]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - include/net/tls.h
Merge branch 'for-5.9/drivers' into for-5.9/block-merge
[mirror_ubuntu-jammy-kernel.git] / include / net / tls.h
1 /*
2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4 *
5 * This software is available to you under a choice of one of two
6 * licenses. You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the
9 * OpenIB.org BSD license below:
10 *
11 * Redistribution and use in source and binary forms, with or
12 * without modification, are permitted provided that the following
13 * conditions are met:
14 *
15 * - Redistributions of source code must retain the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer.
18 *
19 * - Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials
22 * provided with the distribution.
23 *
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31 * SOFTWARE.
32 */
33
34 #ifndef _TLS_OFFLOAD_H
35 #define _TLS_OFFLOAD_H
36
37 #include <linux/types.h>
38 #include <asm/byteorder.h>
39 #include <linux/crypto.h>
40 #include <linux/socket.h>
41 #include <linux/tcp.h>
42 #include <linux/skmsg.h>
43 #include <linux/mutex.h>
44 #include <linux/netdevice.h>
45 #include <linux/rcupdate.h>
46
47 #include <net/net_namespace.h>
48 #include <net/tcp.h>
49 #include <net/strparser.h>
50 #include <crypto/aead.h>
51 #include <uapi/linux/tls.h>
52
53
54 /* Maximum data size carried in a TLS record */
55 #define TLS_MAX_PAYLOAD_SIZE ((size_t)1 << 14)
56
57 #define TLS_HEADER_SIZE 5
58 #define TLS_NONCE_OFFSET TLS_HEADER_SIZE
59
60 #define TLS_CRYPTO_INFO_READY(info) ((info)->cipher_type)
61
62 #define TLS_RECORD_TYPE_DATA 0x17
63
64 #define TLS_AAD_SPACE_SIZE 13
65
66 #define MAX_IV_SIZE 16
67 #define TLS_MAX_REC_SEQ_SIZE 8
68
69 /* For AES-CCM, the full 16-bytes of IV is made of '4' fields of given sizes.
70 *
71 * IV[16] = b0[1] || implicit nonce[4] || explicit nonce[8] || length[3]
72 *
73 * The field 'length' is encoded in field 'b0' as '(length width - 1)'.
74 * Hence b0 contains (3 - 1) = 2.
75 */
76 #define TLS_AES_CCM_IV_B0_BYTE 2
77
78 #define __TLS_INC_STATS(net, field) \
79 __SNMP_INC_STATS((net)->mib.tls_statistics, field)
80 #define TLS_INC_STATS(net, field) \
81 SNMP_INC_STATS((net)->mib.tls_statistics, field)
82 #define __TLS_DEC_STATS(net, field) \
83 __SNMP_DEC_STATS((net)->mib.tls_statistics, field)
84 #define TLS_DEC_STATS(net, field) \
85 SNMP_DEC_STATS((net)->mib.tls_statistics, field)
86
87 enum {
88 TLS_BASE,
89 TLS_SW,
90 TLS_HW,
91 TLS_HW_RECORD,
92 TLS_NUM_CONFIG,
93 };
94
95 /* TLS records are maintained in 'struct tls_rec'. It stores the memory pages
96 * allocated or mapped for each TLS record. After encryption, the records are
97 * stores in a linked list.
