]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - include/net/tcp.h
790439f5cba74112e9c7660bd6b4f1599f1ffb61
[mirror_ubuntu-bionic-kernel.git] / include / net / tcp.h
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Definitions for the TCP module.
7 *
8 * Version: @(#)tcp.h 1.0.5 05/23/93
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 *
13 * This program is free software; you can redistribute it and/or
14 * modify it under the terms of the GNU General Public License
15 * as published by the Free Software Foundation; either version
16 * 2 of the License, or (at your option) any later version.
17 */
18 #ifndef _TCP_H
19 #define _TCP_H
20
21 #define FASTRETRANS_DEBUG 1
22
23 #include <linux/list.h>
24 #include <linux/tcp.h>
25 #include <linux/bug.h>
26 #include <linux/slab.h>
27 #include <linux/cache.h>
28 #include <linux/percpu.h>
29 #include <linux/skbuff.h>
30 #include <linux/cryptohash.h>
31 #include <linux/kref.h>
32 #include <linux/ktime.h>
33
34 #include <net/inet_connection_sock.h>
35 #include <net/inet_timewait_sock.h>
36 #include <net/inet_hashtables.h>
37 #include <net/checksum.h>
38 #include <net/request_sock.h>
39 #include <net/sock.h>
40 #include <net/snmp.h>
41 #include <net/ip.h>
42 #include <net/tcp_states.h>
43 #include <net/inet_ecn.h>
44 #include <net/dst.h>
45
46 #include <linux/seq_file.h>
47 #include <linux/memcontrol.h>
48 #include <linux/bpf-cgroup.h>
49
50 extern struct inet_hashinfo tcp_hashinfo;
51
52 extern struct percpu_counter tcp_orphan_count;
53 void tcp_time_wait(struct sock *sk, int state, int timeo);
54
55 #define MAX_TCP_HEADER (128 + MAX_HEADER)
56 #define MAX_TCP_OPTION_SPACE 40
57
58 /*
59 * Never offer a window over 32767 without using window scaling. Some
60 * poor stacks do signed 16bit maths!
61 */
62 #define MAX_TCP_WINDOW 32767U
63
64 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */
65 #define TCP_MIN_MSS 88U
66
67 /* The least MTU to use for probing */
68 #define TCP_BASE_MSS 1024
69
70 /* probing interval, default to 10 minutes as per RFC4821 */
71 #define TCP_PROBE_INTERVAL 600
72
73 /* Specify interval when tcp mtu probing will stop */
74 #define TCP_PROBE_THRESHOLD 8
75
76 /* After receiving this amount of duplicate ACKs fast retransmit starts. */
77 #define TCP_FASTRETRANS_THRESH 3
78
79 /* Maximal number of ACKs sent quickly to accelerate slow-start. */
80 #define TCP_MAX_QUICKACKS 16U
81
82 /* Maximal number of window scale according to RFC1323 */
83 #define TCP_MAX_WSCALE 14U
84
85 /* urg_data states */
86 #define TCP_URG_VALID 0x0100
87 #define TCP_URG_NOTYET 0x0200
88 #define TCP_URG_READ 0x0400
89
90 #define TCP_RETR1 3 /*
91 * This is how many retries it does before it
92 * tries to figure out if the gateway is
93 * down. Minimal RFC value is 3; it corresponds
94 * to ~3sec-8min depending on RTO.
95 */
96
97 #define TCP_RETR2 15 /*
98 * This should take at least
99 * 90 minutes to time out.
100 * RFC1122 says that the limit is 100 sec.
101 * 15 is ~13-30min depending on RTO.
102 */
103
104 #define TCP_SYN_RETRIES 6 /* This is how many retries are done
105 * when active opening a connection.
106 * RFC1122 says the minimum retry MUST
107 * be at least 180secs. Nevertheless
108 * this value is corresponding to
109 * 63secs of retransmission with the
110 * current initial RTO.
111 */
112
113 #define TCP_SYNACK_RETRIES 5 /* This is how may retries are done
114 * when passive opening a connection.
115 * This is corresponding to 31secs of
116 * retransmission with the current
117 * initial RTO.
118 */
119
120 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
121 * state, about 60 seconds */
122 #define TCP_FIN_TIMEOUT TCP_TIMEWAIT_LEN
123 /* BSD style FIN_WAIT2 deadlock breaker.
124 * It used to be 3min, new value is 60sec,
125 * to combine FIN-WAIT-2 timeout with
126 * TIME-WAIT timer.
127 */
128
129 #define TCP_DELACK_MAX ((unsigned)(HZ/5)) /* maximal time to delay before sending an ACK */
130 #if HZ >= 100
131 #define TCP_DELACK_MIN ((unsigned)(HZ/25)) /* minimal time to delay before sending an ACK */
132 #define TCP_ATO_MIN ((unsigned)(HZ/25))
133 #else
134 #define TCP_DELACK_MIN 4U
135 #define TCP_ATO_MIN 4U
136 #endif
137 #define TCP_RTO_MAX ((unsigned)(120*HZ))
138 #define TCP_RTO_MIN ((unsigned)(HZ/5))
139 #define TCP_TIMEOUT_MIN (2U) /* Min timeout for TCP timers in jiffies */
140 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ)) /* RFC6298 2.1 initial RTO value */
141 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ)) /* RFC 1122 initial RTO value, now
142 * used as a fallback RTO for the
143 * initial data transmission if no
144 * valid RTT sample has been acquired,
145 * most likely due to retrans in 3WHS.
146 */
147
148 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
149 * for local resources.
150 */
151 #define TCP_KEEPALIVE_TIME (120*60*HZ) /* two hours */
152 #define TCP_KEEPALIVE_PROBES 9 /* Max of 9 keepalive probes */
153 #define TCP_KEEPALIVE_INTVL (75*HZ)
154
155 #define MAX_TCP_KEEPIDLE 32767
156 #define MAX_TCP_KEEPINTVL 32767
157 #define MAX_TCP_KEEPCNT 127
158 #define MAX_TCP_SYNCNT 127
159
160 #define TCP_SYNQ_INTERVAL (HZ/5) /* Period of SYNACK timer */
161
162 #define TCP_PAWS_24DAYS (60 * 60 * 24 * 24)
163 #define TCP_PAWS_MSL 60 /* Per-host timestamps are invalidated
164 * after this time. It should be equal
165 * (or greater than) TCP_TIMEWAIT_LEN
166 * to provide reliability equal to one
167 * provided by timewait state.
168 */
169 #define TCP_PAWS_WINDOW 1 /* Replay window for per-host
170 * timestamps. It must be less than
171 * minimal timewait lifetime.
172 */
173 /*
174 * TCP option
175 */
176
177 #define TCPOPT_NOP 1 /* Padding */
178 #define TCPOPT_EOL 0 /* End of options */
179 #define TCPOPT_MSS 2 /* Segment size negotiating */
180 #define TCPOPT_WINDOW 3 /* Window scaling */
181 #define TCPOPT_SACK_PERM 4 /* SACK Permitted */
182 #define TCPOPT_SACK 5 /* SACK Block */
183 #define TCPOPT_TIMESTAMP 8 /* Better RTT estimations/PAWS */
184 #define TCPOPT_MD5SIG 19 /* MD5 Signature (RFC2385) */
185 #define TCPOPT_FASTOPEN 34 /* Fast open (RFC7413) */
186 #define TCPOPT_EXP 254 /* Experimental */
187 /* Magic number to be after the option value for sharing TCP
188 * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
189 */
190 #define TCPOPT_FASTOPEN_MAGIC 0xF989
191 #define TCPOPT_SMC_MAGIC 0xE2D4C3D9
192
193 /*
194 * TCP option lengths
195 */
196
197 #define TCPOLEN_MSS 4
198 #define TCPOLEN_WINDOW 3
199 #define TCPOLEN_SACK_PERM 2
200 #define TCPOLEN_TIMESTAMP 10
201 #define TCPOLEN_MD5SIG 18
202 #define TCPOLEN_FASTOPEN_BASE 2
203 #define TCPOLEN_EXP_FASTOPEN_BASE 4
204 #define TCPOLEN_EXP_SMC_BASE 6
205
206 /* But this is what stacks really send out. */
207 #define TCPOLEN_TSTAMP_ALIGNED 12
208 #define TCPOLEN_WSCALE_ALIGNED 4
209 #define TCPOLEN_SACKPERM_ALIGNED 4
210 #define TCPOLEN_SACK_BASE 2
211 #define TCPOLEN_SACK_BASE_ALIGNED 4
212 #define TCPOLEN_SACK_PERBLOCK 8
213 #define TCPOLEN_MD5SIG_ALIGNED 20
214 #define TCPOLEN_MSS_ALIGNED 4
215 #define TCPOLEN_EXP_SMC_BASE_ALIGNED 8
216
217 /* Flags in tp->nonagle */
218 #define TCP_NAGLE_OFF 1 /* Nagle's algo is disabled */
219 #define TCP_NAGLE_CORK 2 /* Socket is corked */
220 #define TCP_NAGLE_PUSH 4 /* Cork is overridden for already queued data */
221
222 /* TCP thin-stream limits */
223 #define TCP_THIN_LINEAR_RETRIES 6 /* After 6 linear retries, do exp. backoff */
224
225 /* TCP initial congestion window as per rfc6928 */
226 #define TCP_INIT_CWND 10
227
228 /* Bit Flags for sysctl_tcp_fastopen */
229 #define TFO_CLIENT_ENABLE 1
230 #define TFO_SERVER_ENABLE 2
231 #define TFO_CLIENT_NO_COOKIE 4 /* Data in SYN w/o cookie option */
232
233 /* Accept SYN data w/o any cookie option */
234 #define TFO_SERVER_COOKIE_NOT_REQD 0x200
235
236 /* Force enable TFO on all listeners, i.e., not requiring the
237 * TCP_FASTOPEN socket option.
