]> git.proxmox.com Git - qemu.git/blob - include/qemu/bswap.h
68cda6ab445ba3e809a5ce5c6c33c20923bb057e
[qemu.git] / include / qemu / bswap.h
1 #ifndef BSWAP_H
2 #define BSWAP_H
3
4 #include "config-host.h"
5
6 #include <inttypes.h>
7 #include "fpu/softfloat.h"
8
9 #ifdef CONFIG_MACHINE_BSWAP_H
10 # include <sys/endian.h>
11 # include <sys/types.h>
12 # include <machine/bswap.h>
13 #elif defined(CONFIG_BYTESWAP_H)
14 # include <byteswap.h>
15
16 static inline uint16_t bswap16(uint16_t x)
17 {
18 return bswap_16(x);
19 }
20
21 static inline uint32_t bswap32(uint32_t x)
22 {
23 return bswap_32(x);
24 }
25
26 static inline uint64_t bswap64(uint64_t x)
27 {
28 return bswap_64(x);
29 }
30 # else
31 static inline uint16_t bswap16(uint16_t x)
32 {
33 return (((x & 0x00ff) << 8) |
34 ((x & 0xff00) >> 8));
35 }
36
37 static inline uint32_t bswap32(uint32_t x)
38 {
39 return (((x & 0x000000ffU) << 24) |
40 ((x & 0x0000ff00U) << 8) |
41 ((x & 0x00ff0000U) >> 8) |
42 ((x & 0xff000000U) >> 24));
43 }
44
45 static inline uint64_t bswap64(uint64_t x)
46 {
47 return (((x & 0x00000000000000ffULL) << 56) |
48 ((x & 0x000000000000ff00ULL) << 40) |
49 ((x & 0x0000000000ff0000ULL) << 24) |
50 ((x & 0x00000000ff000000ULL) << 8) |
51 ((x & 0x000000ff00000000ULL) >> 8) |
52 ((x & 0x0000ff0000000000ULL) >> 24) |
53 ((x & 0x00ff000000000000ULL) >> 40) |
54 ((x & 0xff00000000000000ULL) >> 56));
55 }
56 #endif /* ! CONFIG_MACHINE_BSWAP_H */
57
58 static inline void bswap16s(uint16_t *s)
59 {
60 *s = bswap16(*s);
61 }
62
63 static inline void bswap32s(uint32_t *s)
64 {
65 *s = bswap32(*s);
66 }
67
68 static inline void bswap64s(uint64_t *s)
69 {
70 *s = bswap64(*s);
71 }
72
73 #if defined(HOST_WORDS_BIGENDIAN)
74 #define be_bswap(v, size) (v)
75 #define le_bswap(v, size) bswap ## size(v)
76 #define be_bswaps(v, size)
77 #define le_bswaps(p, size) *p = bswap ## size(*p);
78 #else
79 #define le_bswap(v, size) (v)
80 #define be_bswap(v, size) bswap ## size(v)
81 #define le_bswaps(v, size)
82 #define be_bswaps(p, size) *p = bswap ## size(*p);
83 #endif
84
85 #define CPU_CONVERT(endian, size, type)\
86 static inline type endian ## size ## _to_cpu(type v)\
87 {\
88 return endian ## _bswap(v, size);\
89 }\
90 \
91 static inline type cpu_to_ ## endian ## size(type v)\
92 {\
93 return endian ## _bswap(v, size);\
94 }\
95 \
96 static inline void endian ## size ## _to_cpus(type *p)\
97 {\
98 endian ## _bswaps(p, size)\
99 }\
100 \
101 static inline void cpu_to_ ## endian ## size ## s(type *p)\
102 {\
103 endian ## _bswaps(p, size)\
104 }\
105 \
106 static inline type endian ## size ## _to_cpup(const type *p)\
107 {\
108 return endian ## size ## _to_cpu(*p);\
109 }\
110 \
111 static inline void cpu_to_ ## endian ## size ## w(type *p, type v)\