98 */
99 struct tls_rec {
100 struct list_head list;
101 int tx_ready;
102 int tx_flags;
103
104 struct sk_msg msg_plaintext;
105 struct sk_msg msg_encrypted;
106
107 /* AAD | msg_plaintext.sg.data | sg_tag */
108 struct scatterlist sg_aead_in[2];
109 /* AAD | msg_encrypted.sg.data (data contains overhead for hdr & iv & tag) */
110 struct scatterlist sg_aead_out[2];
111
112 char content_type;
113 struct scatterlist sg_content_type;
114
115 char aad_space[TLS_AAD_SPACE_SIZE];
116 u8 iv_data[MAX_IV_SIZE];
117 struct aead_request aead_req;
118 u8 aead_req_ctx[];
119 };
120
121 struct tls_msg {
122 struct strp_msg rxm;
123 u8 control;
124 };
125
126 struct tx_work {
127 struct delayed_work work;
128 struct sock *sk;
129 };
130
131 struct tls_sw_context_tx {
132 struct crypto_aead *aead_send;
133 struct crypto_wait async_wait;
134 struct tx_work tx_work;
135 struct tls_rec *open_rec;
136 struct list_head tx_list;
137 atomic_t encrypt_pending;
138 /* protect crypto_wait with encrypt_pending */
139 spinlock_t encrypt_compl_lock;
140 int async_notify;
141 u8 async_capable:1;
142
143 #define BIT_TX_SCHEDULED 0
144 #define BIT_TX_CLOSING 1
145 unsigned long tx_bitmask;
146 };
147
148 struct tls_sw_context_rx {
149 struct crypto_aead *aead_recv;
150 struct crypto_wait async_wait;
151 struct strparser strp;
152 struct sk_buff_head rx_list; /* list of decrypted 'data' records */
153 void (*saved_data_ready)(struct sock *sk);
154
155 struct sk_buff *recv_pkt;
156 u8 control;
157 u8 async_capable:1;
158 u8 decrypted:1;
159 atomic_t decrypt_pending;
160 /* protect crypto_wait with decrypt_pending*/
161 spinlock_t decrypt_compl_lock;
162 bool async_notify;
163 };
164
165 struct tls_record_info {
166 struct list_head list;
167 u32 end_seq;
168 int len;
169 int num_frags;
170 skb_frag_t frags[MAX_SKB_FRAGS];
171 };
172
173 struct tls_offload_context_tx {
174 struct crypto_aead *aead_send;
175 spinlock_t lock; /* protects records list */
176 struct list_head records_list;
177 struct tls_record_info *open_record;
178 struct tls_record_info *retransmit_hint;
179 u64 hint_record_sn;
180 u64 unacked_record_sn;
181
182 struct scatterlist sg_tx_data[MAX_SKB_FRAGS];
183 void (*sk_destruct)(struct sock *sk);
184 u8 driver_state[] __aligned(8);
185 /* The TLS layer reserves room for driver specific state
186 * Currently the belief is that there is not enough
187 * driver specific state to justify another layer of indirection
188 */
189 #define TLS_DRIVER_STATE_SIZE_TX 16
190 };
191
192 #define TLS_OFFLOAD_CONTEXT_SIZE_TX \
193 (sizeof(struct tls_offload_context_tx) + TLS_DRIVER_STATE_SIZE_TX)
194
195 enum tls_context_flags {
196 TLS_RX_SYNC_RUNNING = 0,
197 /* Unlike RX where resync is driven entirely by the core in TX only
198 * the driver knows when things went out of sync, so we need the flag
199 * to be atomic.
200 */
201 TLS_TX_SYNC_SCHED = 1,
202 };
203
204 struct cipher_context {
205 char *iv;
206 char *rec_seq;
207 };
208
209 union tls_crypto_context {
210 struct tls_crypto_info info;
211 union {
212 struct tls12_crypto_info_aes_gcm_128 aes_gcm_128;
213 struct tls12_crypto_info_aes_gcm_256 aes_gcm_256;
214 };
215 };
216
217 struct tls_prot_info {
218 u16 version;
219 u16 cipher_type;
220 u16 prepend_size;
221 u16 tag_size;
222 u16 overhead_size;
223 u16 iv_size;
224 u16 salt_size;
225 u16 rec_seq_size;
226 u16 aad_size;
227 u16 tail_size;
228 };
229
230 struct tls_context {
231 /* read-only cache line */
232 struct tls_prot_info prot_info;
233
234 u8 tx_conf:3;
235 u8 rx_conf:3;
236
237 int (*push_pending_record)(struct sock *sk, int flags);
238 void (*sk_write_space)(struct sock *sk);
239
240 void *priv_ctx_tx;
241 void *priv_ctx_rx;
242
243 struct net_device *netdev;
244
245 /* rw cache line */
246 struct cipher_context tx;
247 struct cipher_context rx;
248
249 struct scatterlist *partially_sent_record;
250 u16 partially_sent_offset;
251
252 bool in_tcp_sendpages;
253 bool pending_open_record_frags;
