]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - include/net/tls.h
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm...
[mirror_ubuntu-eoan-kernel.git] / include / net / tls.h
1 /*
2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4 *
5 * This software is available to you under a choice of one of two
6 * licenses. You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the
9 * OpenIB.org BSD license below:
10 *
11 * Redistribution and use in source and binary forms, with or
12 * without modification, are permitted provided that the following
13 * conditions are met:
14 *
15 * - Redistributions of source code must retain the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer.
18 *
19 * - Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials
22 * provided with the distribution.
23 *
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31 * SOFTWARE.
32 */
33
34 #ifndef _TLS_OFFLOAD_H
35 #define _TLS_OFFLOAD_H
36
37 #include <linux/types.h>
38 #include <asm/byteorder.h>
39 #include <linux/crypto.h>
40 #include <linux/socket.h>
41 #include <linux/tcp.h>
42 #include <linux/skmsg.h>
43
44 #include <net/tcp.h>
45 #include <net/strparser.h>
46 #include <crypto/aead.h>
47 #include <uapi/linux/tls.h>
48
49
50 /* Maximum data size carried in a TLS record */
51 #define TLS_MAX_PAYLOAD_SIZE ((size_t)1 << 14)
52
53 #define TLS_HEADER_SIZE 5
54 #define TLS_NONCE_OFFSET TLS_HEADER_SIZE
55
56 #define TLS_CRYPTO_INFO_READY(info) ((info)->cipher_type)
57
58 #define TLS_RECORD_TYPE_DATA 0x17
59
60 #define TLS_AAD_SPACE_SIZE 13
61 #define TLS_DEVICE_NAME_MAX 32
62
63 /*
64 * This structure defines the routines for Inline TLS driver.
65 * The following routines are optional and filled with a
66 * null pointer if not defined.
67 *
68 * @name: Its the name of registered Inline tls device
69 * @dev_list: Inline tls device list
70 * int (*feature)(struct tls_device *device);
71 * Called to return Inline TLS driver capability
72 *
73 * int (*hash)(struct tls_device *device, struct sock *sk);
74 * This function sets Inline driver for listen and program
75 * device specific functioanlity as required
76 *
77 * void (*unhash)(struct tls_device *device, struct sock *sk);
78 * This function cleans listen state set by Inline TLS driver
79 *
80 * void (*release)(struct kref *kref);
81 * Release the registered device and allocated resources
82 * @kref: Number of reference to tls_device
83 */
84 struct tls_device {
85 char name[TLS_DEVICE_NAME_MAX];
86 struct list_head dev_list;
87 int (*feature)(struct tls_device *device);
88 int (*hash)(struct tls_device *device, struct sock *sk);
89 void (*unhash)(struct tls_device *device, struct sock *sk);
90 void (*release)(struct kref *kref);
91 struct kref kref;
92 };
93
94 enum {
95 TLS_BASE,
96 TLS_SW,
97 #ifdef CONFIG_TLS_DEVICE
98 TLS_HW,
99 #endif
100 TLS_HW_RECORD,
101 TLS_NUM_CONFIG,
102 };
103
104 /* TLS records are maintained in 'struct tls_rec'. It stores the memory pages
105 * allocated or mapped for each TLS record. After encryption, the records are
106 * stores in a linked list.
