_resume_early_retransmit(struct sock *sk);
567 void tcp_rearm_rto(struct sock *sk);
568 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req);
569 void tcp_reset(struct sock *sk);
570
571 /* tcp_timer.c */
572 void tcp_init_xmit_timers(struct sock *);
573 static inline void tcp_clear_xmit_timers(struct sock *sk)
574 {
575 inet_csk_clear_xmit_timers(sk);
576 }
577
578 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
579 unsigned int tcp_current_mss(struct sock *sk);
580
581 /* Bound MSS / TSO packet size with the half of the window */
582 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
583 {
584 int cutoff;
585
586 /* When peer uses tiny windows, there is no use in packetizing
587 * to sub-MSS pieces for the sake of SWS or making sure there
588 * are enough packets in the pipe for fast recovery.
589 *
590 * On the other hand, for extremely large MSS devices, handling
591 * smaller than MSS windows in this way does make sense.
592 */
593 if (tp->max_window >= 512)
594 cutoff = (tp->max_window >> 1);
595 else
596 cutoff = tp->max_window;
597
598 if (cutoff && pktsize > cutoff)
599 return max_t(int, cutoff, 68U - tp->tcp_header_len);
600 else
601 return pktsize;
602 }
603
604 /* tcp.c */
605 void tcp_get_info(struct sock *, struct tcp_info *);
606
607 /* Read 'sendfile()'-style from a TCP socket */
608 typedef int (*sk_read_actor_t)(read_descriptor_t *, struct sk_buff *,
609 unsigned int, size_t);
610 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
611 sk_read_actor_t recv_actor);
612
613 void tcp_initialize_rcv_mss(struct sock *sk);
614
615 int tcp_mtu_to_mss(struct sock *sk, int pmtu);
616 int tcp_mss_to_mtu(struct sock *sk, int mss);
617 void tcp_mtup_init(struct sock *sk);
618 void tcp_init_buffer_space(struct sock *sk);
619
620 static inline void tcp_bound_rto(const struct sock *sk)
621 {
622 if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
623 inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
624 }
625
626 static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
627 {
628 return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
629 }
630
631 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
632 {
633 tp->pred_flags = htonl((tp->tcp_header_len << 26) |
634 ntohl(TCP_FLAG_ACK) |
635 snd_wnd);
636 }
637
638 static inline void tcp_fast_path_on(struct tcp_sock *tp)
639 {
640 __tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
641 }
642
643 static inline void tcp_fast_path_check(struct sock *sk)
644 {
645 struct tcp_sock *tp = tcp_sk(sk);
646
647 if (skb_queue_empty(&tp->out_of_order_queue) &&
648 tp->rcv_wnd &&
649 atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
650 !tp->urg_data)
651 tcp_fast_path_on(tp);
652 }
653
654 /* Compute the actual rto_min value */
655 static inline u32 tcp_rto_min(struct sock *sk)
656 {
657 const struct dst_entry *dst = __sk_dst_get(sk);
658 u32 rto_min = TCP_RTO_MIN;
659
660 if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
661 rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
662 return rto_min;
663 }
664
665 static inline u32 tcp_rto_min_us(struct sock *sk)
666 {
667 return jiffies_to_usecs(tcp_rto_min(sk));
668 }
669
670 static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
671 {
672 return dst_metric_locked(dst, RTAX_CC_ALGO);
673 }
674
675 /* Minimum RTT in usec. ~0 means not available. */
676 static inline u32 tcp_min_rtt(const struct tcp_sock *tp)
677 {
678 return tp->rtt_min[0].rtt;
679 }
680
681 /* Compute the actual receive window we are currently advertising.
682 * Rcv_nxt can be after the window if our peer push more data
683 * than the offered window.
684 */
685 static inline u32 tcp_receive_window(const struct tcp_sock *tp)
686 {
687 s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
688
689 if (win < 0)
690 win = 0;
691 return (u32) win;
692 }
693
694 /* Choose a new window, without checks for shrinking, and without
695 * scaling applied to the result. The caller does these things
696 * if necessary. This is a "raw" window selection.
697 */
698 u32 __tcp_select_window(struct sock *sk);
699
700 void tcp_send_window_probe(struct sock *sk);
701
702 /* TCP timestamps are only 32-bits, this causes a slight
703 * complication on 64-bit systems since we store a snapshot
704 * of jiffies in the buffer control blocks below. We decided
705 * to use only the low 32-bits of jiffies and hide the ugly
706 * casts with the following macro.
707 */
708 #define tcp_time_stamp ((__u32)(jiffies))
709
710 static inline u32 tcp_skb_timestamp(const struct sk_buff *skb)
711 {
712 return skb->skb_mstamp.stamp_jiffies;
713 }
714
715
716 #define tcp_flag_byte(th) (((u_int8_t *)th)[13])
717
718 #define TCPHDR_FIN 0x01
719 #define TCPHDR_SYN 0x02
720 #define TCPHDR_RST 0x04
721 #define TCPHDR_PSH 0x08
722 #define TCPHDR_ACK 0x10
723 #define TCPHDR_URG 0x20
724 #define TCPHDR_ECE 0x40
725 #define TCPHDR_CWR 0x80
726
727 #define TCPHDR_SYN_ECN (TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR)
728
729 /* This is what the send packet queuing engine uses to pass
730 * TCP per-packet control information to the transmission code.
731 * We also store the host-order sequence numbers in here too.
732 * This is 44 bytes if IPV6 is enabled.