254
255 struct mutex tx_lock; /* protects partially_sent_* fields and
256 * per-type TX fields
257 */
258 unsigned long flags;
259
260 /* cache cold stuff */
261 struct proto *sk_proto;
262
263 void (*sk_destruct)(struct sock *sk);
264
265 union tls_crypto_context crypto_send;
266 union tls_crypto_context crypto_recv;
267
268 struct list_head list;
269 refcount_t refcount;
270 struct rcu_head rcu;
271 };
272
273 enum tls_offload_ctx_dir {
274 TLS_OFFLOAD_CTX_DIR_RX,
275 TLS_OFFLOAD_CTX_DIR_TX,
276 };
277
278 struct tlsdev_ops {
279 int (*tls_dev_add)(struct net_device *netdev, struct sock *sk,
280 enum tls_offload_ctx_dir direction,
281 struct tls_crypto_info *crypto_info,
282 u32 start_offload_tcp_sn);
283 void (*tls_dev_del)(struct net_device *netdev,
284 struct tls_context *ctx,
285 enum tls_offload_ctx_dir direction);
286 int (*tls_dev_resync)(struct net_device *netdev,
287 struct sock *sk, u32 seq, u8 *rcd_sn,
288 enum tls_offload_ctx_dir direction);
289 };
290
291 enum tls_offload_sync_type {
292 TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ = 0,
293 TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT = 1,
294 };
295
296 #define TLS_DEVICE_RESYNC_NH_START_IVAL 2
297 #define TLS_DEVICE_RESYNC_NH_MAX_IVAL 128
298
299 struct tls_offload_context_rx {
300 /* sw must be the first member of tls_offload_context_rx */
301 struct tls_sw_context_rx sw;
302 enum tls_offload_sync_type resync_type;
303 /* this member is set regardless of resync_type, to avoid branches */
304 u8 resync_nh_reset:1;
305 /* CORE_NEXT_HINT-only member, but use the hole here */
306 u8 resync_nh_do_now:1;
307 union {
308 /* TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ */
309 struct {
310 atomic64_t resync_req;
311 };
312 /* TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT */
313 struct {
314 u32 decrypted_failed;
315 u32 decrypted_tgt;
316 } resync_nh;
317 };
318 u8 driver_state[] __aligned(8);
319 /* The TLS layer reserves room for driver specific state
320 * Currently the belief is that there is not enough
321 * driver specific state to justify another layer of indirection
322 */
323 #define TLS_DRIVER_STATE_SIZE_RX 8
324 };
325
326 #define TLS_OFFLOAD_CONTEXT_SIZE_RX \
327 (sizeof(struct tls_offload_context_rx) + TLS_DRIVER_STATE_SIZE_RX)
328
329 struct tls_context *tls_ctx_create(struct sock *sk);
330 void tls_ctx_free(struct sock *sk, struct tls_context *ctx);
331 void update_sk_prot(struct sock *sk, struct tls_context *ctx);
332
333 int wait_on_pending_writer(struct sock *sk, long *timeo);
334 int tls_sk_query(struct sock *sk, int optname, char __user *optval,
335 int __user *optlen);
336 int tls_sk_attach(struct sock *sk, int optname, char __user *optval,
337 unsigned int optlen);
338
339 int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx);
340 void tls_sw_strparser_arm(struct sock *sk, struct tls_context *ctx);
341 void tls_sw_strparser_done(struct tls_context *tls_ctx);
342 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
343 int tls_sw_sendpage_locked(struct sock *sk, struct page *page,
344 int offset, size_t size, int flags);
345 int tls_sw_sendpage(struct sock *sk, struct page *page,
346 int offset, size_t size, int flags);
347 void tls_sw_cancel_work_tx(struct tls_context *tls_ctx);
348 void tls_sw_release_resources_tx(struct sock *sk);
349 void tls_sw_free_ctx_tx(struct tls_context *tls_ctx);
350 void tls_sw_free_resources_rx(struct sock *sk);
351 void tls_sw_release_resources_rx(struct sock *sk);
352 void tls_sw_free_ctx_rx(struct tls_context *tls_ctx);
353 int tls_sw_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
354 int nonblock, int flags, int *addr_len);
355 bool tls_sw_stream_read(const struct sock *sk);
356 ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos,
357 struct pipe_inode_info *pipe,
358 size_t len, unsigned int flags);
359
360 int tls_device_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
