]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - include/net/tcp.h
Merge back ACPI power management material for v5.14.
[mirror_ubuntu-jammy-kernel.git] / include / net / tcp.h
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Definitions for the TCP module.
8 *
9 * Version: @(#)tcp.h 1.0.5 05/23/93
10 *
11 * Authors: Ross Biro
12 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13 */
14 #ifndef _TCP_H
15 #define _TCP_H
16
17 #define FASTRETRANS_DEBUG 1
18
19 #include <linux/list.h>
20 #include <linux/tcp.h>
21 #include <linux/bug.h>
22 #include <linux/slab.h>
23 #include <linux/cache.h>
24 #include <linux/percpu.h>
25 #include <linux/skbuff.h>
26 #include <linux/kref.h>
27 #include <linux/ktime.h>
28 #include <linux/indirect_call_wrapper.h>
29
30 #include <net/inet_connection_sock.h>
31 #include <net/inet_timewait_sock.h>
32 #include <net/inet_hashtables.h>
33 #include <net/checksum.h>
34 #include <net/request_sock.h>
35 #include <net/sock_reuseport.h>
36 #include <net/sock.h>
37 #include <net/snmp.h>
38 #include <net/ip.h>
39 #include <net/tcp_states.h>
40 #include <net/inet_ecn.h>
41 #include <net/dst.h>
42 #include <net/mptcp.h>
43
44 #include <linux/seq_file.h>
45 #include <linux/memcontrol.h>
46 #include <linux/bpf-cgroup.h>
47 #include <linux/siphash.h>
48
49 extern struct inet_hashinfo tcp_hashinfo;
50
51 extern struct percpu_counter tcp_orphan_count;
52 void tcp_time_wait(struct sock *sk, int state, int timeo);
53
54 #define MAX_TCP_HEADER L1_CACHE_ALIGN(128 + MAX_HEADER)
55 #define MAX_TCP_OPTION_SPACE 40
56 #define TCP_MIN_SND_MSS 48
57 #define TCP_MIN_GSO_SIZE (TCP_MIN_SND_MSS - MAX_TCP_OPTION_SPACE)
58
59 /*
60 * Never offer a window over 32767 without using window scaling. Some
61 * poor stacks do signed 16bit maths!
62 */
63 #define MAX_TCP_WINDOW 32767U
64
65 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */
66 #define TCP_MIN_MSS 88U
67
68 /* The initial MTU to use for probing */
69 #define TCP_BASE_MSS 1024
70
71 /* probing interval, default to 10 minutes as per RFC4821 */
72 #define TCP_PROBE_INTERVAL 600
73
74 /* Specify interval when tcp mtu probing will stop */
75 #define TCP_PROBE_THRESHOLD 8
76
77 /* After receiving this amount of duplicate ACKs fast retransmit starts. */
78 #define TCP_FASTRETRANS_THRESH 3
79
80 /* Maximal number of ACKs sent quickly to accelerate slow-start. */
81 #define TCP_MAX_QUICKACKS 16U
82
83 /* Maximal number of window scale according to RFC1323 */
84 #define TCP_MAX_WSCALE 14U
85
86 /* urg_data states */
87 #define TCP_URG_VALID 0x0100
88 #define TCP_URG_NOTYET 0x0200
89 #define TCP_URG_READ 0x0400
90
91 #define TCP_RETR1 3 /*
92 * This is how many retries it does before it
93 * tries to figure out if the gateway is
94 * down. Minimal RFC value is 3; it corresponds
95 * to ~3sec-8min depending on RTO.
96 */
97
98 #define TCP_RETR2 15 /*
99 * This should take at least
100 * 90 minutes to time out.
101 * RFC1122 says that the limit is 100 sec.
102 * 15 is ~13-30min depending on RTO.
103 */
104
105 #define TCP_SYN_RETRIES 6 /* This is how many retries are done
106 * when active opening a connection.
107 * RFC1122 says the minimum retry MUST
108 * be at least 180secs. Nevertheless
109 * this value is corresponding to
110 * 63secs of retransmission with the
111 * current initial RTO.
112 */
113
114 #define TCP_SYNACK_RETRIES 5 /* This is how may retries are done
115 * when passive opening a connection.
116 * This is corresponding to 31secs of
117 * retransmission with the current
118 * initial RTO.
119 */
120
121 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
122 * state, about 60 seconds */
123 #define TCP_FIN_TIMEOUT TCP_TIMEWAIT_LEN
124 /* BSD style FIN_WAIT2 deadlock breaker.
125 * It used to be 3min, new value is 60sec,
126 * to combine FIN-WAIT-2 timeout with
127 * TIME-WAIT timer.
128 */
129 #define TCP_FIN_TIMEOUT_MAX (120 * HZ) /* max TCP_LINGER2 value (two minutes) */
130
131 #define TCP_DELACK_MAX ((unsigned)(HZ/5)) /* maximal time to delay before sending an ACK */
132 #if HZ >= 100
133 #define TCP_DELACK_MIN ((unsigned)(HZ/25)) /* minimal time to delay before sending an ACK */
134 #define TCP_ATO_MIN ((unsigned)(HZ/25))
135 #else
136 #define TCP_DELACK_MIN 4U
137 #define TCP_ATO_MIN 4U
138 #endif
139 #define TCP_RTO_MAX ((unsigned)(120*HZ))
140 #define TCP_RTO_MIN ((unsigned)(HZ/5))
141 #define TCP_TIMEOUT_MIN (2U) /* Min timeout for TCP timers in jiffies */
142 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ)) /* RFC6298 2.1 initial RTO value */
143 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ)) /* RFC 1122 initial RTO value, now
144 * used as a fallback RTO for the
145 * initial data transmission if no
146 * valid RTT sample has been acquired,
147 * most likely due to retrans in 3WHS.
148 */
149
150 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
151 * for local resources.
152 */
153 #define TCP_KEEPALIVE_TIME (120*60*HZ) /* two hours */
154 #define TCP_KEEPALIVE_PROBES 9 /* Max of 9 keepalive probes */
155 #define TCP_KEEPALIVE_INTVL (75*HZ)
156
157 #define MAX_TCP_KEEPIDLE 32767
158 #define MAX_TCP_KEEPINTVL 32767
159 #define MAX_TCP_KEEPCNT 127
160 #define MAX_TCP_SYNCNT 127
161
162 #define TCP_SYNQ_INTERVAL (HZ/5) /* Period of SYNACK timer */
163
164 #define TCP_PAWS_24DAYS (60 * 60 * 24 * 24)
165 #define TCP_PAWS_MSL 60 /* Per-host timestamps are invalidated
166 * after this time. It should be equal
167 * (or greater than) TCP_TIMEWAIT_LEN
168 * to provide reliability equal to one
169 * provided by timewait state.
170 */
171 #define TCP_PAWS_WINDOW 1 /* Replay window for per-host
172 * timestamps. It must be less than
173 * minimal timewait lifetime.
174 */
175 /*
176 * TCP option
177 */
178
179 #define TCPOPT_NOP 1 /* Padding */
180 #define TCPOPT_EOL 0 /* End of options */
181 #define TCPOPT_MSS 2 /* Segment size negotiating */
182 #define TCPOPT_WINDOW 3 /* Window scaling */
183 #define TCPOPT_SACK_PERM 4 /* SACK Permitted */
184 #define TCPOPT_SACK 5 /* SACK Block */
185 #define TCPOPT_TIMESTAMP 8 /* Better RTT estimations/PAWS */
186 #define TCPOPT_MD5SIG 19 /* MD5 Signature (RFC2385) */
187 #define TCPOPT_MPTCP 30 /* Multipath TCP (RFC6824) */
188 #define TCPOPT_FASTOPEN 34 /* Fast open (RFC7413) */
189 #define TCPOPT_EXP 254 /* Experimental */
190 /* Magic number to be after the option value for sharing TCP
191 * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
192 */
193 #define TCPOPT_FASTOPEN_MAGIC 0xF989
194 #define TCPOPT_SMC_MAGIC 0xE2D4C3D9
195
196 /*
197 * TCP option lengths
198 */
199
200 #define TCPOLEN_MSS 4
201 #define TCPOLEN_WINDOW 3
202 #define TCPOLEN_SACK_PERM 2
203 #define TCPOLEN_TIMESTAMP 10
204 #define TCPOLEN_MD5SIG 18
205 #define TCPOLEN_FASTOPEN_BASE 2
206 #define TCPOLEN_EXP_FASTOPEN_BASE 4
207 #define TCPOLEN_EXP_SMC_BASE 6
208
209 /* But this is what stacks really send out. */
210 #define TCPOLEN_TSTAMP_ALIGNED 12
211 #define TCPOLEN_WSCALE_ALIGNED 4
212 #define TCPOLEN_SACKPERM_ALIGNED 4
213 #define TCPOLEN_SACK_BASE 2
214 #define TCPOLEN_SACK_BASE_ALIGNED 4
215 #define TCPOLEN_SACK_PERBLOCK 8
216 #define TCPOLEN_MD5SIG_ALIGNED 20
217 #define TCPOLEN_MSS_ALIGNED 4
218 #define TCPOLEN_EXP_SMC_BASE_ALIGNED 8
219
220 /* Flags in tp->nonagle */
221 #define TCP_NAGLE_OFF 1 /* Nagle's algo is disabled */
222 #define TCP_NAGLE_CORK 2 /* Socket is corked */
223 #define TCP_NAGLE_PUSH 4 /* Cork is overridden for already queued data */
224
225 /* TCP thin-stream limits */
226 #define TCP_THIN_LINEAR_RETRIES 6 /* After 6 linear retries, do exp. backoff */
227
228 /* TCP initial congestion window as per rfc6928 */
229 #define TCP_INIT_CWND 10
230
231 /* Bit Flags for sysctl_tcp_fastopen */
232 #define TFO_CLIENT_ENABLE 1
233 #define TFO_SERVER_ENABLE 2
234 #define TFO_CLIENT_NO_COOKIE 4 /* Data in SYN w/o cookie option */
235
236 /* Accept SYN data w/o any cookie option */
237 #define TFO_SERVER_COOKIE_NOT_REQD 0x200
238
239 /* Force enable TFO on all listeners, i.e., not requiring the
240 * TCP_FASTOPEN socket option.
241 */
242 #define TFO_SERVER_WO_SOCKOPT1 0x400
243
244
245 /* sysctl variables for tcp */
246 extern int sysctl_tcp_max_orphans;
247 extern long sysctl_tcp_mem[3];
248
249 #define TCP_RACK_LOSS_DETECTION 0x1 /* Use RACK to detect losses */
250 #define TCP_RACK_STATIC_REO_WND 0x2 /* Use static RACK reo wnd */
251 #define TCP_RACK_NO_DUPTHRESH 0x4 /* Do not use DUPACK threshold in RACK */
252
253 extern atomic_long_t tcp_memory_allocated;
254 extern struct percpu_counter tcp_sockets_allocated;
255 extern unsigned long tcp_memory_pressure;
256
257 /* optimized version of sk_under_memory_pressure() for TCP sockets */
258 static inline bool tcp_under_memory_pressure(const struct sock *sk)
259 {
260 if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
261 mem_cgroup_under_socket_pressure(sk->sk_memcg))
262 return true;
263
264 return READ_ONCE(tcp_memory_pressure);
265 }
266 /*
267 * The next routines deal with comparing 32 bit unsigned ints
268 * and worry about wraparound (automatic with unsigned arithmetic).
