]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - include/net/tcp.h
tcp: add TCPWinProbe and TCPKeepAlive SNMP counters
[mirror_ubuntu-artful-kernel.git] / include / net / tcp.h
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Definitions for the TCP module.
7 *
8 * Version: @(#)tcp.h 1.0.5 05/23/93
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 *
13 * This program is free software; you can redistribute it and/or
14 * modify it under the terms of the GNU General Public License
15 * as published by the Free Software Foundation; either version
16 * 2 of the License, or (at your option) any later version.
17 */
18 #ifndef _TCP_H
19 #define _TCP_H
20
21 #define FASTRETRANS_DEBUG 1
22
23 #include <linux/list.h>
24 #include <linux/tcp.h>
25 #include <linux/bug.h>
26 #include <linux/slab.h>
27 #include <linux/cache.h>
28 #include <linux/percpu.h>
29 #include <linux/skbuff.h>
30 #include <linux/crypto.h>
31 #include <linux/cryptohash.h>
32 #include <linux/kref.h>
33 #include <linux/ktime.h>
34
35 #include <net/inet_connection_sock.h>
36 #include <net/inet_timewait_sock.h>
37 #include <net/inet_hashtables.h>
38 #include <net/checksum.h>
39 #include <net/request_sock.h>
40 #include <net/sock.h>
41 #include <net/snmp.h>
42 #include <net/ip.h>
43 #include <net/tcp_states.h>
44 #include <net/inet_ecn.h>
45 #include <net/dst.h>
46
47 #include <linux/seq_file.h>
48 #include <linux/memcontrol.h>
49
50 extern struct inet_hashinfo tcp_hashinfo;
51
52 extern struct percpu_counter tcp_orphan_count;
53 void tcp_time_wait(struct sock *sk, int state, int timeo);
54
55 #define MAX_TCP_HEADER (128 + MAX_HEADER)
56 #define MAX_TCP_OPTION_SPACE 40
57
58 /*
59 * Never offer a window over 32767 without using window scaling. Some
60 * poor stacks do signed 16bit maths!
61 */
62 #define MAX_TCP_WINDOW 32767U
63
64 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */
65 #define TCP_MIN_MSS 88U
66
67 /* The least MTU to use for probing */
68 #define TCP_BASE_MSS 1024
69
70 /* probing interval, default to 10 minutes as per RFC4821 */
71 #define TCP_PROBE_INTERVAL 600
72
73 /* Specify interval when tcp mtu probing will stop */
74 #define TCP_PROBE_THRESHOLD 8
75
76 /* After receiving this amount of duplicate ACKs fast retransmit starts. */
77 #define TCP_FASTRETRANS_THRESH 3
78
79 /* Maximal number of ACKs sent quickly to accelerate slow-start. */
80 #define TCP_MAX_QUICKACKS 16U
81
82 /* urg_data states */
83 #define TCP_URG_VALID 0x0100
84 #define TCP_URG_NOTYET 0x0200
85 #define TCP_URG_READ 0x0400
86
87 #define TCP_RETR1 3 /*
88 * This is how many retries it does before it
89 * tries to figure out if the gateway is
90 * down. Minimal RFC value is 3; it corresponds
91 * to ~3sec-8min depending on RTO.
92 */
93
94 #define TCP_RETR2 15 /*
95 * This should take at least
96 * 90 minutes to time out.
97 * RFC1122 says that the limit is 100 sec.
98 * 15 is ~13-30min depending on RTO.
99 */
100
101 #define TCP_SYN_RETRIES 6 /* This is how many retries are done
102 * when active opening a connection.
103 * RFC1122 says the minimum retry MUST
104 * be at least 180secs. Nevertheless
105 * this value is corresponding to
106 * 63secs of retransmission with the
107 * current initial RTO.
108 */
109
110 #define TCP_SYNACK_RETRIES 5 /* This is how may retries are done
111 * when passive opening a connection.
112 * This is corresponding to 31secs of
113 * retransmission with the current
114 * initial RTO.
115 */
116
117 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
118 * state, about 60 seconds */
119 #define TCP_FIN_TIMEOUT TCP_TIMEWAIT_LEN
120 /* BSD style FIN_WAIT2 deadlock breaker.
121 * It used to be 3min, new value is 60sec,
122 * to combine FIN-WAIT-2 timeout with
123 * TIME-WAIT timer.
124 */
125
126 #define TCP_DELACK_MAX ((unsigned)(HZ/5)) /* maximal time to delay before sending an ACK */
127 #if HZ >= 100
128 #define TCP_DELACK_MIN ((unsigned)(HZ/25)) /* minimal time to delay before sending an ACK */
129 #define TCP_ATO_MIN ((unsigned)(HZ/25))
130 #else
131 #define TCP_DELACK_MIN 4U
132 #define TCP_ATO_MIN 4U
133 #endif
134 #define TCP_RTO_MAX ((unsigned)(120*HZ))
135 #define TCP_RTO_MIN ((unsigned)(HZ/5))
136 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ)) /* RFC6298 2.1 initial RTO value */
137 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ)) /* RFC 1122 initial RTO value, now
138 * used as a fallback RTO for the
139 * initial data transmission if no
140 * valid RTT sample has been acquired,
141 * most likely due to retrans in 3WHS.
142 */
143
144 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
145 * for local resources.
146 */
147
148 #define TCP_KEEPALIVE_TIME (120*60*HZ) /* two hours */
149 #define TCP_KEEPALIVE_PROBES 9 /* Max of 9 keepalive probes */
150 #define TCP_KEEPALIVE_INTVL (75*HZ)
151
152 #define MAX_TCP_KEEPIDLE 32767
153 #define MAX_TCP_KEEPINTVL 32767
154 #define MAX_TCP_KEEPCNT 127
155 #define MAX_TCP_SYNCNT 127
156
157 #define TCP_SYNQ_INTERVAL (HZ/5) /* Period of SYNACK timer */
158
159 #define TCP_PAWS_24DAYS (60 * 60 * 24 * 24)
160 #define TCP_PAWS_MSL 60 /* Per-host timestamps are invalidated
161 * after this time. It should be equal
162 * (or greater than) TCP_TIMEWAIT_LEN
163 * to provide reliability equal to one
164 * provided by timewait state.
165 */
166 #define TCP_PAWS_WINDOW 1 /* Replay window for per-host
167 * timestamps. It must be less than
168 * minimal timewait lifetime.
169 */
170 /*
171 * TCP option
172 */
173
174 #define TCPOPT_NOP 1 /* Padding */
175 #define TCPOPT_EOL 0 /* End of options */
176 #define TCPOPT_MSS 2 /* Segment size negotiating */
177 #define TCPOPT_WINDOW 3 /* Window scaling */
178 #define TCPOPT_SACK_PERM 4 /* SACK Permitted */
179 #define TCPOPT_SACK 5 /* SACK Block */
180 #define TCPOPT_TIMESTAMP 8 /* Better RTT estimations/PAWS */
181 #define TCPOPT_MD5SIG 19 /* MD5 Signature (RFC2385) */
182 #define TCPOPT_FASTOPEN 34 /* Fast open (RFC7413) */
183 #define TCPOPT_EXP 254 /* Experimental */
184 /* Magic number to be after the option value for sharing TCP
185 * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
186 */
187 #define TCPOPT_FASTOPEN_MAGIC 0xF989
188
189 /*
190 * TCP option lengths
191 */
192
193 #define TCPOLEN_MSS 4
194 #define TCPOLEN_WINDOW 3
195 #define TCPOLEN_SACK_PERM 2
196 #define TCPOLEN_TIMESTAMP 10
197 #define TCPOLEN_MD5SIG 18
198 #define TCPOLEN_FASTOPEN_BASE 2
199 #define TCPOLEN_EXP_FASTOPEN_BASE 4
200
201 /* But this is what stacks really send out. */
202 #define TCPOLEN_TSTAMP_ALIGNED 12
203 #define TCPOLEN_WSCALE_ALIGNED 4
204 #define TCPOLEN_SACKPERM_ALIGNED 4
205 #define TCPOLEN_SACK_BASE 2
206 #define TCPOLEN_SACK_BASE_ALIGNED 4
207 #define TCPOLEN_SACK_PERBLOCK 8
208 #define TCPOLEN_MD5SIG_ALIGNED 20
209 #define TCPOLEN_MSS_ALIGNED 4
210
211 /* Flags in tp->nonagle */
212 #define TCP_NAGLE_OFF 1 /* Nagle's algo is disabled */
213 #define TCP_NAGLE_CORK 2 /* Socket is corked */
214 #define TCP_NAGLE_PUSH 4 /* Cork is overridden for already queued data */
215
216 /* TCP thin-stream limits */
217 #define TCP_THIN_LINEAR_RETRIES 6 /* After 6 linear retries, do exp. backoff */
218
219 /* TCP initial congestion window as per draft-hkchu-tcpm-initcwnd-01 */
220 #define TCP_INIT_CWND 10
221
222 /* Bit Flags for sysctl_tcp_fastopen */
223 #define TFO_CLIENT_ENABLE 1
224 #define TFO_SERVER_ENABLE 2
225 #define TFO_CLIENT_NO_COOKIE 4 /* Data in SYN w/o cookie option */
226
227 /* Accept SYN data w/o any cookie option */
228 #define TFO_SERVER_COOKIE_NOT_REQD 0x200
229
230 /* Force enable TFO on all listeners, i.e., not requiring the
231 * TCP_FASTOPEN socket option. SOCKOPT1/2 determine how to set max_qlen.
