]> git.proxmox.com Git - mirror_qemu.git/blob - include/qemu/atomic.h
Merge remote-tracking branch 'remotes/jasowang/tags/net-pull-request' into staging
[mirror_qemu.git] / include / qemu / atomic.h
1 /*
2 * Simple interface for atomic operations.
3 *
4 * Copyright (C) 2013 Red Hat, Inc.
5 *
6 * Author: Paolo Bonzini <pbonzini@redhat.com>
7 *
8 * This work is licensed under the terms of the GNU GPL, version 2 or later.
9 * See the COPYING file in the top-level directory.
10 *
11 * See docs/atomics.txt for discussion about the guarantees each
12 * atomic primitive is meant to provide.
13 */
14
15 #ifndef __QEMU_ATOMIC_H
16 #define __QEMU_ATOMIC_H 1
17
18
19
20 /* Compiler barrier */
21 #define barrier() ({ asm volatile("" ::: "memory"); (void)0; })
22
23 #ifdef __ATOMIC_RELAXED
24 /* For C11 atomic ops */
25
26 /* Manual memory barriers
27 *
28 *__atomic_thread_fence does not include a compiler barrier; instead,
29 * the barrier is part of __atomic_load/__atomic_store's "volatile-like"
30 * semantics. If smp_wmb() is a no-op, absence of the barrier means that
31 * the compiler is free to reorder stores on each side of the barrier.
32 * Add one here, and similarly in smp_rmb() and smp_read_barrier_depends().
33 */
34
35 #define smp_mb() ({ barrier(); __atomic_thread_fence(__ATOMIC_SEQ_CST); barrier(); })
36 #define smp_wmb() ({ barrier(); __atomic_thread_fence(__ATOMIC_RELEASE); barrier(); })
37 #define smp_rmb() ({ barrier(); __atomic_thread_fence(__ATOMIC_ACQUIRE); barrier(); })
38
39 /* Most compilers currently treat consume and acquire the same, but really
40 * no processors except Alpha need a barrier here. Leave it in if
41 * using Thread Sanitizer to avoid warnings, otherwise optimize it away.
42 */
43 #if defined(__SANITIZE_THREAD__)
44 #define smp_read_barrier_depends() ({ barrier(); __atomic_thread_fence(__ATOMIC_CONSUME); barrier(); })
45 #elsif defined(__alpha__)
46 #define smp_read_barrier_depends() asm volatile("mb":::"memory")
47 #else
48 #define smp_read_barrier_depends() barrier()
49 #endif
50
51
52 /* Weak atomic operations prevent the compiler moving other
53 * loads/stores past the atomic operation load/store. However there is
54 * no explicit memory barrier for the processor.
55 */
56 #define atomic_read(ptr) \
57 ({ \
58 QEMU_BUILD_BUG_ON(sizeof(*ptr) > sizeof(void *)); \
59 typeof(*ptr) _val; \
60 __atomic_load(ptr, &_val, __ATOMIC_RELAXED); \
61 _val; \
62 })
63
64 #define atomic_set(ptr, i) do { \
65 QEMU_BUILD_BUG_ON(sizeof(*ptr) > sizeof(void *)); \
66 typeof(*ptr) _val = (i); \
67 __atomic_store(ptr, &_val, __ATOMIC_RELAXED); \
68 } while(0)
69
70 /* See above: most compilers currently treat consume and acquire the
71 * same, but this slows down atomic_rcu_read unnecessarily.
72 */
73 #ifdef __SANITIZE_THREAD__
74 #define atomic_rcu_read__nocheck(ptr, valptr) \
75 __atomic_load(ptr, valptr, __ATOMIC_CONSUME);
76 #else
77 #define atomic_rcu_read__nocheck(ptr, valptr) \
78 __atomic_load(ptr, valptr, __ATOMIC_RELAXED); \
79 smp_read_barrier_depends();
80 #endif
81
82 #define atomic_rcu_read(ptr) \
83 ({ \
84 QEMU_BUILD_BUG_ON(sizeof(*ptr) > sizeof(void *)); \
85 typeof(*ptr) _val; \
86 atomic_rcu_read__nocheck(ptr, &_val); \
87 _val; \
88 })
89
90 #define atomic_rcu_set(ptr, i) do { \
91 QEMU_BUILD_BUG_ON(sizeof(*ptr) > sizeof(void *)); \
92 typeof(*ptr) _val = (i); \
93 __atomic_store(ptr, &_val, __ATOMIC_RELEASE); \
94 } while(0)
95
96 /* atomic_mb_read/set semantics map Java volatile variables. They are
97 * less expensive on some platforms (notably POWER & ARMv7) than fully
98 * sequentially consistent operations.