112 {\
113 *p = cpu_to_ ## endian ## size(v);\
114 }
115
116 CPU_CONVERT(be, 16, uint16_t)
117 CPU_CONVERT(be, 32, uint32_t)
118 CPU_CONVERT(be, 64, uint64_t)
119
120 CPU_CONVERT(le, 16, uint16_t)
121 CPU_CONVERT(le, 32, uint32_t)
122 CPU_CONVERT(le, 64, uint64_t)
123
124 /* unaligned versions (optimized for frequent unaligned accesses)*/
125
126 #if defined(__i386__) || defined(_ARCH_PPC)
127
128 #define cpu_to_le16wu(p, v) cpu_to_le16w(p, v)
129 #define cpu_to_le32wu(p, v) cpu_to_le32w(p, v)
130 #define le16_to_cpupu(p) le16_to_cpup(p)
131 #define le32_to_cpupu(p) le32_to_cpup(p)
132 #define be32_to_cpupu(p) be32_to_cpup(p)
133
134 #define cpu_to_be16wu(p, v) cpu_to_be16w(p, v)
135 #define cpu_to_be32wu(p, v) cpu_to_be32w(p, v)
136 #define cpu_to_be64wu(p, v) cpu_to_be64w(p, v)
137
138 #else
139
140 static inline void cpu_to_le16wu(uint16_t *p, uint16_t v)
141 {
142 uint8_t *p1 = (uint8_t *)p;
143
144 p1[0] = v & 0xff;
145 p1[1] = v >> 8;
146 }
147
148 static inline void cpu_to_le32wu(uint32_t *p, uint32_t v)
149 {
150 uint8_t *p1 = (uint8_t *)p;
151
152 p1[0] = v & 0xff;
153 p1[1] = v >> 8;
154 p1[2] = v >> 16;
155 p1[3] = v >> 24;
156 }
157
158 static inline uint16_t le16_to_cpupu(const uint16_t *p)
159 {
160 const uint8_t *p1 = (const uint8_t *)p;
161 return p1[0] | (p1[1] << 8);
162 }
163
164 static inline uint32_t le32_to_cpupu(const uint32_t *p)
165 {
166 const uint8_t *p1 = (const uint8_t *)p;
167 return p1[0] | (p1[1] << 8) | (p1[2] << 16) | (p1[3] << 24);
168 }
169
170 static inline uint32_t be32_to_cpupu(const uint32_t *p)
171 {
172 const uint8_t *p1 = (const uint8_t *)p;
173 return p1[3] | (p1[2] << 8) | (p1[1] << 16) | (p1[0] << 24);
174 }
175
176 static inline void cpu_to_be16wu(uint16_t *p, uint16_t v)
177 {
178 uint8_t *p1 = (uint8_t *)p;
179
180 p1[0] = v >> 8;
181 p1[1] = v & 0xff;
182 }
183
184 static inline void cpu_to_be32wu(uint32_t *p, uint32_t v)
185 {
186 uint8_t *p1 = (uint8_t *)p;
187
188 p1[0] = v >> 24;
189 p1[1] = v >> 16;
190 p1[2] = v >> 8;
191 p1[3] = v & 0xff;
192 }
193
194 static inline void cpu_to_be64wu(uint64_t *p, uint64_t v)
195 {
196 uint8_t *p1 = (uint8_t *)p;
197
198 p1[0] = v >> 56;
199 p1[1] = v >> 48;
200 p1[2] = v >> 40;
201 p1[3] = v >> 32;
202 p1[4] = v >> 24;
203 p1[5] = v >> 16;
204 p1[6] = v >> 8;
205 p1[7] = v & 0xff;
206 }
207
208 #endif
209
210 #ifdef HOST_WORDS_BIGENDIAN
211 #define cpu_to_32wu cpu_to_be32wu
212 #define leul_to_cpu(v) glue(glue(le,HOST_LONG_BITS),_to_cpu)(v)
213 #else
214 #define cpu_to_32wu cpu_to_le32wu
215 #define leul_to_cpu(v) (v)
216 #endif
217
218 /* len must be one of 1, 2, 4 */
219 static inline uint32_t qemu_bswap_len(uint32_t value, int len)
220 {
221 return bswap32(value) >> (32 - 8 * len);
222 }
223