107 */
108 struct tls_rec {
109 struct list_head list;
110 int tx_ready;
111 int tx_flags;
112 int inplace_crypto;
113
114 struct sk_msg msg_plaintext;
115 struct sk_msg msg_encrypted;
116
117 /* AAD | msg_plaintext.sg.data | sg_tag */
118 struct scatterlist sg_aead_in[2];
119 /* AAD | msg_encrypted.sg.data (data contains overhead for hdr & iv & tag) */
120 struct scatterlist sg_aead_out[2];
121
122 char aad_space[TLS_AAD_SPACE_SIZE];
123 u8 iv_data[TLS_CIPHER_AES_GCM_128_IV_SIZE +
124 TLS_CIPHER_AES_GCM_128_SALT_SIZE];
125 struct aead_request aead_req;
126 u8 aead_req_ctx[];
127 };
128
129 struct tx_work {
130 struct delayed_work work;
131 struct sock *sk;
132 };
133
134 struct tls_sw_context_tx {
135 struct crypto_aead *aead_send;
136 struct crypto_wait async_wait;
137 struct tx_work tx_work;
138 struct tls_rec *open_rec;
139 struct list_head tx_list;
140 atomic_t encrypt_pending;
141 int async_notify;
142
143 #define BIT_TX_SCHEDULED 0
144 unsigned long tx_bitmask;
145 };
146
147 struct tls_sw_context_rx {
148 struct crypto_aead *aead_recv;
149 struct crypto_wait async_wait;
150
151 struct strparser strp;
152 void (*saved_data_ready)(struct sock *sk);
153
154 struct sk_buff *recv_pkt;
155 u8 control;
156 bool decrypted;
157 atomic_t decrypt_pending;
158 bool async_notify;
159 };
160
161 struct tls_record_info {
162 struct list_head list;
163 u32 end_seq;
164 int len;
165 int num_frags;
166 skb_frag_t frags[MAX_SKB_FRAGS];
167 };
168
169 struct tls_offload_context_tx {
170 struct crypto_aead *aead_send;
171 spinlock_t lock; /* protects records list */
172 struct list_head records_list;
173 struct tls_record_info *open_record;
174 struct tls_record_info *retransmit_hint;
175 u64 hint_record_sn;
176 u64 unacked_record_sn;
177
178 struct scatterlist sg_tx_data[MAX_SKB_FRAGS];
179 void (*sk_destruct)(struct sock *sk);
180 u8 driver_state[];
181 /* The TLS layer reserves room for driver specific state
182 * Currently the belief is that there is not enough
183 * driver specific state to justify another layer of indirection
184 */
185 #define TLS_DRIVER_STATE_SIZE (max_t(size_t, 8, sizeof(void *)))
186 };
187
188 #define TLS_OFFLOAD_CONTEXT_SIZE_TX \
189 (ALIGN(sizeof(struct tls_offload_context_tx), sizeof(void *)) + \
190 TLS_DRIVER_STATE_SIZE)
191
192 enum {
193 TLS_PENDING_CLOSED_RECORD
194 };
195
196 struct cipher_context {
197 u16 prepend_size;
198 u16 tag_size;
199 u16 overhead_size;
200 u16 iv_size;
201 char *iv;
202 u16 rec_seq_size;
203 char *rec_seq;
204 };
205
206 union tls_crypto_context {
207 struct tls_crypto_info info;
208 struct tls12_crypto_info_aes_gcm_128 aes_gcm_128;
209 };
210
211 struct tls_context {
212 union tls_crypto_context crypto_send;
213 union tls_crypto_context crypto_recv;
214
215 struct list_head list;
216 struct net_device *netdev;
217 refcount_t refcount;
218
219 void *priv_ctx_tx;
220 void *priv_ctx_rx;
221
222 u8 tx_conf:3;
223 u8 rx_conf:3;
224
225 struct cipher_context tx;
226 struct cipher_context rx;
227
228 struct scatterlist *partially_sent_record;
229 u16 partially_sent_offset;
230
231 unsigned long flags;
232 bool in_tcp_sendpages;
233 bool pending_open_record_frags;
234
235 int (*push_pending_record)(struct sock *sk, int flags);
236
237 void (*sk_write_space)(struct sock *sk);
238 void (*sk_destruct)(struct sock *sk);
239 void (*sk_proto_close)(struct sock *sk, long timeout);
240
241 int (*setsockopt)(struct sock *sk, int level,
242 int optname, char __user *optval,
243 unsigned int optlen);
244 int (*getsockopt)(struct sock *sk, int level,
245 int optname, char __user *optval,
246 int __user *optlen);
247 int (*hash)(struct sock *sk);
248 void (*unhash)(struct sock *sk);
249 };
250
251 struct tls_offload_context_rx {
252 /* sw must be the first member of tls_offload_context_rx */
253 struct tls_sw_context_rx sw;
254 atomic64_t resync_req;
255 u8 driver_state[];
256 /* The TLS layer reserves room for driver specific state
257 * Currently the belief is that there is not enough