361 int tls_device_sendpage(struct sock *sk, struct page *page,
362 int offset, size_t size, int flags);
363 int tls_tx_records(struct sock *sk, int flags);
364
365 struct tls_record_info *tls_get_record(struct tls_offload_context_tx *context,
366 u32 seq, u64 *p_record_sn);
367
368 static inline bool tls_record_is_start_marker(struct tls_record_info *rec)
369 {
370 return rec->len == 0;
371 }
372
373 static inline u32 tls_record_start_seq(struct tls_record_info *rec)
374 {
375 return rec->end_seq - rec->len;
376 }
377
378 int tls_push_sg(struct sock *sk, struct tls_context *ctx,
379 struct scatterlist *sg, u16 first_offset,
380 int flags);
381 int tls_push_partial_record(struct sock *sk, struct tls_context *ctx,
382 int flags);
383 void tls_free_partial_record(struct sock *sk, struct tls_context *ctx);
384
385 static inline struct tls_msg *tls_msg(struct sk_buff *skb)
386 {
387 return (struct tls_msg *)strp_msg(skb);
388 }
389
390 static inline bool tls_is_partially_sent_record(struct tls_context *ctx)
391 {
392 return !!ctx->partially_sent_record;
393 }
394
395 static inline bool tls_is_pending_open_record(struct tls_context *tls_ctx)
396 {
397 return tls_ctx->pending_open_record_frags;
398 }
399
400 static inline bool is_tx_ready(struct tls_sw_context_tx *ctx)
401 {
402 struct tls_rec *rec;
403
404 rec = list_first_entry(&ctx->tx_list, struct tls_rec, list);
405 if (!rec)
406 return false;
407
408 return READ_ONCE(rec->tx_ready);
409 }
410
411 static inline u16 tls_user_config(struct tls_context *ctx, bool tx)
412 {
413 u16 config = tx ? ctx->tx_conf : ctx->rx_conf;
414
415 switch (config) {
416 case TLS_BASE:
417 return TLS_CONF_BASE;
418 case TLS_SW:
419 return TLS_CONF_SW;
420 case TLS_HW:
421 return TLS_CONF_HW;
422 case TLS_HW_RECORD:
423 return TLS_CONF_HW_RECORD;
424 }
425 return 0;
426 }
427
428 struct sk_buff *
429 tls_validate_xmit_skb(struct sock *sk, struct net_device *dev,
430 struct sk_buff *skb);
431
432 static inline bool tls_is_sk_tx_device_offloaded(struct sock *sk)
433 {
434 #ifdef CONFIG_SOCK_VALIDATE_XMIT
435 return sk_fullsock(sk) &&
436 (smp_load_acquire(&sk->sk_validate_xmit_skb) ==
437 &tls_validate_xmit_skb);
438 #else
439 return false;
440 #endif
441 }
442
443 static inline void tls_err_abort(struct sock *sk, int err)
444 {
445 sk->sk_err = err;
446 sk->sk_error_report(sk);
447 }
448
449 static inline bool tls_bigint_increment(unsigned char *seq, int len)
450 {
451 int i;
452
453 for (i = len - 1; i >= 0; i--) {
454 ++seq[i];
455 if (seq[i] != 0)
456 break;
457 }
458
459 return (i == -1);
460 }
461
462 static inline struct tls_context *tls_get_ctx(const struct sock *sk)
463 {
464 struct inet_connection_sock *icsk = inet_csk(sk);
465
466 /* Use RCU on icsk_ulp_data only for sock diag code,
467 * TLS data path doesn't need rcu_dereference().
468 */
469 return (__force void *)icsk->icsk_ulp_data;
470 }
471
472 static inline void tls_advance_record_sn(struct sock *sk,
473 struct tls_prot_info *prot,
474 struct cipher_context *ctx)
475 {
476 if (tls_bigint_increment(ctx->rec_seq, prot->rec_seq_size))
477 tls_err_abort(sk, EBADMSG);
478
479 if (prot->version != TLS_1_3_VERSION)
480 tls_bigint_increment(ctx->iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
481 prot->iv_size);
482 }
483
484 static inline void tls_fill_prepend(struct tls_context *ctx,
485 char *buf,
486 size_t plaintext_len,
487 unsigned char record_type,
488 int version)
489 {
490 struct tls_prot_info *prot = &ctx->prot_info;
491 size_t pkt_len, iv_size = prot->iv_size;
492
493 pkt_len = plaintext_len + prot->tag_size;
494 if (version != TLS_1_3_VERSION) {
495 pkt_len += iv_size;
496
497 memcpy(buf + TLS_NONCE_OFFSET,
498 ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, iv_size);
499 }
500
501 /* we cover nonce explicit here as well, so buf should be of
502 * size KTLS_DTLS_HEADER_SIZE + KTLS_DTLS_NONCE_EXPLICIT_SIZE
503 */
504 buf[0] = version == TLS_1_3_VERSION ?