238 */
239 #define TFO_SERVER_WO_SOCKOPT1 0x400
240
241
242 /* sysctl variables for tcp */
243 extern int sysctl_tcp_max_orphans;
244 extern long sysctl_tcp_mem[3];
245
246 #define TCP_RACK_LOSS_DETECTION 0x1 /* Use RACK to detect losses */
247 #define TCP_RACK_STATIC_REO_WND 0x2 /* Use static RACK reo wnd */
248
249 extern atomic_long_t tcp_memory_allocated;
250 extern struct percpu_counter tcp_sockets_allocated;
251 extern unsigned long tcp_memory_pressure;
252
253 /* optimized version of sk_under_memory_pressure() for TCP sockets */
254 static inline bool tcp_under_memory_pressure(const struct sock *sk)
255 {
256 if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
257 mem_cgroup_under_socket_pressure(sk->sk_memcg))
258 return true;
259
260 return tcp_memory_pressure;
261 }
262 /*
263 * The next routines deal with comparing 32 bit unsigned ints
264 * and worry about wraparound (automatic with unsigned arithmetic).
265 */
266
267 static inline bool before(__u32 seq1, __u32 seq2)
268 {
269 return (__s32)(seq1-seq2) < 0;
270 }
271 #define after(seq2, seq1) before(seq1, seq2)
272
273 /* is s2<=s1<=s3 ? */
274 static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
275 {
276 return seq3 - seq2 >= seq1 - seq2;
277 }
278
279 static inline bool tcp_out_of_memory(struct sock *sk)
280 {
281 if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
282 sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
283 return true;
284 return false;
285 }
286
287 void sk_forced_mem_schedule(struct sock *sk, int size);
288
289 static inline bool tcp_too_many_orphans(struct sock *sk, int shift)
290 {
291 struct percpu_counter *ocp = sk->sk_prot->orphan_count;
292 int orphans = percpu_counter_read_positive(ocp);
293
294 if (orphans << shift > sysctl_tcp_max_orphans) {
295 orphans = percpu_counter_sum_positive(ocp);
296 if (orphans << shift > sysctl_tcp_max_orphans)
297 return true;
298 }
299 return false;
300 }
301
302 bool tcp_check_oom(struct sock *sk, int shift);
303
304
305 extern struct proto tcp_prot;
306
307 #define TCP_INC_STATS(net, field) SNMP_INC_STATS((net)->mib.tcp_statistics, field)
308 #define __TCP_INC_STATS(net, field) __SNMP_INC_STATS((net)->mib.tcp_statistics, field)
309 #define TCP_DEC_STATS(net, field) SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
310 #define TCP_ADD_STATS(net, field, val) SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
311
312 void tcp_tasklet_init(void);
313
314 void tcp_v4_err(struct sk_buff *skb, u32);
315
316 void tcp_shutdown(struct sock *sk, int how);
317
318 int tcp_v4_early_demux(struct sk_buff *skb);
319 int tcp_v4_rcv(struct sk_buff *skb);
320
321 int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw);
322 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
323 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size);
324 int tcp_sendpage(struct sock *sk, struct page *page, int offset, size_t size,
325 int flags);
326 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
327 size_t size, int flags);
328 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
329 size_t size, int flags);
330 void tcp_release_cb(struct sock *sk);
331 void tcp_wfree(struct sk_buff *skb);
332 void tcp_write_timer_handler(struct sock *sk);
333 void tcp_delack_timer_handler(struct sock *sk);
334 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg);
335 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb);
336 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
337 const struct tcphdr *th);
338 void tcp_rcv_space_adjust(struct sock *sk);
339 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
340 void tcp_twsk_destructor(struct sock *sk);
341 ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
342 struct pipe_inode_info *pipe, size_t len,
343 unsigned int flags);
344
345 static inline void tcp_dec_quickack_mode(struct sock *sk,
346 const unsigned int pkts)
347 {
348 struct inet_connection_sock *icsk = inet_csk(sk);
349
350 if (icsk->icsk_ack.quick) {
351 if (pkts >= icsk->icsk_ack.quick) {
352 icsk->icsk_ack.quick = 0;
353 /* Leaving quickack mode we deflate ATO. */
354 icsk->icsk_ack.ato = TCP_ATO_MIN;
355 } else
356 icsk->icsk_ack.quick -= pkts;
357 }
358 }
359
360 #define TCP_ECN_OK 1
361 #define TCP_ECN_QUEUE_CWR 2
362 #define TCP_ECN_DEMAND_CWR 4
363 #define TCP_ECN_SEEN 8
364
365 enum tcp_tw_status {
366 TCP_TW_SUCCESS = 0,
367 TCP_TW_RST = 1,
368 TCP_TW_ACK = 2,
369 TCP_TW_SYN = 3
370 };
371
372
373 enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
374 struct sk_buff *skb,
375 const struct tcphdr *th);
376 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
377 struct request_sock *req, bool fastopen);
378 int tcp_child_process(struct sock *parent, struct sock *child,
379 struct sk_buff *skb);
380 void tcp_enter_loss(struct sock *sk);
381 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag);
382 void tcp_clear_retrans(struct tcp_sock *tp);
383 void tcp_update_metrics(struct sock *sk);
384 void tcp_init_metrics(struct sock *sk);
385 void tcp_metrics_init(void);
386 bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst);
387 void tcp_close(struct sock *sk, long timeout);
388 void tcp_init_sock(struct sock *sk);
389 void tcp_init_transfer(struct sock *sk, int bpf_op);
390 unsigned int tcp_poll(struct file *file, struct socket *sock,
391 struct poll_table_struct *wait);
392 int tcp_getsockopt(struct sock *sk, int level, int optname,
393 char __user *optval, int __user *optlen);
394 int tcp_setsockopt(struct sock *sk, int level, int optname,
395 char __user *optval, unsigned int optlen);
396 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
397 char __user *optval, int __user *optlen);
398 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
399 char __user *optval, unsigned int optlen);
400 void tcp_set_keepalive(struct sock *sk, int val);
401 void tcp_syn_ack_timeout(const struct request_sock *req);
402 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
403 int flags, int *addr_len);
404 void tcp_parse_options(const struct net *net, const struct sk_buff *skb,
405 struct tcp_options_received *opt_rx,
406 int estab, struct tcp_fastopen_cookie *foc);
407 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th);
408
409 /*
410 * TCP v4 functions exported for the inet6 API
411 */
412
413 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
414 void tcp_v4_mtu_reduced(struct sock *sk);
415 void tcp_req_err(struct sock *sk, u32 seq, bool abort);
416 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
417 struct sock *tcp_create_openreq_child(const struct sock *sk,
418 struct request_sock *req,
419 struct sk_buff *skb);
420 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
421 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
422 struct request_sock *req,
423 struct dst_entry *dst,
424 struct request_sock *req_unhash,
425 bool *own_req);
426 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
427 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
428 int tcp_connect(struct sock *sk);
429 enum tcp_synack_type {
430 TCP_SYNACK_NORMAL,
431 TCP_SYNACK_FASTOPEN,
432 TCP_SYNACK_COOKIE,
433 };
434 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
435 struct request_sock *req,
436 struct tcp_fastopen_cookie *foc,
437 enum tcp_synack_type synack_type);
438 int tcp_disconnect(struct sock *sk, int flags);
439
440 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
441 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
442 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
443
444 /* From syncookies.c */
445 struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
446 struct request_sock *req,
447 struct dst_entry *dst, u32 tsoff);
448 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
449 u32 cookie);
450 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
451 #ifdef CONFIG_SYN_COOKIES
452
453 /* Syncookies use a monotonic timer which increments every 60 seconds.
454 * This counter is used both as a hash input and partially encoded into
455 * the cookie value. A cookie is only validated further if the delta
456 * between the current counter value and the encoded one is less than this,
457 * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
458 * the counter advances immediately after a cookie is generated).
459 */
460 #define MAX_SYNCOOKIE_AGE 2
461 #define TCP_SYNCOOKIE_PERIOD (60 * HZ)
462 #define TCP_SYNCOOKIE_VALID (MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD)
463
464 /* syncookies: remember time of last synqueue overflow
465 * But do not dirty this field too often (once per second is enough)
466 * It is racy as we do not hold a lock, but race is very minor.
