]> git.proxmox.com Git - mirror_qemu.git/blob - include/qemu/atomic.h
docs: fix broken paths to docs/devel/atomics.txt
[mirror_qemu.git] / include / qemu / atomic.h
1 /*
2 * Simple interface for atomic operations.
3 *
4 * Copyright (C) 2013 Red Hat, Inc.
5 *
6 * Author: Paolo Bonzini <pbonzini@redhat.com>
7 *
8 * This work is licensed under the terms of the GNU GPL, version 2 or later.
9 * See the COPYING file in the top-level directory.
10 *
11 * See docs/devel/atomics.txt for discussion about the guarantees each
12 * atomic primitive is meant to provide.
13 */
14
15 #ifndef QEMU_ATOMIC_H
16 #define QEMU_ATOMIC_H
17
18 /* Compiler barrier */
19 #define barrier() ({ asm volatile("" ::: "memory"); (void)0; })
20
21 /* The variable that receives the old value of an atomically-accessed
22 * variable must be non-qualified, because atomic builtins return values
23 * through a pointer-type argument as in __atomic_load(&var, &old, MODEL).
24 *
25 * This macro has to handle types smaller than int manually, because of
26 * implicit promotion. int and larger types, as well as pointers, can be
27 * converted to a non-qualified type just by applying a binary operator.
28 */
29 #define typeof_strip_qual(expr) \
30 typeof( \
31 __builtin_choose_expr( \
32 __builtin_types_compatible_p(typeof(expr), bool) || \
33 __builtin_types_compatible_p(typeof(expr), const bool) || \
34 __builtin_types_compatible_p(typeof(expr), volatile bool) || \
35 __builtin_types_compatible_p(typeof(expr), const volatile bool), \
36 (bool)1, \
37 __builtin_choose_expr( \
38 __builtin_types_compatible_p(typeof(expr), signed char) || \
39 __builtin_types_compatible_p(typeof(expr), const signed char) || \
40 __builtin_types_compatible_p(typeof(expr), volatile signed char) || \
41 __builtin_types_compatible_p(typeof(expr), const volatile signed char), \
42 (signed char)1, \
43 __builtin_choose_expr( \
44 __builtin_types_compatible_p(typeof(expr), unsigned char) || \
45 __builtin_types_compatible_p(typeof(expr), const unsigned char) || \
46 __builtin_types_compatible_p(typeof(expr), volatile unsigned char) || \
47 __builtin_types_compatible_p(typeof(expr), const volatile unsigned char), \
48 (unsigned char)1, \
49 __builtin_choose_expr( \
50 __builtin_types_compatible_p(typeof(expr), signed short) || \
51 __builtin_types_compatible_p(typeof(expr), const signed short) || \
52 __builtin_types_compatible_p(typeof(expr), volatile signed short) || \
53 __builtin_types_compatible_p(typeof(expr), const volatile signed short), \
54 (signed short)1, \
55 __builtin_choose_expr( \
56 __builtin_types_compatible_p(typeof(expr), unsigned short) || \
57 __builtin_types_compatible_p(typeof(expr), const unsigned short) || \
58 __builtin_types_compatible_p(typeof(expr), volatile unsigned short) || \
59 __builtin_types_compatible_p(typeof(expr), const volatile unsigned short), \
60 (unsigned short)1, \
61 (expr)+0))))))
62
63 #ifdef __ATOMIC_RELAXED
64 /* For C11 atomic ops */
65
66 /* Manual memory barriers
67 *
68 *__atomic_thread_fence does not include a compiler barrier; instead,
69 * the barrier is part of __atomic_load/__atomic_store's "volatile-like"
70 * semantics. If smp_wmb() is a no-op, absence of the barrier means that
71 * the compiler is free to reorder stores on each side of the barrier.
72 * Add one here, and similarly in smp_rmb() and smp_read_barrier_depends().
