]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - include/net/tcp.h
net-tcp: Fast Open client - detecting SYN-data drops
[mirror_ubuntu-hirsute-kernel.git] / include / net / tcp.h
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Definitions for the TCP module.
7 *
8 * Version: @(#)tcp.h 1.0.5 05/23/93
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 *
13 * This program is free software; you can redistribute it and/or
14 * modify it under the terms of the GNU General Public License
15 * as published by the Free Software Foundation; either version
16 * 2 of the License, or (at your option) any later version.
17 */
18 #ifndef _TCP_H
19 #define _TCP_H
20
21 #define FASTRETRANS_DEBUG 1
22
23 #include <linux/list.h>
24 #include <linux/tcp.h>
25 #include <linux/bug.h>
26 #include <linux/slab.h>
27 #include <linux/cache.h>
28 #include <linux/percpu.h>
29 #include <linux/skbuff.h>
30 #include <linux/dmaengine.h>
31 #include <linux/crypto.h>
32 #include <linux/cryptohash.h>
33 #include <linux/kref.h>
34
35 #include <net/inet_connection_sock.h>
36 #include <net/inet_timewait_sock.h>
37 #include <net/inet_hashtables.h>
38 #include <net/checksum.h>
39 #include <net/request_sock.h>
40 #include <net/sock.h>
41 #include <net/snmp.h>
42 #include <net/ip.h>
43 #include <net/tcp_states.h>
44 #include <net/inet_ecn.h>
45 #include <net/dst.h>
46
47 #include <linux/seq_file.h>
48 #include <linux/memcontrol.h>
49
50 extern struct inet_hashinfo tcp_hashinfo;
51
52 extern struct percpu_counter tcp_orphan_count;
53 extern void tcp_time_wait(struct sock *sk, int state, int timeo);
54
55 #define MAX_TCP_HEADER (128 + MAX_HEADER)
56 #define MAX_TCP_OPTION_SPACE 40
57
58 /*
59 * Never offer a window over 32767 without using window scaling. Some
60 * poor stacks do signed 16bit maths!
61 */
62 #define MAX_TCP_WINDOW 32767U
63
64 /* Offer an initial receive window of 10 mss. */
65 #define TCP_DEFAULT_INIT_RCVWND 10
66
67 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */
68 #define TCP_MIN_MSS 88U
69
70 /* The least MTU to use for probing */
71 #define TCP_BASE_MSS 512
72
73 /* After receiving this amount of duplicate ACKs fast retransmit starts. */
74 #define TCP_FASTRETRANS_THRESH 3
75
76 /* Maximal reordering. */
77 #define TCP_MAX_REORDERING 127
78
79 /* Maximal number of ACKs sent quickly to accelerate slow-start. */
80 #define TCP_MAX_QUICKACKS 16U
81
82 /* urg_data states */
83 #define TCP_URG_VALID 0x0100
84 #define TCP_URG_NOTYET 0x0200
85 #define TCP_URG_READ 0x0400
86
87 #define TCP_RETR1 3 /*
88 * This is how many retries it does before it
89 * tries to figure out if the gateway is
90 * down. Minimal RFC value is 3; it corresponds
91 * to ~3sec-8min depending on RTO.
92 */
93
94 #define TCP_RETR2 15 /*
95 * This should take at least
96 * 90 minutes to time out.
97 * RFC1122 says that the limit is 100 sec.
98 * 15 is ~13-30min depending on RTO.
99 */
100
101 #define TCP_SYN_RETRIES 5 /* number of times to retry active opening a
102 * connection: ~180sec is RFC minimum */
103
104 #define TCP_SYNACK_RETRIES 5 /* number of times to retry passive opening a
105 * connection: ~180sec is RFC minimum */
106
107 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
108 * state, about 60 seconds */
109 #define TCP_FIN_TIMEOUT TCP_TIMEWAIT_LEN
110 /* BSD style FIN_WAIT2 deadlock breaker.
111 * It used to be 3min, new value is 60sec,
112 * to combine FIN-WAIT-2 timeout with
113 * TIME-WAIT timer.
114 */
115
116 #define TCP_DELACK_MAX ((unsigned)(HZ/5)) /* maximal time to delay before sending an ACK */
117 #if HZ >= 100
118 #define TCP_DELACK_MIN ((unsigned)(HZ/25)) /* minimal time to delay before sending an ACK */
119 #define TCP_ATO_MIN ((unsigned)(HZ/25))
120 #else
121 #define TCP_DELACK_MIN 4U
122 #define TCP_ATO_MIN 4U
123 #endif
124 #define TCP_RTO_MAX ((unsigned)(120*HZ))
125 #define TCP_RTO_MIN ((unsigned)(HZ/5))
126 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ)) /* RFC6298 2.1 initial RTO value */
127 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ)) /* RFC 1122 initial RTO value, now
128 * used as a fallback RTO for the
129 * initial data transmission if no
130 * valid RTT sample has been acquired,
131 * most likely due to retrans in 3WHS.
132 */
133
134 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
135 * for local resources.
136 */
137
138 #define TCP_KEEPALIVE_TIME (120*60*HZ) /* two hours */
139 #define TCP_KEEPALIVE_PROBES 9 /* Max of 9 keepalive probes */
140 #define TCP_KEEPALIVE_INTVL (75*HZ)
141
142 #define MAX_TCP_KEEPIDLE 32767
143 #define MAX_TCP_KEEPINTVL 32767
144 #define MAX_TCP_KEEPCNT 127
145 #define MAX_TCP_SYNCNT 127
146
147 #define TCP_SYNQ_INTERVAL (HZ/5) /* Period of SYNACK timer */
148
149 #define TCP_PAWS_24DAYS (60 * 60 * 24 * 24)
150 #define TCP_PAWS_MSL 60 /* Per-host timestamps are invalidated
151 * after this time. It should be equal
152 * (or greater than) TCP_TIMEWAIT_LEN
153 * to provide reliability equal to one
154 * provided by timewait state.
155 */
156 #define TCP_PAWS_WINDOW 1 /* Replay window for per-host
157 * timestamps. It must be less than
158 * minimal timewait lifetime.
