]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - include/net/tls.h
Merge branch 'x86-entry-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-focal-kernel.git] / include / net / tls.h
1 /*
2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4 *
5 * This software is available to you under a choice of one of two
6 * licenses. You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the
9 * OpenIB.org BSD license below:
10 *
11 * Redistribution and use in source and binary forms, with or
12 * without modification, are permitted provided that the following
13 * conditions are met:
14 *
15 * - Redistributions of source code must retain the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer.
18 *
19 * - Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials
22 * provided with the distribution.
23 *
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31 * SOFTWARE.
32 */
33
34 #ifndef _TLS_OFFLOAD_H
35 #define _TLS_OFFLOAD_H
36
37 #include <linux/types.h>
38 #include <asm/byteorder.h>
39 #include <linux/crypto.h>
40 #include <linux/socket.h>
41 #include <linux/tcp.h>
42 #include <linux/skmsg.h>
43 #include <linux/netdevice.h>
44
45 #include <net/tcp.h>
46 #include <net/strparser.h>
47 #include <crypto/aead.h>
48 #include <uapi/linux/tls.h>
49
50
51 /* Maximum data size carried in a TLS record */
52 #define TLS_MAX_PAYLOAD_SIZE ((size_t)1 << 14)
53
54 #define TLS_HEADER_SIZE 5
55 #define TLS_NONCE_OFFSET TLS_HEADER_SIZE
56
57 #define TLS_CRYPTO_INFO_READY(info) ((info)->cipher_type)
58
59 #define TLS_RECORD_TYPE_DATA 0x17
60
61 #define TLS_AAD_SPACE_SIZE 13
62 #define TLS_DEVICE_NAME_MAX 32
63
64 #define MAX_IV_SIZE 16
65 #define TLS_MAX_REC_SEQ_SIZE 8
66
67 /* For AES-CCM, the full 16-bytes of IV is made of '4' fields of given sizes.
68 *
69 * IV[16] = b0[1] || implicit nonce[4] || explicit nonce[8] || length[3]
70 *
71 * The field 'length' is encoded in field 'b0' as '(length width - 1)'.
72 * Hence b0 contains (3 - 1) = 2.
73 */
74 #define TLS_AES_CCM_IV_B0_BYTE 2
75
76 /*
77 * This structure defines the routines for Inline TLS driver.
78 * The following routines are optional and filled with a
79 * null pointer if not defined.
80 *
81 * @name: Its the name of registered Inline tls device
82 * @dev_list: Inline tls device list
83 * int (*feature)(struct tls_device *device);
84 * Called to return Inline TLS driver capability
85 *
86 * int (*hash)(struct tls_device *device, struct sock *sk);
87 * This function sets Inline driver for listen and program
88 * device specific functioanlity as required
89 *
90 * void (*unhash)(struct tls_device *device, struct sock *sk);
91 * This function cleans listen state set by Inline TLS driver
92 *
93 * void (*release)(struct kref *kref);
94 * Release the registered device and allocated resources
95 * @kref: Number of reference to tls_device
96 */
97 struct tls_device {
98 char name[TLS_DEVICE_NAME_MAX];
99 struct list_head dev_list;
100 int (*feature)(struct tls_device *device);
101 int (*hash)(struct tls_device *device, struct sock *sk);
102 void (*unhash)(struct tls_device *device, struct sock *sk);
103 void (*release)(struct kref *kref);
104 struct kref kref;
105 };
106
107 enum {
108 TLS_BASE,
109 TLS_SW,
110 TLS_HW,
111 TLS_HW_RECORD,
112 TLS_NUM_CONFIG,
113 };
114
115 /* TLS records are maintained in 'struct tls_rec'. It stores the memory pages
116 * allocated or mapped for each TLS record. After encryption, the records are
117 * stores in a linked list.
