]> git.proxmox.com Git - mirror_qemu.git/blob - include/qemu/bitops.h
Merge remote-tracking branch 'remotes/cohuck/tags/s390x-20200227' into staging
[mirror_qemu.git] / include / qemu / bitops.h
1 /*
2 * Bitops Module
3 *
4 * Copyright (C) 2010 Corentin Chary <corentin.chary@gmail.com>
5 *
6 * Mostly inspired by (stolen from) linux/bitmap.h and linux/bitops.h
7 *
8 * This work is licensed under the terms of the GNU LGPL, version 2.1 or later.
9 * See the COPYING.LIB file in the top-level directory.
10 */
11
12 #ifndef BITOPS_H
13 #define BITOPS_H
14
15
16 #include "host-utils.h"
17 #include "atomic.h"
18
19 #define BITS_PER_BYTE CHAR_BIT
20 #define BITS_PER_LONG (sizeof (unsigned long) * BITS_PER_BYTE)
21
22 #define BIT(nr) (1UL << (nr))
23 #define BIT_ULL(nr) (1ULL << (nr))
24 #define BIT_MASK(nr) (1UL << ((nr) % BITS_PER_LONG))
25 #define BIT_WORD(nr) ((nr) / BITS_PER_LONG)
26 #define BITS_TO_LONGS(nr) DIV_ROUND_UP(nr, BITS_PER_BYTE * sizeof(long))
27
28 #define MAKE_64BIT_MASK(shift, length) \
29 (((~0ULL) >> (64 - (length))) << (shift))
30
31 /**
32 * set_bit - Set a bit in memory
33 * @nr: the bit to set
34 * @addr: the address to start counting from
35 */
36 static inline void set_bit(long nr, unsigned long *addr)
37 {
38 unsigned long mask = BIT_MASK(nr);
39 unsigned long *p = addr + BIT_WORD(nr);
40
41 *p |= mask;
42 }
43
44 /**
45 * set_bit_atomic - Set a bit in memory atomically
46 * @nr: the bit to set
47 * @addr: the address to start counting from
48 */
49 static inline void set_bit_atomic(long nr, unsigned long *addr)
50 {
51 unsigned long mask = BIT_MASK(nr);
52 unsigned long *p = addr + BIT_WORD(nr);
53
54 atomic_or(p, mask);
55 }
56
57 /**
58 * clear_bit - Clears a bit in memory
59 * @nr: Bit to clear
60 * @addr: Address to start counting from
61 */
62 static inline void clear_bit(long nr, unsigned long *addr)
63 {
64 unsigned long mask = BIT_MASK(nr);
65 unsigned long *p = addr + BIT_WORD(nr);
66
67 *p &= ~mask;
68 }
69
70 /**
71 * change_bit - Toggle a bit in memory
72 * @nr: Bit to change
73 * @addr: Address to start counting from
74 */
75 static inline void change_bit(long nr, unsigned long *addr)
76 {
77 unsigned long mask = BIT_MASK(nr);
78 unsigned long *p = addr + BIT_WORD(nr);
79
80 *p ^= mask;
81 }
82
83 /**
84 * test_and_set_bit - Set a bit and return its old value
85 * @nr: Bit to set
86 * @addr: Address to count from
87 */
88 static inline int test_and_set_bit(long nr, unsigned long *addr)
89 {
90 unsigned long mask = BIT_MASK(nr);
91 unsigned long *p = addr + BIT_WORD(nr);
92 unsigned long old = *p;
93
94 *p = old | mask;
95 return (old & mask) != 0;
96 }
97
98 /**
99 * test_and_clear_bit - Clear a bit and return its old value
100 * @nr: Bit to clear
101 * @addr: Address to count from
102 */
103 static inline int test_and_clear_bit(long nr, unsigned long *addr)
104 {
105 unsigned long mask = BIT_MASK(nr);
106 unsigned long *p = addr + BIT_WORD(nr);
107 unsigned long old = *p;
108
109 *p = old & ~mask;
110 return (old & mask) != 0;
111 }
112
113 /**
114 * test_and_change_bit - Change a bit and return its old value
115 * @nr: Bit to change
116 * @addr: Address to count from
117 */
118 static inline int test_and_change_bit(long nr, unsigned long *addr)
119 {
120 unsigned long mask = BIT_MASK(nr);
121 unsigned long *p = addr + BIT_WORD(nr);
122 unsigned long old = *p;
123
124 *p = old ^ mask;
125 return (old & mask) != 0;
126 }
127
128 /**
129 * test_bit - Determine whether a bit is set
130 * @nr: bit number to test
131 * @addr: Address to start counting from
132 */
133 static inline int test_bit(long nr, const unsigned long *addr)
134 {
135 return 1UL & (addr[BIT_WORD(nr)] >> (nr & (BITS_PER_LONG-1)));
136 }
137
138 /**
139 * find_last_bit - find the last set bit in a memory region
140 * @addr: The address to start the search at
141 * @size: The maximum size to search
142 *
143 * Returns the bit number of the first set bit, or size.