258 * driver specific state to justify another layer of indirection
259 */
260 };
261
262 #define TLS_OFFLOAD_CONTEXT_SIZE_RX \
263 (ALIGN(sizeof(struct tls_offload_context_rx), sizeof(void *)) + \
264 TLS_DRIVER_STATE_SIZE)
265
266 int wait_on_pending_writer(struct sock *sk, long *timeo);
267 int tls_sk_query(struct sock *sk, int optname, char __user *optval,
268 int __user *optlen);
269 int tls_sk_attach(struct sock *sk, int optname, char __user *optval,
270 unsigned int optlen);
271
272 int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx);
273 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
274 int tls_sw_sendpage(struct sock *sk, struct page *page,
275 int offset, size_t size, int flags);
276 void tls_sw_close(struct sock *sk, long timeout);
277 void tls_sw_free_resources_tx(struct sock *sk);
278 void tls_sw_free_resources_rx(struct sock *sk);
279 void tls_sw_release_resources_rx(struct sock *sk);
280 int tls_sw_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
281 int nonblock, int flags, int *addr_len);
282 bool tls_sw_stream_read(const struct sock *sk);
283 ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos,
284 struct pipe_inode_info *pipe,
285 size_t len, unsigned int flags);
286
287 int tls_set_device_offload(struct sock *sk, struct tls_context *ctx);
288 int tls_device_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
289 int tls_device_sendpage(struct sock *sk, struct page *page,
290 int offset, size_t size, int flags);
291 void tls_device_sk_destruct(struct sock *sk);
292 void tls_device_init(void);
293 void tls_device_cleanup(void);
294 int tls_tx_records(struct sock *sk, int flags);
295
296 struct tls_record_info *tls_get_record(struct tls_offload_context_tx *context,
297 u32 seq, u64 *p_record_sn);
298
299 static inline bool tls_record_is_start_marker(struct tls_record_info *rec)
300 {
301 return rec->len == 0;
302 }
303
304 static inline u32 tls_record_start_seq(struct tls_record_info *rec)
305 {
306 return rec->end_seq - rec->len;
307 }
308
309 void tls_sk_destruct(struct sock *sk, struct tls_context *ctx);
310 int tls_push_sg(struct sock *sk, struct tls_context *ctx,
311 struct scatterlist *sg, u16 first_offset,
312 int flags);
313 int tls_push_partial_record(struct sock *sk, struct tls_context *ctx,
314 int flags);
315
316 int tls_push_pending_closed_record(struct sock *sk, struct tls_context *ctx,
317 int flags, long *timeo);
318
319 static inline bool tls_is_pending_closed_record(struct tls_context *ctx)
320 {
321 return test_bit(TLS_PENDING_CLOSED_RECORD, &ctx->flags);
322 }
323
324 static inline int tls_complete_pending_work(struct sock *sk,
325 struct tls_context *ctx,
326 int flags, long *timeo)
327 {
328 int rc = 0;
329
330 if (unlikely(sk->sk_write_pending))
331 rc = wait_on_pending_writer(sk, timeo);
332
333 if (!rc && tls_is_pending_closed_record(ctx))
334 rc = tls_push_pending_closed_record(sk, ctx, flags, timeo);
335
336 return rc;
337 }
338
339 static inline bool tls_is_partially_sent_record(struct tls_context *ctx)
340 {
341 return !!ctx->partially_sent_record;
342 }
343
344 static inline bool tls_is_pending_open_record(struct tls_context *tls_ctx)
345 {
346 return tls_ctx->pending_open_record_frags;
347 }
348
349 static inline bool is_tx_ready(struct tls_sw_context_tx *ctx)
350 {
351 struct tls_rec *rec;
352
353 rec = list_first_entry(&ctx->tx_list, struct tls_rec, list);
354 if (!rec)
355 return false;
356
357 return READ_ONCE(rec->tx_ready);
358 }
359
360 struct sk_buff *
361 tls_validate_xmit_skb(struct sock *sk, struct net_device *dev,
362 struct sk_buff *skb);
363
364 static inline bool tls_is_sk_tx_device_offloaded(struct sock *sk)
365 {
366 #ifdef CONFIG_SOCK_VALIDATE_XMIT
367 return sk_fullsock(sk) &
368 (smp_load_acquire(&sk->sk_validate_xmit_skb) ==
369 &tls_validate_xmit_skb);
370 #else
371 return false;
372 #endif
373 }
374
375 static inline void tls_err_abort(struct sock *sk, int err)
376 {
377 sk->sk_err = err;
378 sk->sk_error_report(sk);
379 }
380