232 */
233 #define TFO_SERVER_WO_SOCKOPT1 0x400
234 #define TFO_SERVER_WO_SOCKOPT2 0x800
235
236 extern struct inet_timewait_death_row tcp_death_row;
237
238 /* sysctl variables for tcp */
239 extern int sysctl_tcp_timestamps;
240 extern int sysctl_tcp_window_scaling;
241 extern int sysctl_tcp_sack;
242 extern int sysctl_tcp_fin_timeout;
243 extern int sysctl_tcp_keepalive_time;
244 extern int sysctl_tcp_keepalive_probes;
245 extern int sysctl_tcp_keepalive_intvl;
246 extern int sysctl_tcp_syn_retries;
247 extern int sysctl_tcp_synack_retries;
248 extern int sysctl_tcp_retries1;
249 extern int sysctl_tcp_retries2;
250 extern int sysctl_tcp_orphan_retries;
251 extern int sysctl_tcp_syncookies;
252 extern int sysctl_tcp_fastopen;
253 extern int sysctl_tcp_retrans_collapse;
254 extern int sysctl_tcp_stdurg;
255 extern int sysctl_tcp_rfc1337;
256 extern int sysctl_tcp_abort_on_overflow;
257 extern int sysctl_tcp_max_orphans;
258 extern int sysctl_tcp_fack;
259 extern int sysctl_tcp_reordering;
260 extern int sysctl_tcp_max_reordering;
261 extern int sysctl_tcp_dsack;
262 extern long sysctl_tcp_mem[3];
263 extern int sysctl_tcp_wmem[3];
264 extern int sysctl_tcp_rmem[3];
265 extern int sysctl_tcp_app_win;
266 extern int sysctl_tcp_adv_win_scale;
267 extern int sysctl_tcp_tw_reuse;
268 extern int sysctl_tcp_frto;
269 extern int sysctl_tcp_low_latency;
270 extern int sysctl_tcp_nometrics_save;
271 extern int sysctl_tcp_moderate_rcvbuf;
272 extern int sysctl_tcp_tso_win_divisor;
273 extern int sysctl_tcp_workaround_signed_windows;
274 extern int sysctl_tcp_slow_start_after_idle;
275 extern int sysctl_tcp_thin_linear_timeouts;
276 extern int sysctl_tcp_thin_dupack;
277 extern int sysctl_tcp_early_retrans;
278 extern int sysctl_tcp_limit_output_bytes;
279 extern int sysctl_tcp_challenge_ack_limit;
280 extern unsigned int sysctl_tcp_notsent_lowat;
281 extern int sysctl_tcp_min_tso_segs;
282 extern int sysctl_tcp_autocorking;
283 extern int sysctl_tcp_invalid_ratelimit;
284
285 extern atomic_long_t tcp_memory_allocated;
286 extern struct percpu_counter tcp_sockets_allocated;
287 extern int tcp_memory_pressure;
288
289 /*
290 * The next routines deal with comparing 32 bit unsigned ints
291 * and worry about wraparound (automatic with unsigned arithmetic).
292 */
293
294 static inline bool before(__u32 seq1, __u32 seq2)
295 {
296 return (__s32)(seq1-seq2) < 0;
297 }
298 #define after(seq2, seq1) before(seq1, seq2)
299
300 /* is s2<=s1<=s3 ? */
301 static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
302 {
303 return seq3 - seq2 >= seq1 - seq2;
304 }
305
306 static inline bool tcp_out_of_memory(struct sock *sk)
307 {
308 if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
309 sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
310 return true;
311 return false;
312 }
313
314 static inline bool tcp_too_many_orphans(struct sock *sk, int shift)
315 {
316 struct percpu_counter *ocp = sk->sk_prot->orphan_count;
317 int orphans = percpu_counter_read_positive(ocp);
318
319 if (orphans << shift > sysctl_tcp_max_orphans) {
320 orphans = percpu_counter_sum_positive(ocp);
321 if (orphans << shift > sysctl_tcp_max_orphans)
322 return true;
323 }
324 return false;
325 }
326
327 bool tcp_check_oom(struct sock *sk, int shift);
328
329 /* syncookies: remember time of last synqueue overflow */
330 static inline void tcp_synq_overflow(struct sock *sk)
331 {
332 tcp_sk(sk)->rx_opt.ts_recent_stamp = jiffies;
333 }
334
335 /* syncookies: no recent synqueue overflow on this listening socket? */
336 static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
337 {
338 unsigned long last_overflow = tcp_sk(sk)->rx_opt.ts_recent_stamp;
339 return time_after(jiffies, last_overflow + TCP_TIMEOUT_FALLBACK);
340 }
341
342 extern struct proto tcp_prot;
343
344 #define TCP_INC_STATS(net, field) SNMP_INC_STATS((net)->mib.tcp_statistics, field)
345 #define TCP_INC_STATS_BH(net, field) SNMP_INC_STATS_BH((net)->mib.tcp_statistics, field)
346 #define TCP_DEC_STATS(net, field) SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
347 #define TCP_ADD_STATS_USER(net, field, val) SNMP_ADD_STATS_USER((net)->mib.tcp_statistics, field, val)
348 #define TCP_ADD_STATS(net, field, val) SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
349
350 void tcp_tasklet_init(void);
351
352 void tcp_v4_err(struct sk_buff *skb, u32);
353
354 void tcp_shutdown(struct sock *sk, int how);
355
356 void tcp_v4_early_demux(struct sk_buff *skb);
357 int tcp_v4_rcv(struct sk_buff *skb);
358
359 int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw);
360 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
361 int tcp_sendpage(struct sock *sk, struct page *page, int offset, size_t size,
362 int flags);
363 void tcp_release_cb(struct sock *sk);
364 void tcp_wfree(struct sk_buff *skb);
365 void tcp_write_timer_handler(struct sock *sk);
366 void tcp_delack_timer_handler(struct sock *sk);
367 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg);
368 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
369 const struct tcphdr *th, unsigned int len);
370 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
371 const struct tcphdr *th, unsigned int len);
372 void tcp_rcv_space_adjust(struct sock *sk);
373 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
374 void tcp_twsk_destructor(struct sock *sk);
375 ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
376 struct pipe_inode_info *pipe, size_t len,
377 unsigned int flags);
378
379 static inline void tcp_dec_quickack_mode(struct sock *sk,
380 const unsigned int pkts)
381 {
382 struct inet_connection_sock *icsk = inet_csk(sk);
383
384 if (icsk->icsk_ack.quick) {
385 if (pkts >= icsk->icsk_ack.quick) {
386 icsk->icsk_ack.quick = 0;
387 /* Leaving quickack mode we deflate ATO. */
388 icsk->icsk_ack.ato = TCP_ATO_MIN;
389 } else
390 icsk->icsk_ack.quick -= pkts;
391 }
392 }
393
394 #define TCP_ECN_OK 1
395 #define TCP_ECN_QUEUE_CWR 2
396 #define TCP_ECN_DEMAND_CWR 4
397 #define TCP_ECN_SEEN 8
398
399 enum tcp_tw_status {
400 TCP_TW_SUCCESS = 0,
401 TCP_TW_RST = 1,
402 TCP_TW_ACK = 2,
403 TCP_TW_SYN = 3
404 };
405
406
407 enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
408 struct sk_buff *skb,
409 const struct tcphdr *th);
410 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
411 struct request_sock *req, bool fastopen);
412 int tcp_child_process(struct sock *parent, struct sock *child,