159 */
160 /*
161 * TCP option
162 */
163
164 #define TCPOPT_NOP 1 /* Padding */
165 #define TCPOPT_EOL 0 /* End of options */
166 #define TCPOPT_MSS 2 /* Segment size negotiating */
167 #define TCPOPT_WINDOW 3 /* Window scaling */
168 #define TCPOPT_SACK_PERM 4 /* SACK Permitted */
169 #define TCPOPT_SACK 5 /* SACK Block */
170 #define TCPOPT_TIMESTAMP 8 /* Better RTT estimations/PAWS */
171 #define TCPOPT_MD5SIG 19 /* MD5 Signature (RFC2385) */
172 #define TCPOPT_COOKIE 253 /* Cookie extension (experimental) */
173 #define TCPOPT_EXP 254 /* Experimental */
174 /* Magic number to be after the option value for sharing TCP
175 * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
176 */
177 #define TCPOPT_FASTOPEN_MAGIC 0xF989
178
179 /*
180 * TCP option lengths
181 */
182
183 #define TCPOLEN_MSS 4
184 #define TCPOLEN_WINDOW 3
185 #define TCPOLEN_SACK_PERM 2
186 #define TCPOLEN_TIMESTAMP 10
187 #define TCPOLEN_MD5SIG 18
188 #define TCPOLEN_EXP_FASTOPEN_BASE 4
189 #define TCPOLEN_COOKIE_BASE 2 /* Cookie-less header extension */
190 #define TCPOLEN_COOKIE_PAIR 3 /* Cookie pair header extension */
191 #define TCPOLEN_COOKIE_MIN (TCPOLEN_COOKIE_BASE+TCP_COOKIE_MIN)
192 #define TCPOLEN_COOKIE_MAX (TCPOLEN_COOKIE_BASE+TCP_COOKIE_MAX)
193
194 /* But this is what stacks really send out. */
195 #define TCPOLEN_TSTAMP_ALIGNED 12
196 #define TCPOLEN_WSCALE_ALIGNED 4
197 #define TCPOLEN_SACKPERM_ALIGNED 4
198 #define TCPOLEN_SACK_BASE 2
199 #define TCPOLEN_SACK_BASE_ALIGNED 4
200 #define TCPOLEN_SACK_PERBLOCK 8
201 #define TCPOLEN_MD5SIG_ALIGNED 20
202 #define TCPOLEN_MSS_ALIGNED 4
203
204 /* Flags in tp->nonagle */
205 #define TCP_NAGLE_OFF 1 /* Nagle's algo is disabled */
206 #define TCP_NAGLE_CORK 2 /* Socket is corked */
207 #define TCP_NAGLE_PUSH 4 /* Cork is overridden for already queued data */
208
209 /* TCP thin-stream limits */
210 #define TCP_THIN_LINEAR_RETRIES 6 /* After 6 linear retries, do exp. backoff */
211
212 /* TCP initial congestion window as per draft-hkchu-tcpm-initcwnd-01 */
213 #define TCP_INIT_CWND 10
214
215 /* Bit Flags for sysctl_tcp_fastopen */
216 #define TFO_CLIENT_ENABLE 1
217
218 extern struct inet_timewait_death_row tcp_death_row;
219
220 /* sysctl variables for tcp */
221 extern int sysctl_tcp_timestamps;
222 extern int sysctl_tcp_window_scaling;
223 extern int sysctl_tcp_sack;
224 extern int sysctl_tcp_fin_timeout;
225 extern int sysctl_tcp_keepalive_time;
226 extern int sysctl_tcp_keepalive_probes;
227 extern int sysctl_tcp_keepalive_intvl;
228 extern int sysctl_tcp_syn_retries;
229 extern int sysctl_tcp_synack_retries;
230 extern int sysctl_tcp_retries1;
231 extern int sysctl_tcp_retries2;
232 extern int sysctl_tcp_orphan_retries;
233 extern int sysctl_tcp_syncookies;
234 extern int sysctl_tcp_fastopen;
235 extern int sysctl_tcp_retrans_collapse;
236 extern int sysctl_tcp_stdurg;
237 extern int sysctl_tcp_rfc1337;
238 extern int sysctl_tcp_abort_on_overflow;
239 extern int sysctl_tcp_max_orphans;
240 extern int sysctl_tcp_fack;
241 extern int sysctl_tcp_reordering;
242 extern int sysctl_tcp_ecn;
243 extern int sysctl_tcp_dsack;
244 extern int sysctl_tcp_wmem[3];
245 extern int sysctl_tcp_rmem[3];
246 extern int sysctl_tcp_app_win;
247 extern int sysctl_tcp_adv_win_scale;
248 extern int sysctl_tcp_tw_reuse;
249 extern int sysctl_tcp_frto;
250 extern int sysctl_tcp_frto_response;
251 extern int sysctl_tcp_low_latency;
252 extern int sysctl_tcp_dma_copybreak;
253 extern int sysctl_tcp_nometrics_save;
254 extern int sysctl_tcp_moderate_rcvbuf;
255 extern int sysctl_tcp_tso_win_divisor;
256 extern int sysctl_tcp_abc;
257 extern int sysctl_tcp_mtu_probing;
258 extern int sysctl_tcp_base_mss;
259 extern int sysctl_tcp_workaround_signed_windows;
260 extern int sysctl_tcp_slow_start_after_idle;
261 extern int sysctl_tcp_max_ssthresh;
262 extern int sysctl_tcp_cookie_size;
263 extern int sysctl_tcp_thin_linear_timeouts;
264 extern int sysctl_tcp_thin_dupack;
265 extern int sysctl_tcp_early_retrans;
266 extern int sysctl_tcp_limit_output_bytes;
267 extern int sysctl_tcp_challenge_ack_limit;
268
269 extern atomic_long_t tcp_memory_allocated;
270 extern struct percpu_counter tcp_sockets_allocated;
271 extern int tcp_memory_pressure;
272
273 /*
274 * The next routines deal with comparing 32 bit unsigned ints
275 * and worry about wraparound (automatic with unsigned arithmetic).
276 */
277
278 static inline bool before(__u32 seq1, __u32 seq2)
279 {
280 return (__s32)(seq1-seq2) < 0;
281 }
282 #define after(seq2, seq1) before(seq1, seq2)
283
284 /* is s2<=s1<=s3 ? */
285 static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
286 {
287 return seq3 - seq2 >= seq1 - seq2;
288 }
289
290 static inline bool tcp_out_of_memory(struct sock *sk)
291 {
292 if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
293 sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
294 return true;
295 return false;
296 }
297
298 static inline bool tcp_too_many_orphans(struct sock *sk, int shift)
299 {
300 struct percpu_counter *ocp = sk->sk_prot->orphan_count;
301 int orphans = percpu_counter_read_positive(ocp);
302
303 if (orphans << shift > sysctl_tcp_max_orphans) {
304 orphans = percpu_counter_sum_positive(ocp);
305 if (orphans << shift > sysctl_tcp_max_orphans)
306 return true;
307 }
308 return false;
309 }
310
311 extern bool tcp_check_oom(struct sock *sk, int shift);
312
313 /* syncookies: remember time of last synqueue overflow */
314 static inline void tcp_synq_overflow(struct sock *sk)
315 {
316 tcp_sk(sk)->rx_opt.ts_recent_stamp = jiffies;
317 }
318
319 /* syncookies: no recent synqueue overflow on this listening socket? */
320 static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
321 {
322 unsigned long last_overflow = tcp_sk(sk)->rx_opt.ts_recent_stamp;
323 return time_after(jiffies, last_overflow + TCP_TIMEOUT_FALLBACK);
324 }
325
326 extern struct proto tcp_prot;
327
328 #define TCP_INC_STATS(net, field) SNMP_INC_STATS((net)->mib.tcp_statistics, field)
329 #define TCP_INC_STATS_BH(net, field) SNMP_INC_STATS_BH((net)->mib.tcp_statistics, field)
330 #define TCP_DEC_STATS(net, field) SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
331 #define TCP_ADD_STATS_USER(net, field, val) SNMP_ADD_STATS_USER((net)->mib.tcp_statistics, field, val)
332 #define TCP_ADD_STATS(net, field, val) SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
333
334 extern void tcp_init_mem(struct net *net);
335
336 extern void tcp_tasklet_init(void);
337
338 extern void tcp_v4_err(struct sk_buff *skb, u32);
339
340 extern void tcp_shutdown (struct sock *sk, int how);
341
342 extern void tcp_v4_early_demux(struct sk_buff *skb);
343 extern int tcp_v4_rcv(struct sk_buff *skb);
344
345 extern struct inet_peer *tcp_v4_get_peer(struct sock *sk);
346 extern int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw);
347 extern int tcp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
348 size_t size);
349 extern int tcp_sendpage(struct sock *sk, struct page *page, int offset,
350 size_t size, int flags);
351 extern void tcp_release_cb(struct sock *sk);
352 extern int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg);
353 extern int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
354 const struct tcphdr *th, unsigned int len);
355 extern int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
356 const struct tcphdr *th, unsigned int len);
357 extern void tcp_rcv_space_adjust(struct sock *sk);
358 extern void tcp_cleanup_rbuf(struct sock *sk, int copied);
359 extern int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