118 */
119 struct tls_rec {
120 struct list_head list;
121 int tx_ready;
122 int tx_flags;
123 int inplace_crypto;
124
125 struct sk_msg msg_plaintext;
126 struct sk_msg msg_encrypted;
127
128 /* AAD | msg_plaintext.sg.data | sg_tag */
129 struct scatterlist sg_aead_in[2];
130 /* AAD | msg_encrypted.sg.data (data contains overhead for hdr & iv & tag) */
131 struct scatterlist sg_aead_out[2];
132
133 char content_type;
134 struct scatterlist sg_content_type;
135
136 char aad_space[TLS_AAD_SPACE_SIZE];
137 u8 iv_data[MAX_IV_SIZE];
138 struct aead_request aead_req;
139 u8 aead_req_ctx[];
140 };
141
142 struct tls_msg {
143 struct strp_msg rxm;
144 u8 control;
145 };
146
147 struct tx_work {
148 struct delayed_work work;
149 struct sock *sk;
150 };
151
152 struct tls_sw_context_tx {
153 struct crypto_aead *aead_send;
154 struct crypto_wait async_wait;
155 struct tx_work tx_work;
156 struct tls_rec *open_rec;
157 struct list_head tx_list;
158 atomic_t encrypt_pending;
159 int async_notify;
160 int async_capable;
161
162 #define BIT_TX_SCHEDULED 0
163 #define BIT_TX_CLOSING 1
164 unsigned long tx_bitmask;
165 };
166
167 struct tls_sw_context_rx {
168 struct crypto_aead *aead_recv;
169 struct crypto_wait async_wait;
170 struct strparser strp;
171 struct sk_buff_head rx_list; /* list of decrypted 'data' records */
172 void (*saved_data_ready)(struct sock *sk);
173
174 struct sk_buff *recv_pkt;
175 u8 control;
176 int async_capable;
177 bool decrypted;
178 atomic_t decrypt_pending;
179 bool async_notify;
180 };
181
182 struct tls_record_info {
183 struct list_head list;
184 u32 end_seq;
185 int len;
186 int num_frags;
187 skb_frag_t frags[MAX_SKB_FRAGS];
188 };
189
190 struct tls_offload_context_tx {
191 struct crypto_aead *aead_send;
192 spinlock_t lock; /* protects records list */
193 struct list_head records_list;
194 struct tls_record_info *open_record;
195 struct tls_record_info *retransmit_hint;
196 u64 hint_record_sn;
197 u64 unacked_record_sn;
198
199 struct scatterlist sg_tx_data[MAX_SKB_FRAGS];
200 void (*sk_destruct)(struct sock *sk);
201 u8 driver_state[] __aligned(8);
202 /* The TLS layer reserves room for driver specific state
203 * Currently the belief is that there is not enough
204 * driver specific state to justify another layer of indirection
205 */
206 #define TLS_DRIVER_STATE_SIZE_TX 16
207 };
208
209 #define TLS_OFFLOAD_CONTEXT_SIZE_TX \
210 (sizeof(struct tls_offload_context_tx) + TLS_DRIVER_STATE_SIZE_TX)
211
212 enum tls_context_flags {
213 TLS_RX_SYNC_RUNNING = 0,
214 /* Unlike RX where resync is driven entirely by the core in TX only
215 * the driver knows when things went out of sync, so we need the flag
216 * to be atomic.