144 */
145 unsigned long find_last_bit(const unsigned long *addr,
146 unsigned long size);
147
148 /**
149 * find_next_bit - find the next set bit in a memory region
150 * @addr: The address to base the search on
151 * @offset: The bitnumber to start searching at
152 * @size: The bitmap size in bits
153 */
154 unsigned long find_next_bit(const unsigned long *addr,
155 unsigned long size,
156 unsigned long offset);
157
158 /**
159 * find_next_zero_bit - find the next cleared bit in a memory region
160 * @addr: The address to base the search on
161 * @offset: The bitnumber to start searching at
162 * @size: The bitmap size in bits
163 */
164
165 unsigned long find_next_zero_bit(const unsigned long *addr,
166 unsigned long size,
167 unsigned long offset);
168
169 /**
170 * find_first_bit - find the first set bit in a memory region
171 * @addr: The address to start the search at
172 * @size: The maximum size to search
173 *
174 * Returns the bit number of the first set bit.
175 */
176 static inline unsigned long find_first_bit(const unsigned long *addr,
177 unsigned long size)
178 {
179 unsigned long result, tmp;
180
181 for (result = 0; result < size; result += BITS_PER_LONG) {
182 tmp = *addr++;
183 if (tmp) {
184 result += ctzl(tmp);
185 return result < size ? result : size;
186 }
187 }
188 /* Not found */
189 return size;
190 }
191
192 /**
193 * find_first_zero_bit - find the first cleared bit in a memory region
194 * @addr: The address to start the search at
195 * @size: The maximum size to search
196 *
197 * Returns the bit number of the first cleared bit.
198 */
199 static inline unsigned long find_first_zero_bit(const unsigned long *addr,
200 unsigned long size)
201 {
202 return find_next_zero_bit(addr, size, 0);
203 }
204
205 /**
206 * rol8 - rotate an 8-bit value left
207 * @word: value to rotate
208 * @shift: bits to roll
209 */
210 static inline uint8_t rol8(uint8_t word, unsigned int shift)
211 {
212 return (word << shift) | (word >> ((8 - shift) & 7));
213 }
214
215 /**
216 * ror8 - rotate an 8-bit value right
217 * @word: value to rotate
218 * @shift: bits to roll
219 */
220 static inline uint8_t ror8(uint8_t word, unsigned int shift)
221 {
222 return (word >> shift) | (word << ((8 - shift) & 7));
223 }
224
225 /**
226 * rol16 - rotate a 16-bit value left
227 * @word: value to rotate
228 * @shift: bits to roll
229 */
230 static inline uint16_t rol16(uint16_t word, unsigned int shift)
231 {
232 return (word << shift) | (word >> ((16 - shift) & 15));
233 }
234
235 /**
236 * ror16 - rotate a 16-bit value right
237 * @word: value to rotate
238 * @shift: bits to roll
239 */
240 static inline uint16_t ror16(uint16_t word, unsigned int shift)
241 {
242 return (word >> shift) | (word << ((16 - shift) & 15));
243 }
244
245 /**
246 * rol32 - rotate a 32-bit value left
247 * @word: value to rotate
248 * @shift: bits to roll
249 */
250 static inline uint32_t rol32(uint32_t word, unsigned int shift)
251 {
252 return (word << shift) | (word >> ((32 - shift) & 31));
253 }
254
255 /**
256 * ror32 - rotate a 32-bit value right
257 * @word: value to rotate
258 * @shift: bits to roll
259 */
260 static inline uint32_t ror32(uint32_t word, unsigned int shift)
261 {
262 return (word >> shift) | (word << ((32 - shift) & 31));
263 }
264
265 /**
266 * rol64 - rotate a 64-bit value left
267 * @word: value to rotate
268 * @shift: bits to roll
269 */
270 static inline uint64_t rol64(uint64_t word, unsigned int shift)
271 {
272 return (word << shift) | (word >> ((64 - shift) & 63));
273 }
274
275 /**
276 * ror64 - rotate a 64-bit value right
277 * @word: value to rotate
278 * @shift: bits to roll
279 */
280 static inline uint64_t ror64(uint64_t word, unsigned int shift)
281 {
282 return (word >> shift) | (word << ((64 - shift) & 63));
283 }
284
285 /**
286 * extract32:
287 * @value: the value to extract the bit field from
288 * @start: the lowest bit in the bit field (numbered from 0)
289 * @length: the length of the bit field
290 *
291 * Extract from the 32 bit input @value the bit field specified by the
292 * @start and @length parameters, and return it. The bit field must
293 * lie entirely within the 32 bit word. It is valid to request that
294 * all 32 bits are returned (ie @length 32 and @start 0).