733 * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
734 */
735 struct tcp_skb_cb {
736 __u32 seq; /* Starting sequence number */
737 __u32 end_seq; /* SEQ + FIN + SYN + datalen */
738 union {
739 /* Note : tcp_tw_isn is used in input path only
740 * (isn chosen by tcp_timewait_state_process())
741 *
742 * tcp_gso_segs/size are used in write queue only,
743 * cf tcp_skb_pcount()/tcp_skb_mss()
744 */
745 __u32 tcp_tw_isn;
746 struct {
747 u16 tcp_gso_segs;
748 u16 tcp_gso_size;
749 };
750 };
751 __u8 tcp_flags; /* TCP header flags. (tcp[13]) */
752
753 __u8 sacked; /* State flags for SACK/FACK. */
754 #define TCPCB_SACKED_ACKED 0x01 /* SKB ACK'd by a SACK block */
755 #define TCPCB_SACKED_RETRANS 0x02 /* SKB retransmitted */
756 #define TCPCB_LOST 0x04 /* SKB is lost */
757 #define TCPCB_TAGBITS 0x07 /* All tag bits */
758 #define TCPCB_REPAIRED 0x10 /* SKB repaired (no skb_mstamp) */
759 #define TCPCB_EVER_RETRANS 0x80 /* Ever retransmitted frame */
760 #define TCPCB_RETRANS (TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS| \
761 TCPCB_REPAIRED)
762
763 __u8 ip_dsfield; /* IPv4 tos or IPv6 dsfield */
764 /* 1 byte hole */
765 __u32 ack_seq; /* Sequence number ACK'd */
766 union {
767 struct inet_skb_parm h4;
768 #if IS_ENABLED(CONFIG_IPV6)
769 struct inet6_skb_parm h6;
770 #endif
771 } header; /* For incoming frames */
772 };
773
774 #define TCP_SKB_CB(__skb) ((struct tcp_skb_cb *)&((__skb)->cb[0]))
775
776
777 #if IS_ENABLED(CONFIG_IPV6)
778 /* This is the variant of inet6_iif() that must be used by TCP,
779 * as TCP moves IP6CB into a different location in skb->cb[]
780 */
781 static inline int tcp_v6_iif(const struct sk_buff *skb)
782 {
783 return TCP_SKB_CB(skb)->header.h6.iif;
784 }
785 #endif
786
787 /* Due to TSO, an SKB can be composed of multiple actual
788 * packets. To keep these tracked properly, we use this.
789 */
790 static inline int tcp_skb_pcount(const struct sk_buff *skb)
791 {
792 return TCP_SKB_CB(skb)->tcp_gso_segs;
793 }
794
795 static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
796 {
797 TCP_SKB_CB(skb)->tcp_gso_segs = segs;
798 }
799
800 static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
801 {
802 TCP_SKB_CB(skb)->tcp_gso_segs += segs;
803 }
804
805 /* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */
806 static inline int tcp_skb_mss(const struct sk_buff *skb)
807 {
808 return TCP_SKB_CB(skb)->tcp_gso_size;
809 }
810
811 /* Events passed to congestion control interface */
812 enum tcp_ca_event {
813 CA_EVENT_TX_START, /* first transmit when no packets in flight */
814 CA_EVENT_CWND_RESTART, /* congestion window restart */
815 CA_EVENT_COMPLETE_CWR, /* end of congestion recovery */
816 CA_EVENT_LOSS, /* loss timeout */
817 CA_EVENT_ECN_NO_CE, /* ECT set, but not CE marked */
818 CA_EVENT_ECN_IS_CE, /* received CE marked IP packet */
819 CA_EVENT_DELAYED_ACK, /* Delayed ack is sent */
820 CA_EVENT_NON_DELAYED_ACK,
821 };
822
823 /* Information about inbound ACK, passed to cong_ops->in_ack_event() */
824 enum tcp_ca_ack_event_flags {
825 CA_ACK_SLOWPATH = (1 << 0), /* In slow path processing */
826 CA_ACK_WIN_UPDATE = (1 << 1), /* ACK updated window */
827 CA_ACK_ECE = (1 << 2), /* ECE bit is set on ack */
828 };
829
830 /*
831 * Interface for adding new TCP congestion control handlers
832 */
833 #define TCP_CA_NAME_MAX 16
834 #define TCP_CA_MAX 128
835 #define TCP_CA_BUF_MAX (TCP_CA_NAME_MAX*TCP_CA_MAX)
836
837 #define TCP_CA_UNSPEC 0
838
839 /* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
840 #define TCP_CONG_NON_RESTRICTED 0x1
841 /* Requires ECN/ECT set on all packets */
842 #define TCP_CONG_NEEDS_ECN 0x2
843
844 union tcp_cc_info;
845
846 struct tcp_congestion_ops {
847 struct list_head list;
848 u32 key;
849 u32 flags;
850
851 /* initialize private data (optional) */
852 void (*init)(struct sock *sk);
853 /* cleanup private data (optional) */
854 void (*release)(struct sock *sk);
855
856 /* return slow start threshold (required) */
857 u32 (*ssthresh)(struct sock *sk);
858 /* do new cwnd calculation (required) */
859 void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
860 /* call before changing ca_state (optional) */
861 void (*set_state)(struct sock *sk, u8 new_state);
862 /* call when cwnd event occurs (optional) */
863 void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
864 /* call when ack arrives (optional) */
865 void (*in_ack_event)(struct sock *sk, u32 flags);
866 /* new value of cwnd after loss (optional) */
867 u32 (*undo_cwnd)(struct sock *sk);
868 /* hook for packet ack accounting (optional) */
869 void (*pkts_acked)(struct sock *sk, u32 num_acked, s32 rtt_us);
870 /* get info for inet_diag (optional) */
871 size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
872 union tcp_cc_info *info);
873
874 char name[TCP_CA_NAME_MAX];
875 struct module *owner;