99 *
100 * As long as they are used as paired operations they are safe to
101 * use. See docs/atomic.txt for more discussion.
102 */
103
104 #if defined(_ARCH_PPC)
105 #define atomic_mb_read(ptr) \
106 ({ \
107 QEMU_BUILD_BUG_ON(sizeof(*ptr) > sizeof(void *)); \
108 typeof(*ptr) _val; \
109 __atomic_load(ptr, &_val, __ATOMIC_RELAXED); \
110 smp_rmb(); \
111 _val; \
112 })
113
114 #define atomic_mb_set(ptr, i) do { \
115 QEMU_BUILD_BUG_ON(sizeof(*ptr) > sizeof(void *)); \
116 typeof(*ptr) _val = (i); \
117 smp_wmb(); \
118 __atomic_store(ptr, &_val, __ATOMIC_RELAXED); \
119 smp_mb(); \
120 } while(0)
121 #else
122 #define atomic_mb_read(ptr) \
123 ({ \
124 QEMU_BUILD_BUG_ON(sizeof(*ptr) > sizeof(void *)); \
125 typeof(*ptr) _val; \
126 __atomic_load(ptr, &_val, __ATOMIC_SEQ_CST); \
127 _val; \
128 })
129
130 #define atomic_mb_set(ptr, i) do { \
131 QEMU_BUILD_BUG_ON(sizeof(*ptr) > sizeof(void *)); \
132 typeof(*ptr) _val = (i); \
133 __atomic_store(ptr, &_val, __ATOMIC_SEQ_CST); \
134 } while(0)
135 #endif
136
137
138 /* All the remaining operations are fully sequentially consistent */
139
140 #define atomic_xchg(ptr, i) ({ \
141 QEMU_BUILD_BUG_ON(sizeof(*ptr) > sizeof(void *)); \
142 typeof(*ptr) _new = (i), _old; \
143 __atomic_exchange(ptr, &_new, &_old, __ATOMIC_SEQ_CST); \
144 _old; \
145 })
146
147 /* Returns the eventual value, failed or not */
148 #define atomic_cmpxchg(ptr, old, new) \
149 ({ \
150 QEMU_BUILD_BUG_ON(sizeof(*ptr) > sizeof(void *)); \
151 typeof(*ptr) _old = (old), _new = (new); \
152 __atomic_compare_exchange(ptr, &_old, &_new, false, \
153 __ATOMIC_SEQ_CST, __ATOMIC_SEQ_CST); \
154 _old; \
155 })
156
157 /* Provide shorter names for GCC atomic builtins, return old value */
158 #define atomic_fetch_inc(ptr) __atomic_fetch_add(ptr, 1, __ATOMIC_SEQ_CST)
159 #define atomic_fetch_dec(ptr) __atomic_fetch_sub(ptr, 1, __ATOMIC_SEQ_CST)
160 #define atomic_fetch_add(ptr, n) __atomic_fetch_add(ptr, n, __ATOMIC_SEQ_CST)
161 #define atomic_fetch_sub(ptr, n) __atomic_fetch_sub(ptr, n, __ATOMIC_SEQ_CST)
162 #define atomic_fetch_and(ptr, n) __atomic_fetch_and(ptr, n, __ATOMIC_SEQ_CST)
163 #define atomic_fetch_or(ptr, n) __atomic_fetch_or(ptr, n, __ATOMIC_SEQ_CST)
164
165 /* And even shorter names that return void. */
166 #define atomic_inc(ptr) ((void) __atomic_fetch_add(ptr, 1, __ATOMIC_SEQ_CST))
167 #define atomic_dec(ptr) ((void) __atomic_fetch_sub(ptr, 1, __ATOMIC_SEQ_CST))
168 #define atomic_add(ptr, n) ((void) __atomic_fetch_add(ptr, n, __ATOMIC_SEQ_CST))
169 #define atomic_sub(ptr, n) ((void) __atomic_fetch_sub(ptr, n, __ATOMIC_SEQ_CST))
170 #define atomic_and(ptr, n) ((void) __atomic_fetch_and(ptr, n, __ATOMIC_SEQ_CST))
171 #define atomic_or(ptr, n) ((void) __atomic_fetch_or(ptr, n, __ATOMIC_SEQ_CST))
172
173 #else /* __ATOMIC_RELAXED */
174
175 /*
176 * We use GCC builtin if it's available, as that can use mfence on
177 * 32-bit as well, e.g. if built with -march=pentium-m. However, on
178 * i386 the spec is buggy, and the implementation followed it until
179 * 4.3 (http://gcc.gnu.org/bugzilla/show_bug.cgi?id=36793).