467 */
468 static inline void tcp_synq_overflow(const struct sock *sk)
469 {
470 unsigned long last_overflow = tcp_sk(sk)->rx_opt.ts_recent_stamp;
471 unsigned long now = jiffies;
472
473 if (time_after(now, last_overflow + HZ))
474 tcp_sk(sk)->rx_opt.ts_recent_stamp = now;
475 }
476
477 /* syncookies: no recent synqueue overflow on this listening socket? */
478 static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
479 {
480 unsigned long last_overflow = tcp_sk(sk)->rx_opt.ts_recent_stamp;
481
482 return time_after(jiffies, last_overflow + TCP_SYNCOOKIE_VALID);
483 }
484
485 static inline u32 tcp_cookie_time(void)
486 {
487 u64 val = get_jiffies_64();
488
489 do_div(val, TCP_SYNCOOKIE_PERIOD);
490 return val;
491 }
492
493 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
494 u16 *mssp);
495 __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss);
496 u64 cookie_init_timestamp(struct request_sock *req);
497 bool cookie_timestamp_decode(const struct net *net,
498 struct tcp_options_received *opt);
499 bool cookie_ecn_ok(const struct tcp_options_received *opt,
500 const struct net *net, const struct dst_entry *dst);
501
502 /* From net/ipv6/syncookies.c */
503 int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th,
504 u32 cookie);
505 struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
506
507 u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
508 const struct tcphdr *th, u16 *mssp);
509 __u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss);
510 #endif
511 /* tcp_output.c */
512
513 u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now,
514 int min_tso_segs);
515 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
516 int nonagle);
517 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
518 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
519 void tcp_retransmit_timer(struct sock *sk);
520 void tcp_xmit_retransmit_queue(struct sock *);
521 void tcp_simple_retransmit(struct sock *);
522 void tcp_enter_recovery(struct sock *sk, bool ece_ack);
523 int tcp_trim_head(struct sock *, struct sk_buff *, u32);
524 enum tcp_queue {
525 TCP_FRAG_IN_WRITE_QUEUE,
526 TCP_FRAG_IN_RTX_QUEUE,
527 };
528 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
529 struct sk_buff *skb, u32 len,
530 unsigned int mss_now, gfp_t gfp);
531
532 void tcp_send_probe0(struct sock *);
533 void tcp_send_partial(struct sock *);
534 int tcp_write_wakeup(struct sock *, int mib);
535 void tcp_send_fin(struct sock *sk);
536 void tcp_send_active_reset(struct sock *sk, gfp_t priority);
537 int tcp_send_synack(struct sock *);
538 void tcp_push_one(struct sock *, unsigned int mss_now);
539 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt);
540 void tcp_send_ack(struct sock *sk);
541 void tcp_send_delayed_ack(struct sock *sk);
542 void tcp_send_loss_probe(struct sock *sk);
543 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto);
544 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
545 const struct sk_buff *next_skb);
546
547 /* tcp_input.c */
548 void tcp_rearm_rto(struct sock *sk);
549 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req);
550 void tcp_reset(struct sock *sk);
551 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb);
552 void tcp_fin(struct sock *sk);
553
554 /* tcp_timer.c */
555 void tcp_init_xmit_timers(struct sock *);
556 static inline void tcp_clear_xmit_timers(struct sock *sk)
557 {
558 hrtimer_cancel(&tcp_sk(sk)->pacing_timer);
559 inet_csk_clear_xmit_timers(sk);
560 }
561
562 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
563 unsigned int tcp_current_mss(struct sock *sk);
564
565 /* Bound MSS / TSO packet size with the half of the window */
566 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
567 {
568 int cutoff;
569
570 /* When peer uses tiny windows, there is no use in packetizing
571 * to sub-MSS pieces for the sake of SWS or making sure there
572 * are enough packets in the pipe for fast recovery.
573 *
574 * On the other hand, for extremely large MSS devices, handling
575 * smaller than MSS windows in this way does make sense.
576 */
577 if (tp->max_window > TCP_MSS_DEFAULT)
578 cutoff = (tp->max_window >> 1);
579 else
580 cutoff = tp->max_window;
581
582 if (cutoff && pktsize > cutoff)
583 return max_t(int, cutoff, 68U - tp->tcp_header_len);
584 else
585 return pktsize;
586 }
587
588 /* tcp.c */
589 void tcp_get_info(struct sock *, struct tcp_info *);
590
591 /* Read 'sendfile()'-style from a TCP socket */
592 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
593 sk_read_actor_t recv_actor);
594
595 void tcp_initialize_rcv_mss(struct sock *sk);
596
597 int tcp_mtu_to_mss(struct sock *sk, int pmtu);
598 int tcp_mss_to_mtu(struct sock *sk, int mss);
599 void tcp_mtup_init(struct sock *sk);
600 void tcp_init_buffer_space(struct sock *sk);
601
602 static inline void tcp_bound_rto(const struct sock *sk)
603 {
604 if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
605 inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
606 }
607
608 static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
609 {
610 return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
611 }
612
613 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
614 {
615 tp->pred_flags = htonl((tp->tcp_header_len << 26) |
616 ntohl(TCP_FLAG_ACK) |
617 snd_wnd);
618 }
619
620 static inline void tcp_fast_path_on(struct tcp_sock *tp)
621 {
622 __tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
623 }
624
625 static inline void tcp_fast_path_check(struct sock *sk)
626 {
627 struct tcp_sock *tp = tcp_sk(sk);
628
629 if (RB_EMPTY_ROOT(&tp->out_of_order_queue) &&
630 tp->rcv_wnd &&
631 atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
632 !tp->urg_data)
633 tcp_fast_path_on(tp);
634 }
635
636 /* Compute the actual rto_min value */
637 static inline u32 tcp_rto_min(struct sock *sk)
638 {
639 const struct dst_entry *dst = __sk_dst_get(sk);
640 u32 rto_min = TCP_RTO_MIN;
641
642 if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
643 rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
644 return rto_min;
645 }
646
647 static inline u32 tcp_rto_min_us(struct sock *sk)
648 {
649 return jiffies_to_usecs(tcp_rto_min(sk));
650 }
651
652 static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
653 {
654 return dst_metric_locked(dst, RTAX_CC_ALGO);
655 }
656
657 /* Minimum RTT in usec. ~0 means not available. */
658 static inline u32 tcp_min_rtt(const struct tcp_sock *tp)
659 {
660 return minmax_get(&tp->rtt_min);
661 }
662
663 /* Compute the actual receive window we are currently advertising.
664 * Rcv_nxt can be after the window if our peer push more data
665 * than the offered window.
666 */
667 static inline u32 tcp_receive_window(const struct tcp_sock *tp)
668 {
669 s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
670
671 if (win < 0)
672 win = 0;
673 return (u32) win;
674 }
675
676 /* Choose a new window, without checks for shrinking, and without
677 * scaling applied to the result. The caller does these things
678 * if necessary. This is a "raw" window selection.
679 */
680 u32 __tcp_select_window(struct sock *sk);
681
682 void tcp_send_window_probe(struct sock *sk);
683
684 /* TCP uses 32bit jiffies to save some space.
685 * Note that this is different from tcp_time_stamp, which
686 * historically has been the same until linux-4.13.
687 */
688 #define tcp_jiffies32 ((u32)jiffies)
689
690 /*
691 * Deliver a 32bit value for TCP timestamp option (RFC 7323)
692 * It is no longer tied to jiffies, but to 1 ms clock.
693 * Note: double check if you want to use tcp_jiffies32 instead of this.
694 */
695 #define TCP_TS_HZ 1000
696
697 static inline u64 tcp_clock_ns(void)
698 {
699 return local_clock();
700 }
701
702 static inline u64 tcp_clock_us(void)
703 {
704 return div_u64(tcp_clock_ns(), NSEC_PER_USEC);
705 }
706
707 /* This should only be used in contexts where tp->tcp_mstamp is up to date */
708 static inline u32 tcp_time_stamp(const struct tcp_sock *tp)
709 {
710 return div_u64(tp->tcp_mstamp, USEC_PER_SEC / TCP_TS_HZ);
711 }
712
713 /* Could use tcp_clock_us() / 1000, but this version uses a single divide */
714 static inline u32 tcp_time_stamp_raw(void)
715 {
716 return div_u64(tcp_clock_ns(), NSEC_PER_SEC / TCP_TS_HZ);
717 }
718
719
720 /* Refresh 1us clock of a TCP socket,
721 * ensuring monotically increasing values.
722 */
723 static inline void tcp_mstamp_refresh(struct tcp_sock *tp)
724 {
725 u64 val = tcp_clock_us();
726
727 if (val > tp->tcp_mstamp)
728 tp->tcp_mstamp = val;
729 }
730
731 static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0)
732 {
733 return max_t(s64, t1 - t0, 0);
734 }
735
736 static inline u32 tcp_skb_timestamp(const struct sk_buff *skb)
737 {
738 return div_u64(skb->skb_mstamp, USEC_PER_SEC / TCP_TS_HZ);
739 }
740
741
742 #define tcp_flag_byte(th) (((u_int8_t *)th)[13])
743
744 #define TCPHDR_FIN 0x01
745 #define TCPHDR_SYN 0x02
746 #define TCPHDR_RST 0x04
747 #define TCPHDR_PSH 0x08
748 #define TCPHDR_ACK 0x10
749 #define TCPHDR_URG 0x20
750 #define TCPHDR_ECE 0x40
751 #define TCPHDR_CWR 0x80
752
753 #define TCPHDR_SYN_ECN (TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR)
754
755 /* This is what the send packet queuing engine uses to pass
756 * TCP per-packet control information to the transmission code.