217 */
218 TLS_TX_SYNC_SCHED = 1,
219 };
220
221 struct cipher_context {
222 char *iv;
223 char *rec_seq;
224 };
225
226 union tls_crypto_context {
227 struct tls_crypto_info info;
228 union {
229 struct tls12_crypto_info_aes_gcm_128 aes_gcm_128;
230 struct tls12_crypto_info_aes_gcm_256 aes_gcm_256;
231 };
232 };
233
234 struct tls_prot_info {
235 u16 version;
236 u16 cipher_type;
237 u16 prepend_size;
238 u16 tag_size;
239 u16 overhead_size;
240 u16 iv_size;
241 u16 salt_size;
242 u16 rec_seq_size;
243 u16 aad_size;
244 u16 tail_size;
245 };
246
247 struct tls_context {
248 /* read-only cache line */
249 struct tls_prot_info prot_info;
250
251 u8 tx_conf:3;
252 u8 rx_conf:3;
253
254 int (*push_pending_record)(struct sock *sk, int flags);
255 void (*sk_write_space)(struct sock *sk);
256
257 void *priv_ctx_tx;
258 void *priv_ctx_rx;
259
260 struct net_device *netdev;
261
262 /* rw cache line */
263 struct cipher_context tx;
264 struct cipher_context rx;
265
266 struct scatterlist *partially_sent_record;
267 u16 partially_sent_offset;
268
269 bool in_tcp_sendpages;
270 bool pending_open_record_frags;
271 unsigned long flags;
272
273 /* cache cold stuff */
274 struct proto *sk_proto;
275
276 void (*sk_destruct)(struct sock *sk);
277 void (*sk_proto_close)(struct sock *sk, long timeout);
278
279 int (*setsockopt)(struct sock *sk, int level,
280 int optname, char __user *optval,
281 unsigned int optlen);
282 int (*getsockopt)(struct sock *sk, int level,
283 int optname, char __user *optval,
284 int __user *optlen);
285 int (*hash)(struct sock *sk);
286 void (*unhash)(struct sock *sk);
287
288 union tls_crypto_context crypto_send;
289 union tls_crypto_context crypto_recv;
290
291 struct list_head list;
292 refcount_t refcount;
293 };
294
295 enum tls_offload_ctx_dir {
296 TLS_OFFLOAD_CTX_DIR_RX,
297 TLS_OFFLOAD_CTX_DIR_TX,
298 };
299
300 struct tlsdev_ops {
301 int (*tls_dev_add)(struct net_device *netdev, struct sock *sk,
302 enum tls_offload_ctx_dir direction,
303 struct tls_crypto_info *crypto_info,
304 u32 start_offload_tcp_sn);
305 void (*tls_dev_del)(struct net_device *netdev,
306 struct tls_context *ctx,
307 enum tls_offload_ctx_dir direction);
308 int (*tls_dev_resync)(struct net_device *netdev,
309 struct sock *sk, u32 seq, u8 *rcd_sn,
310 enum tls_offload_ctx_dir direction);
311 };
312
313 enum tls_offload_sync_type {
314 TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ = 0,
315 TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT = 1,
316 };
317
318 #define TLS_DEVICE_RESYNC_NH_START_IVAL 2
319 #define TLS_DEVICE_RESYNC_NH_MAX_IVAL 128
320
321 struct tls_offload_context_rx {
322 /* sw must be the first member of tls_offload_context_rx */
323 struct tls_sw_context_rx sw;
324 enum tls_offload_sync_type resync_type;
325 /* this member is set regardless of resync_type, to avoid branches */
326 u8 resync_nh_reset:1;
327 /* CORE_NEXT_HINT-only member, but use the hole here */
328 u8 resync_nh_do_now:1;
329 union {
330 /* TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ */
331 struct {
332 atomic64_t resync_req;
333 };