360 extern void tcp_twsk_destructor(struct sock *sk);
361 extern ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
362 struct pipe_inode_info *pipe, size_t len,
363 unsigned int flags);
364
365 static inline void tcp_dec_quickack_mode(struct sock *sk,
366 const unsigned int pkts)
367 {
368 struct inet_connection_sock *icsk = inet_csk(sk);
369
370 if (icsk->icsk_ack.quick) {
371 if (pkts >= icsk->icsk_ack.quick) {
372 icsk->icsk_ack.quick = 0;
373 /* Leaving quickack mode we deflate ATO. */
374 icsk->icsk_ack.ato = TCP_ATO_MIN;
375 } else
376 icsk->icsk_ack.quick -= pkts;
377 }
378 }
379
380 #define TCP_ECN_OK 1
381 #define TCP_ECN_QUEUE_CWR 2
382 #define TCP_ECN_DEMAND_CWR 4
383 #define TCP_ECN_SEEN 8
384
385 enum tcp_tw_status {
386 TCP_TW_SUCCESS = 0,
387 TCP_TW_RST = 1,
388 TCP_TW_ACK = 2,
389 TCP_TW_SYN = 3
390 };
391
392
393 extern enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
394 struct sk_buff *skb,
395 const struct tcphdr *th);
396 extern struct sock * tcp_check_req(struct sock *sk,struct sk_buff *skb,
397 struct request_sock *req,
398 struct request_sock **prev);
399 extern int tcp_child_process(struct sock *parent, struct sock *child,
400 struct sk_buff *skb);
401 extern bool tcp_use_frto(struct sock *sk);
402 extern void tcp_enter_frto(struct sock *sk);
403 extern void tcp_enter_loss(struct sock *sk, int how);
404 extern void tcp_clear_retrans(struct tcp_sock *tp);
405 extern void tcp_update_metrics(struct sock *sk);
406 extern void tcp_init_metrics(struct sock *sk);
407 extern void tcp_metrics_init(void);
408 extern bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst, bool paws_check);
409 extern bool tcp_remember_stamp(struct sock *sk);
410 extern bool tcp_tw_remember_stamp(struct inet_timewait_sock *tw);
411 extern void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
412 struct tcp_fastopen_cookie *cookie,
413 int *syn_loss, unsigned long *last_syn_loss);
414 extern void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
415 struct tcp_fastopen_cookie *cookie,
416 bool syn_lost);
417 extern void tcp_fetch_timewait_stamp(struct sock *sk, struct dst_entry *dst);
418 extern void tcp_disable_fack(struct tcp_sock *tp);
419 extern void tcp_close(struct sock *sk, long timeout);
420 extern void tcp_init_sock(struct sock *sk);
421 extern unsigned int tcp_poll(struct file * file, struct socket *sock,
422 struct poll_table_struct *wait);
423 extern int tcp_getsockopt(struct sock *sk, int level, int optname,
424 char __user *optval, int __user *optlen);
425 extern int tcp_setsockopt(struct sock *sk, int level, int optname,
426 char __user *optval, unsigned int optlen);
427 extern int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
428 char __user *optval, int __user *optlen);
429 extern int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
430 char __user *optval, unsigned int optlen);
431 extern void tcp_set_keepalive(struct sock *sk, int val);
432 extern void tcp_syn_ack_timeout(struct sock *sk, struct request_sock *req);
433 extern int tcp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
434 size_t len, int nonblock, int flags, int *addr_len);
435 extern void tcp_parse_options(const struct sk_buff *skb,
436 struct tcp_options_received *opt_rx, const u8 **hvpp,
437 int estab, struct tcp_fastopen_cookie *foc);
438 extern const u8 *tcp_parse_md5sig_option(const struct tcphdr *th);
439
440 /*
441 * TCP v4 functions exported for the inet6 API
442 */
443
444 extern void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
445 extern int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
446 extern struct sock * tcp_create_openreq_child(struct sock *sk,
447 struct request_sock *req,
448 struct sk_buff *skb);
449 extern struct sock * tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb,
450 struct request_sock *req,
451 struct dst_entry *dst);
452 extern int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
453 extern int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr,
454 int addr_len);
455 extern int tcp_connect(struct sock *sk);
456 extern struct sk_buff * tcp_make_synack(struct sock *sk, struct dst_entry *dst,
457 struct request_sock *req,
458 struct request_values *rvp);
459 extern int tcp_disconnect(struct sock *sk, int flags);
460
461 void tcp_connect_init(struct sock *sk);
462 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
463 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
464
465 /* From syncookies.c */
466 extern __u32 syncookie_secret[2][16-4+SHA_DIGEST_WORDS];
467 extern struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb,
468 struct ip_options *opt);
469 #ifdef CONFIG_SYN_COOKIES
470 extern __u32 cookie_v4_init_sequence(struct sock *sk, struct sk_buff *skb,
471 __u16 *mss);
472 #else
473 static inline __u32 cookie_v4_init_sequence(struct sock *sk,
474 struct sk_buff *skb,
475 __u16 *mss)
476 {
477 return 0;
478 }
479 #endif
480
481 extern __u32 cookie_init_timestamp(struct request_sock *req);
482 extern bool cookie_check_timestamp(struct tcp_options_received *opt, bool *);
483
484 /* From net/ipv6/syncookies.c */
485 extern struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
486 #ifdef CONFIG_SYN_COOKIES
487 extern __u32 cookie_v6_init_sequence(struct sock *sk, const struct sk_buff *skb,
488 __u16 *mss);
489 #else
490 static inline __u32 cookie_v6_init_sequence(struct sock *sk,
491 struct sk_buff *skb,
492 __u16 *mss)
493 {
494 return 0;
495 }
496 #endif
497 /* tcp_output.c */
498
499 extern void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
500 int nonagle);
501 extern bool tcp_may_send_now(struct sock *sk);
502 extern int tcp_retransmit_skb(struct sock *, struct sk_buff *);
503 extern void tcp_retransmit_timer(struct sock *sk);
504 extern void tcp_xmit_retransmit_queue(struct sock *);
505 extern void tcp_simple_retransmit(struct sock *);
506 extern int tcp_trim_head(struct sock *, struct sk_buff *, u32);
507 extern int tcp_fragment(struct sock *, struct sk_buff *, u32, unsigned int);
508
509 extern void tcp_send_probe0(struct sock *);
510 extern void tcp_send_partial(struct sock *);
511 extern int tcp_write_wakeup(struct sock *);
512 extern void tcp_send_fin(struct sock *sk);
513 extern void tcp_send_active_reset(struct sock *sk, gfp_t priority);
514 extern int tcp_send_synack(struct sock *);
515 extern bool tcp_syn_flood_action(struct sock *sk,
516 const struct sk_buff *skb,
517 const char *proto);
518 extern void tcp_push_one(struct sock *, unsigned int mss_now);
519 extern void tcp_send_ack(struct sock *sk);
520 extern void tcp_send_delayed_ack(struct sock *sk);
521
522 /* tcp_input.c */
523 extern void tcp_cwnd_application_limited(struct sock *sk);
524 extern void tcp_resume_early_retransmit(struct sock *sk);
525 extern void tcp_rearm_rto(struct sock *sk);
526
527 /* tcp_timer.c */
528 extern void tcp_init_xmit_timers(struct sock *);
529 static inline void tcp_clear_xmit_timers(struct sock *sk)
530 {
531 inet_csk_clear_xmit_timers(sk);
532 }
533
534 extern unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
535 extern unsigned int tcp_current_mss(struct sock *sk);
536
537 /* Bound MSS / TSO packet size with the half of the window */
538 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
539 {
540 int cutoff;
541
542 /* When peer uses tiny windows, there is no use in packetizing
543 * to sub-MSS pieces for the sake of SWS or making sure there
544 * are enough packets in the pipe for fast recovery.
545 *
546 * On the other hand, for extremely large MSS devices, handling
547 * smaller than MSS windows in this way does make sense.