505 TLS_RECORD_TYPE_DATA : record_type;
506 /* Note that VERSION must be TLS_1_2 for both TLS1.2 and TLS1.3 */
507 buf[1] = TLS_1_2_VERSION_MINOR;
508 buf[2] = TLS_1_2_VERSION_MAJOR;
509 /* we can use IV for nonce explicit according to spec */
510 buf[3] = pkt_len >> 8;
511 buf[4] = pkt_len & 0xFF;
512 }
513
514 static inline void tls_make_aad(char *buf,
515 size_t size,
516 char *record_sequence,
517 int record_sequence_size,
518 unsigned char record_type,
519 int version)
520 {
521 if (version != TLS_1_3_VERSION) {
522 memcpy(buf, record_sequence, record_sequence_size);
523 buf += 8;
524 } else {
525 size += TLS_CIPHER_AES_GCM_128_TAG_SIZE;
526 }
527
528 buf[0] = version == TLS_1_3_VERSION ?
529 TLS_RECORD_TYPE_DATA : record_type;
530 buf[1] = TLS_1_2_VERSION_MAJOR;
531 buf[2] = TLS_1_2_VERSION_MINOR;
532 buf[3] = size >> 8;
533 buf[4] = size & 0xFF;
534 }
535
536 static inline void xor_iv_with_seq(int version, char *iv, char *seq)
537 {
538 int i;
539
540 if (version == TLS_1_3_VERSION) {
541 for (i = 0; i < 8; i++)
542 iv[i + 4] ^= seq[i];
543 }
544 }
545
546
547 static inline struct tls_sw_context_rx *tls_sw_ctx_rx(
548 const struct tls_context *tls_ctx)
549 {
550 return (struct tls_sw_context_rx *)tls_ctx->priv_ctx_rx;
551 }
552
553 static inline struct tls_sw_context_tx *tls_sw_ctx_tx(
554 const struct tls_context *tls_ctx)
555 {
556 return (struct tls_sw_context_tx *)tls_ctx->priv_ctx_tx;
557 }
558
559 static inline struct tls_offload_context_tx *
560 tls_offload_ctx_tx(const struct tls_context *tls_ctx)
561 {
562 return (struct tls_offload_context_tx *)tls_ctx->priv_ctx_tx;
563 }
564
565 static inline bool tls_sw_has_ctx_tx(const struct sock *sk)
566 {
567 struct tls_context *ctx = tls_get_ctx(sk);
568
569 if (!ctx)
570 return false;
571 return !!tls_sw_ctx_tx(ctx);
572 }
573
574 static inline bool tls_sw_has_ctx_rx(const struct sock *sk)
575 {
576 struct tls_context *ctx = tls_get_ctx(sk);
577
578 if (!ctx)
579 return false;
580 return !!tls_sw_ctx_rx(ctx);
581 }
582
583 void tls_sw_write_space(struct sock *sk, struct tls_context *ctx);
584 void tls_device_write_space(struct sock *sk, struct tls_context *ctx);
585
586 static inline struct tls_offload_context_rx *
587 tls_offload_ctx_rx(const struct tls_context *tls_ctx)
588 {
589 return (struct tls_offload_context_rx *)tls_ctx->priv_ctx_rx;
590 }
591
592 #if IS_ENABLED(CONFIG_TLS_DEVICE)
593 static inline void *__tls_driver_ctx(struct tls_context *tls_ctx,
594 enum tls_offload_ctx_dir direction)
595 {
596 if (direction == TLS_OFFLOAD_CTX_DIR_TX)
597 return tls_offload_ctx_tx(tls_ctx)->driver_state;
598 else
599 return tls_offload_ctx_rx(tls_ctx)->driver_state;
600 }
601
602 static inline void *
603 tls_driver_ctx(const struct sock *sk, enum tls_offload_ctx_dir direction)
604 {
605 return __tls_driver_ctx(tls_get_ctx(sk), direction);
606 }
607 #endif
608
609 /* The TLS context is valid until sk_destruct is called */
610 #define RESYNC_REQ (1 << 0)
611 #define RESYNC_REQ_FORCE (1 << 1)
612 static inline void tls_offload_rx_resync_request(struct sock *sk, __be32 seq)
613 {
614 struct tls_context *tls_ctx = tls_get_ctx(sk);
615 struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx);
616