334 /* TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT */
335 struct {
336 u32 decrypted_failed;
337 u32 decrypted_tgt;
338 } resync_nh;
339 };
340 u8 driver_state[] __aligned(8);
341 /* The TLS layer reserves room for driver specific state
342 * Currently the belief is that there is not enough
343 * driver specific state to justify another layer of indirection
344 */
345 #define TLS_DRIVER_STATE_SIZE_RX 8
346 };
347
348 #define TLS_OFFLOAD_CONTEXT_SIZE_RX \
349 (sizeof(struct tls_offload_context_rx) + TLS_DRIVER_STATE_SIZE_RX)
350
351 void tls_ctx_free(struct tls_context *ctx);
352 int wait_on_pending_writer(struct sock *sk, long *timeo);
353 int tls_sk_query(struct sock *sk, int optname, char __user *optval,
354 int __user *optlen);
355 int tls_sk_attach(struct sock *sk, int optname, char __user *optval,
356 unsigned int optlen);
357
358 int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx);
359 void tls_sw_strparser_arm(struct sock *sk, struct tls_context *ctx);
360 void tls_sw_strparser_done(struct tls_context *tls_ctx);
361 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
362 int tls_sw_sendpage(struct sock *sk, struct page *page,
363 int offset, size_t size, int flags);
364 void tls_sw_cancel_work_tx(struct tls_context *tls_ctx);
365 void tls_sw_release_resources_tx(struct sock *sk);
366 void tls_sw_free_ctx_tx(struct tls_context *tls_ctx);
367 void tls_sw_free_resources_rx(struct sock *sk);
368 void tls_sw_release_resources_rx(struct sock *sk);
369 void tls_sw_free_ctx_rx(struct tls_context *tls_ctx);
370 int tls_sw_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
371 int nonblock, int flags, int *addr_len);
372 bool tls_sw_stream_read(const struct sock *sk);
373 ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos,
374 struct pipe_inode_info *pipe,
375 size_t len, unsigned int flags);
376
377 int tls_set_device_offload(struct sock *sk, struct tls_context *ctx);
378 int tls_device_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
379 int tls_device_sendpage(struct sock *sk, struct page *page,
380 int offset, size_t size, int flags);
381 void tls_device_free_resources_tx(struct sock *sk);
382 void tls_device_init(void);
383 void tls_device_cleanup(void);
384 int tls_tx_records(struct sock *sk, int flags);
385
386 struct tls_record_info *tls_get_record(struct tls_offload_context_tx *context,
387 u32 seq, u64 *p_record_sn);
388
389 static inline bool tls_record_is_start_marker(struct tls_record_info *rec)
390 {
391 return rec->len == 0;
392 }
393
394 static inline u32 tls_record_start_seq(struct tls_record_info *rec)
395 {
396 return rec->end_seq - rec->len;
397 }
398
399 int tls_push_sg(struct sock *sk, struct tls_context *ctx,
400 struct scatterlist *sg, u16 first_offset,
401 int flags);
402 int tls_push_partial_record(struct sock *sk, struct tls_context *ctx,
403 int flags);
404 bool tls_free_partial_record(struct sock *sk, struct tls_context *ctx);
405
406 static inline struct tls_msg *tls_msg(struct sk_buff *skb)
407 {
408 return (struct tls_msg *)strp_msg(skb);
409 }
410
411 static inline bool tls_is_partially_sent_record(struct tls_context *ctx)
412 {