757 * We also store the host-order sequence numbers in here too.
758 * This is 44 bytes if IPV6 is enabled.
759 * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
760 */
761 struct tcp_skb_cb {
762 __u32 seq; /* Starting sequence number */
763 __u32 end_seq; /* SEQ + FIN + SYN + datalen */
764 union {
765 /* Note : tcp_tw_isn is used in input path only
766 * (isn chosen by tcp_timewait_state_process())
767 *
768 * tcp_gso_segs/size are used in write queue only,
769 * cf tcp_skb_pcount()/tcp_skb_mss()
770 */
771 __u32 tcp_tw_isn;
772 struct {
773 u16 tcp_gso_segs;
774 u16 tcp_gso_size;
775 };
776 };
777 __u8 tcp_flags; /* TCP header flags. (tcp[13]) */
778
779 __u8 sacked; /* State flags for SACK. */
780 #define TCPCB_SACKED_ACKED 0x01 /* SKB ACK'd by a SACK block */
781 #define TCPCB_SACKED_RETRANS 0x02 /* SKB retransmitted */
782 #define TCPCB_LOST 0x04 /* SKB is lost */
783 #define TCPCB_TAGBITS 0x07 /* All tag bits */
784 #define TCPCB_REPAIRED 0x10 /* SKB repaired (no skb_mstamp) */
785 #define TCPCB_EVER_RETRANS 0x80 /* Ever retransmitted frame */
786 #define TCPCB_RETRANS (TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS| \
787 TCPCB_REPAIRED)
788
789 __u8 ip_dsfield; /* IPv4 tos or IPv6 dsfield */
790 __u8 txstamp_ack:1, /* Record TX timestamp for ack? */
791 eor:1, /* Is skb MSG_EOR marked? */
792 has_rxtstamp:1, /* SKB has a RX timestamp */
793 unused:5;
794 __u32 ack_seq; /* Sequence number ACK'd */
795 union {
796 struct {
797 /* There is space for up to 24 bytes */
798 __u32 in_flight:30,/* Bytes in flight at transmit */
799 is_app_limited:1, /* cwnd not fully used? */
800 unused:1;
801 /* pkts S/ACKed so far upon tx of skb, incl retrans: */
802 __u32 delivered;
803 /* start of send pipeline phase */
804 u64 first_tx_mstamp;
805 /* when we reached the "delivered" count */
806 u64 delivered_mstamp;
807 } tx; /* only used for outgoing skbs */
808 union {
809 struct inet_skb_parm h4;
810 #if IS_ENABLED(CONFIG_IPV6)
811 struct inet6_skb_parm h6;
812 #endif
813 } header; /* For incoming skbs */
814 struct {
815 __u32 key;
816 __u32 flags;
817 struct bpf_map *map;
818 void *data_end;
819 } bpf;
820 };
821 };
822
823 #define TCP_SKB_CB(__skb) ((struct tcp_skb_cb *)&((__skb)->cb[0]))
824
825
826 #if IS_ENABLED(CONFIG_IPV6)
827 /* This is the variant of inet6_iif() that must be used by TCP,
828 * as TCP moves IP6CB into a different location in skb->cb[]
829 */
830 static inline int tcp_v6_iif(const struct sk_buff *skb)
831 {
832 return TCP_SKB_CB(skb)->header.h6.iif;
833 }
834
835 static inline int tcp_v6_iif_l3_slave(const struct sk_buff *skb)
836 {
837 bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags);
838
839 return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif;
840 }
841
842 /* TCP_SKB_CB reference means this can not be used from early demux */
843 static inline int tcp_v6_sdif(const struct sk_buff *skb)
844 {
845 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
846 if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags))
847 return TCP_SKB_CB(skb)->header.h6.iif;
848 #endif
849 return 0;
850 }
851 #endif
852
853 static inline bool inet_exact_dif_match(struct net *net, struct sk_buff *skb)
854 {
855 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
856 if (!net->ipv4.sysctl_tcp_l3mdev_accept &&
857 skb && ipv4_l3mdev_skb(IPCB(skb)->flags))
858 return true;
859 #endif
860 return false;
861 }
862
863 /* TCP_SKB_CB reference means this can not be used from early demux */
864 static inline int tcp_v4_sdif(struct sk_buff *skb)
865 {
866 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
867 if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags))
868 return TCP_SKB_CB(skb)->header.h4.iif;
869 #endif
870 return 0;
871 }
872
873 /* Due to TSO, an SKB can be composed of multiple actual
874 * packets. To keep these tracked properly, we use this.
875 */
876 static inline int tcp_skb_pcount(const struct sk_buff *skb)
877 {
878 return TCP_SKB_CB(skb)->tcp_gso_segs;
879 }
880
881 static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
882 {
883 TCP_SKB_CB(skb)->tcp_gso_segs = segs;
884 }
885
886 static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
887 {
888 TCP_SKB_CB(skb)->tcp_gso_segs += segs;
889 }
890
891 /* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */
892 static inline int tcp_skb_mss(const struct sk_buff *skb)
893 {
894 return TCP_SKB_CB(skb)->tcp_gso_size;
895 }
896
897 static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb)
898 {
899 return likely(!TCP_SKB_CB(skb)->eor);
900 }
901
902 /* Events passed to congestion control interface */
903 enum tcp_ca_event {
904 CA_EVENT_TX_START, /* first transmit when no packets in flight */
905 CA_EVENT_CWND_RESTART, /* congestion window restart */
906 CA_EVENT_COMPLETE_CWR, /* end of congestion recovery */
907 CA_EVENT_LOSS, /* loss timeout */
908 CA_EVENT_ECN_NO_CE, /* ECT set, but not CE marked */
909 CA_EVENT_ECN_IS_CE, /* received CE marked IP packet */
910 CA_EVENT_DELAYED_ACK, /* Delayed ack is sent */
911 CA_EVENT_NON_DELAYED_ACK,
912 };
913
914 /* Information about inbound ACK, passed to cong_ops->in_ack_event() */
915 enum tcp_ca_ack_event_flags {
916 CA_ACK_SLOWPATH = (1 << 0), /* In slow path processing */
917 CA_ACK_WIN_UPDATE = (1 << 1), /* ACK updated window */
918 CA_ACK_ECE = (1 << 2), /* ECE bit is set on ack */
919 };
920
921 /*
922 * Interface for adding new TCP congestion control handlers
923 */
924 #define TCP_CA_NAME_MAX 16
925 #define TCP_CA_MAX 128
926 #define TCP_CA_BUF_MAX (TCP_CA_NAME_MAX*TCP_CA_MAX)
927
928 #define TCP_CA_UNSPEC 0
929
930 /* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
931 #define TCP_CONG_NON_RESTRICTED 0x1
932 /* Requires ECN/ECT set on all packets */
933 #define TCP_CONG_NEEDS_ECN 0x2
934
935 union tcp_cc_info;
936
937 struct ack_sample {
938 u32 pkts_acked;
939 s32 rtt_us;
940 u32 in_flight;
941 };
942
943 /* A rate sample measures the number of (original/retransmitted) data
944 * packets delivered "delivered" over an interval of time "interval_us".
945 * The tcp_rate.c code fills in the rate sample, and congestion
946 * control modules that define a cong_control function to run at the end
947 * of ACK processing can optionally chose to consult this sample when
948 * setting cwnd and pacing rate.
949 * A sample is invalid if "delivered" or "interval_us" is negative.