295 *
296 * Returns: the value of the bit field extracted from the input value.
297 */
298 static inline uint32_t extract32(uint32_t value, int start, int length)
299 {
300 assert(start >= 0 && length > 0 && length <= 32 - start);
301 return (value >> start) & (~0U >> (32 - length));
302 }
303
304 /**
305 * extract8:
306 * @value: the value to extract the bit field from
307 * @start: the lowest bit in the bit field (numbered from 0)
308 * @length: the length of the bit field
309 *
310 * Extract from the 8 bit input @value the bit field specified by the
311 * @start and @length parameters, and return it. The bit field must
312 * lie entirely within the 8 bit word. It is valid to request that
313 * all 8 bits are returned (ie @length 8 and @start 0).
314 *
315 * Returns: the value of the bit field extracted from the input value.
316 */
317 static inline uint8_t extract8(uint8_t value, int start, int length)
318 {
319 assert(start >= 0 && length > 0 && length <= 8 - start);
320 return extract32(value, start, length);
321 }
322
323 /**
324 * extract16:
325 * @value: the value to extract the bit field from
326 * @start: the lowest bit in the bit field (numbered from 0)
327 * @length: the length of the bit field
328 *
329 * Extract from the 16 bit input @value the bit field specified by the
330 * @start and @length parameters, and return it. The bit field must
331 * lie entirely within the 16 bit word. It is valid to request that
332 * all 16 bits are returned (ie @length 16 and @start 0).
333 *
334 * Returns: the value of the bit field extracted from the input value.
335 */
336 static inline uint16_t extract16(uint16_t value, int start, int length)
337 {
338 assert(start >= 0 && length > 0 && length <= 16 - start);
339 return extract32(value, start, length);
340 }
341
342 /**
343 * extract64:
344 * @value: the value to extract the bit field from
345 * @start: the lowest bit in the bit field (numbered from 0)
346 * @length: the length of the bit field
347 *
348 * Extract from the 64 bit input @value the bit field specified by the
349 * @start and @length parameters, and return it. The bit field must
350 * lie entirely within the 64 bit word. It is valid to request that
351 * all 64 bits are returned (ie @length 64 and @start 0).
352 *
353 * Returns: the value of the bit field extracted from the input value.
354 */
355 static inline uint64_t extract64(uint64_t value, int start, int length)
356 {
357 assert(start >= 0 && length > 0 && length <= 64 - start);
358 return (value >> start) & (~0ULL >> (64 - length));
359 }
360
361 /**
362 * sextract32:
363 * @value: the value to extract the bit field from
364 * @start: the lowest bit in the bit field (numbered from 0)
365 * @length: the length of the bit field
366 *
367 * Extract from the 32 bit input @value the bit field specified by the
368 * @start and @length parameters, and return it, sign extended to
369 * an int32_t (ie with the most significant bit of the field propagated
370 * to all the upper bits of the return value). The bit field must lie
371 * entirely within the 32 bit word. It is valid to request that
372 * all 32 bits are returned (ie @length 32 and @start 0).
373 *
374 * Returns: the sign extended value of the bit field extracted from the
375 * input value.