269 */
270
271 static inline bool before(__u32 seq1, __u32 seq2)
272 {
273 return (__s32)(seq1-seq2) < 0;
274 }
275 #define after(seq2, seq1) before(seq1, seq2)
276
277 /* is s2<=s1<=s3 ? */
278 static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
279 {
280 return seq3 - seq2 >= seq1 - seq2;
281 }
282
283 static inline bool tcp_out_of_memory(struct sock *sk)
284 {
285 if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
286 sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
287 return true;
288 return false;
289 }
290
291 void sk_forced_mem_schedule(struct sock *sk, int size);
292
293 static inline bool tcp_too_many_orphans(struct sock *sk, int shift)
294 {
295 struct percpu_counter *ocp = sk->sk_prot->orphan_count;
296 int orphans = percpu_counter_read_positive(ocp);
297
298 if (orphans << shift > sysctl_tcp_max_orphans) {
299 orphans = percpu_counter_sum_positive(ocp);
300 if (orphans << shift > sysctl_tcp_max_orphans)
301 return true;
302 }
303 return false;
304 }
305
306 bool tcp_check_oom(struct sock *sk, int shift);
307
308
309 extern struct proto tcp_prot;
310
311 #define TCP_INC_STATS(net, field) SNMP_INC_STATS((net)->mib.tcp_statistics, field)
312 #define __TCP_INC_STATS(net, field) __SNMP_INC_STATS((net)->mib.tcp_statistics, field)
313 #define TCP_DEC_STATS(net, field) SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
314 #define TCP_ADD_STATS(net, field, val) SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
315
316 void tcp_tasklet_init(void);
317
318 int tcp_v4_err(struct sk_buff *skb, u32);
319
320 void tcp_shutdown(struct sock *sk, int how);
321
322 int tcp_v4_early_demux(struct sk_buff *skb);
323 int tcp_v4_rcv(struct sk_buff *skb);
324
325 void tcp_remove_empty_skb(struct sock *sk, struct sk_buff *skb);
326 int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw);
327 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
328 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size);
329 int tcp_sendpage(struct sock *sk, struct page *page, int offset, size_t size,
330 int flags);
331 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
332 size_t size, int flags);
333 struct sk_buff *tcp_build_frag(struct sock *sk, int size_goal, int flags,
334 struct page *page, int offset, size_t *size);
335 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
336 size_t size, int flags);
337 int tcp_send_mss(struct sock *sk, int *size_goal, int flags);
338 void tcp_push(struct sock *sk, int flags, int mss_now, int nonagle,
339 int size_goal);
340 void tcp_release_cb(struct sock *sk);
341 void tcp_wfree(struct sk_buff *skb);
342 void tcp_write_timer_handler(struct sock *sk);
343 void tcp_delack_timer_handler(struct sock *sk);
344 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg);
345 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb);
346 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb);
347 void tcp_rcv_space_adjust(struct sock *sk);
348 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
349 void tcp_twsk_destructor(struct sock *sk);
350 ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
351 struct pipe_inode_info *pipe, size_t len,
352 unsigned int flags);
353
354 void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks);
355 static inline void tcp_dec_quickack_mode(struct sock *sk,
356 const unsigned int pkts)
357 {
358 struct inet_connection_sock *icsk = inet_csk(sk);
359
360 if (icsk->icsk_ack.quick) {
361 if (pkts >= icsk->icsk_ack.quick) {
362 icsk->icsk_ack.quick = 0;
363 /* Leaving quickack mode we deflate ATO. */
364 icsk->icsk_ack.ato = TCP_ATO_MIN;
365 } else
366 icsk->icsk_ack.quick -= pkts;
367 }
368 }
369
370 #define TCP_ECN_OK 1
371 #define TCP_ECN_QUEUE_CWR 2
372 #define TCP_ECN_DEMAND_CWR 4
373 #define TCP_ECN_SEEN 8
374
375 enum tcp_tw_status {
376 TCP_TW_SUCCESS = 0,
377 TCP_TW_RST = 1,
378 TCP_TW_ACK = 2,
379 TCP_TW_SYN = 3
380 };
381
382
383 enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
384 struct sk_buff *skb,
385 const struct tcphdr *th);
386 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
387 struct request_sock *req, bool fastopen,
388 bool *lost_race);
389 int tcp_child_process(struct sock *parent, struct sock *child,
390 struct sk_buff *skb);
391 void tcp_enter_loss(struct sock *sk);
392 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag);
393 void tcp_clear_retrans(struct tcp_sock *tp);
394 void tcp_update_metrics(struct sock *sk);
395 void tcp_init_metrics(struct sock *sk);
396 void tcp_metrics_init(void);
397 bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst);
398 void __tcp_close(struct sock *sk, long timeout);
399 void tcp_close(struct sock *sk, long timeout);
400 void tcp_init_sock(struct sock *sk);
401 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb);
402 __poll_t tcp_poll(struct file *file, struct socket *sock,
403 struct poll_table_struct *wait);
404 int tcp_getsockopt(struct sock *sk, int level, int optname,
405 char __user *optval, int __user *optlen);
406 bool tcp_bpf_bypass_getsockopt(int level, int optname);
407 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
408 unsigned int optlen);
409 void tcp_set_keepalive(struct sock *sk, int val);
410 void tcp_syn_ack_timeout(const struct request_sock *req);
411 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
412 int flags, int *addr_len);
413 int tcp_set_rcvlowat(struct sock *sk, int val);
414 int tcp_set_window_clamp(struct sock *sk, int val);
415 void tcp_data_ready(struct sock *sk);
416 #ifdef CONFIG_MMU
417 int tcp_mmap(struct file *file, struct socket *sock,
418 struct vm_area_struct *vma);
419 #endif
420 void tcp_parse_options(const struct net *net, const struct sk_buff *skb,
421 struct tcp_options_received *opt_rx,
422 int estab, struct tcp_fastopen_cookie *foc);
423 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th);
424
425 /*
426 * BPF SKB-less helpers
427 */
428 u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph,
429 struct tcphdr *th, u32 *cookie);
430 u16 tcp_v6_get_syncookie(struct sock *sk, struct ipv6hdr *iph,
431 struct tcphdr *th, u32 *cookie);
432 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
433 const struct tcp_request_sock_ops *af_ops,
434 struct sock *sk, struct tcphdr *th);
435 /*
436 * TCP v4 functions exported for the inet6 API
437 */
438
439 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
440 void tcp_v4_mtu_reduced(struct sock *sk);
441 void tcp_req_err(struct sock *sk, u32 seq, bool abort);
442 void tcp_ld_RTO_revert(struct sock *sk, u32 seq);
443 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
444 struct sock *tcp_create_openreq_child(const struct sock *sk,
445 struct request_sock *req,
446 struct sk_buff *skb);
447 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
448 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
449 struct request_sock *req,
450 struct dst_entry *dst,
451 struct request_sock *req_unhash,
452 bool *own_req);
453 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
454 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
455 int tcp_connect(struct sock *sk);
456 enum tcp_synack_type {
457 TCP_SYNACK_NORMAL,
458 TCP_SYNACK_FASTOPEN,
459 TCP_SYNACK_COOKIE,
460 };
461 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
462 struct request_sock *req,
463 struct tcp_fastopen_cookie *foc,
464 enum tcp_synack_type synack_type,
465 struct sk_buff *syn_skb);
466 int tcp_disconnect(struct sock *sk, int flags);
467
468 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
469 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
470 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
471
472 /* From syncookies.c */
473 struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
474 struct request_sock *req,
475 struct dst_entry *dst, u32 tsoff);
476 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
477 u32 cookie);
478 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
479 struct request_sock *cookie_tcp_reqsk_alloc(const struct request_sock_ops *ops,
480 struct sock *sk, struct sk_buff *skb);
481 #ifdef CONFIG_SYN_COOKIES
482
483 /* Syncookies use a monotonic timer which increments every 60 seconds.
484 * This counter is used both as a hash input and partially encoded into
485 * the cookie value. A cookie is only validated further if the delta
486 * between the current counter value and the encoded one is less than this,
487 * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
488 * the counter advances immediately after a cookie is generated).
489 */
490 #define MAX_SYNCOOKIE_AGE 2
491 #define TCP_SYNCOOKIE_PERIOD (60 * HZ)
492 #define TCP_SYNCOOKIE_VALID (MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD)
493
494 /* syncookies: remember time of last synqueue overflow
495 * But do not dirty this field too often (once per second is enough)
496 * It is racy as we do not hold a lock, but race is very minor.
497 */
498 static inline void tcp_synq_overflow(const struct sock *sk)
499 {
500 unsigned int last_overflow;
501 unsigned int now = jiffies;
502
503 if (sk->sk_reuseport) {
504 struct sock_reuseport *reuse;
505
506 reuse = rcu_dereference(sk->sk_reuseport_cb);
507 if (likely(reuse)) {
508 last_overflow = READ_ONCE(reuse->synq_overflow_ts);
509 if (!time_between32(now, last_overflow,
510 last_overflow + HZ))
511 WRITE_ONCE(reuse->synq_overflow_ts, now);
512 return;
513 }
514 }
515
516 last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
517 if (!time_between32(now, last_overflow, last_overflow + HZ))
518 WRITE_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp, now);
519 }
520
521 /* syncookies: no recent synqueue overflow on this listening socket? */
522 static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
523 {
524 unsigned int last_overflow;
525 unsigned int now = jiffies;
526
527 if (sk->sk_reuseport) {
528 struct sock_reuseport *reuse;
529
530 reuse = rcu_dereference(sk->sk_reuseport_cb);
531 if (likely(reuse)) {
532 last_overflow = READ_ONCE(reuse->synq_overflow_ts);
533 return !time_between32(now, last_overflow - HZ,
534 last_overflow +
535 TCP_SYNCOOKIE_VALID);
536 }
537 }
538
539 last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
540
541 /* If last_overflow <= jiffies <= last_overflow + TCP_SYNCOOKIE_VALID,
542 * then we're under synflood. However, we have to use
543 * 'last_overflow - HZ' as lower bound. That's because a concurrent
544 * tcp_synq_overflow() could update .ts_recent_stamp after we read
545 * jiffies but before we store .ts_recent_stamp into last_overflow,
546 * which could lead to rejecting a valid syncookie.