876 };
877
878 int tcp_register_congestion_control(struct tcp_congestion_ops *type);
879 void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
880
881 void tcp_assign_congestion_control(struct sock *sk);
882 void tcp_init_congestion_control(struct sock *sk);
883 void tcp_cleanup_congestion_control(struct sock *sk);
884 int tcp_set_default_congestion_control(const char *name);
885 void tcp_get_default_congestion_control(char *name);
886 void tcp_get_available_congestion_control(char *buf, size_t len);
887 void tcp_get_allowed_congestion_control(char *buf, size_t len);
888 int tcp_set_allowed_congestion_control(char *allowed);
889 int tcp_set_congestion_control(struct sock *sk, const char *name);
890 u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
891 void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
892
893 u32 tcp_reno_ssthresh(struct sock *sk);
894 void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
895 extern struct tcp_congestion_ops tcp_reno;
896
897 struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
898 u32 tcp_ca_get_key_by_name(const char *name, bool *ecn_ca);
899 #ifdef CONFIG_INET
900 char *tcp_ca_get_name_by_key(u32 key, char *buffer);
901 #else
902 static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
903 {
904 return NULL;
905 }
906 #endif
907
908 static inline bool tcp_ca_needs_ecn(const struct sock *sk)
909 {
910 const struct inet_connection_sock *icsk = inet_csk(sk);
911
912 return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
913 }
914
915 static inline void tcp_set_ca_state(struct sock *sk, const u8 ca_state)
916 {
917 struct inet_connection_sock *icsk = inet_csk(sk);
918
919 if (icsk->icsk_ca_ops->set_state)
920 icsk->icsk_ca_ops->set_state(sk, ca_state);
921 icsk->icsk_ca_state = ca_state;
922 }
923
924 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
925 {
926 const struct inet_connection_sock *icsk = inet_csk(sk);
927
928 if (icsk->icsk_ca_ops->cwnd_event)
929 icsk->icsk_ca_ops->cwnd_event(sk, event);
930 }
931
932 /* These functions determine how the current flow behaves in respect of SACK
933 * handling. SACK is negotiated with the peer, and therefore it can vary
934 * between different flows.
935 *
936 * tcp_is_sack - SACK enabled
937 * tcp_is_reno - No SACK
938 * tcp_is_fack - FACK enabled, implies SACK enabled
939 */
940 static inline int tcp_is_sack(const struct tcp_sock *tp)
941 {
942 return tp->rx_opt.sack_ok;
943 }
944
945 static inline bool tcp_is_reno(const struct tcp_sock *tp)
946 {
947 return !tcp_is_sack(tp);
948 }
949
950 static inline bool tcp_is_fack(const struct tcp_sock *tp)
951 {
952 return tp->rx_opt.sack_ok & TCP_FACK_ENABLED;
953 }
954
955 static inline void tcp_enable_fack(struct tcp_sock *tp)
956 {
957 tp->rx_opt.sack_ok |= TCP_FACK_ENABLED;
958 }
959
960 /* TCP early-retransmit (ER) is similar to but more conservative than
961 * the thin-dupack feature. Enable ER only if thin-dupack is disabled.
962 */
963 static inline void tcp_enable_early_retrans(struct tcp_sock *tp)
964 {
965 tp->do_early_retrans = sysctl_tcp_early_retrans &&
966 sysctl_tcp_early_retrans < 4 && !sysctl_tcp_thin_dupack &&
967 sysctl_tcp_reordering == 3;
968 }
969
970 static inline void tcp_disable_early_retrans(struct tcp_sock *tp)
971 {
972 tp->do_early_retrans = 0;
973 }
974
975 static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
976 {
977 return tp->sacked_out + tp->lost_out;
978 }
979
980 /* This determines how many packets are "in the network" to the best
981 * of our knowledge. In many cases it is conservative, but where
982 * detailed information is available from the receiver (via SACK
983 * blocks etc.) we can make more aggressive calculations.
984 *
985 * Use this for decisions involving congestion control, use just
986 * tp->packets_out to determine if the send queue is empty or not.
987 *
988 * Read this equation as:
989 *
990 * "Packets sent once on transmission queue" MINUS
991 * "Packets left network, but not honestly ACKed yet" PLUS
992 * "Packets fast retransmitted"
993 */
994 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
995 {
996 return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
997 }
998
999 #define TCP_INFINITE_SSTHRESH 0x7fffffff
1000
1001 static inline bool tcp_in_slow_start(const struct tcp_sock *tp)
1002 {
1003 return tp->snd_cwnd < tp->snd_ssthresh;
1004 }
1005
1006 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
1007 {
1008 return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
1009 }
1010
1011 static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
1012 {
1013 return (TCPF_CA_CWR | TCPF_CA_Recovery) &
1014 (1 << inet_csk(sk)->icsk_ca_state);
1015 }
1016
1017 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
1018 * The exception is cwnd reduction phase, when cwnd is decreasing towards
1019 * ssthresh.