224 /* Unions for reinterpreting between floats and integers. */
225
226 typedef union {
227 float32 f;
228 uint32_t l;
229 } CPU_FloatU;
230
231 typedef union {
232 float64 d;
233 #if defined(HOST_WORDS_BIGENDIAN)
234 struct {
235 uint32_t upper;
236 uint32_t lower;
237 } l;
238 #else
239 struct {
240 uint32_t lower;
241 uint32_t upper;
242 } l;
243 #endif
244 uint64_t ll;
245 } CPU_DoubleU;
246
247 typedef union {
248 floatx80 d;
249 struct {
250 uint64_t lower;
251 uint16_t upper;
252 } l;
253 } CPU_LDoubleU;
254
255 typedef union {
256 float128 q;
257 #if defined(HOST_WORDS_BIGENDIAN)
258 struct {
259 uint32_t upmost;
260 uint32_t upper;
261 uint32_t lower;
262 uint32_t lowest;
263 } l;
264 struct {
265 uint64_t upper;
266 uint64_t lower;
267 } ll;
268 #else
269 struct {
270 uint32_t lowest;
271 uint32_t lower;
272 uint32_t upper;
273 uint32_t upmost;
274 } l;
275 struct {
276 uint64_t lower;
277 uint64_t upper;
278 } ll;
279 #endif
280 } CPU_QuadU;
281
282 /* unaligned/endian-independent pointer access */
283
284 /*
285 * the generic syntax is:
286 *
287 * load: ld{type}{sign}{size}{endian}_p(ptr)
288 *
289 * store: st{type}{size}{endian}_p(ptr, val)
290 *
291 * Note there are small differences with the softmmu access API!
292 *
293 * type is:
294 * (empty): integer access
295 * f : float access
296 *
297 * sign is:
298 * (empty): for floats or 32 bit size
299 * u : unsigned
300 * s : signed
301 *
302 * size is:
303 * b: 8 bits
304 * w: 16 bits
305 * l: 32 bits
306 * q: 64 bits
307 *
308 * endian is:
309 * (empty): host endian
310 * be : big endian
311 * le : little endian
312 */
313 static inline int ldub_p(const void *ptr)
314 {
315 return *(uint8_t *)ptr;
316 }
317
318 static inline int ldsb_p(const void *ptr)
319 {
320 return *(int8_t *)ptr;
321 }
322
323 static inline void stb_p(void *ptr, int v)
324 {
325 *(uint8_t *)ptr = v;
326 }
327
328 /* Any compiler worth its salt will turn these memcpy into native unaligned
329 operations. Thus we don't need to play games with packed attributes, or
330 inline byte-by-byte stores. */
331
332 static inline int lduw_p(const void *ptr)
333 {
334 uint16_t r;
335 memcpy(&r, ptr, sizeof(r));
336 return r;
337 }
338
339 static inline int ldsw_p(const void *ptr)
340 {
341 int16_t r;
342 memcpy(&r, ptr, sizeof(r));
343 return r;
344 }
345
346 static inline void stw_p(void *ptr, uint16_t v)
347 {
348 memcpy(ptr, &v, sizeof(v));
349 }
350
351 static inline int ldl_p(const void *ptr)
352 {
353 int32_t r;
354 memcpy(&r, ptr, sizeof(r));
355 return r;
356 }
357
358 static inline void stl_p(void *ptr, uint32_t v)
359 {
360 memcpy(ptr, &v, sizeof(v));
361 }
362
363 static inline uint64_t ldq_p(const void *ptr)
364 {
365 uint64_t r;
366 memcpy(&r, ptr, sizeof(r));
367 return r;
368 }
369