617 atomic64_set(&rx_ctx->resync_req, ((u64)ntohl(seq) << 32) | RESYNC_REQ);
618 }
619
620 static inline void tls_offload_rx_force_resync_request(struct sock *sk)
621 {
622 struct tls_context *tls_ctx = tls_get_ctx(sk);
623 struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx);
624
625 atomic64_set(&rx_ctx->resync_req, RESYNC_REQ | RESYNC_REQ_FORCE);
626 }
627
628 static inline void
629 tls_offload_rx_resync_set_type(struct sock *sk, enum tls_offload_sync_type type)
630 {
631 struct tls_context *tls_ctx = tls_get_ctx(sk);
632
633 tls_offload_ctx_rx(tls_ctx)->resync_type = type;
634 }
635
636 /* Driver's seq tracking has to be disabled until resync succeeded */
637 static inline bool tls_offload_tx_resync_pending(struct sock *sk)
638 {
639 struct tls_context *tls_ctx = tls_get_ctx(sk);
640 bool ret;
641
642 ret = test_bit(TLS_TX_SYNC_SCHED, &tls_ctx->flags);
643 smp_mb__after_atomic();
644 return ret;
645 }
646
647 int __net_init tls_proc_init(struct net *net);
648 void __net_exit tls_proc_fini(struct net *net);
649
650 int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg,
651 unsigned char *record_type);
652 int decrypt_skb(struct sock *sk, struct sk_buff *skb,
653 struct scatterlist *sgout);
654 struct sk_buff *tls_encrypt_skb(struct sk_buff *skb);
655
656 struct sk_buff *tls_validate_xmit_skb(struct sock *sk,
657 struct net_device *dev,
658 struct sk_buff *skb);
659
660 int tls_sw_fallback_init(struct sock *sk,
661 struct tls_offload_context_tx *offload_ctx,
662 struct tls_crypto_info *crypto_info);
663
664 #ifdef CONFIG_TLS_DEVICE
665 void tls_device_init(void);
666 void tls_device_cleanup(void);
667 void tls_device_sk_destruct(struct sock *sk);
668 int tls_set_device_offload(struct sock *sk, struct tls_context *ctx);
669 void tls_device_free_resources_tx(struct sock *sk);
670 int tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx);
671 void tls_device_offload_cleanup_rx(struct sock *sk);
672 void tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq);
673 void tls_offload_tx_resync_request(struct sock *sk, u32 got_seq, u32 exp_seq);
674 int tls_device_decrypted(struct sock *sk, struct tls_context *tls_ctx,
675 struct sk_buff *skb, struct strp_msg *rxm);
676
677 static inline bool tls_is_sk_rx_device_offloaded(struct sock *sk)
678 {
679 if (!sk_fullsock(sk) ||
680 smp_load_acquire(&sk->sk_destruct) != tls_device_sk_destruct)
681 return false;
682 return tls_get_ctx(sk)->rx_conf == TLS_HW;
683 }
684 #else
685 static inline void tls_device_init(void) {}
686 static inline void tls_device_cleanup(void) {}
687
688 static inline int
689 tls_set_device_offload(struct sock *sk, struct tls_context *ctx)
690 {
691 return -EOPNOTSUPP;
692 }
693
694 static inline void tls_device_free_resources_tx(struct sock *sk) {}
695
696 static inline int
697 tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx)
698 {
699 return -EOPNOTSUPP;
700 }
701
702 static inline void tls_device_offload_cleanup_rx(struct sock *sk) {}
703 static inline void
704 tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq) {}
705
706 static inline int
707 tls_device_decrypted(struct sock *sk, struct tls_context *tls_ctx,
708 struct sk_buff *skb, struct strp_msg *rxm)
709 {
710 return 0;
711 }
712 #endif
713 #endif /* _TLS_OFFLOAD_H */