180 */
181 #if defined(__i386__) || defined(__x86_64__)
182 #if !QEMU_GNUC_PREREQ(4, 4)
183 #if defined __x86_64__
184 #define smp_mb() ({ asm volatile("mfence" ::: "memory"); (void)0; })
185 #else
186 #define smp_mb() ({ asm volatile("lock; addl $0,0(%%esp) " ::: "memory"); (void)0; })
187 #endif
188 #endif
189 #endif
190
191
192 #ifdef __alpha__
193 #define smp_read_barrier_depends() asm volatile("mb":::"memory")
194 #endif
195
196 #if defined(__i386__) || defined(__x86_64__) || defined(__s390x__)
197
198 /*
199 * Because of the strongly ordered storage model, wmb() and rmb() are nops
200 * here (a compiler barrier only). QEMU doesn't do accesses to write-combining
201 * qemu memory or non-temporal load/stores from C code.
202 */
203 #define smp_wmb() barrier()
204 #define smp_rmb() barrier()
205
206 /*
207 * __sync_lock_test_and_set() is documented to be an acquire barrier only,
208 * but it is a full barrier at the hardware level. Add a compiler barrier
209 * to make it a full barrier also at the compiler level.
210 */
211 #define atomic_xchg(ptr, i) (barrier(), __sync_lock_test_and_set(ptr, i))
212
213 /*
214 * Load/store with Java volatile semantics.
215 */
216 #define atomic_mb_set(ptr, i) ((void)atomic_xchg(ptr, i))
217
218 #elif defined(_ARCH_PPC)
219
220 /*
221 * We use an eieio() for wmb() on powerpc. This assumes we don't
222 * need to order cacheable and non-cacheable stores with respect to
223 * each other.
224 *
225 * smp_mb has the same problem as on x86 for not-very-new GCC
226 * (http://patchwork.ozlabs.org/patch/126184/, Nov 2011).
227 */
228 #define smp_wmb() ({ asm volatile("eieio" ::: "memory"); (void)0; })
229 #if defined(__powerpc64__)
230 #define smp_rmb() ({ asm volatile("lwsync" ::: "memory"); (void)0; })
231 #else
232 #define smp_rmb() ({ asm volatile("sync" ::: "memory"); (void)0; })
233 #endif
234 #define smp_mb() ({ asm volatile("sync" ::: "memory"); (void)0; })
235
236 #endif /* _ARCH_PPC */
237
238 /*
239 * For (host) platforms we don't have explicit barrier definitions
240 * for, we use the gcc __sync_synchronize() primitive to generate a
241 * full barrier. This should be safe on all platforms, though it may
242 * be overkill for smp_wmb() and smp_rmb().
243 */
244 #ifndef smp_mb
245 #define smp_mb() __sync_synchronize()
246 #endif
247
248 #ifndef smp_wmb
249 #define smp_wmb() __sync_synchronize()
250 #endif
251
252 #ifndef smp_rmb
253 #define smp_rmb() __sync_synchronize()
254 #endif
255
256 #ifndef smp_read_barrier_depends
257 #define smp_read_barrier_depends() barrier()
258 #endif
259
260 /* These will only be atomic if the processor does the fetch or store
261 * in a single issue memory operation
262 */
263 #define atomic_read(ptr) (*(__typeof__(*ptr) volatile*) (ptr))
264 #define atomic_set(ptr, i) ((*(__typeof__(*ptr) volatile*) (ptr)) = (i))
265
266 /**
267 * atomic_rcu_read - reads a RCU-protected pointer to a local variable
268 * into a RCU read-side critical section. The pointer can later be safely
269 * dereferenced within the critical section.
270 *
271 * This ensures that the pointer copy is invariant thorough the whole critical
272 * section.
273 *
274 * Inserts memory barriers on architectures that require them (currently only
275 * Alpha) and documents which pointers are protected by RCU.
276 *
277 * atomic_rcu_read also includes a compiler barrier to ensure that
278 * value-speculative optimizations (e.g. VSS: Value Speculation
279 * Scheduling) does not perform the data read before the pointer read
280 * by speculating the value of the pointer.
