]> git.proxmox.com Git - mirror_qemu.git/blob - include/qemu/atomic.h
Merge remote-tracking branch 'remotes/kraxel/tags/vga-20210723-pull-request' into...
[mirror_qemu.git] / include / qemu / atomic.h
1 /*
2 * Simple interface for atomic operations.
3 *
4 * Copyright (C) 2013 Red Hat, Inc.
5 *
6 * Author: Paolo Bonzini <pbonzini@redhat.com>
7 *
8 * This work is licensed under the terms of the GNU GPL, version 2 or later.
9 * See the COPYING file in the top-level directory.
10 *
11 * See docs/devel/atomics.rst for discussion about the guarantees each
12 * atomic primitive is meant to provide.
13 */
14
15 #ifndef QEMU_ATOMIC_H
16 #define QEMU_ATOMIC_H
17
18 /* Compiler barrier */
19 #define barrier() ({ asm volatile("" ::: "memory"); (void)0; })
20
21 /* The variable that receives the old value of an atomically-accessed
22 * variable must be non-qualified, because atomic builtins return values
23 * through a pointer-type argument as in __atomic_load(&var, &old, MODEL).
24 *
25 * This macro has to handle types smaller than int manually, because of
26 * implicit promotion. int and larger types, as well as pointers, can be
27 * converted to a non-qualified type just by applying a binary operator.
28 */
29 #define typeof_strip_qual(expr) \
30 typeof( \
31 __builtin_choose_expr( \
32 __builtin_types_compatible_p(typeof(expr), bool) || \
33 __builtin_types_compatible_p(typeof(expr), const bool) || \
34 __builtin_types_compatible_p(typeof(expr), volatile bool) || \
35 __builtin_types_compatible_p(typeof(expr), const volatile bool), \
36 (bool)1, \
37 __builtin_choose_expr( \
38 __builtin_types_compatible_p(typeof(expr), signed char) || \
39 __builtin_types_compatible_p(typeof(expr), const signed char) || \
40 __builtin_types_compatible_p(typeof(expr), volatile signed char) || \
41 __builtin_types_compatible_p(typeof(expr), const volatile signed char), \
42 (signed char)1, \
43 __builtin_choose_expr( \
44 __builtin_types_compatible_p(typeof(expr), unsigned char) || \
45 __builtin_types_compatible_p(typeof(expr), const unsigned char) || \
46 __builtin_types_compatible_p(typeof(expr), volatile unsigned char) || \
47 __builtin_types_compatible_p(typeof(expr), const volatile unsigned char), \
48 (unsigned char)1, \
49 __builtin_choose_expr( \
50 __builtin_types_compatible_p(typeof(expr), signed short) || \
51 __builtin_types_compatible_p(typeof(expr), const signed short) || \
52 __builtin_types_compatible_p(typeof(expr), volatile signed short) || \
53 __builtin_types_compatible_p(typeof(expr), const volatile signed short), \
54 (signed short)1, \
55 __builtin_choose_expr( \
56 __builtin_types_compatible_p(typeof(expr), unsigned short) || \
57 __builtin_types_compatible_p(typeof(expr), const unsigned short) || \
58 __builtin_types_compatible_p(typeof(expr), volatile unsigned short) || \
59 __builtin_types_compatible_p(typeof(expr), const volatile unsigned short), \
60 (unsigned short)1, \
61 (expr)+0))))))
62
63 #ifndef __ATOMIC_RELAXED
64 #error "Expecting C11 atomic ops"
65 #endif
66
67 /* Manual memory barriers
68 *
69 *__atomic_thread_fence does not include a compiler barrier; instead,
70 * the barrier is part of __atomic_load/__atomic_store's "volatile-like"
71 * semantics. If smp_wmb() is a no-op, absence of the barrier means that
72 * the compiler is free to reorder stores on each side of the barrier.
73 * Add one here, and similarly in smp_rmb() and smp_read_barrier_depends().
74 */
75
76 #define smp_mb() ({ barrier(); __atomic_thread_fence(__ATOMIC_SEQ_CST); })
77 #define smp_mb_release() ({ barrier(); __atomic_thread_fence(__ATOMIC_RELEASE); })
78 #define smp_mb_acquire() ({ barrier(); __atomic_thread_fence(__ATOMIC_ACQUIRE); })
79
80 /* Most compilers currently treat consume and acquire the same, but really
81 * no processors except Alpha need a barrier here. Leave it in if
82 * using Thread Sanitizer to avoid warnings, otherwise optimize it away.