548 */
549 if (tp->max_window >= 512)
550 cutoff = (tp->max_window >> 1);
551 else
552 cutoff = tp->max_window;
553
554 if (cutoff && pktsize > cutoff)
555 return max_t(int, cutoff, 68U - tp->tcp_header_len);
556 else
557 return pktsize;
558 }
559
560 /* tcp.c */
561 extern void tcp_get_info(const struct sock *, struct tcp_info *);
562
563 /* Read 'sendfile()'-style from a TCP socket */
564 typedef int (*sk_read_actor_t)(read_descriptor_t *, struct sk_buff *,
565 unsigned int, size_t);
566 extern int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
567 sk_read_actor_t recv_actor);
568
569 extern void tcp_initialize_rcv_mss(struct sock *sk);
570
571 extern int tcp_mtu_to_mss(struct sock *sk, int pmtu);
572 extern int tcp_mss_to_mtu(struct sock *sk, int mss);
573 extern void tcp_mtup_init(struct sock *sk);
574 extern void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt);
575
576 static inline void tcp_bound_rto(const struct sock *sk)
577 {
578 if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
579 inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
580 }
581
582 static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
583 {
584 return (tp->srtt >> 3) + tp->rttvar;
585 }
586
587 extern void tcp_set_rto(struct sock *sk);
588
589 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
590 {
591 tp->pred_flags = htonl((tp->tcp_header_len << 26) |
592 ntohl(TCP_FLAG_ACK) |
593 snd_wnd);
594 }
595
596 static inline void tcp_fast_path_on(struct tcp_sock *tp)
597 {
598 __tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
599 }
600
601 static inline void tcp_fast_path_check(struct sock *sk)
602 {
603 struct tcp_sock *tp = tcp_sk(sk);
604
605 if (skb_queue_empty(&tp->out_of_order_queue) &&
606 tp->rcv_wnd &&
607 atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
608 !tp->urg_data)
609 tcp_fast_path_on(tp);
610 }
611
612 /* Compute the actual rto_min value */
613 static inline u32 tcp_rto_min(struct sock *sk)
614 {
615 const struct dst_entry *dst = __sk_dst_get(sk);
616 u32 rto_min = TCP_RTO_MIN;
617
618 if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
619 rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
620 return rto_min;
621 }
622
623 /* Compute the actual receive window we are currently advertising.
624 * Rcv_nxt can be after the window if our peer push more data
625 * than the offered window.
626 */
627 static inline u32 tcp_receive_window(const struct tcp_sock *tp)
628 {
629 s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
630
631 if (win < 0)
632 win = 0;
633 return (u32) win;
634 }
635
636 /* Choose a new window, without checks for shrinking, and without
637 * scaling applied to the result. The caller does these things
638 * if necessary. This is a "raw" window selection.
639 */
640 extern u32 __tcp_select_window(struct sock *sk);
641
642 void tcp_send_window_probe(struct sock *sk);
643
644 /* TCP timestamps are only 32-bits, this causes a slight
645 * complication on 64-bit systems since we store a snapshot
646 * of jiffies in the buffer control blocks below. We decided
647 * to use only the low 32-bits of jiffies and hide the ugly
648 * casts with the following macro.
649 */
650 #define tcp_time_stamp ((__u32)(jiffies))
651
652 #define tcp_flag_byte(th) (((u_int8_t *)th)[13])
653
654 #define TCPHDR_FIN 0x01
655 #define TCPHDR_SYN 0x02
656 #define TCPHDR_RST 0x04
657 #define TCPHDR_PSH 0x08
658 #define TCPHDR_ACK 0x10
659 #define TCPHDR_URG 0x20
660 #define TCPHDR_ECE 0x40
661 #define TCPHDR_CWR 0x80
662
663 /* This is what the send packet queuing engine uses to pass
664 * TCP per-packet control information to the transmission code.
665 * We also store the host-order sequence numbers in here too.
666 * This is 44 bytes if IPV6 is enabled.
667 * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
668 */
669 struct tcp_skb_cb {
670 union {
671 struct inet_skb_parm h4;
672 #if IS_ENABLED(CONFIG_IPV6)
673 struct inet6_skb_parm h6;
674 #endif
675 } header; /* For incoming frames */
676 __u32 seq; /* Starting sequence number */
677 __u32 end_seq; /* SEQ + FIN + SYN + datalen */
678 __u32 when; /* used to compute rtt's */
679 __u8 tcp_flags; /* TCP header flags. (tcp[13]) */
680
681 __u8 sacked; /* State flags for SACK/FACK. */
682 #define TCPCB_SACKED_ACKED 0x01 /* SKB ACK'd by a SACK block */
683 #define TCPCB_SACKED_RETRANS 0x02 /* SKB retransmitted */
684 #define TCPCB_LOST 0x04 /* SKB is lost */
685 #define TCPCB_TAGBITS 0x07 /* All tag bits */
686 #define TCPCB_EVER_RETRANS 0x80 /* Ever retransmitted frame */
687 #define TCPCB_RETRANS (TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS)
688
689 __u8 ip_dsfield; /* IPv4 tos or IPv6 dsfield */
690 /* 1 byte hole */
691 __u32 ack_seq; /* Sequence number ACK'd */
692 };
693
694 #define TCP_SKB_CB(__skb) ((struct tcp_skb_cb *)&((__skb)->cb[0]))
695
696 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
697 *
698 * If we receive a SYN packet with these bits set, it means a network is
699 * playing bad games with TOS bits. In order to avoid possible false congestion
700 * notifications, we disable TCP ECN negociation.
701 */
702 static inline void
703 TCP_ECN_create_request(struct request_sock *req, const struct sk_buff *skb)
704 {
705 const struct tcphdr *th = tcp_hdr(skb);
706
707 if (sysctl_tcp_ecn && th->ece && th->cwr &&
708 INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield))
709 inet_rsk(req)->ecn_ok = 1;
710 }
711
712 /* Due to TSO, an SKB can be composed of multiple actual
713 * packets. To keep these tracked properly, we use this.
714 */
715 static inline int tcp_skb_pcount(const struct sk_buff *skb)
716 {
717 return skb_shinfo(skb)->gso_segs;
718 }
719
720 /* This is valid iff tcp_skb_pcount() > 1. */
721 static inline int tcp_skb_mss(const struct sk_buff *skb)
722 {
723 return skb_shinfo(skb)->gso_size;
724 }
725
726 /* Events passed to congestion control interface */
727 enum tcp_ca_event {
728 CA_EVENT_TX_START, /* first transmit when no packets in flight */
729 CA_EVENT_CWND_RESTART, /* congestion window restart */
730 CA_EVENT_COMPLETE_CWR, /* end of congestion recovery */
731 CA_EVENT_FRTO, /* fast recovery timeout */
732 CA_EVENT_LOSS, /* loss timeout */
733 CA_EVENT_FAST_ACK, /* in sequence ack */
734 CA_EVENT_SLOW_ACK, /* other ack */
735 };
736
737 /*
738 * Interface for adding new TCP congestion control handlers
739 */
740 #define TCP_CA_NAME_MAX 16
741 #define TCP_CA_MAX 128
742 #define TCP_CA_BUF_MAX (TCP_CA_NAME_MAX*TCP_CA_MAX)
743
744 #define TCP_CONG_NON_RESTRICTED 0x1
745 #define TCP_CONG_RTT_STAMP 0x2
746
747 struct tcp_congestion_ops {
748 struct list_head list;
749 unsigned long flags;
750
751 /* initialize private data (optional) */
752 void (*init)(struct sock *sk);
753 /* cleanup private data (optional) */
754 void (*release)(struct sock *sk);
755
756 /* return slow start threshold (required) */
757 u32 (*ssthresh)(struct sock *sk);
758 /* lower bound for congestion window (optional) */
759 u32 (*min_cwnd)(const struct sock *sk);
760 /* do new cwnd calculation (required) */
761 void (*cong_avoid)(struct sock *sk, u32 ack, u32 in_flight);
762 /* call before changing ca_state (optional) */
763 void (*set_state)(struct sock *sk, u8 new_state);
764 /* call when cwnd event occurs (optional) */
765 void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
766 /* new value of cwnd after loss (optional) */
767 u32 (*undo_cwnd)(struct sock *sk);
768 /* hook for packet ack accounting (optional) */
769 void (*pkts_acked)(struct sock *sk, u32 num_acked, s32 rtt_us);
770 /* get info for inet_diag (optional) */
771 void (*get_info)(struct sock *sk, u32 ext, struct sk_buff *skb);
772
773 char name[TCP_CA_NAME_MAX];
774 struct module *owner;
775 };
776
777 extern int tcp_register_congestion_control(struct tcp_congestion_ops *type);
778 extern void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
779
780 extern void tcp_init_congestion_control(struct sock *sk);
781 extern void tcp_cleanup_congestion_control(struct sock *sk);
782 extern int tcp_set_default_congestion_control(const char *name);
783 extern void tcp_get_default_congestion_control(char *name);
784 extern void tcp_get_available_congestion_control(char *buf, size_t len);
785 extern void tcp_get_allowed_congestion_control(char *buf, size_t len);
786 extern int tcp_set_allowed_congestion_control(char *allowed);
787 extern int tcp_set_congestion_control(struct sock *sk, const char *name);
788 extern void tcp_slow_start(struct tcp_sock *tp);
789 extern void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w);
790
791 extern struct tcp_congestion_ops tcp_init_congestion_ops;
792 extern u32 tcp_reno_ssthresh(struct sock *sk);
793 extern void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 in_flight);
794 extern u32 tcp_reno_min_cwnd(const struct sock *sk);
795 extern struct tcp_congestion_ops tcp_reno;
796
797 static inline void tcp_set_ca_state(struct sock *sk, const u8 ca_state)
798 {
799 struct inet_connection_sock *icsk = inet_csk(sk);
800
801 if (icsk->icsk_ca_ops->set_state)
802 icsk->icsk_ca_ops->set_state(sk, ca_state);
803 icsk->icsk_ca_state = ca_state;
804 }
805
806 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
807 {
808 const struct inet_connection_sock *icsk = inet_csk(sk);
809
810 if (icsk->icsk_ca_ops->cwnd_event)
811 icsk->icsk_ca_ops->cwnd_event(sk, event);
812 }
813
814 /* These functions determine how the current flow behaves in respect of SACK
815 * handling. SACK is negotiated with the peer, and therefore it can vary
816 * between different flows.