1020 */
1021 static inline __u32 tcp_current_ssthresh(const struct sock *sk)
1022 {
1023 const struct tcp_sock *tp = tcp_sk(sk);
1024
1025 if (tcp_in_cwnd_reduction(sk))
1026 return tp->snd_ssthresh;
1027 else
1028 return max(tp->snd_ssthresh,
1029 ((tp->snd_cwnd >> 1) +
1030 (tp->snd_cwnd >> 2)));
1031 }
1032
1033 /* Use define here intentionally to get WARN_ON location shown at the caller */
1034 #define tcp_verify_left_out(tp) WARN_ON(tcp_left_out(tp) > tp->packets_out)
1035
1036 void tcp_enter_cwr(struct sock *sk);
1037 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
1038
1039 /* The maximum number of MSS of available cwnd for which TSO defers
1040 * sending if not using sysctl_tcp_tso_win_divisor.
1041 */
1042 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
1043 {
1044 return 3;
1045 }
1046
1047 /* Slow start with delack produces 3 packets of burst, so that
1048 * it is safe "de facto". This will be the default - same as
1049 * the default reordering threshold - but if reordering increases,
1050 * we must be able to allow cwnd to burst at least this much in order
1051 * to not pull it back when holes are filled.
1052 */
1053 static __inline__ __u32 tcp_max_burst(const struct tcp_sock *tp)
1054 {
1055 return tp->reordering;
1056 }
1057
1058 /* Returns end sequence number of the receiver's advertised window */
1059 static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1060 {
1061 return tp->snd_una + tp->snd_wnd;
1062 }
1063
1064 /* We follow the spirit of RFC2861 to validate cwnd but implement a more
1065 * flexible approach. The RFC suggests cwnd should not be raised unless
1066 * it was fully used previously. And that's exactly what we do in
1067 * congestion avoidance mode. But in slow start we allow cwnd to grow
1068 * as long as the application has used half the cwnd.
1069 * Example :
1070 * cwnd is 10 (IW10), but application sends 9 frames.
1071 * We allow cwnd to reach 18 when all frames are ACKed.
1072 * This check is safe because it's as aggressive as slow start which already
1073 * risks 100% overshoot. The advantage is that we discourage application to
1074 * either send more filler packets or data to artificially blow up the cwnd
1075 * usage, and allow application-limited process to probe bw more aggressively.
1076 */
1077 static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1078 {
1079 const struct tcp_sock *tp = tcp_sk(sk);
1080
1081 /* If in slow start, ensure cwnd grows to twice what was ACKed. */
1082 if (tcp_in_slow_start(tp))
1083 return tp->snd_cwnd < 2 * tp->max_packets_out;
1084
1085 return tp->is_cwnd_limited;
1086 }
1087
1088 /* Something is really bad, we could not queue an additional packet,
1089 * because qdisc is full or receiver sent a 0 window.
1090 * We do not want to add fuel to the fire, or abort too early,
1091 * so make sure the timer we arm now is at least 200ms in the future,
1092 * regardless of current icsk_rto value (as it could be ~2ms)
1093 */
1094 static inline unsigned long tcp_probe0_base(const struct sock *sk)
1095 {
1096 return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN);
1097 }
1098
1099 /* Variant of inet_csk_rto_backoff() used for zero window probes */
1100 static inline unsigned long tcp_probe0_when(const struct sock *sk,
1101 unsigned long max_when)
1102 {
1103 u64 when = (u64)tcp_probe0_base(sk) << inet_csk(sk)->icsk_backoff;
1104
1105 return (unsigned long)min_t(u64, when, max_when);
1106 }
1107
1108 static inline void tcp_check_probe_timer(struct sock *sk)
1109 {
1110 if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending)
1111 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1112 tcp_probe0_base(sk), TCP_RTO_MAX);
1113 }
1114
1115 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1116 {
1117 tp->snd_wl1 = seq;
1118 }
1119
1120 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1121 {
1122 tp->snd_wl1 = seq;
1123 }
1124
1125 /*
1126 * Calculate(/check) TCP checksum
1127 */
1128 static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1129 __be32 daddr, __wsum base)
1130 {
1131 return csum_tcpudp_magic(saddr,daddr,len,IPPROTO_TCP,base);
1132 }
1133
1134 static inline __sum16 __tcp_checksum_complete(struct sk_buff *skb)
1135 {
1136 return __skb_checksum_complete(skb);
1137 }
1138
1139 static inline bool tcp_checksum_complete(struct sk_buff *skb)
1140 {
1141 return !skb_csum_unnecessary(skb) &&
1142 __tcp_checksum_complete(skb);
1143 }
1144
1145 /* Prequeue for VJ style copy to user, combined with checksumming. */
1146
1147 static inline void tcp_prequeue_init(struct tcp_sock *tp)
1148 {
1149 tp->ucopy.task = NULL;
1150 tp->ucopy.len = 0;
1151 tp->ucopy.memory = 0;
1152 skb_queue_head_init(&tp->ucopy.prequeue);
1153 }
1154
1155 bool tcp_prequeue(struct sock *sk, struct sk_buff *skb);
1156
1157 #undef STATE_TRACE
1158
1159 #ifdef STATE_TRACE
1160 static const char *statename[]={
1161 "Unused","Established","Syn Sent","Syn Recv",
1162 "Fin Wait 1","Fin Wait 2","Time Wait", "Close",
1163 "Close Wait","Last ACK","Listen","Closing"
1164 };
1165 #endif
1166 void tcp_set_state(struct sock *sk, int state);
1167
1168 void tcp_done(struct sock *sk);
1169
1170 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1171 {
1172 rx_opt->dsack = 0;
1173 rx_opt->num_sacks = 0;
1174 }
1175
1176 u32 tcp_default_init_rwnd(u32 mss);
1177 void tcp_cwnd_restart(struct sock *sk, s32 delta);
1178
1179 static inline void tcp_slow_start_after_idle_check(struct sock *sk)
1180 {
1181 struct tcp_sock *tp = tcp_sk(sk);
1182 s32 delta;
1183
1184 if (!sysctl_tcp_slow_start_after_idle || tp->packets_out)
1185 return;
1186 delta = tcp_time_stamp - tp->lsndtime;
1187 if (delta > inet_csk(sk)->icsk_rto)
1188 tcp_cwnd_restart(sk, delta);
1189 }
1190
1191 /* Determine a window scaling and initial window to offer. */
1192 void tcp_select_initial_window(int __space, __u32 mss, __u32 *rcv_wnd,
1193 __u32 *window_clamp, int wscale_ok,
1194 __u8 *rcv_wscale, __u32 init_rcv_wnd);
1195
1196 static inline int tcp_win_from_space(int space)
1197 {
1198 return sysctl_tcp_adv_win_scale<=0 ?