376 */
377 static inline int32_t sextract32(uint32_t value, int start, int length)
378 {
379 assert(start >= 0 && length > 0 && length <= 32 - start);
380 /* Note that this implementation relies on right shift of signed
381 * integers being an arithmetic shift.
382 */
383 return ((int32_t)(value << (32 - length - start))) >> (32 - length);
384 }
385
386 /**
387 * sextract64:
388 * @value: the value to extract the bit field from
389 * @start: the lowest bit in the bit field (numbered from 0)
390 * @length: the length of the bit field
391 *
392 * Extract from the 64 bit input @value the bit field specified by the
393 * @start and @length parameters, and return it, sign extended to
394 * an int64_t (ie with the most significant bit of the field propagated
395 * to all the upper bits of the return value). The bit field must lie
396 * entirely within the 64 bit word. It is valid to request that
397 * all 64 bits are returned (ie @length 64 and @start 0).
398 *
399 * Returns: the sign extended value of the bit field extracted from the
400 * input value.
401 */
402 static inline int64_t sextract64(uint64_t value, int start, int length)
403 {
404 assert(start >= 0 && length > 0 && length <= 64 - start);
405 /* Note that this implementation relies on right shift of signed
406 * integers being an arithmetic shift.
407 */
408 return ((int64_t)(value << (64 - length - start))) >> (64 - length);
409 }
410
411 /**
412 * deposit32:
413 * @value: initial value to insert bit field into
414 * @start: the lowest bit in the bit field (numbered from 0)
415 * @length: the length of the bit field
416 * @fieldval: the value to insert into the bit field
417 *
418 * Deposit @fieldval into the 32 bit @value at the bit field specified
419 * by the @start and @length parameters, and return the modified
420 * @value. Bits of @value outside the bit field are not modified.
421 * Bits of @fieldval above the least significant @length bits are
422 * ignored. The bit field must lie entirely within the 32 bit word.
423 * It is valid to request that all 32 bits are modified (ie @length
424 * 32 and @start 0).
425 *
426 * Returns: the modified @value.
427 */
428 static inline uint32_t deposit32(uint32_t value, int start, int length,
429 uint32_t fieldval)
430 {
431 uint32_t mask;
432 assert(start >= 0 && length > 0 && length <= 32 - start);
433 mask = (~0U >> (32 - length)) << start;
434 return (value & ~mask) | ((fieldval << start) & mask);
435 }
436
437 /**
438 * deposit64:
439 * @value: initial value to insert bit field into
440 * @start: the lowest bit in the bit field (numbered from 0)
441 * @length: the length of the bit field
442 * @fieldval: the value to insert into the bit field
443 *
444 * Deposit @fieldval into the 64 bit @value at the bit field specified
445 * by the @start and @length parameters, and return the modified
446 * @value. Bits of @value outside the bit field are not modified.
447 * Bits of @fieldval above the least significant @length bits are
448 * ignored. The bit field must lie entirely within the 64 bit word.
449 * It is valid to request that all 64 bits are modified (ie @length
450 * 64 and @start 0).
451 *
452 * Returns: the modified @value.
453 */
454 static inline uint64_t deposit64(uint64_t value, int start, int length,
455 uint64_t fieldval)
456 {
457 uint64_t mask;
458 assert(start >= 0 && length > 0 && length <= 64 - start);
459 mask = (~0ULL >> (64 - length)) << start;
460 return (value & ~mask) | ((fieldval << start) & mask);
461 }
462
463 /**
464 * half_shuffle32:
465 * @x: 32-bit value (of which only the bottom 16 bits are of interest)
466 *
467 * Given an input value::
468 *
469 * xxxx xxxx xxxx xxxx ABCD EFGH IJKL MNOP
470 *
471 * return the value where the bottom 16 bits are spread out into
472 * the odd bits in the word, and the even bits are zeroed::
473 *
474 * 0A0B 0C0D 0E0F 0G0H 0I0J 0K0L 0M0N 0O0P
475 *
476 * Any bits set in the top half of the input are ignored.
477 *
478 * Returns: the shuffled bits.
479 */
480 static inline uint32_t half_shuffle32(uint32_t x)
481 {
482 /* This algorithm is from _Hacker's Delight_ section 7-2 "Shuffling Bits".
483 * It ignores any bits set in the top half of the input.