413 struct sk_buff *skb);
414 void tcp_enter_loss(struct sock *sk);
415 void tcp_clear_retrans(struct tcp_sock *tp);
416 void tcp_update_metrics(struct sock *sk);
417 void tcp_init_metrics(struct sock *sk);
418 void tcp_metrics_init(void);
419 bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst,
420 bool paws_check, bool timestamps);
421 bool tcp_remember_stamp(struct sock *sk);
422 bool tcp_tw_remember_stamp(struct inet_timewait_sock *tw);
423 void tcp_fetch_timewait_stamp(struct sock *sk, struct dst_entry *dst);
424 void tcp_disable_fack(struct tcp_sock *tp);
425 void tcp_close(struct sock *sk, long timeout);
426 void tcp_init_sock(struct sock *sk);
427 unsigned int tcp_poll(struct file *file, struct socket *sock,
428 struct poll_table_struct *wait);
429 int tcp_getsockopt(struct sock *sk, int level, int optname,
430 char __user *optval, int __user *optlen);
431 int tcp_setsockopt(struct sock *sk, int level, int optname,
432 char __user *optval, unsigned int optlen);
433 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
434 char __user *optval, int __user *optlen);
435 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
436 char __user *optval, unsigned int optlen);
437 void tcp_set_keepalive(struct sock *sk, int val);
438 void tcp_syn_ack_timeout(const struct request_sock *req);
439 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
440 int flags, int *addr_len);
441 void tcp_parse_options(const struct sk_buff *skb,
442 struct tcp_options_received *opt_rx,
443 int estab, struct tcp_fastopen_cookie *foc);
444 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th);
445
446 /*
447 * TCP v4 functions exported for the inet6 API
448 */
449
450 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
451 void tcp_v4_mtu_reduced(struct sock *sk);
452 void tcp_req_err(struct sock *sk, u32 seq);
453 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
454 struct sock *tcp_create_openreq_child(struct sock *sk,
455 struct request_sock *req,
456 struct sk_buff *skb);
457 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
458 struct sock *tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb,
459 struct request_sock *req,
460 struct dst_entry *dst);
461 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
462 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
463 int tcp_connect(struct sock *sk);
464 struct sk_buff *tcp_make_synack(struct sock *sk, struct dst_entry *dst,
465 struct request_sock *req,
466 struct tcp_fastopen_cookie *foc);
467 int tcp_disconnect(struct sock *sk, int flags);
468
469 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
470 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
471 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
472
473 /* From syncookies.c */
474 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
475 u32 cookie);
476 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
477 #ifdef CONFIG_SYN_COOKIES
478
479 /* Syncookies use a monotonic timer which increments every 60 seconds.
480 * This counter is used both as a hash input and partially encoded into
481 * the cookie value. A cookie is only validated further if the delta
482 * between the current counter value and the encoded one is less than this,
483 * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
484 * the counter advances immediately after a cookie is generated).
485 */
486 #define MAX_SYNCOOKIE_AGE 2
487
488 static inline u32 tcp_cookie_time(void)
489 {
490 u64 val = get_jiffies_64();
491
492 do_div(val, 60 * HZ);
493 return val;
494 }
495
496 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
497 u16 *mssp);
498 __u32 cookie_v4_init_sequence(struct sock *sk, const struct sk_buff *skb,
499 __u16 *mss);
500 __u32 cookie_init_timestamp(struct request_sock *req);
501 bool cookie_timestamp_decode(struct tcp_options_received *opt);
502 bool cookie_ecn_ok(const struct tcp_options_received *opt,
503 const struct net *net, const struct dst_entry *dst);
504
505 /* From net/ipv6/syncookies.c */
506 int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th,
507 u32 cookie);
508 struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
509
510 u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
511 const struct tcphdr *th, u16 *mssp);
512 __u32 cookie_v6_init_sequence(struct sock *sk, const struct sk_buff *skb,
513 __u16 *mss);
514 #endif
515 /* tcp_output.c */
516
517 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
518 int nonagle);
519 bool tcp_may_send_now(struct sock *sk);
520 int __tcp_retransmit_skb(struct sock *, struct sk_buff *);
521 int tcp_retransmit_skb(struct sock *, struct sk_buff *);
522 void tcp_retransmit_timer(struct sock *sk);
523 void tcp_xmit_retransmit_queue(struct sock *);
524 void tcp_simple_retransmit(struct sock *);
525 int tcp_trim_head(struct sock *, struct sk_buff *, u32);
526 int tcp_fragment(struct sock *, struct sk_buff *, u32, unsigned int, gfp_t);
527
528 void tcp_send_probe0(struct sock *);
529 void tcp_send_partial(struct sock *);
530 int tcp_write_wakeup(struct sock *, int mib);
531 void tcp_send_fin(struct sock *sk);
532 void tcp_send_active_reset(struct sock *sk, gfp_t priority);
533 int tcp_send_synack(struct sock *);
534 void tcp_push_one(struct sock *, unsigned int mss_now);
535 void tcp_send_ack(struct sock *sk);
536 void tcp_send_delayed_ack(struct sock *sk);
537 void tcp_send_loss_probe(struct sock *sk);
538 bool tcp_schedule_loss_probe(struct sock *sk);
539
540 /* tcp_input.c */
541 void tcp_resume_early_retransmit(struct sock *sk);
542 void tcp_rearm_rto(struct sock *sk);
543 void tcp_reset(struct sock *sk);
544
545 /* tcp_timer.c */
546 void tcp_init_xmit_timers(struct sock *);
547 static inline void tcp_clear_xmit_timers(struct sock *sk)
548 {
549 inet_csk_clear_xmit_timers(sk);
550 }
551
552 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
553 unsigned int tcp_current_mss(struct sock *sk);
554
555 /* Bound MSS / TSO packet size with the half of the window */
556 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
557 {
558 int cutoff;
559
560 /* When peer uses tiny windows, there is no use in packetizing
561 * to sub-MSS pieces for the sake of SWS or making sure there
562 * are enough packets in the pipe for fast recovery.
563 *
564 * On the other hand, for extremely large MSS devices, handling
565 * smaller than MSS windows in this way does make sense.