1199 (space>>(-sysctl_tcp_adv_win_scale)) :
1200 space - (space>>sysctl_tcp_adv_win_scale);
1201 }
1202
1203 /* Note: caller must be prepared to deal with negative returns */
1204 static inline int tcp_space(const struct sock *sk)
1205 {
1206 return tcp_win_from_space(sk->sk_rcvbuf -
1207 atomic_read(&sk->sk_rmem_alloc));
1208 }
1209
1210 static inline int tcp_full_space(const struct sock *sk)
1211 {
1212 return tcp_win_from_space(sk->sk_rcvbuf);
1213 }
1214
1215 extern void tcp_openreq_init_rwin(struct request_sock *req,
1216 const struct sock *sk_listener,
1217 const struct dst_entry *dst);
1218
1219 void tcp_enter_memory_pressure(struct sock *sk);
1220
1221 static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1222 {
1223 return tp->keepalive_intvl ? : sysctl_tcp_keepalive_intvl;
1224 }
1225
1226 static inline int keepalive_time_when(const struct tcp_sock *tp)
1227 {
1228 return tp->keepalive_time ? : sysctl_tcp_keepalive_time;
1229 }
1230
1231 static inline int keepalive_probes(const struct tcp_sock *tp)
1232 {
1233 return tp->keepalive_probes ? : sysctl_tcp_keepalive_probes;
1234 }
1235
1236 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1237 {
1238 const struct inet_connection_sock *icsk = &tp->inet_conn;
1239
1240 return min_t(u32, tcp_time_stamp - icsk->icsk_ack.lrcvtime,
1241 tcp_time_stamp - tp->rcv_tstamp);
1242 }
1243
1244 static inline int tcp_fin_time(const struct sock *sk)
1245 {
1246 int fin_timeout = tcp_sk(sk)->linger2 ? : sysctl_tcp_fin_timeout;
1247 const int rto = inet_csk(sk)->icsk_rto;
1248
1249 if (fin_timeout < (rto << 2) - (rto >> 1))
1250 fin_timeout = (rto << 2) - (rto >> 1);
1251
1252 return fin_timeout;
1253 }
1254
1255 static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1256 int paws_win)
1257 {
1258 if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1259 return true;
1260 if (unlikely(get_seconds() >= rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS))
1261 return true;
1262 /*
1263 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1264 * then following tcp messages have valid values. Ignore 0 value,
1265 * or else 'negative' tsval might forbid us to accept their packets.
1266 */
1267 if (!rx_opt->ts_recent)
1268 return true;
1269 return false;
1270 }
1271
1272 static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1273 int rst)
1274 {
1275 if (tcp_paws_check(rx_opt, 0))
1276 return false;
1277
1278 /* RST segments are not recommended to carry timestamp,
1279 and, if they do, it is recommended to ignore PAWS because
1280 "their cleanup function should take precedence over timestamps."
1281 Certainly, it is mistake. It is necessary to understand the reasons
1282 of this constraint to relax it: if peer reboots, clock may go
1283 out-of-sync and half-open connections will not be reset.
1284 Actually, the problem would be not existing if all
1285 the implementations followed draft about maintaining clock
1286 via reboots. Linux-2.2 DOES NOT!