484 */
485 x = ((x & 0xFF00) << 8) | (x & 0x00FF);
486 x = ((x << 4) | x) & 0x0F0F0F0F;
487 x = ((x << 2) | x) & 0x33333333;
488 x = ((x << 1) | x) & 0x55555555;
489 return x;
490 }
491
492 /**
493 * half_shuffle64:
494 * @x: 64-bit value (of which only the bottom 32 bits are of interest)
495 *
496 * Given an input value::
497 *
498 * xxxx xxxx xxxx .... xxxx xxxx ABCD EFGH IJKL MNOP QRST UVWX YZab cdef
499 *
500 * return the value where the bottom 32 bits are spread out into
501 * the odd bits in the word, and the even bits are zeroed::
502 *
503 * 0A0B 0C0D 0E0F 0G0H 0I0J 0K0L 0M0N .... 0U0V 0W0X 0Y0Z 0a0b 0c0d 0e0f
504 *
505 * Any bits set in the top half of the input are ignored.
506 *
507 * Returns: the shuffled bits.
508 */
509 static inline uint64_t half_shuffle64(uint64_t x)
510 {
511 /* This algorithm is from _Hacker's Delight_ section 7-2 "Shuffling Bits".
512 * It ignores any bits set in the top half of the input.
513 */
514 x = ((x & 0xFFFF0000ULL) << 16) | (x & 0xFFFF);
515 x = ((x << 8) | x) & 0x00FF00FF00FF00FFULL;
516 x = ((x << 4) | x) & 0x0F0F0F0F0F0F0F0FULL;
517 x = ((x << 2) | x) & 0x3333333333333333ULL;
518 x = ((x << 1) | x) & 0x5555555555555555ULL;
519 return x;
520 }
521
522 /**
523 * half_unshuffle32:
524 * @x: 32-bit value (of which only the odd bits are of interest)
525 *
526 * Given an input value::
527 *
528 * xAxB xCxD xExF xGxH xIxJ xKxL xMxN xOxP
529 *
530 * return the value where all the odd bits are compressed down
531 * into the low half of the word, and the high half is zeroed::
532 *
533 * 0000 0000 0000 0000 ABCD EFGH IJKL MNOP
534 *
535 * Any even bits set in the input are ignored.
536 *
537 * Returns: the unshuffled bits.
538 */
539 static inline uint32_t half_unshuffle32(uint32_t x)
540 {
541 /* This algorithm is from _Hacker's Delight_ section 7-2 "Shuffling Bits".
542 * where it is called an inverse half shuffle.
543 */
544 x &= 0x55555555;
545 x = ((x >> 1) | x) & 0x33333333;
546 x = ((x >> 2) | x) & 0x0F0F0F0F;
547 x = ((x >> 4) | x) & 0x00FF00FF;
548 x = ((x >> 8) | x) & 0x0000FFFF;
549 return x;
550 }
551
552 /**
553 * half_unshuffle64:
554 * @x: 64-bit value (of which only the odd bits are of interest)
555 *
556 * Given an input value::
557 *
558 * xAxB xCxD xExF xGxH xIxJ xKxL xMxN .... xUxV xWxX xYxZ xaxb xcxd xexf
559 *
560 * return the value where all the odd bits are compressed down
561 * into the low half of the word, and the high half is zeroed::
562 *
563 * 0000 0000 0000 .... 0000 0000 ABCD EFGH IJKL MNOP QRST UVWX YZab cdef
564 *
565 * Any even bits set in the input are ignored.
566 *
567 * Returns: the unshuffled bits.
568 */
569 static inline uint64_t half_unshuffle64(uint64_t x)
570 {
571 /* This algorithm is from _Hacker's Delight_ section 7-2 "Shuffling Bits".
572 * where it is called an inverse half shuffle.
573 */
574 x &= 0x5555555555555555ULL;
575 x = ((x >> 1) | x) & 0x3333333333333333ULL;
576 x = ((x >> 2) | x) & 0x0F0F0F0F0F0F0F0FULL;
577 x = ((x >> 4) | x) & 0x00FF00FF00FF00FFULL;
578 x = ((x >> 8) | x) & 0x0000FFFF0000FFFFULL;
579 x = ((x >> 16) | x) & 0x00000000FFFFFFFFULL;
580 return x;
581 }
582
583 #endif