547 */
548 return !time_between32(now, last_overflow - HZ,
549 last_overflow + TCP_SYNCOOKIE_VALID);
550 }
551
552 static inline u32 tcp_cookie_time(void)
553 {
554 u64 val = get_jiffies_64();
555
556 do_div(val, TCP_SYNCOOKIE_PERIOD);
557 return val;
558 }
559
560 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
561 u16 *mssp);
562 __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss);
563 u64 cookie_init_timestamp(struct request_sock *req, u64 now);
564 bool cookie_timestamp_decode(const struct net *net,
565 struct tcp_options_received *opt);
566 bool cookie_ecn_ok(const struct tcp_options_received *opt,
567 const struct net *net, const struct dst_entry *dst);
568
569 /* From net/ipv6/syncookies.c */
570 int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th,
571 u32 cookie);
572 struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
573
574 u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
575 const struct tcphdr *th, u16 *mssp);
576 __u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss);
577 #endif
578 /* tcp_output.c */
579
580 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
581 int nonagle);
582 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
583 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
584 void tcp_retransmit_timer(struct sock *sk);
585 void tcp_xmit_retransmit_queue(struct sock *);
586 void tcp_simple_retransmit(struct sock *);
587 void tcp_enter_recovery(struct sock *sk, bool ece_ack);
588 int tcp_trim_head(struct sock *, struct sk_buff *, u32);
589 enum tcp_queue {
590 TCP_FRAG_IN_WRITE_QUEUE,
591 TCP_FRAG_IN_RTX_QUEUE,
592 };
593 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
594 struct sk_buff *skb, u32 len,
595 unsigned int mss_now, gfp_t gfp);
596
597 void tcp_send_probe0(struct sock *);
598 void tcp_send_partial(struct sock *);
599 int tcp_write_wakeup(struct sock *, int mib);
600 void tcp_send_fin(struct sock *sk);
601 void tcp_send_active_reset(struct sock *sk, gfp_t priority);
602 int tcp_send_synack(struct sock *);
603 void tcp_push_one(struct sock *, unsigned int mss_now);
604 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt);
605 void tcp_send_ack(struct sock *sk);
606 void tcp_send_delayed_ack(struct sock *sk);
607 void tcp_send_loss_probe(struct sock *sk);
608 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto);
609 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
610 const struct sk_buff *next_skb);
611
612 /* tcp_input.c */
613 void tcp_rearm_rto(struct sock *sk);
614 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req);
615 void tcp_reset(struct sock *sk, struct sk_buff *skb);
616 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb);
617 void tcp_fin(struct sock *sk);
618
619 /* tcp_timer.c */
620 void tcp_init_xmit_timers(struct sock *);
621 static inline void tcp_clear_xmit_timers(struct sock *sk)
622 {
623 if (hrtimer_try_to_cancel(&tcp_sk(sk)->pacing_timer) == 1)
624 __sock_put(sk);
625
626 if (hrtimer_try_to_cancel(&tcp_sk(sk)->compressed_ack_timer) == 1)
627 __sock_put(sk);
628
629 inet_csk_clear_xmit_timers(sk);
630 }
631
632 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
633 unsigned int tcp_current_mss(struct sock *sk);
634 u32 tcp_clamp_probe0_to_user_timeout(const struct sock *sk, u32 when);
635
636 /* Bound MSS / TSO packet size with the half of the window */
637 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
638 {
639 int cutoff;
640
641 /* When peer uses tiny windows, there is no use in packetizing
642 * to sub-MSS pieces for the sake of SWS or making sure there
643 * are enough packets in the pipe for fast recovery.
644 *
645 * On the other hand, for extremely large MSS devices, handling
646 * smaller than MSS windows in this way does make sense.
647 */
648 if (tp->max_window > TCP_MSS_DEFAULT)
649 cutoff = (tp->max_window >> 1);
650 else
651 cutoff = tp->max_window;
652
653 if (cutoff && pktsize > cutoff)
654 return max_t(int, cutoff, 68U - tp->tcp_header_len);
655 else
656 return pktsize;
657 }
658
659 /* tcp.c */
660 void tcp_get_info(struct sock *, struct tcp_info *);
661
662 /* Read 'sendfile()'-style from a TCP socket */
663 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
664 sk_read_actor_t recv_actor);
665
666 void tcp_initialize_rcv_mss(struct sock *sk);
667
668 int tcp_mtu_to_mss(struct sock *sk, int pmtu);
669 int tcp_mss_to_mtu(struct sock *sk, int mss);
670 void tcp_mtup_init(struct sock *sk);
671
672 static inline void tcp_bound_rto(const struct sock *sk)
673 {
674 if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
675 inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
676 }
677
678 static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
679 {
680 return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
681 }
682
683 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
684 {
685 tp->pred_flags = htonl((tp->tcp_header_len << 26) |
686 ntohl(TCP_FLAG_ACK) |
687 snd_wnd);
688 }
689
690 static inline void tcp_fast_path_on(struct tcp_sock *tp)
691 {
692 __tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
693 }
694
695 static inline void tcp_fast_path_check(struct sock *sk)
696 {
697 struct tcp_sock *tp = tcp_sk(sk);
698
699 if (RB_EMPTY_ROOT(&tp->out_of_order_queue) &&
700 tp->rcv_wnd &&
701 atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
702 !tp->urg_data)
703 tcp_fast_path_on(tp);
704 }
705
706 /* Compute the actual rto_min value */
707 static inline u32 tcp_rto_min(struct sock *sk)
708 {
709 const struct dst_entry *dst = __sk_dst_get(sk);
710 u32 rto_min = inet_csk(sk)->icsk_rto_min;
711
712 if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
713 rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
714 return rto_min;
715 }
716
717 static inline u32 tcp_rto_min_us(struct sock *sk)
718 {
719 return jiffies_to_usecs(tcp_rto_min(sk));
720 }
721
722 static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
723 {
724 return dst_metric_locked(dst, RTAX_CC_ALGO);
725 }
726
727 /* Minimum RTT in usec. ~0 means not available. */
728 static inline u32 tcp_min_rtt(const struct tcp_sock *tp)
729 {
730 return minmax_get(&tp->rtt_min);
731 }
732
733 /* Compute the actual receive window we are currently advertising.
734 * Rcv_nxt can be after the window if our peer push more data
735 * than the offered window.
736 */
737 static inline u32 tcp_receive_window(const struct tcp_sock *tp)
738 {
739 s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
740
741 if (win < 0)
742 win = 0;
743 return (u32) win;
744 }
745
746 /* Choose a new window, without checks for shrinking, and without
747 * scaling applied to the result. The caller does these things
748 * if necessary. This is a "raw" window selection.
749 */
750 u32 __tcp_select_window(struct sock *sk);
751
752 void tcp_send_window_probe(struct sock *sk);
753
754 /* TCP uses 32bit jiffies to save some space.
755 * Note that this is different from tcp_time_stamp, which
756 * historically has been the same until linux-4.13.
757 */
758 #define tcp_jiffies32 ((u32)jiffies)
759
760 /*
761 * Deliver a 32bit value for TCP timestamp option (RFC 7323)
762 * It is no longer tied to jiffies, but to 1 ms clock.
763 * Note: double check if you want to use tcp_jiffies32 instead of this.
764 */
765 #define TCP_TS_HZ 1000
766
767 static inline u64 tcp_clock_ns(void)
768 {
769 return ktime_get_ns();
770 }
771
772 static inline u64 tcp_clock_us(void)
773 {
774 return div_u64(tcp_clock_ns(), NSEC_PER_USEC);
775 }
776
777 /* This should only be used in contexts where tp->tcp_mstamp is up to date */
778 static inline u32 tcp_time_stamp(const struct tcp_sock *tp)
779 {
780 return div_u64(tp->tcp_mstamp, USEC_PER_SEC / TCP_TS_HZ);
781 }
782
783 /* Convert a nsec timestamp into TCP TSval timestamp (ms based currently) */
784 static inline u32 tcp_ns_to_ts(u64 ns)
785 {
786 return div_u64(ns, NSEC_PER_SEC / TCP_TS_HZ);
787 }
788
789 /* Could use tcp_clock_us() / 1000, but this version uses a single divide */
790 static inline u32 tcp_time_stamp_raw(void)
791 {
792 return tcp_ns_to_ts(tcp_clock_ns());
793 }
794
795 void tcp_mstamp_refresh(struct tcp_sock *tp);
796
797 static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0)
798 {
799 return max_t(s64, t1 - t0, 0);
800 }
801
802 static inline u32 tcp_skb_timestamp(const struct sk_buff *skb)
803 {
804 return tcp_ns_to_ts(skb->skb_mstamp_ns);
805 }
806
807 /* provide the departure time in us unit */
808 static inline u64 tcp_skb_timestamp_us(const struct sk_buff *skb)
809 {
810 return div_u64(skb->skb_mstamp_ns, NSEC_PER_USEC);
811 }
812
813
814 #define tcp_flag_byte(th) (((u_int8_t *)th)[13])
815
816 #define TCPHDR_FIN 0x01
817 #define TCPHDR_SYN 0x02
818 #define TCPHDR_RST 0x04
819 #define TCPHDR_PSH 0x08
820 #define TCPHDR_ACK 0x10
821 #define TCPHDR_URG 0x20
822 #define TCPHDR_ECE 0x40
823 #define TCPHDR_CWR 0x80
824
825 #define TCPHDR_SYN_ECN (TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR)
826
827 /* This is what the send packet queuing engine uses to pass
828 * TCP per-packet control information to the transmission code.
829 * We also store the host-order sequence numbers in here too.
830 * This is 44 bytes if IPV6 is enabled.