566 */
567 if (tp->max_window >= 512)
568 cutoff = (tp->max_window >> 1);
569 else
570 cutoff = tp->max_window;
571
572 if (cutoff && pktsize > cutoff)
573 return max_t(int, cutoff, 68U - tp->tcp_header_len);
574 else
575 return pktsize;
576 }
577
578 /* tcp.c */
579 void tcp_get_info(struct sock *, struct tcp_info *);
580
581 /* Read 'sendfile()'-style from a TCP socket */
582 typedef int (*sk_read_actor_t)(read_descriptor_t *, struct sk_buff *,
583 unsigned int, size_t);
584 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
585 sk_read_actor_t recv_actor);
586
587 void tcp_initialize_rcv_mss(struct sock *sk);
588
589 int tcp_mtu_to_mss(struct sock *sk, int pmtu);
590 int tcp_mss_to_mtu(struct sock *sk, int mss);
591 void tcp_mtup_init(struct sock *sk);
592 void tcp_init_buffer_space(struct sock *sk);
593
594 static inline void tcp_bound_rto(const struct sock *sk)
595 {
596 if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
597 inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
598 }
599
600 static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
601 {
602 return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
603 }
604
605 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
606 {
607 tp->pred_flags = htonl((tp->tcp_header_len << 26) |
608 ntohl(TCP_FLAG_ACK) |
609 snd_wnd);
610 }
611
612 static inline void tcp_fast_path_on(struct tcp_sock *tp)
613 {
614 __tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
615 }
616
617 static inline void tcp_fast_path_check(struct sock *sk)
618 {
619 struct tcp_sock *tp = tcp_sk(sk);
620
621 if (skb_queue_empty(&tp->out_of_order_queue) &&
622 tp->rcv_wnd &&
623 atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
624 !tp->urg_data)
625 tcp_fast_path_on(tp);
626 }
627
628 /* Compute the actual rto_min value */
629 static inline u32 tcp_rto_min(struct sock *sk)
630 {
631 const struct dst_entry *dst = __sk_dst_get(sk);
632 u32 rto_min = TCP_RTO_MIN;
633
634 if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
635 rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
636 return rto_min;
637 }
638
639 static inline u32 tcp_rto_min_us(struct sock *sk)
640 {
641 return jiffies_to_usecs(tcp_rto_min(sk));
642 }
643
644 static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
645 {
646 return dst_metric_locked(dst, RTAX_CC_ALGO);
647 }
648
649 /* Compute the actual receive window we are currently advertising.
650 * Rcv_nxt can be after the window if our peer push more data
651 * than the offered window.
652 */
653 static inline u32 tcp_receive_window(const struct tcp_sock *tp)
654 {
655 s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
656
657 if (win < 0)
658 win = 0;
659 return (u32) win;
660 }
661
662 /* Choose a new window, without checks for shrinking, and without
663 * scaling applied to the result. The caller does these things
664 * if necessary. This is a "raw" window selection.
665 */
666 u32 __tcp_select_window(struct sock *sk);
667
668 void tcp_send_window_probe(struct sock *sk);
669
670 /* TCP timestamps are only 32-bits, this causes a slight
671 * complication on 64-bit systems since we store a snapshot
672 * of jiffies in the buffer control blocks below. We decided
673 * to use only the low 32-bits of jiffies and hide the ugly
674 * casts with the following macro.
675 */
676 #define tcp_time_stamp ((__u32)(jiffies))
677
678 static inline u32 tcp_skb_timestamp(const struct sk_buff *skb)
679 {
680 return skb->skb_mstamp.stamp_jiffies;
681 }
682
683
684 #define tcp_flag_byte(th) (((u_int8_t *)th)[13])
685
686 #define TCPHDR_FIN 0x01
687 #define TCPHDR_SYN 0x02
688 #define TCPHDR_RST 0x04
689 #define TCPHDR_PSH 0x08
690 #define TCPHDR_ACK 0x10
691 #define TCPHDR_URG 0x20
692 #define TCPHDR_ECE 0x40
693 #define TCPHDR_CWR 0x80
694
695 /* This is what the send packet queuing engine uses to pass
696 * TCP per-packet control information to the transmission code.
697 * We also store the host-order sequence numbers in here too.
698 * This is 44 bytes if IPV6 is enabled.
699 * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
700 */
701 struct tcp_skb_cb {
702 __u32 seq; /* Starting sequence number */
703 __u32 end_seq; /* SEQ + FIN + SYN + datalen */
704 union {
705 /* Note : tcp_tw_isn is used in input path only
706 * (isn chosen by tcp_timewait_state_process())
707 *
708 * tcp_gso_segs is used in write queue only,
709 * cf tcp_skb_pcount()
710 */
711 __u32 tcp_tw_isn;
712 __u32 tcp_gso_segs;
713 };
714 __u8 tcp_flags; /* TCP header flags. (tcp[13]) */
715
716 __u8 sacked; /* State flags for SACK/FACK. */
717 #define TCPCB_SACKED_ACKED 0x01 /* SKB ACK'd by a SACK block */
718 #define TCPCB_SACKED_RETRANS 0x02 /* SKB retransmitted */
719 #define TCPCB_LOST 0x04 /* SKB is lost */
720 #define TCPCB_TAGBITS 0x07 /* All tag bits */
721 #define TCPCB_REPAIRED 0x10 /* SKB repaired (no skb_mstamp) */
722 #define TCPCB_EVER_RETRANS 0x80 /* Ever retransmitted frame */
723 #define TCPCB_RETRANS (TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS| \
724 TCPCB_REPAIRED)
725
726 __u8 ip_dsfield; /* IPv4 tos or IPv6 dsfield */
727 /* 1 byte hole */
728 __u32 ack_seq; /* Sequence number ACK'd */
729 union {
730 struct inet_skb_parm h4;
731 #if IS_ENABLED(CONFIG_IPV6)
732 struct inet6_skb_parm h6;
733 #endif
734 } header; /* For incoming frames */
735 };
736
737 #define TCP_SKB_CB(__skb) ((struct tcp_skb_cb *)&((__skb)->cb[0]))
738
739
740 #if IS_ENABLED(CONFIG_IPV6)
741 /* This is the variant of inet6_iif() that must be used by TCP,
742 * as TCP moves IP6CB into a different location in skb->cb[]
743 */
744 static inline int tcp_v6_iif(const struct sk_buff *skb)
745 {
746 return TCP_SKB_CB(skb)->header.h6.iif;
747 }
748 #endif
749
750 /* Due to TSO, an SKB can be composed of multiple actual
751 * packets. To keep these tracked properly, we use this.
752 */
753 static inline int tcp_skb_pcount(const struct sk_buff *skb)
754 {
755 return TCP_SKB_CB(skb)->tcp_gso_segs;
756 }
757
758 static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
759 {
760 TCP_SKB_CB(skb)->tcp_gso_segs = segs;
761 }
762
763 static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
764 {
765 TCP_SKB_CB(skb)->tcp_gso_segs += segs;
766 }
767
768 /* This is valid iff tcp_skb_pcount() > 1. */
769 static inline int tcp_skb_mss(const struct sk_buff *skb)
770 {
771 return skb_shinfo(skb)->gso_size;
772 }
773
774 /* Events passed to congestion control interface */
775 enum tcp_ca_event {
776 CA_EVENT_TX_START, /* first transmit when no packets in flight */
777 CA_EVENT_CWND_RESTART, /* congestion window restart */
778 CA_EVENT_COMPLETE_CWR, /* end of congestion recovery */
779 CA_EVENT_LOSS, /* loss timeout */
780 CA_EVENT_ECN_NO_CE, /* ECT set, but not CE marked */
781 CA_EVENT_ECN_IS_CE, /* received CE marked IP packet */
782 CA_EVENT_DELAYED_ACK, /* Delayed ack is sent */
783 CA_EVENT_NON_DELAYED_ACK,
784 };
785
786 /* Information about inbound ACK, passed to cong_ops->in_ack_event() */
787 enum tcp_ca_ack_event_flags {
788 CA_ACK_SLOWPATH = (1 << 0), /* In slow path processing */
789 CA_ACK_WIN_UPDATE = (1 << 1), /* ACK updated window */
790 CA_ACK_ECE = (1 << 2), /* ECE bit is set on ack */
791 };
792
793 /*
794 * Interface for adding new TCP congestion control handlers
795 */
796 #define TCP_CA_NAME_MAX 16
797 #define TCP_CA_MAX 128
798 #define TCP_CA_BUF_MAX (TCP_CA_NAME_MAX*TCP_CA_MAX)
799
800 #define TCP_CA_UNSPEC 0
801
802 /* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
803 #define TCP_CONG_NON_RESTRICTED 0x1
804 /* Requires ECN/ECT set on all packets */
805 #define TCP_CONG_NEEDS_ECN 0x2
806
807 union tcp_cc_info;
808
809 struct tcp_congestion_ops {
810 struct list_head list;
811 u32 key;
812 u32 flags;
813
814 /* initialize private data (optional) */
815 void (*init)(struct sock *sk);
816 /* cleanup private data (optional) */
817 void (*release)(struct sock *sk);
818
819 /* return slow start threshold (required) */
820 u32 (*ssthresh)(struct sock *sk);
821 /* do new cwnd calculation (required) */
822 void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
823 /* call before changing ca_state (optional) */