1287
1288 However, we can relax time bounds for RST segments to MSL.
1289 */
1290 if (rst && get_seconds() >= rx_opt->ts_recent_stamp + TCP_PAWS_MSL)
1291 return false;
1292 return true;
1293 }
1294
1295 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
1296 int mib_idx, u32 *last_oow_ack_time);
1297
1298 static inline void tcp_mib_init(struct net *net)
1299 {
1300 /* See RFC 2012 */
1301 TCP_ADD_STATS_USER(net, TCP_MIB_RTOALGORITHM, 1);
1302 TCP_ADD_STATS_USER(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1303 TCP_ADD_STATS_USER(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1304 TCP_ADD_STATS_USER(net, TCP_MIB_MAXCONN, -1);
1305 }
1306
1307 /* from STCP */
1308 static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1309 {
1310 tp->lost_skb_hint = NULL;
1311 }
1312
1313 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1314 {
1315 tcp_clear_retrans_hints_partial(tp);
1316 tp->retransmit_skb_hint = NULL;
1317 }
1318
1319 /* MD5 Signature */
1320 struct crypto_hash;
1321
1322 union tcp_md5_addr {
1323 struct in_addr a4;
1324 #if IS_ENABLED(CONFIG_IPV6)
1325 struct in6_addr a6;
1326 #endif
1327 };
1328
1329 /* - key database */
1330 struct tcp_md5sig_key {
1331 struct hlist_node node;
1332 u8 keylen;
1333 u8 family; /* AF_INET or AF_INET6 */
1334 union tcp_md5_addr addr;
1335 u8 key[TCP_MD5SIG_MAXKEYLEN];
1336 struct rcu_head rcu;
1337 };
1338
1339 /* - sock block */
1340 struct tcp_md5sig_info {
1341 struct hlist_head head;
1342 struct rcu_head rcu;
1343 };
1344
1345 /* - pseudo header */
1346 struct tcp4_pseudohdr {
1347 __be32 saddr;
1348 __be32 daddr;
1349 __u8 pad;
1350 __u8 protocol;
1351 __be16 len;
1352 };
1353
1354 struct tcp6_pseudohdr {
1355 struct in6_addr saddr;
1356 struct in6_addr daddr;
1357 __be32 len;
1358 __be32 protocol; /* including padding */
1359 };
1360
1361 union tcp_md5sum_block {
1362 struct tcp4_pseudohdr ip4;
1363 #if IS_ENABLED(CONFIG_IPV6)
1364 struct tcp6_pseudohdr ip6;
1365 #endif
1366 };
1367
1368 /* - pool: digest algorithm, hash description and scratch buffer */
1369 struct tcp_md5sig_pool {
1370 struct hash_desc md5_desc;
1371 union tcp_md5sum_block md5_blk;
1372 };
1373
1374 /* - functions */
1375 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1376 const struct sock *sk, const struct sk_buff *skb);
1377 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1378 int family, const u8 *newkey, u8 newkeylen, gfp_t gfp);
1379 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1380 int family);
1381 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1382 const struct sock *addr_sk);
1383
1384 #ifdef CONFIG_TCP_MD5SIG
1385 struct tcp_md5sig_key *tcp_md5_do_lookup(const struct sock *sk,
1386 const union tcp_md5_addr *addr,
1387 int family);
1388 #define tcp_twsk_md5_key(twsk) ((twsk)->tw_md5_key)
1389 #else
1390 static inline struct tcp_md5sig_key *tcp_md5_do_lookup(const struct sock *sk,
1391 const union tcp_md5_addr *addr,
1392 int family)
1393 {
1394 return NULL;
1395 }
1396 #define tcp_twsk_md5_key(twsk) NULL
1397 #endif
1398
1399 bool tcp_alloc_md5sig_pool(void);
1400
1401 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void);
1402 static inline void tcp_put_md5sig_pool(void)
1403 {
1404 local_bh_enable();
1405 }
1406
1407 int tcp_md5_hash_header(struct tcp_md5sig_pool *, const struct tcphdr *);
1408 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *,
1409 unsigned int header_len);
1410 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp,
1411 const struct tcp_md5sig_key *key);
1412
1413 /* From tcp_fastopen.c */
1414 void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1415 struct tcp_fastopen_cookie *cookie, int *syn_loss,
1416 unsigned long *last_syn_loss);
1417 void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1418 struct tcp_fastopen_cookie *cookie, bool syn_lost,
1419 u16 try_exp);
1420 struct tcp_fastopen_request {
1421 /* Fast Open cookie. Size 0 means a cookie request */
1422 struct tcp_fastopen_cookie cookie;
1423 struct msghdr *data; /* data in MSG_FASTOPEN */
1424 size_t size;
1425 int copied; /* queued in tcp_connect() */
1426 };
1427 void tcp_free_fastopen_req(struct tcp_sock *tp);
1428
1429 extern struct tcp_fastopen_context __rcu *tcp_fastopen_ctx;
1430 int tcp_fastopen_reset_cipher(void *key, unsigned int len);
1431 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
1432 struct request_sock *req,
1433 struct tcp_fastopen_cookie *foc,
1434 struct dst_entry *dst);
1435 void tcp_fastopen_init_key_once(bool publish);
1436 #define TCP_FASTOPEN_KEY_LENGTH 16
1437
1438 /* Fastopen key context */
1439 struct tcp_fastopen_context {
1440 struct crypto_cipher *tfm;
1441 __u8 key[TCP_FASTOPEN_KEY_LENGTH];
1442 struct rcu_head rcu;
1443 };
1444
1445 /* write queue abstraction */
1446 static inline void tcp_write_queue_purge(struct sock *sk)
1447 {
1448 struct sk_buff *skb;
1449
1450 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL)