950 */
951 struct rate_sample {
952 u64 prior_mstamp; /* starting timestamp for interval */
953 u32 prior_delivered; /* tp->delivered at "prior_mstamp" */
954 s32 delivered; /* number of packets delivered over interval */
955 long interval_us; /* time for tp->delivered to incr "delivered" */
956 long rtt_us; /* RTT of last (S)ACKed packet (or -1) */
957 int losses; /* number of packets marked lost upon ACK */
958 u32 acked_sacked; /* number of packets newly (S)ACKed upon ACK */
959 u32 prior_in_flight; /* in flight before this ACK */
960 bool is_app_limited; /* is sample from packet with bubble in pipe? */
961 bool is_retrans; /* is sample from retransmission? */
962 };
963
964 struct tcp_congestion_ops {
965 struct list_head list;
966 u32 key;
967 u32 flags;
968
969 /* initialize private data (optional) */
970 void (*init)(struct sock *sk);
971 /* cleanup private data (optional) */
972 void (*release)(struct sock *sk);
973
974 /* return slow start threshold (required) */
975 u32 (*ssthresh)(struct sock *sk);
976 /* do new cwnd calculation (required) */
977 void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
978 /* call before changing ca_state (optional) */
979 void (*set_state)(struct sock *sk, u8 new_state);
980 /* call when cwnd event occurs (optional) */
981 void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
982 /* call when ack arrives (optional) */
983 void (*in_ack_event)(struct sock *sk, u32 flags);
984 /* new value of cwnd after loss (required) */
985 u32 (*undo_cwnd)(struct sock *sk);
986 /* hook for packet ack accounting (optional) */
987 void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample);
988 /* suggest number of segments for each skb to transmit (optional) */
989 u32 (*tso_segs_goal)(struct sock *sk);
990 /* returns the multiplier used in tcp_sndbuf_expand (optional) */
991 u32 (*sndbuf_expand)(struct sock *sk);
992 /* call when packets are delivered to update cwnd and pacing rate,
993 * after all the ca_state processing. (optional)
994 */
995 void (*cong_control)(struct sock *sk, const struct rate_sample *rs);
996 /* get info for inet_diag (optional) */
997 size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
998 union tcp_cc_info *info);
999
1000 char name[TCP_CA_NAME_MAX];
1001 struct module *owner;
1002 };
1003
1004 int tcp_register_congestion_control(struct tcp_congestion_ops *type);
1005 void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
1006
1007 void tcp_assign_congestion_control(struct sock *sk);
1008 void tcp_init_congestion_control(struct sock *sk);
1009 void tcp_cleanup_congestion_control(struct sock *sk);
1010 int tcp_set_default_congestion_control(struct net *net, const char *name);
1011 void tcp_get_default_congestion_control(struct net *net, char *name);
1012 void tcp_get_available_congestion_control(char *buf, size_t len);
1013 void tcp_get_allowed_congestion_control(char *buf, size_t len);
1014 int tcp_set_allowed_congestion_control(char *allowed);
1015 int tcp_set_congestion_control(struct sock *sk, const char *name, bool load, bool reinit);
1016 u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
1017 void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
1018
1019 u32 tcp_reno_ssthresh(struct sock *sk);
1020 u32 tcp_reno_undo_cwnd(struct sock *sk);
1021 void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
1022 extern struct tcp_congestion_ops tcp_reno;
1023
1024 struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
1025 u32 tcp_ca_get_key_by_name(struct net *net, const char *name, bool *ecn_ca);
1026 #ifdef CONFIG_INET
1027 char *tcp_ca_get_name_by_key(u32 key, char *buffer);
1028 #else
1029 static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
1030 {
1031 return NULL;
1032 }
1033 #endif
1034
1035 static inline bool tcp_ca_needs_ecn(const struct sock *sk)
1036 {
1037 const struct inet_connection_sock *icsk = inet_csk(sk);
1038
1039 return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
1040 }
1041
1042 static inline void tcp_set_ca_state(struct sock *sk, const u8 ca_state)
1043 {
1044 struct inet_connection_sock *icsk = inet_csk(sk);
1045
1046 if (icsk->icsk_ca_ops->set_state)
1047 icsk->icsk_ca_ops->set_state(sk, ca_state);
1048 icsk->icsk_ca_state = ca_state;
1049 }
1050
1051 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
1052 {
1053 const struct inet_connection_sock *icsk = inet_csk(sk);
1054
1055 if (icsk->icsk_ca_ops->cwnd_event)
1056 icsk->icsk_ca_ops->cwnd_event(sk, event);
1057 }
1058
1059 /* From tcp_rate.c */
1060 void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb);
1061 void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb,
1062 struct rate_sample *rs);
1063 void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost,
1064 bool is_sack_reneg, struct rate_sample *rs);
1065 void tcp_rate_check_app_limited(struct sock *sk);
1066
1067 /* These functions determine how the current flow behaves in respect of SACK
1068 * handling. SACK is negotiated with the peer, and therefore it can vary
1069 * between different flows.
1070 *
1071 * tcp_is_sack - SACK enabled
1072 * tcp_is_reno - No SACK
1073 */
1074 static inline int tcp_is_sack(const struct tcp_sock *tp)
1075 {
1076 return tp->rx_opt.sack_ok;
1077 }
1078
1079 static inline bool tcp_is_reno(const struct tcp_sock *tp)
1080 {
1081 return !tcp_is_sack(tp);
1082 }
1083
1084 static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
1085 {
1086 return tp->sacked_out + tp->lost_out;
1087 }
1088
1089 /* This determines how many packets are "in the network" to the best
1090 * of our knowledge. In many cases it is conservative, but where
1091 * detailed information is available from the receiver (via SACK
1092 * blocks etc.) we can make more aggressive calculations.
1093 *
1094 * Use this for decisions involving congestion control, use just
1095 * tp->packets_out to determine if the send queue is empty or not.
1096 *
1097 * Read this equation as:
1098 *
1099 * "Packets sent once on transmission queue" MINUS
1100 * "Packets left network, but not honestly ACKed yet" PLUS
1101 * "Packets fast retransmitted"
1102 */
1103 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
1104 {
1105 return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
1106 }
1107
1108 #define TCP_INFINITE_SSTHRESH 0x7fffffff
1109
1110 static inline bool tcp_in_slow_start(const struct tcp_sock *tp)
1111 {
1112 return tp->snd_cwnd < tp->snd_ssthresh;
1113 }
1114
1115 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
1116 {
1117 return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
1118 }
1119
1120 static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
1121 {
1122 return (TCPF_CA_CWR | TCPF_CA_Recovery) &
1123 (1 << inet_csk(sk)->icsk_ca_state);
1124 }
1125
1126 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
1127 * The exception is cwnd reduction phase, when cwnd is decreasing towards
1128 * ssthresh.
1129 */
1130 static inline __u32 tcp_current_ssthresh(const struct sock *sk)
1131 {
1132 const struct tcp_sock *tp = tcp_sk(sk);
1133
1134 if (tcp_in_cwnd_reduction(sk))
1135 return tp->snd_ssthresh;
1136 else
1137 return max(tp->snd_ssthresh,
1138 ((tp->snd_cwnd >> 1) +
1139 (tp->snd_cwnd >> 2)));
1140 }
1141
1142 /* Use define here intentionally to get WARN_ON location shown at the caller */
1143 #define tcp_verify_left_out(tp) WARN_ON(tcp_left_out(tp) > tp->packets_out)
1144
1145 void tcp_enter_cwr(struct sock *sk);
1146 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
1147
1148 /* The maximum number of MSS of available cwnd for which TSO defers
1149 * sending if not using sysctl_tcp_tso_win_divisor.
1150 */
1151 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
1152 {
1153 return 3;
1154 }
1155
1156 /* Returns end sequence number of the receiver's advertised window */
1157 static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1158 {
1159 return tp->snd_una + tp->snd_wnd;
1160 }
1161
1162 /* We follow the spirit of RFC2861 to validate cwnd but implement a more
1163 * flexible approach. The RFC suggests cwnd should not be raised unless
1164 * it was fully used previously. And that's exactly what we do in
1165 * congestion avoidance mode. But in slow start we allow cwnd to grow
1166 * as long as the application has used half the cwnd.
1167 * Example :
1168 * cwnd is 10 (IW10), but application sends 9 frames.
1169 * We allow cwnd to reach 18 when all frames are ACKed.
1170 * This check is safe because it's as aggressive as slow start which already
1171 * risks 100% overshoot. The advantage is that we discourage application to
1172 * either send more filler packets or data to artificially blow up the cwnd
1173 * usage, and allow application-limited process to probe bw more aggressively.
1174 */
1175 static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1176 {
1177 const struct tcp_sock *tp = tcp_sk(sk);
1178
1179 /* If in slow start, ensure cwnd grows to twice what was ACKed. */
1180 if (tcp_in_slow_start(tp))
1181 return tp->snd_cwnd < 2 * tp->max_packets_out;
1182
1183 return tp->is_cwnd_limited;
1184 }
1185
1186 /* Something is really bad, we could not queue an additional packet,
1187 * because qdisc is full or receiver sent a 0 window.
1188 * We do not want to add fuel to the fire, or abort too early,
1189 * so make sure the timer we arm now is at least 200ms in the future,
1190 * regardless of current icsk_rto value (as it could be ~2ms)
1191 */
1192 static inline unsigned long tcp_probe0_base(const struct sock *sk)
1193 {
1194 return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN);
1195 }
1196
1197 /* Variant of inet_csk_rto_backoff() used for zero window probes */
1198 static inline unsigned long tcp_probe0_when(const struct sock *sk,
1199 unsigned long max_when)
1200 {
1201 u64 when = (u64)tcp_probe0_base(sk) << inet_csk(sk)->icsk_backoff;
1202
1203 return (unsigned long)min_t(u64, when, max_when);
1204 }
1205
1206 static inline void tcp_check_probe_timer(struct sock *sk)
1207 {
1208 if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending)
1209 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1210 tcp_probe0_base(sk), TCP_RTO_MAX);
1211 }
1212
1213 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1214 {
1215 tp->snd_wl1 = seq;
1216 }
1217
1218 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1219 {
1220 tp->snd_wl1 = seq;
1221 }
1222
1223 /*
1224 * Calculate(/check) TCP checksum
1225 */
1226 static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1227 __be32 daddr, __wsum base)
1228 {
1229 return csum_tcpudp_magic(saddr,daddr,len,IPPROTO_TCP,base);
1230 }
1231
1232 static inline __sum16 __tcp_checksum_complete(struct sk_buff *skb)
1233 {
1234 return __skb_checksum_complete(skb);
1235 }
1236
1237 static inline bool tcp_checksum_complete(struct sk_buff *skb)
1238 {
1239 return !skb_csum_unnecessary(skb) &&
1240 __tcp_checksum_complete(skb);
1241 }
1242
1243 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb);
1244 int tcp_filter(struct sock *sk, struct sk_buff *skb);
1245
1246 #undef STATE_TRACE
1247
1248 #ifdef STATE_TRACE
1249 static const char *statename[]={
1250 "Unused","Established","Syn Sent","Syn Recv",
1251 "Fin Wait 1","Fin Wait 2","Time Wait", "Close",
1252 "Close Wait","Last ACK","Listen","Closing"
1253 };
1254 #endif
1255 void tcp_set_state(struct sock *sk, int state);
1256
1257 void tcp_done(struct sock *sk);
1258
1259 int tcp_abort(struct sock *sk, int err);
1260
1261 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1262 {
1263 rx_opt->dsack = 0;
1264 rx_opt->num_sacks = 0;
1265 }
1266
1267 u32 tcp_default_init_rwnd(u32 mss);
1268 void tcp_cwnd_restart(struct sock *sk, s32 delta);
1269
1270 static inline void tcp_slow_start_after_idle_check(struct sock *sk)
1271 {
1272 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1273 struct tcp_sock *tp = tcp_sk(sk);
1274 s32 delta;
1275
1276 if (!sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle || tp->packets_out ||
1277 ca_ops->cong_control)
1278 return;
1279 delta = tcp_jiffies32 - tp->lsndtime;
1280 if (delta > inet_csk(sk)->icsk_rto)
1281 tcp_cwnd_restart(sk, delta);
1282 }
1283
1284 /* Determine a window scaling and initial window to offer. */
1285 void tcp_select_initial_window(const struct sock *sk, int __space,
1286 __u32 mss, __u32 *rcv_wnd,
1287 __u32 *window_clamp, int wscale_ok,
1288 __u8 *rcv_wscale, __u32 init_rcv_wnd);
1289
1290 static inline int tcp_win_from_space(const struct sock *sk, int space)
1291 {
1292 int tcp_adv_win_scale = sock_net(sk)->ipv4.sysctl_tcp_adv_win_scale;
1293
1294 return tcp_adv_win_scale <= 0 ?