73 */
74
75 #define smp_mb() ({ barrier(); __atomic_thread_fence(__ATOMIC_SEQ_CST); })
76 #define smp_mb_release() ({ barrier(); __atomic_thread_fence(__ATOMIC_RELEASE); })
77 #define smp_mb_acquire() ({ barrier(); __atomic_thread_fence(__ATOMIC_ACQUIRE); })
78
79 /* Most compilers currently treat consume and acquire the same, but really
80 * no processors except Alpha need a barrier here. Leave it in if
81 * using Thread Sanitizer to avoid warnings, otherwise optimize it away.
82 */
83 #if defined(__SANITIZE_THREAD__)
84 #define smp_read_barrier_depends() ({ barrier(); __atomic_thread_fence(__ATOMIC_CONSUME); })
85 #elif defined(__alpha__)
86 #define smp_read_barrier_depends() asm volatile("mb":::"memory")
87 #else
88 #define smp_read_barrier_depends() barrier()
89 #endif
90
91 /* Sanity check that the size of an atomic operation isn't "overly large".
92 * Despite the fact that e.g. i686 has 64-bit atomic operations, we do not
93 * want to use them because we ought not need them, and this lets us do a
94 * bit of sanity checking that other 32-bit hosts might build.
95 *
96 * That said, we have a problem on 64-bit ILP32 hosts in that in order to
97 * sync with TCG_OVERSIZED_GUEST, this must match TCG_TARGET_REG_BITS.
98 * We'd prefer not want to pull in everything else TCG related, so handle
99 * those few cases by hand.
100 *
101 * Note that x32 is fully detected with __x64_64__ + _ILP32, and that for
102 * Sparc we always force the use of sparcv9 in configure.
103 */
104 #if defined(__x86_64__) || defined(__sparc__)
105 # define ATOMIC_REG_SIZE 8
106 #else
107 # define ATOMIC_REG_SIZE sizeof(void *)
108 #endif
109
110 /* Weak atomic operations prevent the compiler moving other
111 * loads/stores past the atomic operation load/store. However there is
112 * no explicit memory barrier for the processor.
113 *
114 * The C11 memory model says that variables that are accessed from
115 * different threads should at least be done with __ATOMIC_RELAXED
116 * primitives or the result is undefined. Generally this has little to
117 * no effect on the generated code but not using the atomic primitives
118 * will get flagged by sanitizers as a violation.
119 */
120 #define atomic_read__nocheck(ptr) \
121 __atomic_load_n(ptr, __ATOMIC_RELAXED)
122
123 #define atomic_read(ptr) \
124 ({ \
125 QEMU_BUILD_BUG_ON(sizeof(*ptr) > ATOMIC_REG_SIZE); \
126 atomic_read__nocheck(ptr); \
127 })
128
129 #define atomic_set__nocheck(ptr, i) \
130 __atomic_store_n(ptr, i, __ATOMIC_RELAXED)
131
132 #define atomic_set(ptr, i) do { \
133 QEMU_BUILD_BUG_ON(sizeof(*ptr) > ATOMIC_REG_SIZE); \
134 atomic_set__nocheck(ptr, i); \
135 } while(0)
136
137 /* See above: most compilers currently treat consume and acquire the
138 * same, but this slows down atomic_rcu_read unnecessarily.