824 void (*set_state)(struct sock *sk, u8 new_state);
825 /* call when cwnd event occurs (optional) */
826 void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
827 /* call when ack arrives (optional) */
828 void (*in_ack_event)(struct sock *sk, u32 flags);
829 /* new value of cwnd after loss (optional) */
830 u32 (*undo_cwnd)(struct sock *sk);
831 /* hook for packet ack accounting (optional) */
832 void (*pkts_acked)(struct sock *sk, u32 num_acked, s32 rtt_us);
833 /* get info for inet_diag (optional) */
834 size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
835 union tcp_cc_info *info);
836
837 char name[TCP_CA_NAME_MAX];
838 struct module *owner;
839 };
840
841 int tcp_register_congestion_control(struct tcp_congestion_ops *type);
842 void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
843
844 void tcp_assign_congestion_control(struct sock *sk);
845 void tcp_init_congestion_control(struct sock *sk);
846 void tcp_cleanup_congestion_control(struct sock *sk);
847 int tcp_set_default_congestion_control(const char *name);
848 void tcp_get_default_congestion_control(char *name);
849 void tcp_get_available_congestion_control(char *buf, size_t len);
850 void tcp_get_allowed_congestion_control(char *buf, size_t len);
851 int tcp_set_allowed_congestion_control(char *allowed);
852 int tcp_set_congestion_control(struct sock *sk, const char *name);
853 u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
854 void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
855
856 u32 tcp_reno_ssthresh(struct sock *sk);
857 void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
858 extern struct tcp_congestion_ops tcp_reno;
859
860 struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
861 u32 tcp_ca_get_key_by_name(const char *name);
862 #ifdef CONFIG_INET
863 char *tcp_ca_get_name_by_key(u32 key, char *buffer);
864 #else
865 static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
866 {
867 return NULL;
868 }
869 #endif
870
871 static inline bool tcp_ca_needs_ecn(const struct sock *sk)
872 {
873 const struct inet_connection_sock *icsk = inet_csk(sk);
874
875 return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
876 }
877
878 static inline void tcp_set_ca_state(struct sock *sk, const u8 ca_state)
879 {
880 struct inet_connection_sock *icsk = inet_csk(sk);
881
882 if (icsk->icsk_ca_ops->set_state)
883 icsk->icsk_ca_ops->set_state(sk, ca_state);
884 icsk->icsk_ca_state = ca_state;
885 }
886
887 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
888 {
889 const struct inet_connection_sock *icsk = inet_csk(sk);
890
891 if (icsk->icsk_ca_ops->cwnd_event)
892 icsk->icsk_ca_ops->cwnd_event(sk, event);
893 }
894
895 /* These functions determine how the current flow behaves in respect of SACK
896 * handling. SACK is negotiated with the peer, and therefore it can vary
897 * between different flows.
898 *
899 * tcp_is_sack - SACK enabled
900 * tcp_is_reno - No SACK
901 * tcp_is_fack - FACK enabled, implies SACK enabled
902 */
903 static inline int tcp_is_sack(const struct tcp_sock *tp)
904 {
905 return tp->rx_opt.sack_ok;
906 }
907
908 static inline bool tcp_is_reno(const struct tcp_sock *tp)
909 {
910 return !tcp_is_sack(tp);
911 }
912
913 static inline bool tcp_is_fack(const struct tcp_sock *tp)
914 {
915 return tp->rx_opt.sack_ok & TCP_FACK_ENABLED;
916 }
917
918 static inline void tcp_enable_fack(struct tcp_sock *tp)
919 {
920 tp->rx_opt.sack_ok |= TCP_FACK_ENABLED;
921 }
922
923 /* TCP early-retransmit (ER) is similar to but more conservative than
924 * the thin-dupack feature. Enable ER only if thin-dupack is disabled.
925 */
926 static inline void tcp_enable_early_retrans(struct tcp_sock *tp)
927 {
928 tp->do_early_retrans = sysctl_tcp_early_retrans &&
929 sysctl_tcp_early_retrans < 4 && !sysctl_tcp_thin_dupack &&
930 sysctl_tcp_reordering == 3;
931 }
932
933 static inline void tcp_disable_early_retrans(struct tcp_sock *tp)
934 {
935 tp->do_early_retrans = 0;
936 }
937
938 static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
939 {
940 return tp->sacked_out + tp->lost_out;
941 }
942
943 /* This determines how many packets are "in the network" to the best
944 * of our knowledge. In many cases it is conservative, but where
945 * detailed information is available from the receiver (via SACK
946 * blocks etc.) we can make more aggressive calculations.
947 *
948 * Use this for decisions involving congestion control, use just
949 * tp->packets_out to determine if the send queue is empty or not.
950 *
951 * Read this equation as:
952 *
953 * "Packets sent once on transmission queue" MINUS
954 * "Packets left network, but not honestly ACKed yet" PLUS
955 * "Packets fast retransmitted"
956 */
957 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
958 {
959 return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
960 }
961
962 #define TCP_INFINITE_SSTHRESH 0x7fffffff
963
964 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
965 {
966 return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
967 }
968
969 static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
970 {
971 return (TCPF_CA_CWR | TCPF_CA_Recovery) &
972 (1 << inet_csk(sk)->icsk_ca_state);
973 }
974
975 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
976 * The exception is cwnd reduction phase, when cwnd is decreasing towards
977 * ssthresh.
978 */
979 static inline __u32 tcp_current_ssthresh(const struct sock *sk)
980 {
981 const struct tcp_sock *tp = tcp_sk(sk);
982
983 if (tcp_in_cwnd_reduction(sk))
984 return tp->snd_ssthresh;
985 else
986 return max(tp->snd_ssthresh,
987 ((tp->snd_cwnd >> 1) +
988 (tp->snd_cwnd >> 2)));
989 }
990
991 /* Use define here intentionally to get WARN_ON location shown at the caller */
992 #define tcp_verify_left_out(tp) WARN_ON(tcp_left_out(tp) > tp->packets_out)
993
994 void tcp_enter_cwr(struct sock *sk);
995 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
996
997 /* The maximum number of MSS of available cwnd for which TSO defers
998 * sending if not using sysctl_tcp_tso_win_divisor.
999 */
1000 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
1001 {
1002 return 3;
1003 }
1004
1005 /* Slow start with delack produces 3 packets of burst, so that
1006 * it is safe "de facto". This will be the default - same as
1007 * the default reordering threshold - but if reordering increases,
1008 * we must be able to allow cwnd to burst at least this much in order
1009 * to not pull it back when holes are filled.
1010 */
1011 static __inline__ __u32 tcp_max_burst(const struct tcp_sock *tp)
1012 {
1013 return tp->reordering;
1014 }
1015
1016 /* Returns end sequence number of the receiver's advertised window */
1017 static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1018 {
1019 return tp->snd_una + tp->snd_wnd;
1020 }
1021
1022 /* We follow the spirit of RFC2861 to validate cwnd but implement a more
1023 * flexible approach. The RFC suggests cwnd should not be raised unless
1024 * it was fully used previously. And that's exactly what we do in
1025 * congestion avoidance mode. But in slow start we allow cwnd to grow
1026 * as long as the application has used half the cwnd.
1027 * Example :
1028 * cwnd is 10 (IW10), but application sends 9 frames.
1029 * We allow cwnd to reach 18 when all frames are ACKed.
1030 * This check is safe because it's as aggressive as slow start which already
1031 * risks 100% overshoot. The advantage is that we discourage application to
1032 * either send more filler packets or data to artificially blow up the cwnd
1033 * usage, and allow application-limited process to probe bw more aggressively.
1034 */
1035 static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1036 {
1037 const struct tcp_sock *tp = tcp_sk(sk);
1038
1039 /* If in slow start, ensure cwnd grows to twice what was ACKed. */
1040 if (tp->snd_cwnd <= tp->snd_ssthresh)
1041 return tp->snd_cwnd < 2 * tp->max_packets_out;
1042
1043 return tp->is_cwnd_limited;
1044 }
1045
1046 /* Something is really bad, we could not queue an additional packet,
1047 * because qdisc is full or receiver sent a 0 window.