1295 (space>>(-tcp_adv_win_scale)) :
1296 space - (space>>tcp_adv_win_scale);
1297 }
1298
1299 /* Note: caller must be prepared to deal with negative returns */
1300 static inline int tcp_space(const struct sock *sk)
1301 {
1302 return tcp_win_from_space(sk, sk->sk_rcvbuf -
1303 atomic_read(&sk->sk_rmem_alloc));
1304 }
1305
1306 static inline int tcp_full_space(const struct sock *sk)
1307 {
1308 return tcp_win_from_space(sk, sk->sk_rcvbuf);
1309 }
1310
1311 extern void tcp_openreq_init_rwin(struct request_sock *req,
1312 const struct sock *sk_listener,
1313 const struct dst_entry *dst);
1314
1315 void tcp_enter_memory_pressure(struct sock *sk);
1316 void tcp_leave_memory_pressure(struct sock *sk);
1317
1318 static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1319 {
1320 struct net *net = sock_net((struct sock *)tp);
1321
1322 return tp->keepalive_intvl ? : net->ipv4.sysctl_tcp_keepalive_intvl;
1323 }
1324
1325 static inline int keepalive_time_when(const struct tcp_sock *tp)
1326 {
1327 struct net *net = sock_net((struct sock *)tp);
1328
1329 return tp->keepalive_time ? : net->ipv4.sysctl_tcp_keepalive_time;
1330 }
1331
1332 static inline int keepalive_probes(const struct tcp_sock *tp)
1333 {
1334 struct net *net = sock_net((struct sock *)tp);
1335
1336 return tp->keepalive_probes ? : net->ipv4.sysctl_tcp_keepalive_probes;
1337 }
1338
1339 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1340 {
1341 const struct inet_connection_sock *icsk = &tp->inet_conn;
1342
1343 return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime,
1344 tcp_jiffies32 - tp->rcv_tstamp);
1345 }
1346
1347 static inline int tcp_fin_time(const struct sock *sk)
1348 {
1349 int fin_timeout = tcp_sk(sk)->linger2 ? : sock_net(sk)->ipv4.sysctl_tcp_fin_timeout;
1350 const int rto = inet_csk(sk)->icsk_rto;
1351
1352 if (fin_timeout < (rto << 2) - (rto >> 1))
1353 fin_timeout = (rto << 2) - (rto >> 1);
1354
1355 return fin_timeout;
1356 }
1357
1358 static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1359 int paws_win)
1360 {
1361 if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1362 return true;
1363 if (unlikely(get_seconds() >= rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS))
1364 return true;
1365 /*
1366 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1367 * then following tcp messages have valid values. Ignore 0 value,
1368 * or else 'negative' tsval might forbid us to accept their packets.
1369 */
1370 if (!rx_opt->ts_recent)
1371 return true;
1372 return false;
1373 }
1374
1375 static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1376 int rst)
1377 {
1378 if (tcp_paws_check(rx_opt, 0))
1379 return false;
1380
1381 /* RST segments are not recommended to carry timestamp,
1382 and, if they do, it is recommended to ignore PAWS because
1383 "their cleanup function should take precedence over timestamps."
1384 Certainly, it is mistake. It is necessary to understand the reasons
1385 of this constraint to relax it: if peer reboots, clock may go
1386 out-of-sync and half-open connections will not be reset.
1387 Actually, the problem would be not existing if all
1388 the implementations followed draft about maintaining clock
1389 via reboots. Linux-2.2 DOES NOT!
1390
1391 However, we can relax time bounds for RST segments to MSL.
1392 */
1393 if (rst && get_seconds() >= rx_opt->ts_recent_stamp + TCP_PAWS_MSL)
1394 return false;
1395 return true;
1396 }
1397
1398 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
1399 int mib_idx, u32 *last_oow_ack_time);
1400
1401 static inline void tcp_mib_init(struct net *net)
1402 {
1403 /* See RFC 2012 */
1404 TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1);
1405 TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1406 TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1407 TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1);
1408 }
1409
1410 /* from STCP */
1411 static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1412 {
1413 tp->lost_skb_hint = NULL;
1414 }
1415
1416 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1417 {
1418 tcp_clear_retrans_hints_partial(tp);
1419 tp->retransmit_skb_hint = NULL;
1420 }
1421
1422 union tcp_md5_addr {
1423 struct in_addr a4;
1424 #if IS_ENABLED(CONFIG_IPV6)
1425 struct in6_addr a6;
1426 #endif
1427 };
1428
1429 /* - key database */
1430 struct tcp_md5sig_key {
1431 struct hlist_node node;
1432 u8 keylen;
1433 u8 family; /* AF_INET or AF_INET6 */
1434 union tcp_md5_addr addr;
1435 u8 prefixlen;
1436 u8 key[TCP_MD5SIG_MAXKEYLEN];
1437 struct rcu_head rcu;
1438 };
1439
1440 /* - sock block */
1441 struct tcp_md5sig_info {
1442 struct hlist_head head;
1443 struct rcu_head rcu;
1444 };
1445
1446 /* - pseudo header */
1447 struct tcp4_pseudohdr {
1448 __be32 saddr;
1449 __be32 daddr;
1450 __u8 pad;
1451 __u8 protocol;
1452 __be16 len;
1453 };
1454
1455 struct tcp6_pseudohdr {
1456 struct in6_addr saddr;
1457 struct in6_addr daddr;
1458 __be32 len;
1459 __be32 protocol; /* including padding */
1460 };
1461
1462 union tcp_md5sum_block {
1463 struct tcp4_pseudohdr ip4;
1464 #if IS_ENABLED(CONFIG_IPV6)
1465 struct tcp6_pseudohdr ip6;
1466 #endif
1467 };
1468
1469 /* - pool: digest algorithm, hash description and scratch buffer */
1470 struct tcp_md5sig_pool {
1471 struct ahash_request *md5_req;
1472 void *scratch;
1473 };
1474
1475 /* - functions */
1476 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1477 const struct sock *sk, const struct sk_buff *skb);
1478 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1479 int family, u8 prefixlen, const u8 *newkey, u8 newkeylen,
1480 gfp_t gfp);
1481 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1482 int family, u8 prefixlen);
1483 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1484 const struct sock *addr_sk);
1485
1486 #ifdef CONFIG_TCP_MD5SIG
1487 struct tcp_md5sig_key *tcp_md5_do_lookup(const struct sock *sk,
1488 const union tcp_md5_addr *addr,
1489 int family);
1490 #define tcp_twsk_md5_key(twsk) ((twsk)->tw_md5_key)
1491 #else
1492 static inline struct tcp_md5sig_key *tcp_md5_do_lookup(const struct sock *sk,
1493 const union tcp_md5_addr *addr,
1494 int family)
1495 {
1496 return NULL;
1497 }
1498 #define tcp_twsk_md5_key(twsk) NULL
1499 #endif
1500
1501 bool tcp_alloc_md5sig_pool(void);
1502
1503 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void);
1504 static inline void tcp_put_md5sig_pool(void)
1505 {
1506 local_bh_enable();
1507 }
1508
1509 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *,
1510 unsigned int header_len);
1511 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp,
1512 const struct tcp_md5sig_key *key);
1513
1514 /* From tcp_fastopen.c */
1515 void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1516 struct tcp_fastopen_cookie *cookie, int *syn_loss,
1517 unsigned long *last_syn_loss);
1518 void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1519 struct tcp_fastopen_cookie *cookie, bool syn_lost,
1520 u16 try_exp);
1521 struct tcp_fastopen_request {
1522 /* Fast Open cookie. Size 0 means a cookie request */
1523 struct tcp_fastopen_cookie cookie;
1524 struct msghdr *data; /* data in MSG_FASTOPEN */
1525 size_t size;
1526 int copied; /* queued in tcp_connect() */
1527 };
1528 void tcp_free_fastopen_req(struct tcp_sock *tp);
1529 void tcp_fastopen_destroy_cipher(struct sock *sk);
1530 void tcp_fastopen_ctx_destroy(struct net *net);
1531 int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk,
1532 void *key, unsigned int len);
1533 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb);
1534 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
1535 struct request_sock *req,
1536 struct tcp_fastopen_cookie *foc,
1537 const struct dst_entry *dst);
1538 void tcp_fastopen_init_key_once(struct net *net);
1539 bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
1540 struct tcp_fastopen_cookie *cookie);
1541 bool tcp_fastopen_defer_connect(struct sock *sk, int *err);
1542 #define TCP_FASTOPEN_KEY_LENGTH 16
1543
1544 /* Fastopen key context */
1545 struct tcp_fastopen_context {
1546 struct crypto_cipher *tfm;
1547 __u8 key[TCP_FASTOPEN_KEY_LENGTH];
1548 struct rcu_head rcu;
1549 };
1550
1551 extern unsigned int sysctl_tcp_fastopen_blackhole_timeout;
1552 void tcp_fastopen_active_disable(struct sock *sk);
1553 bool tcp_fastopen_active_should_disable(struct sock *sk);
1554 void tcp_fastopen_active_disable_ofo_check(struct sock *sk);
1555 void tcp_fastopen_active_timeout_reset(void);
1556
1557 /* Latencies incurred by various limits for a sender. They are
1558 * chronograph-like stats that are mutually exclusive.