139 */
140 #ifdef __SANITIZE_THREAD__
141 #define atomic_rcu_read__nocheck(ptr, valptr) \
142 __atomic_load(ptr, valptr, __ATOMIC_CONSUME);
143 #else
144 #define atomic_rcu_read__nocheck(ptr, valptr) \
145 __atomic_load(ptr, valptr, __ATOMIC_RELAXED); \
146 smp_read_barrier_depends();
147 #endif
148
149 #define atomic_rcu_read(ptr) \
150 ({ \
151 QEMU_BUILD_BUG_ON(sizeof(*ptr) > ATOMIC_REG_SIZE); \
152 typeof_strip_qual(*ptr) _val; \
153 atomic_rcu_read__nocheck(ptr, &_val); \
154 _val; \
155 })
156
157 #define atomic_rcu_set(ptr, i) do { \
158 QEMU_BUILD_BUG_ON(sizeof(*ptr) > ATOMIC_REG_SIZE); \
159 __atomic_store_n(ptr, i, __ATOMIC_RELEASE); \
160 } while(0)
161
162 #define atomic_load_acquire(ptr) \
163 ({ \
164 QEMU_BUILD_BUG_ON(sizeof(*ptr) > ATOMIC_REG_SIZE); \
165 typeof_strip_qual(*ptr) _val; \
166 __atomic_load(ptr, &_val, __ATOMIC_ACQUIRE); \
167 _val; \
168 })
169
170 #define atomic_store_release(ptr, i) do { \
171 QEMU_BUILD_BUG_ON(sizeof(*ptr) > ATOMIC_REG_SIZE); \
172 __atomic_store_n(ptr, i, __ATOMIC_RELEASE); \
173 } while(0)
174
175
176 /* All the remaining operations are fully sequentially consistent */
177
178 #define atomic_xchg__nocheck(ptr, i) ({ \
179 __atomic_exchange_n(ptr, (i), __ATOMIC_SEQ_CST); \
180 })
181
182 #define atomic_xchg(ptr, i) ({ \
183 QEMU_BUILD_BUG_ON(sizeof(*ptr) > ATOMIC_REG_SIZE); \
184 atomic_xchg__nocheck(ptr, i); \
185 })
186
187 /* Returns the eventual value, failed or not */
188 #define atomic_cmpxchg__nocheck(ptr, old, new) ({ \
189 typeof_strip_qual(*ptr) _old = (old); \
190 __atomic_compare_exchange_n(ptr, &_old, new, false, \
191 __ATOMIC_SEQ_CST, __ATOMIC_SEQ_CST); \
192 _old; \
193 })
194
195 #define atomic_cmpxchg(ptr, old, new) ({ \
196 QEMU_BUILD_BUG_ON(sizeof(*ptr) > ATOMIC_REG_SIZE); \
197 atomic_cmpxchg__nocheck(ptr, old, new); \
198 })
199
200 /* Provide shorter names for GCC atomic builtins, return old value */
201 #define atomic_fetch_inc(ptr) __atomic_fetch_add(ptr, 1, __ATOMIC_SEQ_CST)
202 #define atomic_fetch_dec(ptr) __atomic_fetch_sub(ptr, 1, __ATOMIC_SEQ_CST)
203 #define atomic_fetch_add(ptr, n) __atomic_fetch_add(ptr, n, __ATOMIC_SEQ_CST)
204 #define atomic_fetch_sub(ptr, n) __atomic_fetch_sub(ptr, n, __ATOMIC_SEQ_CST)
205 #define atomic_fetch_and(ptr, n) __atomic_fetch_and(ptr, n, __ATOMIC_SEQ_CST)
206 #define atomic_fetch_or(ptr, n) __atomic_fetch_or(ptr, n, __ATOMIC_SEQ_CST)
207 #define atomic_fetch_xor(ptr, n) __atomic_fetch_xor(ptr, n, __ATOMIC_SEQ_CST)
208
209 #define atomic_inc_fetch(ptr) __atomic_add_fetch(ptr, 1, __ATOMIC_SEQ_CST)
210 #define atomic_dec_fetch(ptr) __atomic_sub_fetch(ptr, 1, __ATOMIC_SEQ_CST)
211 #define atomic_add_fetch(ptr, n) __atomic_add_fetch(ptr, n, __ATOMIC_SEQ_CST)