1048 * We do not want to add fuel to the fire, or abort too early,
1049 * so make sure the timer we arm now is at least 200ms in the future,
1050 * regardless of current icsk_rto value (as it could be ~2ms)
1051 */
1052 static inline unsigned long tcp_probe0_base(const struct sock *sk)
1053 {
1054 return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN);
1055 }
1056
1057 /* Variant of inet_csk_rto_backoff() used for zero window probes */
1058 static inline unsigned long tcp_probe0_when(const struct sock *sk,
1059 unsigned long max_when)
1060 {
1061 u64 when = (u64)tcp_probe0_base(sk) << inet_csk(sk)->icsk_backoff;
1062
1063 return (unsigned long)min_t(u64, when, max_when);
1064 }
1065
1066 static inline void tcp_check_probe_timer(struct sock *sk)
1067 {
1068 if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending)
1069 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1070 tcp_probe0_base(sk), TCP_RTO_MAX);
1071 }
1072
1073 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1074 {
1075 tp->snd_wl1 = seq;
1076 }
1077
1078 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1079 {
1080 tp->snd_wl1 = seq;
1081 }
1082
1083 /*
1084 * Calculate(/check) TCP checksum
1085 */
1086 static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1087 __be32 daddr, __wsum base)
1088 {
1089 return csum_tcpudp_magic(saddr,daddr,len,IPPROTO_TCP,base);
1090 }
1091
1092 static inline __sum16 __tcp_checksum_complete(struct sk_buff *skb)
1093 {
1094 return __skb_checksum_complete(skb);
1095 }
1096
1097 static inline bool tcp_checksum_complete(struct sk_buff *skb)
1098 {
1099 return !skb_csum_unnecessary(skb) &&
1100 __tcp_checksum_complete(skb);
1101 }
1102
1103 /* Prequeue for VJ style copy to user, combined with checksumming. */
1104
1105 static inline void tcp_prequeue_init(struct tcp_sock *tp)
1106 {
1107 tp->ucopy.task = NULL;
1108 tp->ucopy.len = 0;
1109 tp->ucopy.memory = 0;
1110 skb_queue_head_init(&tp->ucopy.prequeue);
1111 }
1112
1113 bool tcp_prequeue(struct sock *sk, struct sk_buff *skb);
1114
1115 #undef STATE_TRACE
1116
1117 #ifdef STATE_TRACE
1118 static const char *statename[]={
1119 "Unused","Established","Syn Sent","Syn Recv",
1120 "Fin Wait 1","Fin Wait 2","Time Wait", "Close",
1121 "Close Wait","Last ACK","Listen","Closing"
1122 };
1123 #endif
1124 void tcp_set_state(struct sock *sk, int state);
1125
1126 void tcp_done(struct sock *sk);
1127
1128 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1129 {
1130 rx_opt->dsack = 0;
1131 rx_opt->num_sacks = 0;
1132 }
1133
1134 u32 tcp_default_init_rwnd(u32 mss);
1135
1136 /* Determine a window scaling and initial window to offer. */
1137 void tcp_select_initial_window(int __space, __u32 mss, __u32 *rcv_wnd,
1138 __u32 *window_clamp, int wscale_ok,
1139 __u8 *rcv_wscale, __u32 init_rcv_wnd);
1140
1141 static inline int tcp_win_from_space(int space)
1142 {
1143 return sysctl_tcp_adv_win_scale<=0 ?
1144 (space>>(-sysctl_tcp_adv_win_scale)) :
1145 space - (space>>sysctl_tcp_adv_win_scale);
1146 }
1147
1148 /* Note: caller must be prepared to deal with negative returns */
1149 static inline int tcp_space(const struct sock *sk)
1150 {
1151 return tcp_win_from_space(sk->sk_rcvbuf -
1152 atomic_read(&sk->sk_rmem_alloc));
1153 }
1154
1155 static inline int tcp_full_space(const struct sock *sk)
1156 {
1157 return tcp_win_from_space(sk->sk_rcvbuf);
1158 }
1159
1160 extern void tcp_openreq_init_rwin(struct request_sock *req,
1161 struct sock *sk, struct dst_entry *dst);
1162
1163 void tcp_enter_memory_pressure(struct sock *sk);
1164
1165 static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1166 {
1167 return tp->keepalive_intvl ? : sysctl_tcp_keepalive_intvl;
1168 }
1169
1170 static inline int keepalive_time_when(const struct tcp_sock *tp)
1171 {
1172 return tp->keepalive_time ? : sysctl_tcp_keepalive_time;
1173 }
1174
1175 static inline int keepalive_probes(const struct tcp_sock *tp)
1176 {
1177 return tp->keepalive_probes ? : sysctl_tcp_keepalive_probes;
1178 }
1179
1180 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1181 {
1182 const struct inet_connection_sock *icsk = &tp->inet_conn;
1183
1184 return min_t(u32, tcp_time_stamp - icsk->icsk_ack.lrcvtime,
1185 tcp_time_stamp - tp->rcv_tstamp);
1186 }
1187
1188 static inline int tcp_fin_time(const struct sock *sk)
1189 {
1190 int fin_timeout = tcp_sk(sk)->linger2 ? : sysctl_tcp_fin_timeout;
1191 const int rto = inet_csk(sk)->icsk_rto;
1192
1193 if (fin_timeout < (rto << 2) - (rto >> 1))
1194 fin_timeout = (rto << 2) - (rto >> 1);
1195
1196 return fin_timeout;
1197 }
1198
1199 static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1200 int paws_win)
1201 {
1202 if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1203 return true;
1204 if (unlikely(get_seconds() >= rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS))
1205 return true;
1206 /*
1207 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1208 * then following tcp messages have valid values. Ignore 0 value,
1209 * or else 'negative' tsval might forbid us to accept their packets.
1210 */
1211 if (!rx_opt->ts_recent)
1212 return true;
1213 return false;
1214 }
1215
1216 static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1217 int rst)
1218 {
1219 if (tcp_paws_check(rx_opt, 0))
1220 return false;
1221
1222 /* RST segments are not recommended to carry timestamp,
1223 and, if they do, it is recommended to ignore PAWS because
1224 "their cleanup function should take precedence over timestamps."
1225 Certainly, it is mistake. It is necessary to understand the reasons
1226 of this constraint to relax it: if peer reboots, clock may go
1227 out-of-sync and half-open connections will not be reset.
1228 Actually, the problem would be not existing if all
1229 the implementations followed draft about maintaining clock
1230 via reboots. Linux-2.2 DOES NOT!