817 *
818 * tcp_is_sack - SACK enabled
819 * tcp_is_reno - No SACK
820 * tcp_is_fack - FACK enabled, implies SACK enabled
821 */
822 static inline int tcp_is_sack(const struct tcp_sock *tp)
823 {
824 return tp->rx_opt.sack_ok;
825 }
826
827 static inline bool tcp_is_reno(const struct tcp_sock *tp)
828 {
829 return !tcp_is_sack(tp);
830 }
831
832 static inline bool tcp_is_fack(const struct tcp_sock *tp)
833 {
834 return tp->rx_opt.sack_ok & TCP_FACK_ENABLED;
835 }
836
837 static inline void tcp_enable_fack(struct tcp_sock *tp)
838 {
839 tp->rx_opt.sack_ok |= TCP_FACK_ENABLED;
840 }
841
842 /* TCP early-retransmit (ER) is similar to but more conservative than
843 * the thin-dupack feature. Enable ER only if thin-dupack is disabled.
844 */
845 static inline void tcp_enable_early_retrans(struct tcp_sock *tp)
846 {
847 tp->do_early_retrans = sysctl_tcp_early_retrans &&
848 !sysctl_tcp_thin_dupack && sysctl_tcp_reordering == 3;
849 tp->early_retrans_delayed = 0;
850 }
851
852 static inline void tcp_disable_early_retrans(struct tcp_sock *tp)
853 {
854 tp->do_early_retrans = 0;
855 }
856
857 static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
858 {
859 return tp->sacked_out + tp->lost_out;
860 }
861
862 /* This determines how many packets are "in the network" to the best
863 * of our knowledge. In many cases it is conservative, but where
864 * detailed information is available from the receiver (via SACK
865 * blocks etc.) we can make more aggressive calculations.
866 *
867 * Use this for decisions involving congestion control, use just
868 * tp->packets_out to determine if the send queue is empty or not.
869 *
870 * Read this equation as:
871 *
872 * "Packets sent once on transmission queue" MINUS
873 * "Packets left network, but not honestly ACKed yet" PLUS
874 * "Packets fast retransmitted"
875 */
876 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
877 {
878 return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
879 }
880
881 #define TCP_INFINITE_SSTHRESH 0x7fffffff
882
883 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
884 {
885 return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
886 }
887
888 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
889 * The exception is rate halving phase, when cwnd is decreasing towards
890 * ssthresh.
891 */
892 static inline __u32 tcp_current_ssthresh(const struct sock *sk)
893 {
894 const struct tcp_sock *tp = tcp_sk(sk);
895
896 if ((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_CWR | TCPF_CA_Recovery))
897 return tp->snd_ssthresh;
898 else
899 return max(tp->snd_ssthresh,
900 ((tp->snd_cwnd >> 1) +
901 (tp->snd_cwnd >> 2)));
902 }
903
904 /* Use define here intentionally to get WARN_ON location shown at the caller */
905 #define tcp_verify_left_out(tp) WARN_ON(tcp_left_out(tp) > tp->packets_out)
906
907 extern void tcp_enter_cwr(struct sock *sk, const int set_ssthresh);
908 extern __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
909
910 /* The maximum number of MSS of available cwnd for which TSO defers
911 * sending if not using sysctl_tcp_tso_win_divisor.
912 */
913 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
914 {
915 return 3;
916 }
917
918 /* Slow start with delack produces 3 packets of burst, so that
919 * it is safe "de facto". This will be the default - same as
920 * the default reordering threshold - but if reordering increases,
921 * we must be able to allow cwnd to burst at least this much in order
922 * to not pull it back when holes are filled.
923 */
924 static __inline__ __u32 tcp_max_burst(const struct tcp_sock *tp)
925 {
926 return tp->reordering;
927 }
928
929 /* Returns end sequence number of the receiver's advertised window */
930 static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
931 {
932 return tp->snd_una + tp->snd_wnd;
933 }
934 extern bool tcp_is_cwnd_limited(const struct sock *sk, u32 in_flight);
935
936 static inline void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss,
937 const struct sk_buff *skb)
938 {
939 if (skb->len < mss)
940 tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
941 }
942
943 static inline void tcp_check_probe_timer(struct sock *sk)
944 {
945 const struct tcp_sock *tp = tcp_sk(sk);
946 const struct inet_connection_sock *icsk = inet_csk(sk);
947
948 if (!tp->packets_out && !icsk->icsk_pending)
949 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
950 icsk->icsk_rto, TCP_RTO_MAX);
951 }
952
953 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
954 {
955 tp->snd_wl1 = seq;
956 }
957
958 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
959 {
960 tp->snd_wl1 = seq;
961 }
962
963 /*
964 * Calculate(/check) TCP checksum
965 */
966 static inline __sum16 tcp_v4_check(int len, __be32 saddr,
967 __be32 daddr, __wsum base)
968 {
969 return csum_tcpudp_magic(saddr,daddr,len,IPPROTO_TCP,base);
970 }
971
972 static inline __sum16 __tcp_checksum_complete(struct sk_buff *skb)
973 {
974 return __skb_checksum_complete(skb);
975 }
976
977 static inline bool tcp_checksum_complete(struct sk_buff *skb)
978 {
979 return !skb_csum_unnecessary(skb) &&
980 __tcp_checksum_complete(skb);
981 }
982
983 /* Prequeue for VJ style copy to user, combined with checksumming. */
984
985 static inline void tcp_prequeue_init(struct tcp_sock *tp)
986 {
987 tp->ucopy.task = NULL;
988 tp->ucopy.len = 0;
989 tp->ucopy.memory = 0;
990 skb_queue_head_init(&tp->ucopy.prequeue);
991 #ifdef CONFIG_NET_DMA
992 tp->ucopy.dma_chan = NULL;
993 tp->ucopy.wakeup = 0;
994 tp->ucopy.pinned_list = NULL;
995 tp->ucopy.dma_cookie = 0;
996 #endif
997 }
998
999 /* Packet is added to VJ-style prequeue for processing in process
1000 * context, if a reader task is waiting. Apparently, this exciting
1001 * idea (VJ's mail "Re: query about TCP header on tcp-ip" of 07 Sep 93)
1002 * failed somewhere. Latency? Burstiness? Well, at least now we will
1003 * see, why it failed. 8)8) --ANK
1004 *
1005 * NOTE: is this not too big to inline?