212 #define atomic_sub_fetch(ptr, n) __atomic_sub_fetch(ptr, n, __ATOMIC_SEQ_CST)
213 #define atomic_and_fetch(ptr, n) __atomic_and_fetch(ptr, n, __ATOMIC_SEQ_CST)
214 #define atomic_or_fetch(ptr, n) __atomic_or_fetch(ptr, n, __ATOMIC_SEQ_CST)
215 #define atomic_xor_fetch(ptr, n) __atomic_xor_fetch(ptr, n, __ATOMIC_SEQ_CST)
216
217 /* And even shorter names that return void. */
218 #define atomic_inc(ptr) ((void) __atomic_fetch_add(ptr, 1, __ATOMIC_SEQ_CST))
219 #define atomic_dec(ptr) ((void) __atomic_fetch_sub(ptr, 1, __ATOMIC_SEQ_CST))
220 #define atomic_add(ptr, n) ((void) __atomic_fetch_add(ptr, n, __ATOMIC_SEQ_CST))
221 #define atomic_sub(ptr, n) ((void) __atomic_fetch_sub(ptr, n, __ATOMIC_SEQ_CST))
222 #define atomic_and(ptr, n) ((void) __atomic_fetch_and(ptr, n, __ATOMIC_SEQ_CST))
223 #define atomic_or(ptr, n) ((void) __atomic_fetch_or(ptr, n, __ATOMIC_SEQ_CST))
224 #define atomic_xor(ptr, n) ((void) __atomic_fetch_xor(ptr, n, __ATOMIC_SEQ_CST))
225
226 #else /* __ATOMIC_RELAXED */
227
228 /*
229 * We use GCC builtin if it's available, as that can use mfence on
230 * 32-bit as well, e.g. if built with -march=pentium-m. However, on
231 * i386 the spec is buggy, and the implementation followed it until
232 * 4.3 (http://gcc.gnu.org/bugzilla/show_bug.cgi?id=36793).
233 */
234 #if defined(__i386__) || defined(__x86_64__)
235 #if !QEMU_GNUC_PREREQ(4, 4)
236 #if defined __x86_64__
237 #define smp_mb() ({ asm volatile("mfence" ::: "memory"); (void)0; })
238 #else
239 #define smp_mb() ({ asm volatile("lock; addl $0,0(%%esp) " ::: "memory"); (void)0; })
240 #endif
241 #endif
242 #endif
243
244
245 #ifdef __alpha__
246 #define smp_read_barrier_depends() asm volatile("mb":::"memory")
247 #endif
248
249 #if defined(__i386__) || defined(__x86_64__) || defined(__s390x__)
250
251 /*
252 * Because of the strongly ordered storage model, wmb() and rmb() are nops
253 * here (a compiler barrier only). QEMU doesn't do accesses to write-combining
254 * qemu memory or non-temporal load/stores from C code.
255 */
256 #define smp_mb_release() barrier()
257 #define smp_mb_acquire() barrier()
258
259 /*
260 * __sync_lock_test_and_set() is documented to be an acquire barrier only,
261 * but it is a full barrier at the hardware level. Add a compiler barrier
262 * to make it a full barrier also at the compiler level.
263 */
264 #define atomic_xchg(ptr, i) (barrier(), __sync_lock_test_and_set(ptr, i))
265
266 #elif defined(_ARCH_PPC)
267
268 /*
269 * We use an eieio() for wmb() on powerpc. This assumes we don't
270 * need to order cacheable and non-cacheable stores with respect to
271 * each other.
272 *
273 * smp_mb has the same problem as on x86 for not-very-new GCC
274 * (http://patchwork.ozlabs.org/patch/126184/, Nov 2011).