281 *
282 * Should match atomic_rcu_set(), atomic_xchg(), atomic_cmpxchg().
283 */
284 #define atomic_rcu_read(ptr) ({ \
285 typeof(*ptr) _val = atomic_read(ptr); \
286 smp_read_barrier_depends(); \
287 _val; \
288 })
289
290 /**
291 * atomic_rcu_set - assigns (publicizes) a pointer to a new data structure
292 * meant to be read by RCU read-side critical sections.
293 *
294 * Documents which pointers will be dereferenced by RCU read-side critical
295 * sections and adds the required memory barriers on architectures requiring
296 * them. It also makes sure the compiler does not reorder code initializing the
297 * data structure before its publication.
298 *
299 * Should match atomic_rcu_read().
300 */
301 #define atomic_rcu_set(ptr, i) do { \
302 smp_wmb(); \
303 atomic_set(ptr, i); \
304 } while (0)
305
306 /* These have the same semantics as Java volatile variables.
307 * See http://gee.cs.oswego.edu/dl/jmm/cookbook.html:
308 * "1. Issue a StoreStore barrier (wmb) before each volatile store."
309 * 2. Issue a StoreLoad barrier after each volatile store.
310 * Note that you could instead issue one before each volatile load, but
311 * this would be slower for typical programs using volatiles in which
312 * reads greatly outnumber writes. Alternatively, if available, you
313 * can implement volatile store as an atomic instruction (for example
314 * XCHG on x86) and omit the barrier. This may be more efficient if
315 * atomic instructions are cheaper than StoreLoad barriers.
316 * 3. Issue LoadLoad and LoadStore barriers after each volatile load."
317 *
318 * If you prefer to think in terms of "pairing" of memory barriers,
319 * an atomic_mb_read pairs with an atomic_mb_set.
320 *
321 * And for the few ia64 lovers that exist, an atomic_mb_read is a ld.acq,
322 * while an atomic_mb_set is a st.rel followed by a memory barrier.
323 *
324 * These are a bit weaker than __atomic_load/store with __ATOMIC_SEQ_CST
325 * (see docs/atomics.txt), and I'm not sure that __ATOMIC_ACQ_REL is enough.
326 * Just always use the barriers manually by the rules above.
327 */
328 #define atomic_mb_read(ptr) ({ \
329 typeof(*ptr) _val = atomic_read(ptr); \
330 smp_rmb(); \
331 _val; \
332 })
333
334 #ifndef atomic_mb_set
335 #define atomic_mb_set(ptr, i) do { \
336 smp_wmb(); \
337 atomic_set(ptr, i); \
338 smp_mb(); \
339 } while (0)
340 #endif
341
342 #ifndef atomic_xchg
343 #if defined(__clang__)
344 #define atomic_xchg(ptr, i) __sync_swap(ptr, i)
345 #else
346 /* __sync_lock_test_and_set() is documented to be an acquire barrier only. */
347 #define atomic_xchg(ptr, i) (smp_mb(), __sync_lock_test_and_set(ptr, i))
348 #endif
349 #endif
350
351 /* Provide shorter names for GCC atomic builtins. */
352 #define atomic_fetch_inc(ptr) __sync_fetch_and_add(ptr, 1)
353 #define atomic_fetch_dec(ptr) __sync_fetch_and_add(ptr, -1)
354 #define atomic_fetch_add __sync_fetch_and_add
355 #define atomic_fetch_sub __sync_fetch_and_sub
356 #define atomic_fetch_and __sync_fetch_and_and
357 #define atomic_fetch_or __sync_fetch_and_or
358 #define atomic_cmpxchg __sync_val_compare_and_swap
359
360 /* And even shorter names that return void. */
361 #define atomic_inc(ptr) ((void) __sync_fetch_and_add(ptr, 1))
362 #define atomic_dec(ptr) ((void) __sync_fetch_and_add(ptr, -1))
363 #define atomic_add(ptr, n) ((void) __sync_fetch_and_add(ptr, n))
364 #define atomic_sub(ptr, n) ((void) __sync_fetch_and_sub(ptr, n))
365 #define atomic_and(ptr, n) ((void) __sync_fetch_and_and(ptr, n))
366 #define atomic_or(ptr, n) ((void) __sync_fetch_and_or(ptr, n))
367
368 #endif /* __ATOMIC_RELAXED */
369 #endif /* __QEMU_ATOMIC_H */