1006 */
1007 static inline bool tcp_prequeue(struct sock *sk, struct sk_buff *skb)
1008 {
1009 struct tcp_sock *tp = tcp_sk(sk);
1010
1011 if (sysctl_tcp_low_latency || !tp->ucopy.task)
1012 return false;
1013
1014 __skb_queue_tail(&tp->ucopy.prequeue, skb);
1015 tp->ucopy.memory += skb->truesize;
1016 if (tp->ucopy.memory > sk->sk_rcvbuf) {
1017 struct sk_buff *skb1;
1018
1019 BUG_ON(sock_owned_by_user(sk));
1020
1021 while ((skb1 = __skb_dequeue(&tp->ucopy.prequeue)) != NULL) {
1022 sk_backlog_rcv(sk, skb1);
1023 NET_INC_STATS_BH(sock_net(sk),
1024 LINUX_MIB_TCPPREQUEUEDROPPED);
1025 }
1026
1027 tp->ucopy.memory = 0;
1028 } else if (skb_queue_len(&tp->ucopy.prequeue) == 1) {
1029 wake_up_interruptible_sync_poll(sk_sleep(sk),
1030 POLLIN | POLLRDNORM | POLLRDBAND);
1031 if (!inet_csk_ack_scheduled(sk))
1032 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
1033 (3 * tcp_rto_min(sk)) / 4,
1034 TCP_RTO_MAX);
1035 }
1036 return true;
1037 }
1038
1039
1040 #undef STATE_TRACE
1041
1042 #ifdef STATE_TRACE
1043 static const char *statename[]={
1044 "Unused","Established","Syn Sent","Syn Recv",
1045 "Fin Wait 1","Fin Wait 2","Time Wait", "Close",
1046 "Close Wait","Last ACK","Listen","Closing"
1047 };
1048 #endif
1049 extern void tcp_set_state(struct sock *sk, int state);
1050
1051 extern void tcp_done(struct sock *sk);
1052
1053 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1054 {
1055 rx_opt->dsack = 0;
1056 rx_opt->num_sacks = 0;
1057 }
1058
1059 /* Determine a window scaling and initial window to offer. */
1060 extern void tcp_select_initial_window(int __space, __u32 mss,
1061 __u32 *rcv_wnd, __u32 *window_clamp,
1062 int wscale_ok, __u8 *rcv_wscale,
1063 __u32 init_rcv_wnd);
1064
1065 static inline int tcp_win_from_space(int space)
1066 {
1067 return sysctl_tcp_adv_win_scale<=0 ?
1068 (space>>(-sysctl_tcp_adv_win_scale)) :
1069 space - (space>>sysctl_tcp_adv_win_scale);
1070 }
1071
1072 /* Note: caller must be prepared to deal with negative returns */
1073 static inline int tcp_space(const struct sock *sk)
1074 {
1075 return tcp_win_from_space(sk->sk_rcvbuf -
1076 atomic_read(&sk->sk_rmem_alloc));
1077 }
1078
1079 static inline int tcp_full_space(const struct sock *sk)
1080 {
1081 return tcp_win_from_space(sk->sk_rcvbuf);
1082 }
1083
1084 static inline void tcp_openreq_init(struct request_sock *req,
1085 struct tcp_options_received *rx_opt,
1086 struct sk_buff *skb)
1087 {
1088 struct inet_request_sock *ireq = inet_rsk(req);
1089
1090 req->rcv_wnd = 0; /* So that tcp_send_synack() knows! */
1091 req->cookie_ts = 0;
1092 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
1093 req->mss = rx_opt->mss_clamp;
1094 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
1095 ireq->tstamp_ok = rx_opt->tstamp_ok;
1096 ireq->sack_ok = rx_opt->sack_ok;
1097 ireq->snd_wscale = rx_opt->snd_wscale;
1098 ireq->wscale_ok = rx_opt->wscale_ok;
1099 ireq->acked = 0;
1100 ireq->ecn_ok = 0;
1101 ireq->rmt_port = tcp_hdr(skb)->source;
1102 ireq->loc_port = tcp_hdr(skb)->dest;
1103 }
1104
1105 extern void tcp_enter_memory_pressure(struct sock *sk);
1106
1107 static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1108 {
1109 return tp->keepalive_intvl ? : sysctl_tcp_keepalive_intvl;
1110 }
1111
1112 static inline int keepalive_time_when(const struct tcp_sock *tp)
1113 {
1114 return tp->keepalive_time ? : sysctl_tcp_keepalive_time;
1115 }
1116
1117 static inline int keepalive_probes(const struct tcp_sock *tp)
1118 {
1119 return tp->keepalive_probes ? : sysctl_tcp_keepalive_probes;
1120 }
1121
1122 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1123 {
1124 const struct inet_connection_sock *icsk = &tp->inet_conn;
1125
1126 return min_t(u32, tcp_time_stamp - icsk->icsk_ack.lrcvtime,
1127 tcp_time_stamp - tp->rcv_tstamp);
1128 }
1129
1130 static inline int tcp_fin_time(const struct sock *sk)
1131 {
1132 int fin_timeout = tcp_sk(sk)->linger2 ? : sysctl_tcp_fin_timeout;
1133 const int rto = inet_csk(sk)->icsk_rto;
1134
1135 if (fin_timeout < (rto << 2) - (rto >> 1))
1136 fin_timeout = (rto << 2) - (rto >> 1);
1137
1138 return fin_timeout;
1139 }
1140
1141 static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1142 int paws_win)
1143 {
1144 if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1145 return true;
1146 if (unlikely(get_seconds() >= rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS))
1147 return true;
1148 /*
1149 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1150 * then following tcp messages have valid values. Ignore 0 value,
1151 * or else 'negative' tsval might forbid us to accept their packets.
1152 */
1153 if (!rx_opt->ts_recent)
1154 return true;
1155 return false;
1156 }
1157
1158 static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1159 int rst)
1160 {
1161 if (tcp_paws_check(rx_opt, 0))
1162 return false;
1163
1164 /* RST segments are not recommended to carry timestamp,
1165 and, if they do, it is recommended to ignore PAWS because
1166 "their cleanup function should take precedence over timestamps."
1167 Certainly, it is mistake. It is necessary to understand the reasons
1168 of this constraint to relax it: if peer reboots, clock may go
1169 out-of-sync and half-open connections will not be reset.
1170 Actually, the problem would be not existing if all
1171 the implementations followed draft about maintaining clock
1172 via reboots. Linux-2.2 DOES NOT!