381 static inline bool tls_bigint_increment(unsigned char *seq, int len)
382 {
383 int i;
384
385 for (i = len - 1; i >= 0; i--) {
386 ++seq[i];
387 if (seq[i] != 0)
388 break;
389 }
390
391 return (i == -1);
392 }
393
394 static inline void tls_advance_record_sn(struct sock *sk,
395 struct cipher_context *ctx)
396 {
397 if (tls_bigint_increment(ctx->rec_seq, ctx->rec_seq_size))
398 tls_err_abort(sk, EBADMSG);
399 tls_bigint_increment(ctx->iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
400 ctx->iv_size);
401 }
402
403 static inline void tls_fill_prepend(struct tls_context *ctx,
404 char *buf,
405 size_t plaintext_len,
406 unsigned char record_type)
407 {
408 size_t pkt_len, iv_size = ctx->tx.iv_size;
409
410 pkt_len = plaintext_len + iv_size + ctx->tx.tag_size;
411
412 /* we cover nonce explicit here as well, so buf should be of
413 * size KTLS_DTLS_HEADER_SIZE + KTLS_DTLS_NONCE_EXPLICIT_SIZE
414 */
415 buf[0] = record_type;
416 buf[1] = TLS_VERSION_MINOR(ctx->crypto_send.info.version);
417 buf[2] = TLS_VERSION_MAJOR(ctx->crypto_send.info.version);
418 /* we can use IV for nonce explicit according to spec */
419 buf[3] = pkt_len >> 8;
420 buf[4] = pkt_len & 0xFF;
421 memcpy(buf + TLS_NONCE_OFFSET,
422 ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, iv_size);
423 }
424
425 static inline void tls_make_aad(char *buf,
426 size_t size,
427 char *record_sequence,
428 int record_sequence_size,
429 unsigned char record_type)
430 {
431 memcpy(buf, record_sequence, record_sequence_size);
432
433 buf[8] = record_type;
434 buf[9] = TLS_1_2_VERSION_MAJOR;
435 buf[10] = TLS_1_2_VERSION_MINOR;
436 buf[11] = size >> 8;
437 buf[12] = size & 0xFF;
438 }
439
440 static inline struct tls_context *tls_get_ctx(const struct sock *sk)
441 {
442 struct inet_connection_sock *icsk = inet_csk(sk);
443
444 return icsk->icsk_ulp_data;
445 }
446
447 static inline struct tls_sw_context_rx *tls_sw_ctx_rx(
448 const struct tls_context *tls_ctx)
449 {
450 return (struct tls_sw_context_rx *)tls_ctx->priv_ctx_rx;
451 }
452
453 static inline struct tls_sw_context_tx *tls_sw_ctx_tx(
454 const struct tls_context *tls_ctx)
455 {
456 return (struct tls_sw_context_tx *)tls_ctx->priv_ctx_tx;
457 }
458
459 static inline struct tls_offload_context_tx *
460 tls_offload_ctx_tx(const struct tls_context *tls_ctx)
461 {
462 return (struct tls_offload_context_tx *)tls_ctx->priv_ctx_tx;
463 }
464
465 static inline bool tls_sw_has_ctx_tx(const struct sock *sk)
466 {
467 struct tls_context *ctx = tls_get_ctx(sk);
468
469 if (!ctx)
470 return false;
471 return !!tls_sw_ctx_tx(ctx);
472 }
473
474 static inline struct tls_offload_context_rx *
475 tls_offload_ctx_rx(const struct tls_context *tls_ctx)
476 {
477 return (struct tls_offload_context_rx *)tls_ctx->priv_ctx_rx;
478 }
479
480 /* The TLS context is valid until sk_destruct is called */
481 static inline void tls_offload_rx_resync_request(struct sock *sk, __be32 seq)
482 {
483 struct tls_context *tls_ctx = tls_get_ctx(sk);
484 struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx);
485
486 atomic64_set(&rx_ctx->resync_req, ((((uint64_t)seq) << 32) | 1));
487 }
488
489
490 int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg,
491 unsigned char *record_type);
492 void tls_register_device(struct tls_device *device);
493 void tls_unregister_device(struct tls_device *device);
494 int tls_device_decrypted(struct sock *sk, struct sk_buff *skb);
495 int decrypt_skb(struct sock *sk, struct sk_buff *skb,
496 struct scatterlist *sgout);
497
498 struct sk_buff *tls_validate_xmit_skb(struct sock *sk,
499 struct net_device *dev,
500 struct sk_buff *skb);
501
502 int tls_sw_fallback_init(struct sock *sk,
503 struct tls_offload_context_tx *offload_ctx,
504 struct tls_crypto_info *crypto_info);
505
506 int tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx);
507
508 void tls_device_offload_cleanup_rx(struct sock *sk);
509 void handle_device_resync(struct sock *sk, u32 seq, u64 rcd_sn);
510
511 #endif /* _TLS_OFFLOAD_H */