413 return !!ctx->partially_sent_record;
414 }
415
416 static inline bool tls_is_pending_open_record(struct tls_context *tls_ctx)
417 {
418 return tls_ctx->pending_open_record_frags;
419 }
420
421 static inline bool is_tx_ready(struct tls_sw_context_tx *ctx)
422 {
423 struct tls_rec *rec;
424
425 rec = list_first_entry(&ctx->tx_list, struct tls_rec, list);
426 if (!rec)
427 return false;
428
429 return READ_ONCE(rec->tx_ready);
430 }
431
432 struct sk_buff *
433 tls_validate_xmit_skb(struct sock *sk, struct net_device *dev,
434 struct sk_buff *skb);
435
436 static inline bool tls_is_sk_tx_device_offloaded(struct sock *sk)
437 {
438 #ifdef CONFIG_SOCK_VALIDATE_XMIT
439 return sk_fullsock(sk) &&
440 (smp_load_acquire(&sk->sk_validate_xmit_skb) ==
441 &tls_validate_xmit_skb);
442 #else
443 return false;
444 #endif
445 }
446
447 static inline void tls_err_abort(struct sock *sk, int err)
448 {
449 sk->sk_err = err;
450 sk->sk_error_report(sk);
451 }
452
453 static inline bool tls_bigint_increment(unsigned char *seq, int len)
454 {
455 int i;
456
457 for (i = len - 1; i >= 0; i--) {
458 ++seq[i];
459 if (seq[i] != 0)
460 break;
461 }
462
463 return (i == -1);
464 }
465
466 static inline struct tls_context *tls_get_ctx(const struct sock *sk)
467 {
468 struct inet_connection_sock *icsk = inet_csk(sk);
469
470 return icsk->icsk_ulp_data;
471 }
472
473 static inline void tls_advance_record_sn(struct sock *sk,
474 struct tls_prot_info *prot,
475 struct cipher_context *ctx)
476 {
477 if (tls_bigint_increment(ctx->rec_seq, prot->rec_seq_size))
478 tls_err_abort(sk, EBADMSG);
479
480 if (prot->version != TLS_1_3_VERSION)
481 tls_bigint_increment(ctx->iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
482 prot->iv_size);
483 }
484
485 static inline void tls_fill_prepend(struct tls_context *ctx,
486 char *buf,
487 size_t plaintext_len,
488 unsigned char record_type,
489 int version)
490 {
491 struct tls_prot_info *prot = &ctx->prot_info;
492 size_t pkt_len, iv_size = prot->iv_size;
493
494 pkt_len = plaintext_len + prot->tag_size;
495 if (version != TLS_1_3_VERSION) {
496 pkt_len += iv_size;
497
498 memcpy(buf + TLS_NONCE_OFFSET,
499 ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, iv_size);
500 }
501
502 /* we cover nonce explicit here as well, so buf should be of
503 * size KTLS_DTLS_HEADER_SIZE + KTLS_DTLS_NONCE_EXPLICIT_SIZE
504 */
505 buf[0] = version == TLS_1_3_VERSION ?
506 TLS_RECORD_TYPE_DATA : record_type;
507 /* Note that VERSION must be TLS_1_2 for both TLS1.2 and TLS1.3 */
508 buf[1] = TLS_1_2_VERSION_MINOR;
509 buf[2] = TLS_1_2_VERSION_MAJOR;
510 /* we can use IV for nonce explicit according to spec */
511 buf[3] = pkt_len >> 8;
512 buf[4] = pkt_len & 0xFF;
513 }
514
515 static inline void tls_make_aad(char *buf,
516 size_t size,
517 char *record_sequence,
518 int record_sequence_size,
519 unsigned char record_type,
520 int version)
521 {
522 if (version != TLS_1_3_VERSION) {
523 memcpy(buf, record_sequence, record_sequence_size);
524 buf += 8;
525 } else {
526 size += TLS_CIPHER_AES_GCM_128_TAG_SIZE;
527 }
528
529 buf[0] = version == TLS_1_3_VERSION ?