1173
1174 However, we can relax time bounds for RST segments to MSL.
1175 */
1176 if (rst && get_seconds() >= rx_opt->ts_recent_stamp + TCP_PAWS_MSL)
1177 return false;
1178 return true;
1179 }
1180
1181 static inline void tcp_mib_init(struct net *net)
1182 {
1183 /* See RFC 2012 */
1184 TCP_ADD_STATS_USER(net, TCP_MIB_RTOALGORITHM, 1);
1185 TCP_ADD_STATS_USER(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1186 TCP_ADD_STATS_USER(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1187 TCP_ADD_STATS_USER(net, TCP_MIB_MAXCONN, -1);
1188 }
1189
1190 /* from STCP */
1191 static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1192 {
1193 tp->lost_skb_hint = NULL;
1194 tp->scoreboard_skb_hint = NULL;
1195 }
1196
1197 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1198 {
1199 tcp_clear_retrans_hints_partial(tp);
1200 tp->retransmit_skb_hint = NULL;
1201 }
1202
1203 /* MD5 Signature */
1204 struct crypto_hash;
1205
1206 union tcp_md5_addr {
1207 struct in_addr a4;
1208 #if IS_ENABLED(CONFIG_IPV6)
1209 struct in6_addr a6;
1210 #endif
1211 };
1212
1213 /* - key database */
1214 struct tcp_md5sig_key {
1215 struct hlist_node node;
1216 u8 keylen;
1217 u8 family; /* AF_INET or AF_INET6 */
1218 union tcp_md5_addr addr;
1219 u8 key[TCP_MD5SIG_MAXKEYLEN];
1220 struct rcu_head rcu;
1221 };
1222
1223 /* - sock block */
1224 struct tcp_md5sig_info {
1225 struct hlist_head head;
1226 struct rcu_head rcu;
1227 };
1228
1229 /* - pseudo header */
1230 struct tcp4_pseudohdr {
1231 __be32 saddr;
1232 __be32 daddr;
1233 __u8 pad;
1234 __u8 protocol;
1235 __be16 len;
1236 };
1237
1238 struct tcp6_pseudohdr {
1239 struct in6_addr saddr;
1240 struct in6_addr daddr;
1241 __be32 len;
1242 __be32 protocol; /* including padding */
1243 };
1244
1245 union tcp_md5sum_block {
1246 struct tcp4_pseudohdr ip4;
1247 #if IS_ENABLED(CONFIG_IPV6)
1248 struct tcp6_pseudohdr ip6;
1249 #endif
1250 };
1251
1252 /* - pool: digest algorithm, hash description and scratch buffer */
1253 struct tcp_md5sig_pool {
1254 struct hash_desc md5_desc;
1255 union tcp_md5sum_block md5_blk;
1256 };
1257
1258 /* - functions */
1259 extern int tcp_v4_md5_hash_skb(char *md5_hash, struct tcp_md5sig_key *key,
1260 const struct sock *sk,
1261 const struct request_sock *req,
1262 const struct sk_buff *skb);
1263 extern int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1264 int family, const u8 *newkey,
1265 u8 newkeylen, gfp_t gfp);
1266 extern int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1267 int family);
1268 extern struct tcp_md5sig_key *tcp_v4_md5_lookup(struct sock *sk,
1269 struct sock *addr_sk);
1270
1271 #ifdef CONFIG_TCP_MD5SIG
1272 extern struct tcp_md5sig_key *tcp_md5_do_lookup(struct sock *sk,
1273 const union tcp_md5_addr *addr, int family);
1274 #define tcp_twsk_md5_key(twsk) ((twsk)->tw_md5_key)
1275 #else
1276 static inline struct tcp_md5sig_key *tcp_md5_do_lookup(struct sock *sk,
1277 const union tcp_md5_addr *addr,
1278 int family)
1279 {
1280 return NULL;
1281 }
1282 #define tcp_twsk_md5_key(twsk) NULL
1283 #endif
1284
1285 extern struct tcp_md5sig_pool __percpu *tcp_alloc_md5sig_pool(struct sock *);
1286 extern void tcp_free_md5sig_pool(void);
1287
1288 extern struct tcp_md5sig_pool *tcp_get_md5sig_pool(void);
1289 extern void tcp_put_md5sig_pool(void);
1290
1291 extern int tcp_md5_hash_header(struct tcp_md5sig_pool *, const struct tcphdr *);
1292 extern int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *,
1293 unsigned int header_len);
1294 extern int tcp_md5_hash_key(struct tcp_md5sig_pool *hp,
1295 const struct tcp_md5sig_key *key);
1296
1297 struct tcp_fastopen_request {
1298 /* Fast Open cookie. Size 0 means a cookie request */
1299 struct tcp_fastopen_cookie cookie;
1300 struct msghdr *data; /* data in MSG_FASTOPEN */
1301 u16 copied; /* queued in tcp_connect() */
1302 };
1303
1304 void tcp_free_fastopen_req(struct tcp_sock *tp);
1305
1306 /* write queue abstraction */
1307 static inline void tcp_write_queue_purge(struct sock *sk)
1308 {
1309 struct sk_buff *skb;
1310
1311 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL)
1312 sk_wmem_free_skb(sk, skb);
1313 sk_mem_reclaim(sk);
1314 tcp_clear_all_retrans_hints(tcp_sk(sk));
1315 }
1316
1317 static inline struct sk_buff *tcp_write_queue_head(const struct sock *sk)
1318 {
1319 return skb_peek(&sk->sk_write_queue);
1320 }
1321
1322 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
1323 {
1324 return skb_peek_tail(&sk->sk_write_queue);
1325 }
1326
1327 static inline struct sk_buff *tcp_write_queue_next(const struct sock *sk,
1328 const struct sk_buff *skb)
1329 {
1330 return skb_queue_next(&sk->sk_write_queue, skb);
1331 }
1332
1333 static inline struct sk_buff *tcp_write_queue_prev(const struct sock *sk,
1334 const struct sk_buff *skb)
1335 {
1336 return skb_queue_prev(&sk->sk_write_queue, skb);
1337 }
1338
1339 #define tcp_for_write_queue(skb, sk) \
1340 skb_queue_walk(&(sk)->sk_write_queue, skb)
1341
1342 #define tcp_for_write_queue_from(skb, sk) \
1343 skb_queue_walk_from(&(sk)->sk_write_queue, skb)
1344
1345 #define tcp_for_write_queue_from_safe(skb, tmp, sk) \
1346 skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1347
1348 static inline struct sk_buff *tcp_send_head(const struct sock *sk)
1349 {
1350 return sk->sk_send_head;
1351 }
1352
1353 static inline bool tcp_skb_is_last(const struct sock *sk,
1354 const struct sk_buff *skb)
1355 {
1356 return skb_queue_is_last(&sk->sk_write_queue, skb);
1357 }
1358
1359 static inline void tcp_advance_send_head(struct sock *sk, const struct sk_buff *skb)
1360 {
1361 if (tcp_skb_is_last(sk, skb))
1362 sk->sk_send_head = NULL;
1363 else
1364 sk->sk_send_head = tcp_write_queue_next(sk, skb);
1365 }
1366
1367 static inline void tcp_check_send_head(struct sock *sk, struct sk_buff *skb_unlinked)
1368 {
1369 if (sk->sk_send_head == skb_unlinked)
1370 sk->sk_send_head = NULL;
1371 }
1372
1373 static inline void tcp_init_send_head(struct sock *sk)
1374 {
1375 sk->sk_send_head = NULL;
1376 }
1377
1378 static inline void __tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1379 {
1380 __skb_queue_tail(&sk->sk_write_queue, skb);
1381 }
1382
1383 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1384 {
1385 __tcp_add_write_queue_tail(sk, skb);
1386
1387 /* Queue it, remembering where we must start sending. */
1388 if (sk->sk_send_head == NULL) {
1389 sk->sk_send_head = skb;
1390
1391 if (tcp_sk(sk)->highest_sack == NULL)
1392 tcp_sk(sk)->highest_sack = skb;
1393 }
1394 }
1395
1396 static inline void __tcp_add_write_queue_head(struct sock *sk, struct sk_buff *skb)
1397 {
1398 __skb_queue_head(&sk->sk_write_queue, skb);
1399 }
1400
1401 /* Insert buff after skb on the write queue of sk. */
1402 static inline void tcp_insert_write_queue_after(struct sk_buff *skb,
1403 struct sk_buff *buff,
1404 struct sock *sk)
1405 {
1406 __skb_queue_after(&sk->sk_write_queue, skb, buff);
1407 }
1408
1409 /* Insert new before skb on the write queue of sk. */
1410 static inline void tcp_insert_write_queue_before(struct sk_buff *new,
1411 struct sk_buff *skb,
1412 struct sock *sk)
1413 {
1414 __skb_queue_before(&sk->sk_write_queue, skb, new);
1415
1416 if (sk->sk_send_head == skb)
1417 sk->sk_send_head = new;
1418 }
1419
1420 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
1421 {
1422 __skb_unlink(skb, &sk->sk_write_queue);
1423 }
1424
1425 static inline bool tcp_write_queue_empty(struct sock *sk)
1426 {
1427 return skb_queue_empty(&sk->sk_write_queue);
1428 }
1429
1430 static inline void tcp_push_pending_frames(struct sock *sk)
1431 {
1432 if (tcp_send_head(sk)) {
1433 struct tcp_sock *tp = tcp_sk(sk);
1434
1435 __tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
1436 }
1437 }
1438
1439 /* Start sequence of the skb just after the highest skb with SACKed
1440 * bit, valid only if sacked_out > 0 or when the caller has ensured
1441 * validity by itself.