83 */
84 #if defined(__SANITIZE_THREAD__)
85 #define smp_read_barrier_depends() ({ barrier(); __atomic_thread_fence(__ATOMIC_CONSUME); })
86 #elif defined(__alpha__)
87 #define smp_read_barrier_depends() asm volatile("mb":::"memory")
88 #else
89 #define smp_read_barrier_depends() barrier()
90 #endif
91
92 /*
93 * A signal barrier forces all pending local memory ops to be observed before
94 * a SIGSEGV is delivered to the *same* thread. In practice this is exactly
95 * the same as barrier(), but since we have the correct builtin, use it.
96 */
97 #define signal_barrier() __atomic_signal_fence(__ATOMIC_SEQ_CST)
98
99 /* Sanity check that the size of an atomic operation isn't "overly large".
100 * Despite the fact that e.g. i686 has 64-bit atomic operations, we do not
101 * want to use them because we ought not need them, and this lets us do a
102 * bit of sanity checking that other 32-bit hosts might build.
103 *
104 * That said, we have a problem on 64-bit ILP32 hosts in that in order to
105 * sync with TCG_OVERSIZED_GUEST, this must match TCG_TARGET_REG_BITS.
106 * We'd prefer not want to pull in everything else TCG related, so handle
107 * those few cases by hand.
108 *
109 * Note that x32 is fully detected with __x86_64__ + _ILP32, and that for
110 * Sparc we always force the use of sparcv9 in configure. MIPS n32 (ILP32) &
111 * n64 (LP64) ABIs are both detected using __mips64.
112 */
113 #if defined(__x86_64__) || defined(__sparc__) || defined(__mips64)
114 # define ATOMIC_REG_SIZE 8
115 #else
116 # define ATOMIC_REG_SIZE sizeof(void *)
117 #endif
118
119 /* Weak atomic operations prevent the compiler moving other
120 * loads/stores past the atomic operation load/store. However there is
121 * no explicit memory barrier for the processor.
122 *
123 * The C11 memory model says that variables that are accessed from
124 * different threads should at least be done with __ATOMIC_RELAXED
125 * primitives or the result is undefined. Generally this has little to
126 * no effect on the generated code but not using the atomic primitives
127 * will get flagged by sanitizers as a violation.
128 */
129 #define qatomic_read__nocheck(ptr) \
130 __atomic_load_n(ptr, __ATOMIC_RELAXED)
131
132 #define qatomic_read(ptr) \
133 ({ \
134 QEMU_BUILD_BUG_ON(sizeof(*ptr) > ATOMIC_REG_SIZE); \
135 qatomic_read__nocheck(ptr); \
136 })
137
138 #define qatomic_set__nocheck(ptr, i) \
139 __atomic_store_n(ptr, i, __ATOMIC_RELAXED)
140
141 #define qatomic_set(ptr, i) do { \
142 QEMU_BUILD_BUG_ON(sizeof(*ptr) > ATOMIC_REG_SIZE); \
143 qatomic_set__nocheck(ptr, i); \
144 } while(0)
145
146 /* See above: most compilers currently treat consume and acquire the
147 * same, but this slows down qatomic_rcu_read unnecessarily.