530 TLS_RECORD_TYPE_DATA : record_type;
531 buf[1] = TLS_1_2_VERSION_MAJOR;
532 buf[2] = TLS_1_2_VERSION_MINOR;
533 buf[3] = size >> 8;
534 buf[4] = size & 0xFF;
535 }
536
537 static inline void xor_iv_with_seq(int version, char *iv, char *seq)
538 {
539 int i;
540
541 if (version == TLS_1_3_VERSION) {
542 for (i = 0; i < 8; i++)
543 iv[i + 4] ^= seq[i];
544 }
545 }
546
547
548 static inline struct tls_sw_context_rx *tls_sw_ctx_rx(
549 const struct tls_context *tls_ctx)
550 {
551 return (struct tls_sw_context_rx *)tls_ctx->priv_ctx_rx;
552 }
553
554 static inline struct tls_sw_context_tx *tls_sw_ctx_tx(
555 const struct tls_context *tls_ctx)
556 {
557 return (struct tls_sw_context_tx *)tls_ctx->priv_ctx_tx;
558 }
559
560 static inline struct tls_offload_context_tx *
561 tls_offload_ctx_tx(const struct tls_context *tls_ctx)
562 {
563 return (struct tls_offload_context_tx *)tls_ctx->priv_ctx_tx;
564 }
565
566 static inline bool tls_sw_has_ctx_tx(const struct sock *sk)
567 {
568 struct tls_context *ctx = tls_get_ctx(sk);
569
570 if (!ctx)
571 return false;
572 return !!tls_sw_ctx_tx(ctx);
573 }
574
575 void tls_sw_write_space(struct sock *sk, struct tls_context *ctx);
576 void tls_device_write_space(struct sock *sk, struct tls_context *ctx);
577
578 static inline struct tls_offload_context_rx *
579 tls_offload_ctx_rx(const struct tls_context *tls_ctx)
580 {
581 return (struct tls_offload_context_rx *)tls_ctx->priv_ctx_rx;
582 }
583
584 #if IS_ENABLED(CONFIG_TLS_DEVICE)
585 static inline void *__tls_driver_ctx(struct tls_context *tls_ctx,
586 enum tls_offload_ctx_dir direction)
587 {
588 if (direction == TLS_OFFLOAD_CTX_DIR_TX)
589 return tls_offload_ctx_tx(tls_ctx)->driver_state;
590 else
591 return tls_offload_ctx_rx(tls_ctx)->driver_state;
592 }
593
594 static inline void *
595 tls_driver_ctx(const struct sock *sk, enum tls_offload_ctx_dir direction)
596 {
597 return __tls_driver_ctx(tls_get_ctx(sk), direction);
598 }
599 #endif
600
601 /* The TLS context is valid until sk_destruct is called */
602 static inline void tls_offload_rx_resync_request(struct sock *sk, __be32 seq)
603 {
604 struct tls_context *tls_ctx = tls_get_ctx(sk);
605 struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx);
606
607 atomic64_set(&rx_ctx->resync_req, ((u64)ntohl(seq) << 32) | 1);
608 }
609
610 static inline void
611 tls_offload_rx_resync_set_type(struct sock *sk, enum tls_offload_sync_type type)
612 {
613 struct tls_context *tls_ctx = tls_get_ctx(sk);
614
615 tls_offload_ctx_rx(tls_ctx)->resync_type = type;
616 }
617
618 static inline void tls_offload_tx_resync_request(struct sock *sk)
619 {
620 struct tls_context *tls_ctx = tls_get_ctx(sk);
621
622 WARN_ON(test_and_set_bit(TLS_TX_SYNC_SCHED, &tls_ctx->flags));
623 }
624
625 /* Driver's seq tracking has to be disabled until resync succeeded */
626 static inline bool tls_offload_tx_resync_pending(struct sock *sk)
627 {
628 struct tls_context *tls_ctx = tls_get_ctx(sk);
629 bool ret;
630
631 ret = test_bit(TLS_TX_SYNC_SCHED, &tls_ctx->flags);
632 smp_mb__after_atomic();
633 return ret;
634 }
635
636 int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg,
637 unsigned char *record_type);
638 void tls_register_device(struct tls_device *device);
639 void tls_unregister_device(struct tls_device *device);
640 int tls_device_decrypted(struct sock *sk, struct sk_buff *skb);
641 int decrypt_skb(struct sock *sk, struct sk_buff *skb,
642 struct scatterlist *sgout);
643 struct sk_buff *tls_encrypt_skb(struct sk_buff *skb);
644
645 struct sk_buff *tls_validate_xmit_skb(struct sock *sk,
646 struct net_device *dev,
647 struct sk_buff *skb);
648
649 int tls_sw_fallback_init(struct sock *sk,
650 struct tls_offload_context_tx *offload_ctx,
651 struct tls_crypto_info *crypto_info);
652
653 int tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx);
654
655 void tls_device_offload_cleanup_rx(struct sock *sk);
656 void tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq);
657
658 #endif /* _TLS_OFFLOAD_H */