370 static inline void stq_p(void *ptr, uint64_t v)
371 {
372 memcpy(ptr, &v, sizeof(v));
373 }
374
375 static inline int lduw_le_p(const void *ptr)
376 {
377 return (uint16_t)le_bswap(lduw_p(ptr), 16);
378 }
379
380 static inline int ldsw_le_p(const void *ptr)
381 {
382 return (int16_t)le_bswap(lduw_p(ptr), 16);
383 }
384
385 static inline int ldl_le_p(const void *ptr)
386 {
387 return le_bswap(ldl_p(ptr), 32);
388 }
389
390 static inline uint64_t ldq_le_p(const void *ptr)
391 {
392 return le_bswap(ldq_p(ptr), 64);
393 }
394
395 static inline void stw_le_p(void *ptr, int v)
396 {
397 stw_p(ptr, le_bswap(v, 16));
398 }
399
400 static inline void stl_le_p(void *ptr, int v)
401 {
402 stl_p(ptr, le_bswap(v, 32));
403 }
404
405 static inline void stq_le_p(void *ptr, uint64_t v)
406 {
407 stq_p(ptr, le_bswap(v, 64));
408 }
409
410 /* float access */
411
412 static inline float32 ldfl_le_p(const void *ptr)
413 {
414 CPU_FloatU u;
415 u.l = ldl_le_p(ptr);
416 return u.f;
417 }
418
419 static inline void stfl_le_p(void *ptr, float32 v)
420 {
421 CPU_FloatU u;
422 u.f = v;
423 stl_le_p(ptr, u.l);
424 }
425
426 static inline float64 ldfq_le_p(const void *ptr)
427 {
428 CPU_DoubleU u;
429 u.ll = ldq_le_p(ptr);
430 return u.d;
431 }
432
433 static inline void stfq_le_p(void *ptr, float64 v)
434 {
435 CPU_DoubleU u;
436 u.d = v;
437 stq_le_p(ptr, u.ll);
438 }
439
440 static inline int lduw_be_p(const void *ptr)
441 {
442 return (uint16_t)be_bswap(lduw_p(ptr), 16);
443 }
444
445 static inline int ldsw_be_p(const void *ptr)
446 {
447 return (int16_t)be_bswap(lduw_p(ptr), 16);
448 }
449
450 static inline int ldl_be_p(const void *ptr)
451 {
452 return be_bswap(ldl_p(ptr), 32);
453 }
454
455 static inline uint64_t ldq_be_p(const void *ptr)
456 {
457 return be_bswap(ldq_p(ptr), 64);
458 }
459
460 static inline void stw_be_p(void *ptr, int v)
461 {
462 stw_p(ptr, be_bswap(v, 16));
463 }
464
465 static inline void stl_be_p(void *ptr, int v)
466 {
467 stl_p(ptr, be_bswap(v, 32));
468 }
469
470 static inline void stq_be_p(void *ptr, uint64_t v)
471 {
472 stq_p(ptr, be_bswap(v, 64));
473 }
474
475 /* float access */
476
477 static inline float32 ldfl_be_p(const void *ptr)
478 {
479 CPU_FloatU u;
480 u.l = ldl_be_p(ptr);
481 return u.f;
482 }
483
484 static inline void stfl_be_p(void *ptr, float32 v)
485 {
486 CPU_FloatU u;
487 u.f = v;
488 stl_be_p(ptr, u.l);
489 }
490
491 static inline float64 ldfq_be_p(const void *ptr)
492 {
493 CPU_DoubleU u;
494 u.ll = ldq_be_p(ptr);
495 return u.d;
496 }
497
498 static inline void stfq_be_p(void *ptr, float64 v)
499 {
500 CPU_DoubleU u;
501 u.d = v;
502 stq_be_p(ptr, u.ll);
503 }
504
505 #undef le_bswap
506 #undef be_bswap
507 #undef le_bswaps
508 #undef be_bswaps
509
510 #endif /* BSWAP_H */