1231
1232 However, we can relax time bounds for RST segments to MSL.
1233 */
1234 if (rst && get_seconds() >= rx_opt->ts_recent_stamp + TCP_PAWS_MSL)
1235 return false;
1236 return true;
1237 }
1238
1239 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
1240 int mib_idx, u32 *last_oow_ack_time);
1241
1242 static inline void tcp_mib_init(struct net *net)
1243 {
1244 /* See RFC 2012 */
1245 TCP_ADD_STATS_USER(net, TCP_MIB_RTOALGORITHM, 1);
1246 TCP_ADD_STATS_USER(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1247 TCP_ADD_STATS_USER(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1248 TCP_ADD_STATS_USER(net, TCP_MIB_MAXCONN, -1);
1249 }
1250
1251 /* from STCP */
1252 static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1253 {
1254 tp->lost_skb_hint = NULL;
1255 }
1256
1257 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1258 {
1259 tcp_clear_retrans_hints_partial(tp);
1260 tp->retransmit_skb_hint = NULL;
1261 }
1262
1263 /* MD5 Signature */
1264 struct crypto_hash;
1265
1266 union tcp_md5_addr {
1267 struct in_addr a4;
1268 #if IS_ENABLED(CONFIG_IPV6)
1269 struct in6_addr a6;
1270 #endif
1271 };
1272
1273 /* - key database */
1274 struct tcp_md5sig_key {
1275 struct hlist_node node;
1276 u8 keylen;
1277 u8 family; /* AF_INET or AF_INET6 */
1278 union tcp_md5_addr addr;
1279 u8 key[TCP_MD5SIG_MAXKEYLEN];
1280 struct rcu_head rcu;
1281 };
1282
1283 /* - sock block */
1284 struct tcp_md5sig_info {
1285 struct hlist_head head;
1286 struct rcu_head rcu;
1287 };
1288
1289 /* - pseudo header */
1290 struct tcp4_pseudohdr {
1291 __be32 saddr;
1292 __be32 daddr;
1293 __u8 pad;
1294 __u8 protocol;
1295 __be16 len;
1296 };
1297
1298 struct tcp6_pseudohdr {
1299 struct in6_addr saddr;
1300 struct in6_addr daddr;
1301 __be32 len;
1302 __be32 protocol; /* including padding */
1303 };
1304
1305 union tcp_md5sum_block {
1306 struct tcp4_pseudohdr ip4;
1307 #if IS_ENABLED(CONFIG_IPV6)
1308 struct tcp6_pseudohdr ip6;
1309 #endif
1310 };
1311
1312 /* - pool: digest algorithm, hash description and scratch buffer */
1313 struct tcp_md5sig_pool {
1314 struct hash_desc md5_desc;
1315 union tcp_md5sum_block md5_blk;
1316 };
1317
1318 /* - functions */
1319 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1320 const struct sock *sk, const struct sk_buff *skb);
1321 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1322 int family, const u8 *newkey, u8 newkeylen, gfp_t gfp);
1323 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1324 int family);
1325 struct tcp_md5sig_key *tcp_v4_md5_lookup(struct sock *sk,
1326 const struct sock *addr_sk);
1327
1328 #ifdef CONFIG_TCP_MD5SIG
1329 struct tcp_md5sig_key *tcp_md5_do_lookup(struct sock *sk,
1330 const union tcp_md5_addr *addr,
1331 int family);
1332 #define tcp_twsk_md5_key(twsk) ((twsk)->tw_md5_key)
1333 #else
1334 static inline struct tcp_md5sig_key *tcp_md5_do_lookup(struct sock *sk,
1335 const union tcp_md5_addr *addr,
1336 int family)
1337 {
1338 return NULL;
1339 }
1340 #define tcp_twsk_md5_key(twsk) NULL
1341 #endif
1342
1343 bool tcp_alloc_md5sig_pool(void);
1344
1345 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void);
1346 static inline void tcp_put_md5sig_pool(void)
1347 {
1348 local_bh_enable();
1349 }
1350
1351 int tcp_md5_hash_header(struct tcp_md5sig_pool *, const struct tcphdr *);
1352 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *,
1353 unsigned int header_len);
1354 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp,
1355 const struct tcp_md5sig_key *key);
1356
1357 /* From tcp_fastopen.c */
1358 void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1359 struct tcp_fastopen_cookie *cookie, int *syn_loss,
1360 unsigned long *last_syn_loss);
1361 void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1362 struct tcp_fastopen_cookie *cookie, bool syn_lost,
1363 u16 try_exp);
1364 struct tcp_fastopen_request {
1365 /* Fast Open cookie. Size 0 means a cookie request */
1366 struct tcp_fastopen_cookie cookie;
1367 struct msghdr *data; /* data in MSG_FASTOPEN */
1368 size_t size;
1369 int copied; /* queued in tcp_connect() */
1370 };
1371 void tcp_free_fastopen_req(struct tcp_sock *tp);
1372
1373 extern struct tcp_fastopen_context __rcu *tcp_fastopen_ctx;
1374 int tcp_fastopen_reset_cipher(void *key, unsigned int len);
1375 bool tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
1376 struct request_sock *req,
1377 struct tcp_fastopen_cookie *foc,
1378 struct dst_entry *dst);
1379 void tcp_fastopen_init_key_once(bool publish);
1380 #define TCP_FASTOPEN_KEY_LENGTH 16
1381
1382 /* Fastopen key context */
1383 struct tcp_fastopen_context {
1384 struct crypto_cipher *tfm;
1385 __u8 key[TCP_FASTOPEN_KEY_LENGTH];
1386 struct rcu_head rcu;
1387 };
1388
1389 /* write queue abstraction */
1390 static inline void tcp_write_queue_purge(struct sock *sk)
1391 {
1392 struct sk_buff *skb;
1393
1394 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL)
1395 sk_wmem_free_skb(sk, skb);
1396 sk_mem_reclaim(sk);
1397 tcp_clear_all_retrans_hints(tcp_sk(sk));
1398 }
1399
1400 static inline struct sk_buff *tcp_write_queue_head(const struct sock *sk)
1401 {
1402 return skb_peek(&sk->sk_write_queue);
1403 }
1404
1405 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
1406 {
1407 return skb_peek_tail(&sk->sk_write_queue);
1408 }
1409
1410 static inline struct sk_buff *tcp_write_queue_next(const struct sock *sk,
1411 const struct sk_buff *skb)
1412 {
1413 return skb_queue_next(&sk->sk_write_queue, skb);
1414 }
1415
1416 static inline struct sk_buff *tcp_write_queue_prev(const struct sock *sk,
1417 const struct sk_buff *skb)
1418 {
1419 return skb_queue_prev(&sk->sk_write_queue, skb);
1420 }
1421
1422 #define tcp_for_write_queue(skb, sk) \
1423 skb_queue_walk(&(sk)->sk_write_queue, skb)
1424
1425 #define tcp_for_write_queue_from(skb, sk) \
1426 skb_queue_walk_from(&(sk)->sk_write_queue, skb)
1427
1428 #define tcp_for_write_queue_from_safe(skb, tmp, sk) \
1429 skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1430
1431 static inline struct sk_buff *tcp_send_head(const struct sock *sk)
1432 {
1433 return sk->sk_send_head;
1434 }
1435
1436 static inline bool tcp_skb_is_last(const struct sock *sk,
1437 const struct sk_buff *skb)
1438 {
1439 return skb_queue_is_last(&sk->sk_write_queue, skb);
1440 }
1441
1442 static inline void tcp_advance_send_head(struct sock *sk, const struct sk_buff *skb)
1443 {
1444 if (tcp_skb_is_last(sk, skb))
1445 sk->sk_send_head = NULL;
1446 else
1447 sk->sk_send_head = tcp_write_queue_next(sk, skb);
1448 }
1449
1450 static inline void tcp_check_send_head(struct sock *sk, struct sk_buff *skb_unlinked)
1451 {
1452 if (sk->sk_send_head == skb_unlinked)
1453 sk->sk_send_head = NULL;
1454 }
1455
1456 static inline void tcp_init_send_head(struct sock *sk)
1457 {
1458 sk->sk_send_head = NULL;
1459 }
1460
1461 static inline void __tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1462 {
1463 __skb_queue_tail(&sk->sk_write_queue, skb);
1464 }
1465
1466 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1467 {
1468 __tcp_add_write_queue_tail(sk, skb);
1469
1470 /* Queue it, remembering where we must start sending. */
1471 if (sk->sk_send_head == NULL) {
1472 sk->sk_send_head = skb;
1473
1474 if (tcp_sk(sk)->highest_sack == NULL)
1475 tcp_sk(sk)->highest_sack = skb;
1476 }
1477 }
1478
1479 static inline void __tcp_add_write_queue_head(struct sock *sk, struct sk_buff *skb)
1480 {
1481 __skb_queue_head(&sk->sk_write_queue, skb);
1482 }
1483
1484 /* Insert buff after skb on the write queue of sk. */
1485 static inline void tcp_insert_write_queue_after(struct sk_buff *skb,
1486 struct sk_buff *buff,
1487 struct sock *sk)
1488 {
1489 __skb_queue_after(&sk->sk_write_queue, skb, buff);
1490 }
1491
1492 /* Insert new before skb on the write queue of sk. */
1493 static inline void tcp_insert_write_queue_before(struct sk_buff *new,
1494 struct sk_buff *skb,
1495 struct sock *sk)
1496 {
1497 __skb_queue_before(&sk->sk_write_queue, skb, new);
1498
1499 if (sk->sk_send_head == skb)
1500 sk->sk_send_head = new;
1501 }
1502
1503 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
1504 {
1505 __skb_unlink(skb, &sk->sk_write_queue);
1506 }
1507
1508 static inline bool tcp_write_queue_empty(struct sock *sk)
1509 {
1510 return skb_queue_empty(&sk->sk_write_queue);
1511 }
1512
1513 static inline void tcp_push_pending_frames(struct sock *sk)
1514 {
1515 if (tcp_send_head(sk)) {
1516 struct tcp_sock *tp = tcp_sk(sk);
1517
1518 __tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
1519 }
1520 }
1521
1522 /* Start sequence of the skb just after the highest skb with SACKed
1523 * bit, valid only if sacked_out > 0 or when the caller has ensured
1524 * validity by itself.