148 */
149 #ifdef __SANITIZE_THREAD__
150 #define qatomic_rcu_read__nocheck(ptr, valptr) \
151 __atomic_load(ptr, valptr, __ATOMIC_CONSUME);
152 #else
153 #define qatomic_rcu_read__nocheck(ptr, valptr) \
154 __atomic_load(ptr, valptr, __ATOMIC_RELAXED); \
155 smp_read_barrier_depends();
156 #endif
157
158 #define qatomic_rcu_read(ptr) \
159 ({ \
160 QEMU_BUILD_BUG_ON(sizeof(*ptr) > ATOMIC_REG_SIZE); \
161 typeof_strip_qual(*ptr) _val; \
162 qatomic_rcu_read__nocheck(ptr, &_val); \
163 _val; \
164 })
165
166 #define qatomic_rcu_set(ptr, i) do { \
167 QEMU_BUILD_BUG_ON(sizeof(*ptr) > ATOMIC_REG_SIZE); \
168 __atomic_store_n(ptr, i, __ATOMIC_RELEASE); \
169 } while(0)
170
171 #define qatomic_load_acquire(ptr) \
172 ({ \
173 QEMU_BUILD_BUG_ON(sizeof(*ptr) > ATOMIC_REG_SIZE); \
174 typeof_strip_qual(*ptr) _val; \
175 __atomic_load(ptr, &_val, __ATOMIC_ACQUIRE); \
176 _val; \
177 })
178
179 #define qatomic_store_release(ptr, i) do { \
180 QEMU_BUILD_BUG_ON(sizeof(*ptr) > ATOMIC_REG_SIZE); \
181 __atomic_store_n(ptr, i, __ATOMIC_RELEASE); \
182 } while(0)
183
184
185 /* All the remaining operations are fully sequentially consistent */
186
187 #define qatomic_xchg__nocheck(ptr, i) ({ \
188 __atomic_exchange_n(ptr, (i), __ATOMIC_SEQ_CST); \
189 })
190
191 #define qatomic_xchg(ptr, i) ({ \
192 QEMU_BUILD_BUG_ON(sizeof(*ptr) > ATOMIC_REG_SIZE); \
193 qatomic_xchg__nocheck(ptr, i); \
194 })
195
196 /* Returns the eventual value, failed or not */
197 #define qatomic_cmpxchg__nocheck(ptr, old, new) ({ \
198 typeof_strip_qual(*ptr) _old = (old); \
199 (void)__atomic_compare_exchange_n(ptr, &_old, new, false, \
200 __ATOMIC_SEQ_CST, __ATOMIC_SEQ_CST); \
201 _old; \
202 })
203
204 #define qatomic_cmpxchg(ptr, old, new) ({ \
205 QEMU_BUILD_BUG_ON(sizeof(*ptr) > ATOMIC_REG_SIZE); \
206 qatomic_cmpxchg__nocheck(ptr, old, new); \
207 })
208
209 /* Provide shorter names for GCC atomic builtins, return old value */
210 #define qatomic_fetch_inc(ptr) __atomic_fetch_add(ptr, 1, __ATOMIC_SEQ_CST)
211 #define qatomic_fetch_dec(ptr) __atomic_fetch_sub(ptr, 1, __ATOMIC_SEQ_CST)
212
213 #define qatomic_fetch_add(ptr, n) __atomic_fetch_add(ptr, n, __ATOMIC_SEQ_CST)
214 #define qatomic_fetch_sub(ptr, n) __atomic_fetch_sub(ptr, n, __ATOMIC_SEQ_CST)
215 #define qatomic_fetch_and(ptr, n) __atomic_fetch_and(ptr, n, __ATOMIC_SEQ_CST)
216 #define qatomic_fetch_or(ptr, n) __atomic_fetch_or(ptr, n, __ATOMIC_SEQ_CST)
217 #define qatomic_fetch_xor(ptr, n) __atomic_fetch_xor(ptr, n, __ATOMIC_SEQ_CST)
218
219 #define qatomic_inc_fetch(ptr) __atomic_add_fetch(ptr, 1, __ATOMIC_SEQ_CST)
220 #define qatomic_dec_fetch(ptr) __atomic_sub_fetch(ptr, 1, __ATOMIC_SEQ_CST)
221 #define qatomic_add_fetch(ptr, n) __atomic_add_fetch(ptr, n, __ATOMIC_SEQ_CST)
222 #define qatomic_sub_fetch(ptr, n) __atomic_sub_fetch(ptr, n, __ATOMIC_SEQ_CST)
223 #define qatomic_and_fetch(ptr, n) __atomic_and_fetch(ptr, n, __ATOMIC_SEQ_CST)
224 #define qatomic_or_fetch(ptr, n) __atomic_or_fetch(ptr, n, __ATOMIC_SEQ_CST)
225 #define qatomic_xor_fetch(ptr, n) __atomic_xor_fetch(ptr, n, __ATOMIC_SEQ_CST)
226
227 /* And even shorter names that return void. */