831 * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
832 */
833 struct tcp_skb_cb {
834 __u32 seq; /* Starting sequence number */
835 __u32 end_seq; /* SEQ + FIN + SYN + datalen */
836 union {
837 /* Note : tcp_tw_isn is used in input path only
838 * (isn chosen by tcp_timewait_state_process())
839 *
840 * tcp_gso_segs/size are used in write queue only,
841 * cf tcp_skb_pcount()/tcp_skb_mss()
842 */
843 __u32 tcp_tw_isn;
844 struct {
845 u16 tcp_gso_segs;
846 u16 tcp_gso_size;
847 };
848 };
849 __u8 tcp_flags; /* TCP header flags. (tcp[13]) */
850
851 __u8 sacked; /* State flags for SACK. */
852 #define TCPCB_SACKED_ACKED 0x01 /* SKB ACK'd by a SACK block */
853 #define TCPCB_SACKED_RETRANS 0x02 /* SKB retransmitted */
854 #define TCPCB_LOST 0x04 /* SKB is lost */
855 #define TCPCB_TAGBITS 0x07 /* All tag bits */
856 #define TCPCB_REPAIRED 0x10 /* SKB repaired (no skb_mstamp_ns) */
857 #define TCPCB_EVER_RETRANS 0x80 /* Ever retransmitted frame */
858 #define TCPCB_RETRANS (TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS| \
859 TCPCB_REPAIRED)
860
861 __u8 ip_dsfield; /* IPv4 tos or IPv6 dsfield */
862 __u8 txstamp_ack:1, /* Record TX timestamp for ack? */
863 eor:1, /* Is skb MSG_EOR marked? */
864 has_rxtstamp:1, /* SKB has a RX timestamp */
865 unused:5;
866 __u32 ack_seq; /* Sequence number ACK'd */
867 union {
868 struct {
869 /* There is space for up to 24 bytes */
870 __u32 in_flight:30,/* Bytes in flight at transmit */
871 is_app_limited:1, /* cwnd not fully used? */
872 unused:1;
873 /* pkts S/ACKed so far upon tx of skb, incl retrans: */
874 __u32 delivered;
875 /* start of send pipeline phase */
876 u64 first_tx_mstamp;
877 /* when we reached the "delivered" count */
878 u64 delivered_mstamp;
879 } tx; /* only used for outgoing skbs */
880 union {
881 struct inet_skb_parm h4;
882 #if IS_ENABLED(CONFIG_IPV6)
883 struct inet6_skb_parm h6;
884 #endif
885 } header; /* For incoming skbs */
886 };
887 };
888
889 #define TCP_SKB_CB(__skb) ((struct tcp_skb_cb *)&((__skb)->cb[0]))
890
891 extern const struct inet_connection_sock_af_ops ipv4_specific;
892
893 #if IS_ENABLED(CONFIG_IPV6)
894 /* This is the variant of inet6_iif() that must be used by TCP,
895 * as TCP moves IP6CB into a different location in skb->cb[]
896 */
897 static inline int tcp_v6_iif(const struct sk_buff *skb)
898 {
899 return TCP_SKB_CB(skb)->header.h6.iif;
900 }
901
902 static inline int tcp_v6_iif_l3_slave(const struct sk_buff *skb)
903 {
904 bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags);
905
906 return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif;
907 }
908
909 /* TCP_SKB_CB reference means this can not be used from early demux */
910 static inline int tcp_v6_sdif(const struct sk_buff *skb)
911 {
912 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
913 if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags))
914 return TCP_SKB_CB(skb)->header.h6.iif;
915 #endif
916 return 0;
917 }
918
919 extern const struct inet_connection_sock_af_ops ipv6_specific;
920
921 INDIRECT_CALLABLE_DECLARE(void tcp_v6_send_check(struct sock *sk, struct sk_buff *skb));
922 INDIRECT_CALLABLE_DECLARE(int tcp_v6_rcv(struct sk_buff *skb));
923 INDIRECT_CALLABLE_DECLARE(void tcp_v6_early_demux(struct sk_buff *skb));
924
925 #endif
926
927 /* TCP_SKB_CB reference means this can not be used from early demux */
928 static inline int tcp_v4_sdif(struct sk_buff *skb)
929 {
930 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
931 if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags))
932 return TCP_SKB_CB(skb)->header.h4.iif;
933 #endif
934 return 0;
935 }
936
937 /* Due to TSO, an SKB can be composed of multiple actual
938 * packets. To keep these tracked properly, we use this.
939 */
940 static inline int tcp_skb_pcount(const struct sk_buff *skb)
941 {
942 return TCP_SKB_CB(skb)->tcp_gso_segs;
943 }
944
945 static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
946 {
947 TCP_SKB_CB(skb)->tcp_gso_segs = segs;
948 }
949
950 static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
951 {
952 TCP_SKB_CB(skb)->tcp_gso_segs += segs;
953 }
954
955 /* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */
956 static inline int tcp_skb_mss(const struct sk_buff *skb)
957 {
958 return TCP_SKB_CB(skb)->tcp_gso_size;
959 }
960
961 static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb)
962 {
963 return likely(!TCP_SKB_CB(skb)->eor);
964 }
965
966 static inline bool tcp_skb_can_collapse(const struct sk_buff *to,
967 const struct sk_buff *from)
968 {
969 return likely(tcp_skb_can_collapse_to(to) &&
970 mptcp_skb_can_collapse(to, from));
971 }
972
973 /* Events passed to congestion control interface */
974 enum tcp_ca_event {
975 CA_EVENT_TX_START, /* first transmit when no packets in flight */
976 CA_EVENT_CWND_RESTART, /* congestion window restart */
977 CA_EVENT_COMPLETE_CWR, /* end of congestion recovery */
978 CA_EVENT_LOSS, /* loss timeout */
979 CA_EVENT_ECN_NO_CE, /* ECT set, but not CE marked */
980 CA_EVENT_ECN_IS_CE, /* received CE marked IP packet */
981 };
982
983 /* Information about inbound ACK, passed to cong_ops->in_ack_event() */
984 enum tcp_ca_ack_event_flags {
985 CA_ACK_SLOWPATH = (1 << 0), /* In slow path processing */
986 CA_ACK_WIN_UPDATE = (1 << 1), /* ACK updated window */
987 CA_ACK_ECE = (1 << 2), /* ECE bit is set on ack */
988 };
989
990 /*
991 * Interface for adding new TCP congestion control handlers
992 */
993 #define TCP_CA_NAME_MAX 16
994 #define TCP_CA_MAX 128
995 #define TCP_CA_BUF_MAX (TCP_CA_NAME_MAX*TCP_CA_MAX)
996
997 #define TCP_CA_UNSPEC 0
998
999 /* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
1000 #define TCP_CONG_NON_RESTRICTED 0x1
1001 /* Requires ECN/ECT set on all packets */
1002 #define TCP_CONG_NEEDS_ECN 0x2
1003 #define TCP_CONG_MASK (TCP_CONG_NON_RESTRICTED | TCP_CONG_NEEDS_ECN)
1004
1005 union tcp_cc_info;
1006
1007 struct ack_sample {
1008 u32 pkts_acked;
1009 s32 rtt_us;
1010 u32 in_flight;
1011 };
1012
1013 /* A rate sample measures the number of (original/retransmitted) data
1014 * packets delivered "delivered" over an interval of time "interval_us".
1015 * The tcp_rate.c code fills in the rate sample, and congestion
1016 * control modules that define a cong_control function to run at the end
1017 * of ACK processing can optionally chose to consult this sample when
1018 * setting cwnd and pacing rate.
1019 * A sample is invalid if "delivered" or "interval_us" is negative.
1020 */
1021 struct rate_sample {
1022 u64 prior_mstamp; /* starting timestamp for interval */
1023 u32 prior_delivered; /* tp->delivered at "prior_mstamp" */
1024 s32 delivered; /* number of packets delivered over interval */
1025 long interval_us; /* time for tp->delivered to incr "delivered" */
1026 u32 snd_interval_us; /* snd interval for delivered packets */
1027 u32 rcv_interval_us; /* rcv interval for delivered packets */
1028 long rtt_us; /* RTT of last (S)ACKed packet (or -1) */
1029 int losses; /* number of packets marked lost upon ACK */
1030 u32 acked_sacked; /* number of packets newly (S)ACKed upon ACK */
1031 u32 prior_in_flight; /* in flight before this ACK */
1032 bool is_app_limited; /* is sample from packet with bubble in pipe? */
1033 bool is_retrans; /* is sample from retransmission? */
1034 bool is_ack_delayed; /* is this (likely) a delayed ACK? */
1035 };
1036
1037 struct tcp_congestion_ops {
1038 /* fast path fields are put first to fill one cache line */
1039
1040 /* return slow start threshold (required) */
1041 u32 (*ssthresh)(struct sock *sk);
1042
1043 /* do new cwnd calculation (required) */
1044 void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
1045
1046 /* call before changing ca_state (optional) */
1047 void (*set_state)(struct sock *sk, u8 new_state);
1048
1049 /* call when cwnd event occurs (optional) */
1050 void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
1051
1052 /* call when ack arrives (optional) */
1053 void (*in_ack_event)(struct sock *sk, u32 flags);
1054
1055 /* hook for packet ack accounting (optional) */
1056 void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample);
1057
1058 /* override sysctl_tcp_min_tso_segs */
1059 u32 (*min_tso_segs)(struct sock *sk);
1060
1061 /* call when packets are delivered to update cwnd and pacing rate,
1062 * after all the ca_state processing. (optional)
1063 */
1064 void (*cong_control)(struct sock *sk, const struct rate_sample *rs);
1065
1066
1067 /* new value of cwnd after loss (required) */
1068 u32 (*undo_cwnd)(struct sock *sk);
1069 /* returns the multiplier used in tcp_sndbuf_expand (optional) */
1070 u32 (*sndbuf_expand)(struct sock *sk);
1071
1072 /* control/slow paths put last */
1073 /* get info for inet_diag (optional) */
1074 size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
1075 union tcp_cc_info *info);
1076
1077 char name[TCP_CA_NAME_MAX];
1078 struct module *owner;
1079 struct list_head list;
1080 u32 key;
1081 u32 flags;
1082
1083 /* initialize private data (optional) */
1084 void (*init)(struct sock *sk);
1085 /* cleanup private data (optional) */
1086 void (*release)(struct sock *sk);
1087 } ____cacheline_aligned_in_smp;
1088
1089 int tcp_register_congestion_control(struct tcp_congestion_ops *type);
1090 void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
1091
1092 void tcp_assign_congestion_control(struct sock *sk);
1093 void tcp_init_congestion_control(struct sock *sk);
1094 void tcp_cleanup_congestion_control(struct sock *sk);
1095 int tcp_set_default_congestion_control(struct net *net, const char *name);
1096 void tcp_get_default_congestion_control(struct net *net, char *name);
1097 void tcp_get_available_congestion_control(char *buf, size_t len);
1098 void tcp_get_allowed_congestion_control(char *buf, size_t len);
1099 int tcp_set_allowed_congestion_control(char *allowed);
1100 int tcp_set_congestion_control(struct sock *sk, const char *name, bool load,
1101 bool cap_net_admin);
1102 u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
1103 void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
1104
1105 u32 tcp_reno_ssthresh(struct sock *sk);
1106 u32 tcp_reno_undo_cwnd(struct sock *sk);
1107 void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
1108 extern struct tcp_congestion_ops tcp_reno;
1109
1110 struct tcp_congestion_ops *tcp_ca_find(const char *name);
1111 struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
1112 u32 tcp_ca_get_key_by_name(struct net *net, const char *name, bool *ecn_ca);
1113 #ifdef CONFIG_INET
1114 char *tcp_ca_get_name_by_key(u32 key, char *buffer);
1115 #else
1116 static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
1117 {
1118 return NULL;
1119 }
1120 #endif
1121
1122 static inline bool tcp_ca_needs_ecn(const struct sock *sk)
1123 {
1124 const struct inet_connection_sock *icsk = inet_csk(sk);
1125
1126 return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
1127 }
1128
1129 static inline void tcp_set_ca_state(struct sock *sk, const u8 ca_state)
1130 {
1131 struct inet_connection_sock *icsk = inet_csk(sk);
1132
1133 if (icsk->icsk_ca_ops->set_state)
1134 icsk->icsk_ca_ops->set_state(sk, ca_state);
1135 icsk->icsk_ca_state = ca_state;
1136 }
1137
1138 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
1139 {
1140 const struct inet_connection_sock *icsk = inet_csk(sk);
1141
1142 if (icsk->icsk_ca_ops->cwnd_event)
1143 icsk->icsk_ca_ops->cwnd_event(sk, event);
1144 }
1145
1146 /* From tcp_rate.c */
1147 void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb);
1148 void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb,
1149 struct rate_sample *rs);
1150 void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost,
1151 bool is_sack_reneg, struct rate_sample *rs);
1152 void tcp_rate_check_app_limited(struct sock *sk);
1153
1154 /* These functions determine how the current flow behaves in respect of SACK
1155 * handling. SACK is negotiated with the peer, and therefore it can vary
1156 * between different flows.