275 */
276 #define smp_wmb() ({ asm volatile("eieio" ::: "memory"); (void)0; })
277 #if defined(__powerpc64__)
278 #define smp_mb_release() ({ asm volatile("lwsync" ::: "memory"); (void)0; })
279 #define smp_mb_acquire() ({ asm volatile("lwsync" ::: "memory"); (void)0; })
280 #else
281 #define smp_mb_release() ({ asm volatile("sync" ::: "memory"); (void)0; })
282 #define smp_mb_acquire() ({ asm volatile("sync" ::: "memory"); (void)0; })
283 #endif
284 #define smp_mb() ({ asm volatile("sync" ::: "memory"); (void)0; })
285
286 #endif /* _ARCH_PPC */
287
288 /*
289 * For (host) platforms we don't have explicit barrier definitions
290 * for, we use the gcc __sync_synchronize() primitive to generate a
291 * full barrier. This should be safe on all platforms, though it may
292 * be overkill for smp_mb_acquire() and smp_mb_release().
293 */
294 #ifndef smp_mb
295 #define smp_mb() __sync_synchronize()
296 #endif
297
298 #ifndef smp_mb_acquire
299 #define smp_mb_acquire() __sync_synchronize()
300 #endif
301
302 #ifndef smp_mb_release
303 #define smp_mb_release() __sync_synchronize()
304 #endif
305
306 #ifndef smp_read_barrier_depends
307 #define smp_read_barrier_depends() barrier()
308 #endif
309
310 /* These will only be atomic if the processor does the fetch or store
311 * in a single issue memory operation
312 */
313 #define atomic_read__nocheck(p) (*(__typeof__(*(p)) volatile*) (p))
314 #define atomic_set__nocheck(p, i) ((*(__typeof__(*(p)) volatile*) (p)) = (i))
315
316 #define atomic_read(ptr) atomic_read__nocheck(ptr)
317 #define atomic_set(ptr, i) atomic_set__nocheck(ptr,i)
318
319 /**
320 * atomic_rcu_read - reads a RCU-protected pointer to a local variable
321 * into a RCU read-side critical section. The pointer can later be safely
322 * dereferenced within the critical section.
323 *
324 * This ensures that the pointer copy is invariant thorough the whole critical
325 * section.
326 *
327 * Inserts memory barriers on architectures that require them (currently only
328 * Alpha) and documents which pointers are protected by RCU.
329 *
330 * atomic_rcu_read also includes a compiler barrier to ensure that
331 * value-speculative optimizations (e.g. VSS: Value Speculation
332 * Scheduling) does not perform the data read before the pointer read
333 * by speculating the value of the pointer.
334 *
335 * Should match atomic_rcu_set(), atomic_xchg(), atomic_cmpxchg().
336 */
337 #define atomic_rcu_read(ptr) ({ \
338 typeof(*ptr) _val = atomic_read(ptr); \
339 smp_read_barrier_depends(); \
340 _val; \
341 })
342
343 /**
344 * atomic_rcu_set - assigns (publicizes) a pointer to a new data structure
345 * meant to be read by RCU read-side critical sections.
346 *
347 * Documents which pointers will be dereferenced by RCU read-side critical
348 * sections and adds the required memory barriers on architectures requiring
349 * them. It also makes sure the compiler does not reorder code initializing the
350 * data structure before its publication.
351 *
352 * Should match atomic_rcu_read().