1559 */
1560 enum tcp_chrono {
1561 TCP_CHRONO_UNSPEC,
1562 TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */
1563 TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */
1564 TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */
1565 __TCP_CHRONO_MAX,
1566 };
1567
1568 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type);
1569 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type);
1570
1571 /* This helper is needed, because skb->tcp_tsorted_anchor uses
1572 * the same memory storage than skb->destructor/_skb_refdst
1573 */
1574 static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb)
1575 {
1576 skb->destructor = NULL;
1577 skb->_skb_refdst = 0UL;
1578 }
1579
1580 #define tcp_skb_tsorted_save(skb) { \
1581 unsigned long _save = skb->_skb_refdst; \
1582 skb->_skb_refdst = 0UL;
1583
1584 #define tcp_skb_tsorted_restore(skb) \
1585 skb->_skb_refdst = _save; \
1586 }
1587
1588 void tcp_write_queue_purge(struct sock *sk);
1589
1590 static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk)
1591 {
1592 return skb_rb_first(&sk->tcp_rtx_queue);
1593 }
1594
1595 static inline struct sk_buff *tcp_write_queue_head(const struct sock *sk)
1596 {
1597 return skb_peek(&sk->sk_write_queue);
1598 }
1599
1600 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
1601 {
1602 return skb_peek_tail(&sk->sk_write_queue);
1603 }
1604
1605 #define tcp_for_write_queue_from_safe(skb, tmp, sk) \
1606 skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1607
1608 static inline struct sk_buff *tcp_send_head(const struct sock *sk)
1609 {
1610 return skb_peek(&sk->sk_write_queue);
1611 }
1612
1613 static inline bool tcp_skb_is_last(const struct sock *sk,
1614 const struct sk_buff *skb)
1615 {
1616 return skb_queue_is_last(&sk->sk_write_queue, skb);
1617 }
1618
1619 static inline bool tcp_write_queue_empty(const struct sock *sk)
1620 {
1621 return skb_queue_empty(&sk->sk_write_queue);
1622 }
1623
1624 static inline bool tcp_rtx_queue_empty(const struct sock *sk)
1625 {
1626 return RB_EMPTY_ROOT(&sk->tcp_rtx_queue);
1627 }
1628
1629 static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk)
1630 {
1631 return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk);
1632 }
1633
1634 static inline void tcp_check_send_head(struct sock *sk, struct sk_buff *skb_unlinked)
1635 {
1636 if (tcp_write_queue_empty(sk))
1637 tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
1638 }
1639
1640 static inline void __tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1641 {
1642 __skb_queue_tail(&sk->sk_write_queue, skb);
1643 }
1644
1645 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1646 {
1647 __tcp_add_write_queue_tail(sk, skb);
1648
1649 /* Queue it, remembering where we must start sending. */
1650 if (sk->sk_write_queue.next == skb)
1651 tcp_chrono_start(sk, TCP_CHRONO_BUSY);
1652 }
1653
1654 /* Insert new before skb on the write queue of sk. */
1655 static inline void tcp_insert_write_queue_before(struct sk_buff *new,
1656 struct sk_buff *skb,
1657 struct sock *sk)
1658 {
1659 __skb_queue_before(&sk->sk_write_queue, skb, new);
1660 }
1661
1662 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
1663 {
1664 tcp_skb_tsorted_anchor_cleanup(skb);
1665 __skb_unlink(skb, &sk->sk_write_queue);
1666 }
1667
1668 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb);
1669
1670 static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk)
1671 {
1672 tcp_skb_tsorted_anchor_cleanup(skb);
1673 rb_erase(&skb->rbnode, &sk->tcp_rtx_queue);
1674 }
1675
1676 static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk)
1677 {
1678 list_del(&skb->tcp_tsorted_anchor);
1679 tcp_rtx_queue_unlink(skb, sk);
1680 sk_wmem_free_skb(sk, skb);
1681 }
1682
1683 static inline void tcp_push_pending_frames(struct sock *sk)
1684 {
1685 if (tcp_send_head(sk)) {
1686 struct tcp_sock *tp = tcp_sk(sk);
1687
1688 __tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
1689 }
1690 }
1691
1692 /* Start sequence of the skb just after the highest skb with SACKed
1693 * bit, valid only if sacked_out > 0 or when the caller has ensured
1694 * validity by itself.
1695 */
1696 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
1697 {
1698 if (!tp->sacked_out)
1699 return tp->snd_una;
1700
1701 if (tp->highest_sack == NULL)
1702 return tp->snd_nxt;
1703
1704 return TCP_SKB_CB(tp->highest_sack)->seq;
1705 }
1706
1707 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
1708 {
1709 tcp_sk(sk)->highest_sack = skb_rb_next(skb);
1710 }
1711
1712 static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
1713 {
1714 return tcp_sk(sk)->highest_sack;
1715 }
1716
1717 static inline void tcp_highest_sack_reset(struct sock *sk)
1718 {
1719 tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk);
1720 }
1721
1722 /* Called when old skb is about to be deleted and replaced by new skb */
1723 static inline void tcp_highest_sack_replace(struct sock *sk,
1724 struct sk_buff *old,
1725 struct sk_buff *new)
1726 {
1727 if (old == tcp_highest_sack(sk))
1728 tcp_sk(sk)->highest_sack = new;
1729 }
1730
1731 /* This helper checks if socket has IP_TRANSPARENT set */
1732 static inline bool inet_sk_transparent(const struct sock *sk)
1733 {
1734 switch (sk->sk_state) {
1735 case TCP_TIME_WAIT:
1736 return inet_twsk(sk)->tw_transparent;
1737 case TCP_NEW_SYN_RECV:
1738 return inet_rsk(inet_reqsk(sk))->no_srccheck;
1739 }
1740 return inet_sk(sk)->transparent;
1741 }
1742
1743 /* Determines whether this is a thin stream (which may suffer from
1744 * increased latency). Used to trigger latency-reducing mechanisms.