1451 sk_wmem_free_skb(sk, skb);
1452 sk_mem_reclaim(sk);
1453 tcp_clear_all_retrans_hints(tcp_sk(sk));
1454 }
1455
1456 static inline struct sk_buff *tcp_write_queue_head(const struct sock *sk)
1457 {
1458 return skb_peek(&sk->sk_write_queue);
1459 }
1460
1461 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
1462 {
1463 return skb_peek_tail(&sk->sk_write_queue);
1464 }
1465
1466 static inline struct sk_buff *tcp_write_queue_next(const struct sock *sk,
1467 const struct sk_buff *skb)
1468 {
1469 return skb_queue_next(&sk->sk_write_queue, skb);
1470 }
1471
1472 static inline struct sk_buff *tcp_write_queue_prev(const struct sock *sk,
1473 const struct sk_buff *skb)
1474 {
1475 return skb_queue_prev(&sk->sk_write_queue, skb);
1476 }
1477
1478 #define tcp_for_write_queue(skb, sk) \
1479 skb_queue_walk(&(sk)->sk_write_queue, skb)
1480
1481 #define tcp_for_write_queue_from(skb, sk) \
1482 skb_queue_walk_from(&(sk)->sk_write_queue, skb)
1483
1484 #define tcp_for_write_queue_from_safe(skb, tmp, sk) \
1485 skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1486
1487 static inline struct sk_buff *tcp_send_head(const struct sock *sk)
1488 {
1489 return sk->sk_send_head;
1490 }
1491
1492 static inline bool tcp_skb_is_last(const struct sock *sk,
1493 const struct sk_buff *skb)
1494 {
1495 return skb_queue_is_last(&sk->sk_write_queue, skb);
1496 }
1497
1498 static inline void tcp_advance_send_head(struct sock *sk, const struct sk_buff *skb)
1499 {
1500 if (tcp_skb_is_last(sk, skb))
1501 sk->sk_send_head = NULL;
1502 else
1503 sk->sk_send_head = tcp_write_queue_next(sk, skb);
1504 }
1505
1506 static inline void tcp_check_send_head(struct sock *sk, struct sk_buff *skb_unlinked)
1507 {
1508 if (sk->sk_send_head == skb_unlinked)
1509 sk->sk_send_head = NULL;
1510 }
1511
1512 static inline void tcp_init_send_head(struct sock *sk)
1513 {
1514 sk->sk_send_head = NULL;
1515 }
1516
1517 static inline void __tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1518 {
1519 __skb_queue_tail(&sk->sk_write_queue, skb);
1520 }
1521
1522 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1523 {
1524 __tcp_add_write_queue_tail(sk, skb);
1525
1526 /* Queue it, remembering where we must start sending. */
1527 if (sk->sk_send_head == NULL) {
1528 sk->sk_send_head = skb;
1529
1530 if (tcp_sk(sk)->highest_sack == NULL)
1531 tcp_sk(sk)->highest_sack = skb;
1532 }
1533 }
1534
1535 static inline void __tcp_add_write_queue_head(struct sock *sk, struct sk_buff *skb)
1536 {
1537 __skb_queue_head(&sk->sk_write_queue, skb);
1538 }
1539
1540 /* Insert buff after skb on the write queue of sk. */
1541 static inline void tcp_insert_write_queue_after(struct sk_buff *skb,
1542 struct sk_buff *buff,
1543 struct sock *sk)
1544 {
1545 __skb_queue_after(&sk->sk_write_queue, skb, buff);
1546 }
1547
1548 /* Insert new before skb on the write queue of sk. */
1549 static inline void tcp_insert_write_queue_before(struct sk_buff *new,
1550 struct sk_buff *skb,
1551 struct sock *sk)
1552 {
1553 __skb_queue_before(&sk->sk_write_queue, skb, new);
1554
1555 if (sk->sk_send_head == skb)
1556 sk->sk_send_head = new;
1557 }
1558
1559 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
1560 {
1561 __skb_unlink(skb, &sk->sk_write_queue);
1562 }
1563
1564 static inline bool tcp_write_queue_empty(struct sock *sk)
1565 {
1566 return skb_queue_empty(&sk->sk_write_queue);
1567 }
1568
1569 static inline void tcp_push_pending_frames(struct sock *sk)
1570 {
1571 if (tcp_send_head(sk)) {
1572 struct tcp_sock *tp = tcp_sk(sk);
1573
1574 __tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
1575 }
1576 }
1577
1578 /* Start sequence of the skb just after the highest skb with SACKed
1579 * bit, valid only if sacked_out > 0 or when the caller has ensured
1580 * validity by itself.
1581 */
1582 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
1583 {
1584 if (!tp->sacked_out)
1585 return tp->snd_una;
1586
1587 if (tp->highest_sack == NULL)
1588 return tp->snd_nxt;
1589
1590 return TCP_SKB_CB(tp->highest_sack)->seq;
1591 }
1592
1593 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
1594 {
1595 tcp_sk(sk)->highest_sack = tcp_skb_is_last(sk, skb) ? NULL :
1596 tcp_write_queue_next(sk, skb);
1597 }
1598
1599 static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
1600 {
1601 return tcp_sk(sk)->highest_sack;
1602 }
1603
1604 static inline void tcp_highest_sack_reset(struct sock *sk)
1605 {
1606 tcp_sk(sk)->highest_sack = tcp_write_queue_head(sk);
1607 }
1608
1609 /* Called when old skb is about to be deleted (to be combined with new skb) */
1610 static inline void tcp_highest_sack_combine(struct sock *sk,
1611 struct sk_buff *old,
1612 struct sk_buff *new)
1613 {
1614 if (tcp_sk(sk)->sacked_out && (old == tcp_sk(sk)->highest_sack))
1615 tcp_sk(sk)->highest_sack = new;
1616 }
1617
1618 /* Determines whether this is a thin stream (which may suffer from
1619 * increased latency). Used to trigger latency-reducing mechanisms.