1157 *
1158 * tcp_is_sack - SACK enabled
1159 * tcp_is_reno - No SACK
1160 */
1161 static inline int tcp_is_sack(const struct tcp_sock *tp)
1162 {
1163 return likely(tp->rx_opt.sack_ok);
1164 }
1165
1166 static inline bool tcp_is_reno(const struct tcp_sock *tp)
1167 {
1168 return !tcp_is_sack(tp);
1169 }
1170
1171 static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
1172 {
1173 return tp->sacked_out + tp->lost_out;
1174 }
1175
1176 /* This determines how many packets are "in the network" to the best
1177 * of our knowledge. In many cases it is conservative, but where
1178 * detailed information is available from the receiver (via SACK
1179 * blocks etc.) we can make more aggressive calculations.
1180 *
1181 * Use this for decisions involving congestion control, use just
1182 * tp->packets_out to determine if the send queue is empty or not.
1183 *
1184 * Read this equation as:
1185 *
1186 * "Packets sent once on transmission queue" MINUS
1187 * "Packets left network, but not honestly ACKed yet" PLUS
1188 * "Packets fast retransmitted"
1189 */
1190 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
1191 {
1192 return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
1193 }
1194
1195 #define TCP_INFINITE_SSTHRESH 0x7fffffff
1196
1197 static inline bool tcp_in_slow_start(const struct tcp_sock *tp)
1198 {
1199 return tp->snd_cwnd < tp->snd_ssthresh;
1200 }
1201
1202 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
1203 {
1204 return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
1205 }
1206
1207 static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
1208 {
1209 return (TCPF_CA_CWR | TCPF_CA_Recovery) &
1210 (1 << inet_csk(sk)->icsk_ca_state);
1211 }
1212
1213 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
1214 * The exception is cwnd reduction phase, when cwnd is decreasing towards
1215 * ssthresh.
1216 */
1217 static inline __u32 tcp_current_ssthresh(const struct sock *sk)
1218 {
1219 const struct tcp_sock *tp = tcp_sk(sk);
1220
1221 if (tcp_in_cwnd_reduction(sk))
1222 return tp->snd_ssthresh;
1223 else
1224 return max(tp->snd_ssthresh,
1225 ((tp->snd_cwnd >> 1) +
1226 (tp->snd_cwnd >> 2)));
1227 }
1228
1229 /* Use define here intentionally to get WARN_ON location shown at the caller */
1230 #define tcp_verify_left_out(tp) WARN_ON(tcp_left_out(tp) > tp->packets_out)
1231
1232 void tcp_enter_cwr(struct sock *sk);
1233 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
1234
1235 /* The maximum number of MSS of available cwnd for which TSO defers
1236 * sending if not using sysctl_tcp_tso_win_divisor.
1237 */
1238 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
1239 {
1240 return 3;
1241 }
1242
1243 /* Returns end sequence number of the receiver's advertised window */
1244 static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1245 {
1246 return tp->snd_una + tp->snd_wnd;
1247 }
1248
1249 /* We follow the spirit of RFC2861 to validate cwnd but implement a more
1250 * flexible approach. The RFC suggests cwnd should not be raised unless
1251 * it was fully used previously. And that's exactly what we do in
1252 * congestion avoidance mode. But in slow start we allow cwnd to grow
1253 * as long as the application has used half the cwnd.
1254 * Example :
1255 * cwnd is 10 (IW10), but application sends 9 frames.
1256 * We allow cwnd to reach 18 when all frames are ACKed.
1257 * This check is safe because it's as aggressive as slow start which already
1258 * risks 100% overshoot. The advantage is that we discourage application to
1259 * either send more filler packets or data to artificially blow up the cwnd
1260 * usage, and allow application-limited process to probe bw more aggressively.
1261 */
1262 static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1263 {
1264 const struct tcp_sock *tp = tcp_sk(sk);
1265
1266 /* If in slow start, ensure cwnd grows to twice what was ACKed. */
1267 if (tcp_in_slow_start(tp))
1268 return tp->snd_cwnd < 2 * tp->max_packets_out;
1269
1270 return tp->is_cwnd_limited;
1271 }
1272
1273 /* BBR congestion control needs pacing.
1274 * Same remark for SO_MAX_PACING_RATE.
1275 * sch_fq packet scheduler is efficiently handling pacing,
1276 * but is not always installed/used.
1277 * Return true if TCP stack should pace packets itself.
1278 */
1279 static inline bool tcp_needs_internal_pacing(const struct sock *sk)
1280 {
1281 return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED;
1282 }
1283
1284 /* Estimates in how many jiffies next packet for this flow can be sent.
1285 * Scheduling a retransmit timer too early would be silly.
1286 */
1287 static inline unsigned long tcp_pacing_delay(const struct sock *sk)
1288 {
1289 s64 delay = tcp_sk(sk)->tcp_wstamp_ns - tcp_sk(sk)->tcp_clock_cache;
1290
1291 return delay > 0 ? nsecs_to_jiffies(delay) : 0;
1292 }
1293
1294 static inline void tcp_reset_xmit_timer(struct sock *sk,
1295 const int what,
1296 unsigned long when,
1297 const unsigned long max_when)
1298 {
1299 inet_csk_reset_xmit_timer(sk, what, when + tcp_pacing_delay(sk),
1300 max_when);
1301 }
1302
1303 /* Something is really bad, we could not queue an additional packet,
1304 * because qdisc is full or receiver sent a 0 window, or we are paced.
1305 * We do not want to add fuel to the fire, or abort too early,
1306 * so make sure the timer we arm now is at least 200ms in the future,
1307 * regardless of current icsk_rto value (as it could be ~2ms)
1308 */
1309 static inline unsigned long tcp_probe0_base(const struct sock *sk)
1310 {
1311 return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN);
1312 }
1313
1314 /* Variant of inet_csk_rto_backoff() used for zero window probes */
1315 static inline unsigned long tcp_probe0_when(const struct sock *sk,
1316 unsigned long max_when)
1317 {
1318 u8 backoff = min_t(u8, ilog2(TCP_RTO_MAX / TCP_RTO_MIN) + 1,
1319 inet_csk(sk)->icsk_backoff);
1320 u64 when = (u64)tcp_probe0_base(sk) << backoff;
1321
1322 return (unsigned long)min_t(u64, when, max_when);
1323 }
1324
1325 static inline void tcp_check_probe_timer(struct sock *sk)
1326 {
1327 if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending)
1328 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1329 tcp_probe0_base(sk), TCP_RTO_MAX);
1330 }
1331
1332 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1333 {
1334 tp->snd_wl1 = seq;
1335 }
1336
1337 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1338 {
1339 tp->snd_wl1 = seq;
1340 }
1341
1342 /*
1343 * Calculate(/check) TCP checksum
1344 */
1345 static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1346 __be32 daddr, __wsum base)
1347 {
1348 return csum_tcpudp_magic(saddr, daddr, len, IPPROTO_TCP, base);
1349 }
1350
1351 static inline bool tcp_checksum_complete(struct sk_buff *skb)
1352 {
1353 return !skb_csum_unnecessary(skb) &&
1354 __skb_checksum_complete(skb);
1355 }
1356
1357 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb);
1358 int tcp_filter(struct sock *sk, struct sk_buff *skb);
1359 void tcp_set_state(struct sock *sk, int state);
1360 void tcp_done(struct sock *sk);
1361 int tcp_abort(struct sock *sk, int err);
1362
1363 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1364 {
1365 rx_opt->dsack = 0;
1366 rx_opt->num_sacks = 0;
1367 }
1368
1369 void tcp_cwnd_restart(struct sock *sk, s32 delta);
1370
1371 static inline void tcp_slow_start_after_idle_check(struct sock *sk)
1372 {
1373 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1374 struct tcp_sock *tp = tcp_sk(sk);
1375 s32 delta;
1376
1377 if (!sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle || tp->packets_out ||
1378 ca_ops->cong_control)
1379 return;
1380 delta = tcp_jiffies32 - tp->lsndtime;
1381 if (delta > inet_csk(sk)->icsk_rto)
1382 tcp_cwnd_restart(sk, delta);
1383 }
1384
1385 /* Determine a window scaling and initial window to offer. */
1386 void tcp_select_initial_window(const struct sock *sk, int __space,
1387 __u32 mss, __u32 *rcv_wnd,
1388 __u32 *window_clamp, int wscale_ok,
1389 __u8 *rcv_wscale, __u32 init_rcv_wnd);
1390
1391 static inline int tcp_win_from_space(const struct sock *sk, int space)
1392 {
1393 int tcp_adv_win_scale = sock_net(sk)->ipv4.sysctl_tcp_adv_win_scale;
1394
1395 return tcp_adv_win_scale <= 0 ?
1396 (space>>(-tcp_adv_win_scale)) :
1397 space - (space>>tcp_adv_win_scale);
1398 }
1399
1400 /* Note: caller must be prepared to deal with negative returns */
1401 static inline int tcp_space(const struct sock *sk)
1402 {
1403 return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf) -
1404 READ_ONCE(sk->sk_backlog.len) -
1405 atomic_read(&sk->sk_rmem_alloc));
1406 }
1407
1408 static inline int tcp_full_space(const struct sock *sk)
1409 {
1410 return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf));
1411 }
1412
1413 void tcp_cleanup_rbuf(struct sock *sk, int copied);
1414
1415 /* We provision sk_rcvbuf around 200% of sk_rcvlowat.
1416 * If 87.5 % (7/8) of the space has been consumed, we want to override
1417 * SO_RCVLOWAT constraint, since we are receiving skbs with too small
1418 * len/truesize ratio.