1525 */
1526 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
1527 {
1528 if (!tp->sacked_out)
1529 return tp->snd_una;
1530
1531 if (tp->highest_sack == NULL)
1532 return tp->snd_nxt;
1533
1534 return TCP_SKB_CB(tp->highest_sack)->seq;
1535 }
1536
1537 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
1538 {
1539 tcp_sk(sk)->highest_sack = tcp_skb_is_last(sk, skb) ? NULL :
1540 tcp_write_queue_next(sk, skb);
1541 }
1542
1543 static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
1544 {
1545 return tcp_sk(sk)->highest_sack;
1546 }
1547
1548 static inline void tcp_highest_sack_reset(struct sock *sk)
1549 {
1550 tcp_sk(sk)->highest_sack = tcp_write_queue_head(sk);
1551 }
1552
1553 /* Called when old skb is about to be deleted (to be combined with new skb) */
1554 static inline void tcp_highest_sack_combine(struct sock *sk,
1555 struct sk_buff *old,
1556 struct sk_buff *new)
1557 {
1558 if (tcp_sk(sk)->sacked_out && (old == tcp_sk(sk)->highest_sack))
1559 tcp_sk(sk)->highest_sack = new;
1560 }
1561
1562 /* Determines whether this is a thin stream (which may suffer from
1563 * increased latency). Used to trigger latency-reducing mechanisms.
1564 */
1565 static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
1566 {
1567 return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
1568 }
1569
1570 /* /proc */
1571 enum tcp_seq_states {
1572 TCP_SEQ_STATE_LISTENING,
1573 TCP_SEQ_STATE_OPENREQ,
1574 TCP_SEQ_STATE_ESTABLISHED,
1575 };
1576
1577 int tcp_seq_open(struct inode *inode, struct file *file);
1578
1579 struct tcp_seq_afinfo {
1580 char *name;
1581 sa_family_t family;
1582 const struct file_operations *seq_fops;
1583 struct seq_operations seq_ops;
1584 };
1585
1586 struct tcp_iter_state {
1587 struct seq_net_private p;
1588 sa_family_t family;
1589 enum tcp_seq_states state;
1590 struct sock *syn_wait_sk;
1591 int bucket, offset, sbucket, num;
1592 kuid_t uid;
1593 loff_t last_pos;
1594 };
1595
1596 int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo);
1597 void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo);
1598
1599 extern struct request_sock_ops tcp_request_sock_ops;
1600 extern struct request_sock_ops tcp6_request_sock_ops;
1601
1602 void tcp_v4_destroy_sock(struct sock *sk);
1603
1604 struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
1605 netdev_features_t features);
1606 struct sk_buff **tcp_gro_receive(struct sk_buff **head, struct sk_buff *skb);
1607 int tcp_gro_complete(struct sk_buff *skb);
1608
1609 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
1610
1611 static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
1612 {
1613 return tp->notsent_lowat ?: sysctl_tcp_notsent_lowat;
1614 }
1615
1616 static inline bool tcp_stream_memory_free(const struct sock *sk)
1617 {
1618 const struct tcp_sock *tp = tcp_sk(sk);
1619 u32 notsent_bytes = tp->write_seq - tp->snd_nxt;
1620
1621 return notsent_bytes < tcp_notsent_lowat(tp);
1622 }
1623
1624 #ifdef CONFIG_PROC_FS
1625 int tcp4_proc_init(void);
1626 void tcp4_proc_exit(void);
1627 #endif
1628
1629 int tcp_rtx_synack(struct sock *sk, struct request_sock *req);
1630 int tcp_conn_request(struct request_sock_ops *rsk_ops,
1631 const struct tcp_request_sock_ops *af_ops,
1632 struct sock *sk, struct sk_buff *skb);
1633
1634 /* TCP af-specific functions */
1635 struct tcp_sock_af_ops {
1636 #ifdef CONFIG_TCP_MD5SIG
1637 struct tcp_md5sig_key *(*md5_lookup) (struct sock *sk,
1638 const struct sock *addr_sk);
1639 int (*calc_md5_hash)(char *location,
1640 const struct tcp_md5sig_key *md5,
1641 const struct sock *sk,
1642 const struct sk_buff *skb);
1643 int (*md5_parse)(struct sock *sk,
1644 char __user *optval,
1645 int optlen);
1646 #endif
1647 };
1648
1649 struct tcp_request_sock_ops {
1650 u16 mss_clamp;
1651 #ifdef CONFIG_TCP_MD5SIG
1652 struct tcp_md5sig_key *(*req_md5_lookup)(struct sock *sk,
1653 const struct sock *addr_sk);
1654 int (*calc_md5_hash) (char *location,
1655 const struct tcp_md5sig_key *md5,
1656 const struct sock *sk,
1657 const struct sk_buff *skb);
1658 #endif
1659 void (*init_req)(struct request_sock *req, struct sock *sk,
1660 struct sk_buff *skb);
1661 #ifdef CONFIG_SYN_COOKIES
1662 __u32 (*cookie_init_seq)(struct sock *sk, const struct sk_buff *skb,
1663 __u16 *mss);
1664 #endif
1665 struct dst_entry *(*route_req)(struct sock *sk, struct flowi *fl,
1666 const struct request_sock *req,
1667 bool *strict);
1668 __u32 (*init_seq)(const struct sk_buff *skb);
1669 int (*send_synack)(struct sock *sk, struct dst_entry *dst,
1670 struct flowi *fl, struct request_sock *req,
1671 u16 queue_mapping, struct tcp_fastopen_cookie *foc);
1672 void (*queue_hash_add)(struct sock *sk, struct request_sock *req,
1673 const unsigned long timeout);
1674 };
1675
1676 #ifdef CONFIG_SYN_COOKIES
1677 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
1678 struct sock *sk, struct sk_buff *skb,
1679 __u16 *mss)
1680 {
1681 return ops->cookie_init_seq(sk, skb, mss);
1682 }
1683 #else
1684 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
1685 struct sock *sk, struct sk_buff *skb,
1686 __u16 *mss)
1687 {
1688 return 0;
1689 }
1690 #endif
1691
1692 int tcpv4_offload_init(void);
1693
1694 void tcp_v4_init(void);
1695 void tcp_init(void);
1696
1697 /*
1698 * Save and compile IPv4 options, return a pointer to it
1699 */
1700 static inline struct ip_options_rcu *tcp_v4_save_options(struct sk_buff *skb)
1701 {
1702 const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
1703 struct ip_options_rcu *dopt = NULL;
1704
1705 if (opt->optlen) {
1706 int opt_size = sizeof(*dopt) + opt->optlen;
1707
1708 dopt = kmalloc(opt_size, GFP_ATOMIC);
1709 if (dopt && __ip_options_echo(&dopt->opt, skb, opt)) {
1710 kfree(dopt);
1711 dopt = NULL;
1712 }
1713 }
1714 return dopt;
1715 }
1716
1717 /* locally generated TCP pure ACKs have skb->truesize == 2
1718 * (check tcp_send_ack() in net/ipv4/tcp_output.c )
1719 * This is much faster than dissecting the packet to find out.
1720 * (Think of GRE encapsulations, IPv4, IPv6, ...)
1721 */
1722 static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
1723 {
1724 return skb->truesize == 2;
1725 }
1726
1727 static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
1728 {
1729 skb->truesize = 2;
1730 }
1731
1732 #endif /* _TCP_H */