1442 */
1443 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
1444 {
1445 if (!tp->sacked_out)
1446 return tp->snd_una;
1447
1448 if (tp->highest_sack == NULL)
1449 return tp->snd_nxt;
1450
1451 return TCP_SKB_CB(tp->highest_sack)->seq;
1452 }
1453
1454 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
1455 {
1456 tcp_sk(sk)->highest_sack = tcp_skb_is_last(sk, skb) ? NULL :
1457 tcp_write_queue_next(sk, skb);
1458 }
1459
1460 static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
1461 {
1462 return tcp_sk(sk)->highest_sack;
1463 }
1464
1465 static inline void tcp_highest_sack_reset(struct sock *sk)
1466 {
1467 tcp_sk(sk)->highest_sack = tcp_write_queue_head(sk);
1468 }
1469
1470 /* Called when old skb is about to be deleted (to be combined with new skb) */
1471 static inline void tcp_highest_sack_combine(struct sock *sk,
1472 struct sk_buff *old,
1473 struct sk_buff *new)
1474 {
1475 if (tcp_sk(sk)->sacked_out && (old == tcp_sk(sk)->highest_sack))
1476 tcp_sk(sk)->highest_sack = new;
1477 }
1478
1479 /* Determines whether this is a thin stream (which may suffer from
1480 * increased latency). Used to trigger latency-reducing mechanisms.
1481 */
1482 static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
1483 {
1484 return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
1485 }
1486
1487 /* /proc */
1488 enum tcp_seq_states {
1489 TCP_SEQ_STATE_LISTENING,
1490 TCP_SEQ_STATE_OPENREQ,
1491 TCP_SEQ_STATE_ESTABLISHED,
1492 TCP_SEQ_STATE_TIME_WAIT,
1493 };
1494
1495 int tcp_seq_open(struct inode *inode, struct file *file);
1496
1497 struct tcp_seq_afinfo {
1498 char *name;
1499 sa_family_t family;
1500 const struct file_operations *seq_fops;
1501 struct seq_operations seq_ops;
1502 };
1503
1504 struct tcp_iter_state {
1505 struct seq_net_private p;
1506 sa_family_t family;
1507 enum tcp_seq_states state;
1508 struct sock *syn_wait_sk;
1509 int bucket, offset, sbucket, num, uid;
1510 loff_t last_pos;
1511 };
1512
1513 extern int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo);
1514 extern void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo);
1515
1516 extern struct request_sock_ops tcp_request_sock_ops;
1517 extern struct request_sock_ops tcp6_request_sock_ops;
1518
1519 extern void tcp_v4_destroy_sock(struct sock *sk);
1520
1521 extern int tcp_v4_gso_send_check(struct sk_buff *skb);
1522 extern struct sk_buff *tcp_tso_segment(struct sk_buff *skb,
1523 netdev_features_t features);
1524 extern struct sk_buff **tcp_gro_receive(struct sk_buff **head,
1525 struct sk_buff *skb);
1526 extern struct sk_buff **tcp4_gro_receive(struct sk_buff **head,
1527 struct sk_buff *skb);
1528 extern int tcp_gro_complete(struct sk_buff *skb);
1529 extern int tcp4_gro_complete(struct sk_buff *skb);
1530
1531 #ifdef CONFIG_PROC_FS
1532 extern int tcp4_proc_init(void);
1533 extern void tcp4_proc_exit(void);
1534 #endif
1535
1536 /* TCP af-specific functions */
1537 struct tcp_sock_af_ops {
1538 #ifdef CONFIG_TCP_MD5SIG
1539 struct tcp_md5sig_key *(*md5_lookup) (struct sock *sk,
1540 struct sock *addr_sk);
1541 int (*calc_md5_hash) (char *location,
1542 struct tcp_md5sig_key *md5,
1543 const struct sock *sk,
1544 const struct request_sock *req,
1545 const struct sk_buff *skb);
1546 int (*md5_parse) (struct sock *sk,
1547 char __user *optval,
1548 int optlen);
1549 #endif
1550 };
1551
1552 struct tcp_request_sock_ops {
1553 #ifdef CONFIG_TCP_MD5SIG
1554 struct tcp_md5sig_key *(*md5_lookup) (struct sock *sk,
1555 struct request_sock *req);
1556 int (*calc_md5_hash) (char *location,
1557 struct tcp_md5sig_key *md5,
1558 const struct sock *sk,
1559 const struct request_sock *req,
1560 const struct sk_buff *skb);
1561 #endif
1562 };
1563
1564 /* Using SHA1 for now, define some constants.
1565 */
1566 #define COOKIE_DIGEST_WORDS (SHA_DIGEST_WORDS)
1567 #define COOKIE_MESSAGE_WORDS (SHA_MESSAGE_BYTES / 4)
1568 #define COOKIE_WORKSPACE_WORDS (COOKIE_DIGEST_WORDS + COOKIE_MESSAGE_WORDS)
1569
1570 extern int tcp_cookie_generator(u32 *bakery);
1571
1572 /**
1573 * struct tcp_cookie_values - each socket needs extra space for the
1574 * cookies, together with (optional) space for any SYN data.
1575 *
1576 * A tcp_sock contains a pointer to the current value, and this is
1577 * cloned to the tcp_timewait_sock.
1578 *
1579 * @cookie_pair: variable data from the option exchange.
1580 *
1581 * @cookie_desired: user specified tcpct_cookie_desired. Zero
1582 * indicates default (sysctl_tcp_cookie_size).
1583 * After cookie sent, remembers size of cookie.
1584 * Range 0, TCP_COOKIE_MIN to TCP_COOKIE_MAX.
1585 *
1586 * @s_data_desired: user specified tcpct_s_data_desired. When the
1587 * constant payload is specified (@s_data_constant),
1588 * holds its length instead.
1589 * Range 0 to TCP_MSS_DESIRED.
1590 *
1591 * @s_data_payload: constant data that is to be included in the
1592 * payload of SYN or SYNACK segments when the
1593 * cookie option is present.
1594 */
1595 struct tcp_cookie_values {
1596 struct kref kref;
1597 u8 cookie_pair[TCP_COOKIE_PAIR_SIZE];
1598 u8 cookie_pair_size;
1599 u8 cookie_desired;
1600 u16 s_data_desired:11,
1601 s_data_constant:1,
1602 s_data_in:1,
1603 s_data_out:1,
1604 s_data_unused:2;
1605 u8 s_data_payload[0];
1606 };
1607
1608 static inline void tcp_cookie_values_release(struct kref *kref)
1609 {
1610 kfree(container_of(kref, struct tcp_cookie_values, kref));
1611 }
1612
1613 /* The length of constant payload data. Note that s_data_desired is
1614 * overloaded, depending on s_data_constant: either the length of constant
1615 * data (returned here) or the limit on variable data.
1616 */
1617 static inline int tcp_s_data_size(const struct tcp_sock *tp)
1618 {
1619 return (tp->cookie_values != NULL && tp->cookie_values->s_data_constant)
1620 ? tp->cookie_values->s_data_desired
1621 : 0;
1622 }
1623
1624 /**
1625 * struct tcp_extend_values - tcp_ipv?.c to tcp_output.c workspace.
1626 *
1627 * As tcp_request_sock has already been extended in other places, the
1628 * only remaining method is to pass stack values along as function
1629 * parameters. These parameters are not needed after sending SYNACK.
1630 *
1631 * @cookie_bakery: cryptographic secret and message workspace.
1632 *
1633 * @cookie_plus: bytes in authenticator/cookie option, copied from
1634 * struct tcp_options_received (above).
1635 */
1636 struct tcp_extend_values {
1637 struct request_values rv;
1638 u32 cookie_bakery[COOKIE_WORKSPACE_WORDS];
1639 u8 cookie_plus:6,
1640 cookie_out_never:1,
1641 cookie_in_always:1;
1642 };
1643
1644 static inline struct tcp_extend_values *tcp_xv(struct request_values *rvp)
1645 {
1646 return (struct tcp_extend_values *)rvp;
1647 }
1648
1649 extern void tcp_v4_init(void);
1650 extern void tcp_init(void);
1651
1652 #endif /* _TCP_H */