1419 */
1420 static inline bool tcp_rmem_pressure(const struct sock *sk)
1421 {
1422 int rcvbuf, threshold;
1423
1424 if (tcp_under_memory_pressure(sk))
1425 return true;
1426
1427 rcvbuf = READ_ONCE(sk->sk_rcvbuf);
1428 threshold = rcvbuf - (rcvbuf >> 3);
1429
1430 return atomic_read(&sk->sk_rmem_alloc) > threshold;
1431 }
1432
1433 static inline bool tcp_epollin_ready(const struct sock *sk, int target)
1434 {
1435 const struct tcp_sock *tp = tcp_sk(sk);
1436 int avail = READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->copied_seq);
1437
1438 if (avail <= 0)
1439 return false;
1440
1441 return (avail >= target) || tcp_rmem_pressure(sk) ||
1442 (tcp_receive_window(tp) <= inet_csk(sk)->icsk_ack.rcv_mss);
1443 }
1444
1445 extern void tcp_openreq_init_rwin(struct request_sock *req,
1446 const struct sock *sk_listener,
1447 const struct dst_entry *dst);
1448
1449 void tcp_enter_memory_pressure(struct sock *sk);
1450 void tcp_leave_memory_pressure(struct sock *sk);
1451
1452 static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1453 {
1454 struct net *net = sock_net((struct sock *)tp);
1455
1456 return tp->keepalive_intvl ? : net->ipv4.sysctl_tcp_keepalive_intvl;
1457 }
1458
1459 static inline int keepalive_time_when(const struct tcp_sock *tp)
1460 {
1461 struct net *net = sock_net((struct sock *)tp);
1462
1463 return tp->keepalive_time ? : net->ipv4.sysctl_tcp_keepalive_time;
1464 }
1465
1466 static inline int keepalive_probes(const struct tcp_sock *tp)
1467 {
1468 struct net *net = sock_net((struct sock *)tp);
1469
1470 return tp->keepalive_probes ? : net->ipv4.sysctl_tcp_keepalive_probes;
1471 }
1472
1473 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1474 {
1475 const struct inet_connection_sock *icsk = &tp->inet_conn;
1476
1477 return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime,
1478 tcp_jiffies32 - tp->rcv_tstamp);
1479 }
1480
1481 static inline int tcp_fin_time(const struct sock *sk)
1482 {
1483 int fin_timeout = tcp_sk(sk)->linger2 ? : sock_net(sk)->ipv4.sysctl_tcp_fin_timeout;
1484 const int rto = inet_csk(sk)->icsk_rto;
1485
1486 if (fin_timeout < (rto << 2) - (rto >> 1))
1487 fin_timeout = (rto << 2) - (rto >> 1);
1488
1489 return fin_timeout;
1490 }
1491
1492 static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1493 int paws_win)
1494 {
1495 if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1496 return true;
1497 if (unlikely(!time_before32(ktime_get_seconds(),
1498 rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS)))
1499 return true;
1500 /*
1501 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1502 * then following tcp messages have valid values. Ignore 0 value,
1503 * or else 'negative' tsval might forbid us to accept their packets.
1504 */
1505 if (!rx_opt->ts_recent)
1506 return true;
1507 return false;
1508 }
1509
1510 static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1511 int rst)
1512 {
1513 if (tcp_paws_check(rx_opt, 0))
1514 return false;
1515
1516 /* RST segments are not recommended to carry timestamp,
1517 and, if they do, it is recommended to ignore PAWS because
1518 "their cleanup function should take precedence over timestamps."
1519 Certainly, it is mistake. It is necessary to understand the reasons
1520 of this constraint to relax it: if peer reboots, clock may go
1521 out-of-sync and half-open connections will not be reset.
1522 Actually, the problem would be not existing if all
1523 the implementations followed draft about maintaining clock
1524 via reboots. Linux-2.2 DOES NOT!
1525
1526 However, we can relax time bounds for RST segments to MSL.
1527 */
1528 if (rst && !time_before32(ktime_get_seconds(),
1529 rx_opt->ts_recent_stamp + TCP_PAWS_MSL))
1530 return false;
1531 return true;
1532 }
1533
1534 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
1535 int mib_idx, u32 *last_oow_ack_time);
1536
1537 static inline void tcp_mib_init(struct net *net)
1538 {
1539 /* See RFC 2012 */
1540 TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1);
1541 TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1542 TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1543 TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1);
1544 }
1545
1546 /* from STCP */
1547 static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1548 {
1549 tp->lost_skb_hint = NULL;
1550 }
1551
1552 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1553 {
1554 tcp_clear_retrans_hints_partial(tp);
1555 tp->retransmit_skb_hint = NULL;
1556 }
1557
1558 union tcp_md5_addr {
1559 struct in_addr a4;
1560 #if IS_ENABLED(CONFIG_IPV6)
1561 struct in6_addr a6;
1562 #endif
1563 };
1564
1565 /* - key database */
1566 struct tcp_md5sig_key {
1567 struct hlist_node node;
1568 u8 keylen;
1569 u8 family; /* AF_INET or AF_INET6 */
1570 u8 prefixlen;
1571 union tcp_md5_addr addr;
1572 int l3index; /* set if key added with L3 scope */
1573 u8 key[TCP_MD5SIG_MAXKEYLEN];
1574 struct rcu_head rcu;
1575 };
1576
1577 /* - sock block */
1578 struct tcp_md5sig_info {
1579 struct hlist_head head;
1580 struct rcu_head rcu;
1581 };
1582
1583 /* - pseudo header */
1584 struct tcp4_pseudohdr {
1585 __be32 saddr;
1586 __be32 daddr;
1587 __u8 pad;
1588 __u8 protocol;
1589 __be16 len;
1590 };
1591
1592 struct tcp6_pseudohdr {
1593 struct in6_addr saddr;
1594 struct in6_addr daddr;
1595 __be32 len;
1596 __be32 protocol; /* including padding */
1597 };
1598
1599 union tcp_md5sum_block {
1600 struct tcp4_pseudohdr ip4;
1601 #if IS_ENABLED(CONFIG_IPV6)
1602 struct tcp6_pseudohdr ip6;
1603 #endif
1604 };
1605
1606 /* - pool: digest algorithm, hash description and scratch buffer */
1607 struct tcp_md5sig_pool {
1608 struct ahash_request *md5_req;
1609 void *scratch;
1610 };
1611
1612 /* - functions */
1613 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1614 const struct sock *sk, const struct sk_buff *skb);
1615 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1616 int family, u8 prefixlen, int l3index,
1617 const u8 *newkey, u8 newkeylen, gfp_t gfp);
1618 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1619 int family, u8 prefixlen, int l3index);
1620 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1621 const struct sock *addr_sk);
1622
1623 #ifdef CONFIG_TCP_MD5SIG
1624 #include <linux/jump_label.h>
1625 extern struct static_key_false tcp_md5_needed;
1626 struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index,
1627 const union tcp_md5_addr *addr,
1628 int family);
1629 static inline struct tcp_md5sig_key *
1630 tcp_md5_do_lookup(const struct sock *sk, int l3index,
1631 const union tcp_md5_addr *addr, int family)
1632 {
1633 if (!static_branch_unlikely(&tcp_md5_needed))
1634 return NULL;
1635 return __tcp_md5_do_lookup(sk, l3index, addr, family);
1636 }
1637
1638 #define tcp_twsk_md5_key(twsk) ((twsk)->tw_md5_key)
1639 #else
1640 static inline struct tcp_md5sig_key *
1641 tcp_md5_do_lookup(const struct sock *sk, int l3index,
1642 const union tcp_md5_addr *addr, int family)
1643 {
1644 return NULL;
1645 }
1646 #define tcp_twsk_md5_key(twsk) NULL
1647 #endif
1648
1649 bool tcp_alloc_md5sig_pool(void);
1650
1651 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void);
1652 static inline void tcp_put_md5sig_pool(void)
1653 {
1654 local_bh_enable();
1655 }
1656
1657 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *,
1658 unsigned int header_len);
1659 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp,
1660 const struct tcp_md5sig_key *key);
1661
1662 /* From tcp_fastopen.c */
1663 void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1664 struct tcp_fastopen_cookie *cookie);
1665 void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1666 struct tcp_fastopen_cookie *cookie, bool syn_lost,
1667 u16 try_exp);
1668 struct tcp_fastopen_request {
1669 /* Fast Open cookie. Size 0 means a cookie request */
1670 struct tcp_fastopen_cookie cookie;
1671 struct msghdr *data; /* data in MSG_FASTOPEN */
1672 size_t size;
1673 int copied; /* queued in tcp_connect() */
1674 struct ubuf_info *uarg;
1675 };
1676 void tcp_free_fastopen_req(struct tcp_sock *tp);
1677 void tcp_fastopen_destroy_cipher(struct sock *sk);
1678 void tcp_fastopen_ctx_destroy(struct net *net);
1679 int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk,
1680 void *primary_key, void *backup_key);
1681 int tcp_fastopen_get_cipher(struct net *net, struct inet_connection_sock *icsk,
1682 u64 *key);
1683 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb);
1684 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
1685 struct request_sock *req,
1686 struct tcp_fastopen_cookie *foc,
1687 const struct dst_entry *dst);
1688 void tcp_fastopen_init_key_once(struct net *net);
1689 bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
1690 struct tcp_fastopen_cookie *cookie);
1691 bool tcp_fastopen_defer_connect(struct sock *sk, int *err);
1692 #define TCP_FASTOPEN_KEY_LENGTH sizeof(siphash_key_t)
1693 #define TCP_FASTOPEN_KEY_MAX 2
1694 #define TCP_FASTOPEN_KEY_BUF_LENGTH \
1695 (TCP_FASTOPEN_KEY_LENGTH * TCP_FASTOPEN_KEY_MAX)
1696
1697 /* Fastopen key context */
1698 struct tcp_fastopen_context {
1699 siphash_key_t key[TCP_FASTOPEN_KEY_MAX];
1700 int num;
1701 struct rcu_head rcu;
1702 };
1703
1704 extern unsigned int sysctl_tcp_fastopen_blackhole_timeout;
1705 void tcp_fastopen_active_disable(struct sock *sk);
1706 bool tcp_fastopen_active_should_disable(struct sock *sk);
1707 void tcp_fastopen_active_disable_ofo_check(struct sock *sk);
1708 void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired);
1709
1710 /* Caller needs to wrap with rcu_read_(un)lock() */
1711 static inline
1712 struct tcp_fastopen_context *tcp_fastopen_get_ctx(const struct sock *sk)
1713 {
1714 struct tcp_fastopen_context *ctx;
1715
1716 ctx = rcu_dereference(inet_csk(sk)->icsk_accept_queue.fastopenq.ctx);
1717 if (!ctx)
1718 ctx = rcu_dereference(sock_net(sk)->ipv4.tcp_fastopen_ctx);
1719 return ctx;
1720 }
1721
1722 static inline
1723 bool tcp_fastopen_cookie_match(const struct tcp_fastopen_cookie *foc,
1724 const struct tcp_fastopen_cookie *orig)
1725 {
1726 if (orig->len == TCP_FASTOPEN_COOKIE_SIZE &&
1727 orig->len == foc->len &&
1728 !memcmp(orig->val, foc->val, foc->len))
1729 return true;
1730 return false;
1731 }
1732
1733 static inline
1734 int tcp_fastopen_context_len(const struct tcp_fastopen_context *ctx)
1735 {
1736 return ctx->num;
1737 }
1738
1739 /* Latencies incurred by various limits for a sender. They are
1740 * chronograph-like stats that are mutually exclusive.