353 */
354 #define atomic_rcu_set(ptr, i) do { \
355 smp_wmb(); \
356 atomic_set(ptr, i); \
357 } while (0)
358
359 #define atomic_load_acquire(ptr) ({ \
360 typeof(*ptr) _val = atomic_read(ptr); \
361 smp_mb_acquire(); \
362 _val; \
363 })
364
365 #define atomic_store_release(ptr, i) do { \
366 smp_mb_release(); \
367 atomic_set(ptr, i); \
368 } while (0)
369
370 #ifndef atomic_xchg
371 #if defined(__clang__)
372 #define atomic_xchg(ptr, i) __sync_swap(ptr, i)
373 #else
374 /* __sync_lock_test_and_set() is documented to be an acquire barrier only. */
375 #define atomic_xchg(ptr, i) (smp_mb(), __sync_lock_test_and_set(ptr, i))
376 #endif
377 #endif
378 #define atomic_xchg__nocheck atomic_xchg
379
380 /* Provide shorter names for GCC atomic builtins. */
381 #define atomic_fetch_inc(ptr) __sync_fetch_and_add(ptr, 1)
382 #define atomic_fetch_dec(ptr) __sync_fetch_and_add(ptr, -1)
383 #define atomic_fetch_add(ptr, n) __sync_fetch_and_add(ptr, n)
384 #define atomic_fetch_sub(ptr, n) __sync_fetch_and_sub(ptr, n)
385 #define atomic_fetch_and(ptr, n) __sync_fetch_and_and(ptr, n)
386 #define atomic_fetch_or(ptr, n) __sync_fetch_and_or(ptr, n)
387 #define atomic_fetch_xor(ptr, n) __sync_fetch_and_xor(ptr, n)
388
389 #define atomic_inc_fetch(ptr) __sync_add_and_fetch(ptr, 1)
390 #define atomic_dec_fetch(ptr) __sync_add_and_fetch(ptr, -1)
391 #define atomic_add_fetch(ptr, n) __sync_add_and_fetch(ptr, n)
392 #define atomic_sub_fetch(ptr, n) __sync_sub_and_fetch(ptr, n)
393 #define atomic_and_fetch(ptr, n) __sync_and_and_fetch(ptr, n)
394 #define atomic_or_fetch(ptr, n) __sync_or_and_fetch(ptr, n)
395 #define atomic_xor_fetch(ptr, n) __sync_xor_and_fetch(ptr, n)
396
397 #define atomic_cmpxchg(ptr, old, new) __sync_val_compare_and_swap(ptr, old, new)
398 #define atomic_cmpxchg__nocheck(ptr, old, new) atomic_cmpxchg(ptr, old, new)
399
400 /* And even shorter names that return void. */
401 #define atomic_inc(ptr) ((void) __sync_fetch_and_add(ptr, 1))
402 #define atomic_dec(ptr) ((void) __sync_fetch_and_add(ptr, -1))
403 #define atomic_add(ptr, n) ((void) __sync_fetch_and_add(ptr, n))
404 #define atomic_sub(ptr, n) ((void) __sync_fetch_and_sub(ptr, n))
405 #define atomic_and(ptr, n) ((void) __sync_fetch_and_and(ptr, n))
406 #define atomic_or(ptr, n) ((void) __sync_fetch_and_or(ptr, n))
407 #define atomic_xor(ptr, n) ((void) __sync_fetch_and_xor(ptr, n))
408
409 #endif /* __ATOMIC_RELAXED */
410
411 #ifndef smp_wmb
412 #define smp_wmb() smp_mb_release()
413 #endif
414 #ifndef smp_rmb
415 #define smp_rmb() smp_mb_acquire()
416 #endif
417
418 /* This is more efficient than a store plus a fence. */
419 #if !defined(__SANITIZE_THREAD__)
420 #if defined(__i386__) || defined(__x86_64__) || defined(__s390x__)
421 #define atomic_mb_set(ptr, i) ((void)atomic_xchg(ptr, i))
422 #endif
423 #endif
424
425 /* atomic_mb_read/set semantics map Java volatile variables. They are
426 * less expensive on some platforms (notably POWER) than fully
427 * sequentially consistent operations.
428 *
429 * As long as they are used as paired operations they are safe to
430 * use. See docs/devel/atomics.txt for more discussion.
431 */
432
433 #ifndef atomic_mb_read
434 #define atomic_mb_read(ptr) \
435 atomic_load_acquire(ptr)
436 #endif
437
438 #ifndef atomic_mb_set
439 #define atomic_mb_set(ptr, i) do { \
440 atomic_store_release(ptr, i); \
441 smp_mb(); \
442 } while(0)
443 #endif
444
445 #endif /* QEMU_ATOMIC_H */