228 #define qatomic_inc(ptr) \
229 ((void) __atomic_fetch_add(ptr, 1, __ATOMIC_SEQ_CST))
230 #define qatomic_dec(ptr) \
231 ((void) __atomic_fetch_sub(ptr, 1, __ATOMIC_SEQ_CST))
232 #define qatomic_add(ptr, n) \
233 ((void) __atomic_fetch_add(ptr, n, __ATOMIC_SEQ_CST))
234 #define qatomic_sub(ptr, n) \
235 ((void) __atomic_fetch_sub(ptr, n, __ATOMIC_SEQ_CST))
236 #define qatomic_and(ptr, n) \
237 ((void) __atomic_fetch_and(ptr, n, __ATOMIC_SEQ_CST))
238 #define qatomic_or(ptr, n) \
239 ((void) __atomic_fetch_or(ptr, n, __ATOMIC_SEQ_CST))
240 #define qatomic_xor(ptr, n) \
241 ((void) __atomic_fetch_xor(ptr, n, __ATOMIC_SEQ_CST))
242
243 #define smp_wmb() smp_mb_release()
244 #define smp_rmb() smp_mb_acquire()
245
246 /* qatomic_mb_read/set semantics map Java volatile variables. They are
247 * less expensive on some platforms (notably POWER) than fully
248 * sequentially consistent operations.
249 *
250 * As long as they are used as paired operations they are safe to
251 * use. See docs/devel/atomics.rst for more discussion.
252 */
253
254 #define qatomic_mb_read(ptr) \
255 qatomic_load_acquire(ptr)
256
257 #if !defined(__SANITIZE_THREAD__) && \
258 (defined(__i386__) || defined(__x86_64__) || defined(__s390x__))
259 /* This is more efficient than a store plus a fence. */
260 # define qatomic_mb_set(ptr, i) ((void)qatomic_xchg(ptr, i))
261 #else
262 # define qatomic_mb_set(ptr, i) \
263 ({ qatomic_store_release(ptr, i); smp_mb(); })
264 #endif
265
266 #define qatomic_fetch_inc_nonzero(ptr) ({ \
267 typeof_strip_qual(*ptr) _oldn = qatomic_read(ptr); \
268 while (_oldn && qatomic_cmpxchg(ptr, _oldn, _oldn + 1) != _oldn) { \
269 _oldn = qatomic_read(ptr); \
270 } \
271 _oldn; \
272 })
273
274 /*
275 * Abstractions to access atomically (i.e. "once") i64/u64 variables.
276 *
277 * The i386 abi is odd in that by default members are only aligned to
278 * 4 bytes, which means that 8-byte types can wind up mis-aligned.
279 * Clang will then warn about this, and emit a call into libatomic.
280 *
281 * Use of these types in structures when they will be used with atomic
282 * operations can avoid this.
283 */
284 typedef int64_t aligned_int64_t __attribute__((aligned(8)));
285 typedef uint64_t aligned_uint64_t __attribute__((aligned(8)));
286
287 #ifdef CONFIG_ATOMIC64
288 /* Use __nocheck because sizeof(void *) might be < sizeof(u64) */
289 #define qatomic_read_i64(P) \
290 _Generic(*(P), int64_t: qatomic_read__nocheck(P))
291 #define qatomic_read_u64(P) \
292 _Generic(*(P), uint64_t: qatomic_read__nocheck(P))
293 #define qatomic_set_i64(P, V) \
294 _Generic(*(P), int64_t: qatomic_set__nocheck(P, V))
295 #define qatomic_set_u64(P, V) \
296 _Generic(*(P), uint64_t: qatomic_set__nocheck(P, V))
297
298 static inline void qatomic64_init(void)
299 {
300 }
301 #else /* !CONFIG_ATOMIC64 */
302 int64_t qatomic_read_i64(const int64_t *ptr);
303 uint64_t qatomic_read_u64(const uint64_t *ptr);
304 void qatomic_set_i64(int64_t *ptr, int64_t val);
305 void qatomic_set_u64(uint64_t *ptr, uint64_t val);
306 void qatomic64_init(void);
307 #endif /* !CONFIG_ATOMIC64 */
308
309 #endif /* QEMU_ATOMIC_H */