1741 */
1742 enum tcp_chrono {
1743 TCP_CHRONO_UNSPEC,
1744 TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */
1745 TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */
1746 TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */
1747 __TCP_CHRONO_MAX,
1748 };
1749
1750 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type);
1751 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type);
1752
1753 /* This helper is needed, because skb->tcp_tsorted_anchor uses
1754 * the same memory storage than skb->destructor/_skb_refdst
1755 */
1756 static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb)
1757 {
1758 skb->destructor = NULL;
1759 skb->_skb_refdst = 0UL;
1760 }
1761
1762 #define tcp_skb_tsorted_save(skb) { \
1763 unsigned long _save = skb->_skb_refdst; \
1764 skb->_skb_refdst = 0UL;
1765
1766 #define tcp_skb_tsorted_restore(skb) \
1767 skb->_skb_refdst = _save; \
1768 }
1769
1770 void tcp_write_queue_purge(struct sock *sk);
1771
1772 static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk)
1773 {
1774 return skb_rb_first(&sk->tcp_rtx_queue);
1775 }
1776
1777 static inline struct sk_buff *tcp_rtx_queue_tail(const struct sock *sk)
1778 {
1779 return skb_rb_last(&sk->tcp_rtx_queue);
1780 }
1781
1782 static inline struct sk_buff *tcp_write_queue_head(const struct sock *sk)
1783 {
1784 return skb_peek(&sk->sk_write_queue);
1785 }
1786
1787 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
1788 {
1789 return skb_peek_tail(&sk->sk_write_queue);
1790 }
1791
1792 #define tcp_for_write_queue_from_safe(skb, tmp, sk) \
1793 skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1794
1795 static inline struct sk_buff *tcp_send_head(const struct sock *sk)
1796 {
1797 return skb_peek(&sk->sk_write_queue);
1798 }
1799
1800 static inline bool tcp_skb_is_last(const struct sock *sk,
1801 const struct sk_buff *skb)
1802 {
1803 return skb_queue_is_last(&sk->sk_write_queue, skb);
1804 }
1805
1806 /**
1807 * tcp_write_queue_empty - test if any payload (or FIN) is available in write queue
1808 * @sk: socket
1809 *
1810 * Since the write queue can have a temporary empty skb in it,
1811 * we must not use "return skb_queue_empty(&sk->sk_write_queue)"
1812 */
1813 static inline bool tcp_write_queue_empty(const struct sock *sk)
1814 {
1815 const struct tcp_sock *tp = tcp_sk(sk);
1816
1817 return tp->write_seq == tp->snd_nxt;
1818 }
1819
1820 static inline bool tcp_rtx_queue_empty(const struct sock *sk)
1821 {
1822 return RB_EMPTY_ROOT(&sk->tcp_rtx_queue);
1823 }
1824
1825 static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk)
1826 {
1827 return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk);
1828 }
1829
1830 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1831 {
1832 __skb_queue_tail(&sk->sk_write_queue, skb);
1833
1834 /* Queue it, remembering where we must start sending. */
1835 if (sk->sk_write_queue.next == skb)
1836 tcp_chrono_start(sk, TCP_CHRONO_BUSY);
1837 }
1838
1839 /* Insert new before skb on the write queue of sk. */
1840 static inline void tcp_insert_write_queue_before(struct sk_buff *new,
1841 struct sk_buff *skb,
1842 struct sock *sk)
1843 {
1844 __skb_queue_before(&sk->sk_write_queue, skb, new);
1845 }
1846
1847 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
1848 {
1849 tcp_skb_tsorted_anchor_cleanup(skb);
1850 __skb_unlink(skb, &sk->sk_write_queue);
1851 }
1852
1853 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb);
1854
1855 static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk)
1856 {
1857 tcp_skb_tsorted_anchor_cleanup(skb);
1858 rb_erase(&skb->rbnode, &sk->tcp_rtx_queue);
1859 }
1860
1861 static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk)
1862 {
1863 list_del(&skb->tcp_tsorted_anchor);
1864 tcp_rtx_queue_unlink(skb, sk);
1865 sk_wmem_free_skb(sk, skb);
1866 }
1867
1868 static inline void tcp_push_pending_frames(struct sock *sk)
1869 {
1870 if (tcp_send_head(sk)) {
1871 struct tcp_sock *tp = tcp_sk(sk);
1872
1873 __tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
1874 }
1875 }
1876
1877 /* Start sequence of the skb just after the highest skb with SACKed
1878 * bit, valid only if sacked_out > 0 or when the caller has ensured
1879 * validity by itself.
1880 */
1881 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
1882 {
1883 if (!tp->sacked_out)
1884 return tp->snd_una;
1885
1886 if (tp->highest_sack == NULL)
1887 return tp->snd_nxt;
1888
1889 return TCP_SKB_CB(tp->highest_sack)->seq;
1890 }
1891
1892 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
1893 {
1894 tcp_sk(sk)->highest_sack = skb_rb_next(skb);
1895 }
1896
1897 static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
1898 {
1899 return tcp_sk(sk)->highest_sack;
1900 }
1901
1902 static inline void tcp_highest_sack_reset(struct sock *sk)
1903 {
1904 tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk);
1905 }
1906
1907 /* Called when old skb is about to be deleted and replaced by new skb */
1908 static inline void tcp_highest_sack_replace(struct sock *sk,
1909 struct sk_buff *old,
1910 struct sk_buff *new)
1911 {
1912 if (old == tcp_highest_sack(sk))
1913 tcp_sk(sk)->highest_sack = new;
1914 }
1915
1916 /* This helper checks if socket has IP_TRANSPARENT set */
1917 static inline bool inet_sk_transparent(const struct sock *sk)
1918 {
1919 switch (sk->sk_state) {
1920 case TCP_TIME_WAIT:
1921 return inet_twsk(sk)->tw_transparent;
1922 case TCP_NEW_SYN_RECV:
1923 return inet_rsk(inet_reqsk(sk))->no_srccheck;
1924 }
1925 return inet_sk(sk)->transparent;
1926 }
1927
1928 /* Determines whether this is a thin stream (which may suffer from
1929 * increased latency). Used to trigger latency-reducing mechanisms.
1930 */
1931 static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
1932 {
1933 return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
1934 }
1935
1936 /* /proc */
1937 enum tcp_seq_states {
1938 TCP_SEQ_STATE_LISTENING,
1939 TCP_SEQ_STATE_ESTABLISHED,
1940 };
1941
1942 void *tcp_seq_start(struct seq_file *seq, loff_t *pos);
1943 void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos);
1944 void tcp_seq_stop(struct seq_file *seq, void *v);
1945
1946 struct tcp_seq_afinfo {
1947 sa_family_t family;
1948 };
1949
1950 struct tcp_iter_state {
1951 struct seq_net_private p;
1952 enum tcp_seq_states state;
1953 struct sock *syn_wait_sk;
1954 struct tcp_seq_afinfo *bpf_seq_afinfo;
1955 int bucket, offset, sbucket, num;
1956 loff_t last_pos;
1957 };
1958
1959 extern struct request_sock_ops tcp_request_sock_ops;
1960 extern struct request_sock_ops tcp6_request_sock_ops;
1961
1962 void tcp_v4_destroy_sock(struct sock *sk);
1963
1964 struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
1965 netdev_features_t features);
1966 struct sk_buff *tcp_gro_receive(struct list_head *head, struct sk_buff *skb);
1967 INDIRECT_CALLABLE_DECLARE(int tcp4_gro_complete(struct sk_buff *skb, int thoff));
1968 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp4_gro_receive(struct list_head *head, struct sk_buff *skb));
1969 INDIRECT_CALLABLE_DECLARE(int tcp6_gro_complete(struct sk_buff *skb, int thoff));
1970 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp6_gro_receive(struct list_head *head, struct sk_buff *skb));
1971 int tcp_gro_complete(struct sk_buff *skb);
1972
1973 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
1974
1975 static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
1976 {
1977 struct net *net = sock_net((struct sock *)tp);
1978 return tp->notsent_lowat ?: net->ipv4.sysctl_tcp_notsent_lowat;
1979 }
1980
1981 bool tcp_stream_memory_free(const struct sock *sk, int wake);
1982
1983 #ifdef CONFIG_PROC_FS
1984 int tcp4_proc_init(void);
1985 void tcp4_proc_exit(void);
1986 #endif
1987
1988 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req);
1989 int tcp_conn_request(struct request_sock_ops *rsk_ops,
1990 const struct tcp_request_sock_ops *af_ops,
1991 struct sock *sk, struct sk_buff *skb);
1992
1993 /* TCP af-specific functions */
1994 struct tcp_sock_af_ops {
1995 #ifdef CONFIG_TCP_MD5SIG
1996 struct tcp_md5sig_key *(*md5_lookup) (const struct sock *sk,
1997 const struct sock *addr_sk);
1998 int (*calc_md5_hash)(char *location,
1999 const struct tcp_md5sig_key *md5,
2000 const struct sock *sk,
2001 const struct sk_buff *skb);
2002 int (*md5_parse)(struct sock *sk,
2003 int optname,
2004 sockptr_t optval,
2005 int optlen);
2006 #endif
2007 };
2008
2009 struct tcp_request_sock_ops {
2010 u16 mss_clamp;
2011 #ifdef CONFIG_TCP_MD5SIG
2012 struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk,
2013 const struct sock *addr_sk);
2014 int (*calc_md5_hash) (char *location,
2015 const struct tcp_md5sig_key *md5,
2016 const struct sock *sk,
2017 const struct sk_buff *skb);
2018 #endif
2019 #ifdef CONFIG_SYN_COOKIES
2020 __u32 (*cookie_init_seq)(const struct sk_buff *skb,
2021 __u16 *mss);
2022 #endif
2023 struct dst_entry *(*route_req)(const struct sock *sk,
2024 struct sk_buff *skb,
2025 struct flowi *fl,
2026 struct request_sock *req);
2027 u32 (*init_seq)(const struct sk_buff *skb);
2028 u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb);
2029 int (*send_synack)(const struct sock *sk, struct dst_entry *dst,
2030 struct flowi *fl, struct request_sock *req,
2031 struct tcp_fastopen_cookie *foc,
2032 enum tcp_synack_type synack_type,
2033 struct sk_buff *syn_skb);
2034 };
2035
2036 extern const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops;
2037 #if IS_ENABLED(CONFIG_IPV6)
2038 extern const struct tcp_request_sock_ops tcp_request_sock_ipv6_ops;
2039 #endif
2040
2041 #ifdef CONFIG_SYN_COOKIES
2042 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2043 const struct sock *sk, struct sk_buff *skb,
2044 __u16 *mss)
2045 {
2046 tcp_synq_overflow(sk);
2047 __NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
2048 return ops->cookie_init_seq(skb, mss);
2049 }
2050 #else
2051 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2052 const struct sock *sk, struct sk_buff *skb,
2053 __u16 *mss)
2054 {
2055 return 0;
2056 }
2057 #endif
2058
2059 int tcpv4_offload_init(void);
2060
2061 void tcp_v4_init(void);
2062 void tcp_init(void);
2063
2064 /* tcp_recovery.c */
2065 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb);
2066 void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced);
2067 extern s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb,
2068 u32 reo_wnd);
2069 extern bool tcp_rack_mark_lost(struct sock *sk);
2070 extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq,
2071 u64 xmit_time);
2072 extern void tcp_rack_reo_timeout(struct sock *sk);
2073 extern void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs);
2074
2075 /* At how many usecs into the future should the RTO fire? */
2076 static inline s64 tcp_rto_delta_us(const struct sock *sk)
2077 {
2078 const struct sk_buff *skb = tcp_rtx_queue_head(sk);
2079 u32 rto = inet_csk(sk)->icsk_rto;
2080 u64 rto_time_stamp_us = tcp_skb_timestamp_us(skb) + jiffies_to_usecs(rto);
2081
2082 return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp;
2083 }
2084
2085 /*
2086 * Save and compile IPv4 options, return a pointer to it
2087 */
2088 static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net,
2089 struct sk_buff *skb)
2090 {
2091 const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
2092 struct ip_options_rcu *dopt = NULL;
2093
2094 if (opt->optlen) {
2095 int opt_size = sizeof(*dopt) + opt->optlen;
2096
2097 dopt = kmalloc(opt_size, GFP_ATOMIC);
2098 if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) {
2099 kfree(dopt);
2100 dopt = NULL;
2101 }
2102 }
2103 return dopt;
2104 }
2105
2106 /* locally generated TCP pure ACKs have skb->truesize == 2
2107 * (check tcp_send_ack() in net/ipv4/tcp_output.c )
2108 * This is much faster than dissecting the packet to find out.