1620 */
1621 static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
1622 {
1623 return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
1624 }
1625
1626 /* /proc */
1627 enum tcp_seq_states {
1628 TCP_SEQ_STATE_LISTENING,
1629 TCP_SEQ_STATE_ESTABLISHED,
1630 };
1631
1632 int tcp_seq_open(struct inode *inode, struct file *file);
1633
1634 struct tcp_seq_afinfo {
1635 char *name;
1636 sa_family_t family;
1637 const struct file_operations *seq_fops;
1638 struct seq_operations seq_ops;
1639 };
1640
1641 struct tcp_iter_state {
1642 struct seq_net_private p;
1643 sa_family_t family;
1644 enum tcp_seq_states state;
1645 struct sock *syn_wait_sk;
1646 int bucket, offset, sbucket, num;
1647 loff_t last_pos;
1648 };
1649
1650 int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo);
1651 void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo);
1652
1653 extern struct request_sock_ops tcp_request_sock_ops;
1654 extern struct request_sock_ops tcp6_request_sock_ops;
1655
1656 void tcp_v4_destroy_sock(struct sock *sk);
1657
1658 struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
1659 netdev_features_t features);
1660 struct sk_buff **tcp_gro_receive(struct sk_buff **head, struct sk_buff *skb);
1661 int tcp_gro_complete(struct sk_buff *skb);
1662
1663 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
1664
1665 static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
1666 {
1667 return tp->notsent_lowat ?: sysctl_tcp_notsent_lowat;
1668 }
1669
1670 static inline bool tcp_stream_memory_free(const struct sock *sk)
1671 {
1672 const struct tcp_sock *tp = tcp_sk(sk);
1673 u32 notsent_bytes = tp->write_seq - tp->snd_nxt;
1674
1675 return notsent_bytes < tcp_notsent_lowat(tp);
1676 }
1677
1678 #ifdef CONFIG_PROC_FS
1679 int tcp4_proc_init(void);
1680 void tcp4_proc_exit(void);
1681 #endif
1682
1683 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req);
1684 int tcp_conn_request(struct request_sock_ops *rsk_ops,
1685 const struct tcp_request_sock_ops *af_ops,
1686 struct sock *sk, struct sk_buff *skb);
1687
1688 /* TCP af-specific functions */
1689 struct tcp_sock_af_ops {
1690 #ifdef CONFIG_TCP_MD5SIG
1691 struct tcp_md5sig_key *(*md5_lookup) (const struct sock *sk,
1692 const struct sock *addr_sk);
1693 int (*calc_md5_hash)(char *location,
1694 const struct tcp_md5sig_key *md5,
1695 const struct sock *sk,
1696 const struct sk_buff *skb);
1697 int (*md5_parse)(struct sock *sk,
1698 char __user *optval,
1699 int optlen);
1700 #endif
1701 };
1702
1703 struct tcp_request_sock_ops {
1704 u16 mss_clamp;
1705 #ifdef CONFIG_TCP_MD5SIG
1706 struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk,
1707 const struct sock *addr_sk);
1708 int (*calc_md5_hash) (char *location,
1709 const struct tcp_md5sig_key *md5,
1710 const struct sock *sk,
1711 const struct sk_buff *skb);
1712 #endif
1713 void (*init_req)(struct request_sock *req,
1714 const struct sock *sk_listener,
1715 struct sk_buff *skb);
1716 #ifdef CONFIG_SYN_COOKIES
1717 __u32 (*cookie_init_seq)(const struct sk_buff *skb,
1718 __u16 *mss);
1719 #endif
1720 struct dst_entry *(*route_req)(const struct sock *sk, struct flowi *fl,
1721 const struct request_sock *req,
1722 bool *strict);
1723 __u32 (*init_seq)(const struct sk_buff *skb);
1724 int (*send_synack)(const struct sock *sk, struct dst_entry *dst,
1725 struct flowi *fl, struct request_sock *req,
1726 struct tcp_fastopen_cookie *foc,
1727 bool attach_req);
1728 };
1729
1730 #ifdef CONFIG_SYN_COOKIES
1731 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
1732 const struct sock *sk, struct sk_buff *skb,
1733 __u16 *mss)
1734 {
1735 tcp_synq_overflow(sk);
1736 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
1737 return ops->cookie_init_seq(skb, mss);
1738 }
1739 #else
1740 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
1741 const struct sock *sk, struct sk_buff *skb,
1742 __u16 *mss)
1743 {
1744 return 0;
1745 }
1746 #endif
1747
1748 int tcpv4_offload_init(void);
1749
1750 void tcp_v4_init(void);
1751 void tcp_init(void);
1752
1753 /*
1754 * Save and compile IPv4 options, return a pointer to it
1755 */
1756 static inline struct ip_options_rcu *tcp_v4_save_options(struct sk_buff *skb)
1757 {
1758 const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
1759 struct ip_options_rcu *dopt = NULL;
1760
1761 if (opt->optlen) {
1762 int opt_size = sizeof(*dopt) + opt->optlen;
1763
1764 dopt = kmalloc(opt_size, GFP_ATOMIC);
1765 if (dopt && __ip_options_echo(&dopt->opt, skb, opt)) {
1766 kfree(dopt);
1767 dopt = NULL;
1768 }
1769 }
1770 return dopt;
1771 }
1772
1773 /* locally generated TCP pure ACKs have skb->truesize == 2
1774 * (check tcp_send_ack() in net/ipv4/tcp_output.c )
1775 * This is much faster than dissecting the packet to find out.
1776 * (Think of GRE encapsulations, IPv4, IPv6, ...)
1777 */
1778 static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
1779 {
1780 return skb->truesize == 2;
1781 }
1782
1783 static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
1784 {
1785 skb->truesize = 2;
1786 }
1787
1788 #endif /* _TCP_H */