1745 */
1746 static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
1747 {
1748 return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
1749 }
1750
1751 /* /proc */
1752 enum tcp_seq_states {
1753 TCP_SEQ_STATE_LISTENING,
1754 TCP_SEQ_STATE_ESTABLISHED,
1755 };
1756
1757 int tcp_seq_open(struct inode *inode, struct file *file);
1758
1759 struct tcp_seq_afinfo {
1760 char *name;
1761 sa_family_t family;
1762 const struct file_operations *seq_fops;
1763 struct seq_operations seq_ops;
1764 };
1765
1766 struct tcp_iter_state {
1767 struct seq_net_private p;
1768 sa_family_t family;
1769 enum tcp_seq_states state;
1770 struct sock *syn_wait_sk;
1771 int bucket, offset, sbucket, num;
1772 loff_t last_pos;
1773 };
1774
1775 int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo);
1776 void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo);
1777
1778 extern struct request_sock_ops tcp_request_sock_ops;
1779 extern struct request_sock_ops tcp6_request_sock_ops;
1780
1781 void tcp_v4_destroy_sock(struct sock *sk);
1782
1783 struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
1784 netdev_features_t features);
1785 struct sk_buff **tcp_gro_receive(struct sk_buff **head, struct sk_buff *skb);
1786 int tcp_gro_complete(struct sk_buff *skb);
1787
1788 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
1789
1790 static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
1791 {
1792 struct net *net = sock_net((struct sock *)tp);
1793 return tp->notsent_lowat ?: net->ipv4.sysctl_tcp_notsent_lowat;
1794 }
1795
1796 static inline bool tcp_stream_memory_free(const struct sock *sk)
1797 {
1798 const struct tcp_sock *tp = tcp_sk(sk);
1799 u32 notsent_bytes = tp->write_seq - tp->snd_nxt;
1800
1801 return notsent_bytes < tcp_notsent_lowat(tp);
1802 }
1803
1804 #ifdef CONFIG_PROC_FS
1805 int tcp4_proc_init(void);
1806 void tcp4_proc_exit(void);
1807 #endif
1808
1809 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req);
1810 int tcp_conn_request(struct request_sock_ops *rsk_ops,
1811 const struct tcp_request_sock_ops *af_ops,
1812 struct sock *sk, struct sk_buff *skb);
1813
1814 /* TCP af-specific functions */
1815 struct tcp_sock_af_ops {
1816 #ifdef CONFIG_TCP_MD5SIG
1817 struct tcp_md5sig_key *(*md5_lookup) (const struct sock *sk,
1818 const struct sock *addr_sk);
1819 int (*calc_md5_hash)(char *location,
1820 const struct tcp_md5sig_key *md5,
1821 const struct sock *sk,
1822 const struct sk_buff *skb);
1823 int (*md5_parse)(struct sock *sk,
1824 int optname,
1825 char __user *optval,
1826 int optlen);
1827 #endif
1828 };
1829
1830 struct tcp_request_sock_ops {
1831 u16 mss_clamp;
1832 #ifdef CONFIG_TCP_MD5SIG
1833 struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk,
1834 const struct sock *addr_sk);
1835 int (*calc_md5_hash) (char *location,
1836 const struct tcp_md5sig_key *md5,
1837 const struct sock *sk,
1838 const struct sk_buff *skb);
1839 #endif
1840 void (*init_req)(struct request_sock *req,
1841 const struct sock *sk_listener,
1842 struct sk_buff *skb);
1843 #ifdef CONFIG_SYN_COOKIES
1844 __u32 (*cookie_init_seq)(const struct sk_buff *skb,
1845 __u16 *mss);
1846 #endif
1847 struct dst_entry *(*route_req)(const struct sock *sk, struct flowi *fl,
1848 const struct request_sock *req);
1849 u32 (*init_seq)(const struct sk_buff *skb);
1850 u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb);
1851 int (*send_synack)(const struct sock *sk, struct dst_entry *dst,
1852 struct flowi *fl, struct request_sock *req,
1853 struct tcp_fastopen_cookie *foc,
1854 enum tcp_synack_type synack_type);
1855 };
1856
1857 #ifdef CONFIG_SYN_COOKIES
1858 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
1859 const struct sock *sk, struct sk_buff *skb,
1860 __u16 *mss)
1861 {
1862 tcp_synq_overflow(sk);
1863 __NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
1864 return ops->cookie_init_seq(skb, mss);
1865 }
1866 #else
1867 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
1868 const struct sock *sk, struct sk_buff *skb,
1869 __u16 *mss)
1870 {
1871 return 0;
1872 }
1873 #endif
1874
1875 int tcpv4_offload_init(void);
1876
1877 void tcp_v4_init(void);
1878 void tcp_init(void);
1879
1880 /* tcp_recovery.c */
1881 extern void tcp_rack_mark_lost(struct sock *sk);
1882 extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq,
1883 u64 xmit_time);
1884 extern void tcp_rack_reo_timeout(struct sock *sk);
1885 extern void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs);
1886
1887 /* At how many usecs into the future should the RTO fire? */
1888 static inline s64 tcp_rto_delta_us(const struct sock *sk)
1889 {
1890 const struct sk_buff *skb = tcp_rtx_queue_head(sk);
1891 u32 rto = inet_csk(sk)->icsk_rto;
1892 u64 rto_time_stamp_us = skb->skb_mstamp + jiffies_to_usecs(rto);
1893
1894 return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp;
1895 }
1896
1897 /*
1898 * Save and compile IPv4 options, return a pointer to it
1899 */
1900 static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net,
1901 struct sk_buff *skb)
1902 {
1903 const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
1904 struct ip_options_rcu *dopt = NULL;
1905
1906 if (opt->optlen) {
1907 int opt_size = sizeof(*dopt) + opt->optlen;
1908
1909 dopt = kmalloc(opt_size, GFP_ATOMIC);
1910 if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) {
1911 kfree(dopt);
1912 dopt = NULL;
1913 }
1914 }
1915 return dopt;
1916 }
1917
1918 /* locally generated TCP pure ACKs have skb->truesize == 2
1919 * (check tcp_send_ack() in net/ipv4/tcp_output.c )
1920 * This is much faster than dissecting the packet to find out.
1921 * (Think of GRE encapsulations, IPv4, IPv6, ...)
1922 */
1923 static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
1924 {
1925 return skb->truesize == 2;
1926 }
1927
1928 static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
1929 {
1930 skb->truesize = 2;
1931 }
1932
1933 static inline int tcp_inq(struct sock *sk)
1934 {
1935 struct tcp_sock *tp = tcp_sk(sk);
1936 int answ;
1937
1938 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
1939 answ = 0;
1940 } else if (sock_flag(sk, SOCK_URGINLINE) ||
1941 !tp->urg_data ||
1942 before(tp->urg_seq, tp->copied_seq) ||
1943 !before(tp->urg_seq, tp->rcv_nxt)) {
1944
1945 answ = tp->rcv_nxt - tp->copied_seq;
1946
1947 /* Subtract 1, if FIN was received */
1948 if (answ && sock_flag(sk, SOCK_DONE))
1949 answ--;
1950 } else {
1951 answ = tp->urg_seq - tp->copied_seq;
1952 }
1953
1954 return answ;
1955 }
1956
1957 int tcp_peek_len(struct socket *sock);
1958
1959 static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb)
1960 {
1961 u16 segs_in;
1962
1963 segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
1964 tp->segs_in += segs_in;
1965 if (skb->len > tcp_hdrlen(skb))
1966 tp->data_segs_in += segs_in;
1967 }
1968
1969 /*
1970 * TCP listen path runs lockless.
1971 * We forced "struct sock" to be const qualified to make sure
1972 * we don't modify one of its field by mistake.
1973 * Here, we increment sk_drops which is an atomic_t, so we can safely
1974 * make sock writable again.
1975 */
1976 static inline void tcp_listendrop(const struct sock *sk)
1977 {
1978 atomic_inc(&((struct sock *)sk)->sk_drops);
1979 __NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS);
1980 }
1981
1982 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer);
1983
1984 /*
1985 * Interface for adding Upper Level Protocols over TCP
1986 */
1987
1988 #define TCP_ULP_NAME_MAX 16
1989 #define TCP_ULP_MAX 128
1990 #define TCP_ULP_BUF_MAX (TCP_ULP_NAME_MAX*TCP_ULP_MAX)
1991
1992 struct tcp_ulp_ops {
1993 struct list_head list;
1994
1995 /* initialize ulp */
1996 int (*init)(struct sock *sk);
1997 /* cleanup ulp */
1998 void (*release)(struct sock *sk);
1999
2000 char name[TCP_ULP_NAME_MAX];
2001 struct module *owner;
2002 };
2003 int tcp_register_ulp(struct tcp_ulp_ops *type);
2004 void tcp_unregister_ulp(struct tcp_ulp_ops *type);
2005 int tcp_set_ulp(struct sock *sk, const char *name);
2006 void tcp_get_available_ulp(char *buf, size_t len);
2007 void tcp_cleanup_ulp(struct sock *sk);
2008
2009 /* Call BPF_SOCK_OPS program that returns an int. If the return value
2010 * is < 0, then the BPF op failed (for example if the loaded BPF
2011 * program does not support the chosen operation or there is no BPF
2012 * program loaded).
2013 */
2014 #ifdef CONFIG_BPF
2015 static inline int tcp_call_bpf(struct sock *sk, int op)
2016 {
2017 struct bpf_sock_ops_kern sock_ops;
2018 int ret;
2019
2020 if (sk_fullsock(sk))
2021 sock_owned_by_me(sk);
2022
2023 memset(&sock_ops, 0, sizeof(sock_ops));
2024 sock_ops.sk = sk;
2025 sock_ops.op = op;
2026
2027 ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
2028 if (ret == 0)
2029 ret = sock_ops.reply;
2030 else
2031 ret = -1;
2032 return ret;
2033 }
2034 #else
2035 static inline int tcp_call_bpf(struct sock *sk, int op)
2036 {
2037 return -EPERM;
2038 }
2039 #endif
2040
2041 static inline u32 tcp_timeout_init(struct sock *sk)
2042 {
2043 int timeout;
2044
2045 timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT);
2046
2047 if (timeout <= 0)
2048 timeout = TCP_TIMEOUT_INIT;
2049 return timeout;
2050 }
2051
2052 static inline u32 tcp_rwnd_init_bpf(struct sock *sk)
2053 {
2054 int rwnd;
2055
2056 rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT);
2057
2058 if (rwnd < 0)
2059 rwnd = 0;
2060 return rwnd;
2061 }
2062
2063 static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk)
2064 {
2065 return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN) == 1);
2066 }
2067
2068 #if IS_ENABLED(CONFIG_SMC)
2069 extern struct static_key_false tcp_have_smc;
2070 #endif
2071 #endif /* _TCP_H */