2109 * (Think of GRE encapsulations, IPv4, IPv6, ...)
2110 */
2111 static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
2112 {
2113 return skb->truesize == 2;
2114 }
2115
2116 static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
2117 {
2118 skb->truesize = 2;
2119 }
2120
2121 static inline int tcp_inq(struct sock *sk)
2122 {
2123 struct tcp_sock *tp = tcp_sk(sk);
2124 int answ;
2125
2126 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
2127 answ = 0;
2128 } else if (sock_flag(sk, SOCK_URGINLINE) ||
2129 !tp->urg_data ||
2130 before(tp->urg_seq, tp->copied_seq) ||
2131 !before(tp->urg_seq, tp->rcv_nxt)) {
2132
2133 answ = tp->rcv_nxt - tp->copied_seq;
2134
2135 /* Subtract 1, if FIN was received */
2136 if (answ && sock_flag(sk, SOCK_DONE))
2137 answ--;
2138 } else {
2139 answ = tp->urg_seq - tp->copied_seq;
2140 }
2141
2142 return answ;
2143 }
2144
2145 int tcp_peek_len(struct socket *sock);
2146
2147 static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb)
2148 {
2149 u16 segs_in;
2150
2151 segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2152 tp->segs_in += segs_in;
2153 if (skb->len > tcp_hdrlen(skb))
2154 tp->data_segs_in += segs_in;
2155 }
2156
2157 /*
2158 * TCP listen path runs lockless.
2159 * We forced "struct sock" to be const qualified to make sure
2160 * we don't modify one of its field by mistake.
2161 * Here, we increment sk_drops which is an atomic_t, so we can safely
2162 * make sock writable again.
2163 */
2164 static inline void tcp_listendrop(const struct sock *sk)
2165 {
2166 atomic_inc(&((struct sock *)sk)->sk_drops);
2167 __NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS);
2168 }
2169
2170 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer);
2171
2172 /*
2173 * Interface for adding Upper Level Protocols over TCP
2174 */
2175
2176 #define TCP_ULP_NAME_MAX 16
2177 #define TCP_ULP_MAX 128
2178 #define TCP_ULP_BUF_MAX (TCP_ULP_NAME_MAX*TCP_ULP_MAX)
2179
2180 struct tcp_ulp_ops {
2181 struct list_head list;
2182
2183 /* initialize ulp */
2184 int (*init)(struct sock *sk);
2185 /* update ulp */
2186 void (*update)(struct sock *sk, struct proto *p,
2187 void (*write_space)(struct sock *sk));
2188 /* cleanup ulp */
2189 void (*release)(struct sock *sk);
2190 /* diagnostic */
2191 int (*get_info)(const struct sock *sk, struct sk_buff *skb);
2192 size_t (*get_info_size)(const struct sock *sk);
2193 /* clone ulp */
2194 void (*clone)(const struct request_sock *req, struct sock *newsk,
2195 const gfp_t priority);
2196
2197 char name[TCP_ULP_NAME_MAX];
2198 struct module *owner;
2199 };
2200 int tcp_register_ulp(struct tcp_ulp_ops *type);
2201 void tcp_unregister_ulp(struct tcp_ulp_ops *type);
2202 int tcp_set_ulp(struct sock *sk, const char *name);
2203 void tcp_get_available_ulp(char *buf, size_t len);
2204 void tcp_cleanup_ulp(struct sock *sk);
2205 void tcp_update_ulp(struct sock *sk, struct proto *p,
2206 void (*write_space)(struct sock *sk));
2207
2208 #define MODULE_ALIAS_TCP_ULP(name) \
2209 __MODULE_INFO(alias, alias_userspace, name); \
2210 __MODULE_INFO(alias, alias_tcp_ulp, "tcp-ulp-" name)
2211
2212 #ifdef CONFIG_NET_SOCK_MSG
2213 struct sk_msg;
2214 struct sk_psock;
2215
2216 #ifdef CONFIG_BPF_SYSCALL
2217 struct proto *tcp_bpf_get_proto(struct sock *sk, struct sk_psock *psock);
2218 int tcp_bpf_update_proto(struct sock *sk, struct sk_psock *psock, bool restore);
2219 void tcp_bpf_clone(const struct sock *sk, struct sock *newsk);
2220 #endif /* CONFIG_BPF_SYSCALL */
2221
2222 int tcp_bpf_sendmsg_redir(struct sock *sk, struct sk_msg *msg, u32 bytes,
2223 int flags);
2224 #endif /* CONFIG_NET_SOCK_MSG */
2225
2226 #if !defined(CONFIG_BPF_SYSCALL) || !defined(CONFIG_NET_SOCK_MSG)
2227 static inline void tcp_bpf_clone(const struct sock *sk, struct sock *newsk)
2228 {
2229 }
2230 #endif
2231
2232 #ifdef CONFIG_CGROUP_BPF
2233 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2234 struct sk_buff *skb,
2235 unsigned int end_offset)
2236 {
2237 skops->skb = skb;
2238 skops->skb_data_end = skb->data + end_offset;
2239 }
2240 #else
2241 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2242 struct sk_buff *skb,
2243 unsigned int end_offset)
2244 {
2245 }
2246 #endif
2247
2248 /* Call BPF_SOCK_OPS program that returns an int. If the return value
2249 * is < 0, then the BPF op failed (for example if the loaded BPF
2250 * program does not support the chosen operation or there is no BPF
2251 * program loaded).
2252 */
2253 #ifdef CONFIG_BPF
2254 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2255 {
2256 struct bpf_sock_ops_kern sock_ops;
2257 int ret;
2258
2259 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
2260 if (sk_fullsock(sk)) {
2261 sock_ops.is_fullsock = 1;
2262 sock_owned_by_me(sk);
2263 }
2264
2265 sock_ops.sk = sk;
2266 sock_ops.op = op;
2267 if (nargs > 0)
2268 memcpy(sock_ops.args, args, nargs * sizeof(*args));
2269
2270 ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
2271 if (ret == 0)
2272 ret = sock_ops.reply;
2273 else
2274 ret = -1;
2275 return ret;
2276 }
2277
2278 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2279 {
2280 u32 args[2] = {arg1, arg2};
2281
2282 return tcp_call_bpf(sk, op, 2, args);
2283 }
2284
2285 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2286 u32 arg3)
2287 {
2288 u32 args[3] = {arg1, arg2, arg3};
2289
2290 return tcp_call_bpf(sk, op, 3, args);
2291 }
2292
2293 #else
2294 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2295 {
2296 return -EPERM;
2297 }
2298
2299 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2300 {
2301 return -EPERM;
2302 }
2303
2304 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2305 u32 arg3)
2306 {
2307 return -EPERM;
2308 }
2309
2310 #endif
2311
2312 static inline u32 tcp_timeout_init(struct sock *sk)
2313 {
2314 int timeout;
2315
2316 timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL);
2317
2318 if (timeout <= 0)
2319 timeout = TCP_TIMEOUT_INIT;
2320 return timeout;
2321 }
2322
2323 static inline u32 tcp_rwnd_init_bpf(struct sock *sk)
2324 {
2325 int rwnd;
2326
2327 rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT, 0, NULL);
2328
2329 if (rwnd < 0)
2330 rwnd = 0;
2331 return rwnd;
2332 }
2333
2334 static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk)
2335 {
2336 return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN, 0, NULL) == 1);
2337 }
2338
2339 static inline void tcp_bpf_rtt(struct sock *sk)
2340 {
2341 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_RTT_CB_FLAG))
2342 tcp_call_bpf(sk, BPF_SOCK_OPS_RTT_CB, 0, NULL);
2343 }
2344
2345 #if IS_ENABLED(CONFIG_SMC)
2346 extern struct static_key_false tcp_have_smc;
2347 #endif
2348
2349 #if IS_ENABLED(CONFIG_TLS_DEVICE)
2350 void clean_acked_data_enable(struct inet_connection_sock *icsk,
2351 void (*cad)(struct sock *sk, u32 ack_seq));
2352 void clean_acked_data_disable(struct inet_connection_sock *icsk);
2353 void clean_acked_data_flush(void);
2354 #endif
2355
2356 DECLARE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
2357 static inline void tcp_add_tx_delay(struct sk_buff *skb,
2358 const struct tcp_sock *tp)
2359 {
2360 if (static_branch_unlikely(&tcp_tx_delay_enabled))
2361 skb->skb_mstamp_ns += (u64)tp->tcp_tx_delay * NSEC_PER_USEC;
2362 }
2363
2364 /* Compute Earliest Departure Time for some control packets
2365 * like ACK or RST for TIME_WAIT or non ESTABLISHED sockets.
2366 */
2367 static inline u64 tcp_transmit_time(const struct sock *sk)
2368 {
2369 if (static_branch_unlikely(&tcp_tx_delay_enabled)) {
2370 u32 delay = (sk->sk_state == TCP_TIME_WAIT) ?
2371 tcp_twsk(sk)->tw_tx_delay : tcp_sk(sk)->tcp_tx_delay;
2372
2373 return tcp_clock_ns() + (u64)delay * NSEC_PER_USEC;
2374 }
2375 return 0;
2376 }
2377
2378 #endif /* _TCP_H */