]> git.proxmox.com Git - mirror_qemu.git/blob - include/qemu/bswap.h
Replace config-time define HOST_WORDS_BIGENDIAN
[mirror_qemu.git] / include / qemu / bswap.h
1 #ifndef BSWAP_H
2 #define BSWAP_H
3
4 #ifdef CONFIG_MACHINE_BSWAP_H
5 # include <sys/endian.h>
6 # include <machine/bswap.h>
7 #elif defined(__FreeBSD__)
8 # include <sys/endian.h>
9 #elif defined(__HAIKU__)
10 # include <endian.h>
11 #elif defined(CONFIG_BYTESWAP_H)
12 # include <byteswap.h>
13 #define BSWAP_FROM_BYTESWAP
14 # else
15 #define BSWAP_FROM_FALLBACKS
16 #endif /* ! CONFIG_MACHINE_BSWAP_H */
17
18 #ifdef __cplusplus
19 extern "C" {
20 #endif
21
22 #include "fpu/softfloat-types.h"
23
24 #ifdef BSWAP_FROM_BYTESWAP
25 static inline uint16_t bswap16(uint16_t x)
26 {
27 return bswap_16(x);
28 }
29
30 static inline uint32_t bswap32(uint32_t x)
31 {
32 return bswap_32(x);
33 }
34
35 static inline uint64_t bswap64(uint64_t x)
36 {
37 return bswap_64(x);
38 }
39 #endif
40
41 #ifdef BSWAP_FROM_FALLBACKS
42 static inline uint16_t bswap16(uint16_t x)
43 {
44 return (((x & 0x00ff) << 8) |
45 ((x & 0xff00) >> 8));
46 }
47
48 static inline uint32_t bswap32(uint32_t x)
49 {
50 return (((x & 0x000000ffU) << 24) |
51 ((x & 0x0000ff00U) << 8) |
52 ((x & 0x00ff0000U) >> 8) |
53 ((x & 0xff000000U) >> 24));
54 }
55
56 static inline uint64_t bswap64(uint64_t x)
57 {
58 return (((x & 0x00000000000000ffULL) << 56) |
59 ((x & 0x000000000000ff00ULL) << 40) |
60 ((x & 0x0000000000ff0000ULL) << 24) |
61 ((x & 0x00000000ff000000ULL) << 8) |
62 ((x & 0x000000ff00000000ULL) >> 8) |
63 ((x & 0x0000ff0000000000ULL) >> 24) |
64 ((x & 0x00ff000000000000ULL) >> 40) |
65 ((x & 0xff00000000000000ULL) >> 56));
66 }
67 #endif
68
69 #undef BSWAP_FROM_BYTESWAP
70 #undef BSWAP_FROM_FALLBACKS
71
72 static inline void bswap16s(uint16_t *s)
73 {
74 *s = bswap16(*s);
75 }
76
77 static inline void bswap32s(uint32_t *s)
78 {
79 *s = bswap32(*s);
80 }
81
82 static inline void bswap64s(uint64_t *s)
83 {
84 *s = bswap64(*s);
85 }
86
87 #if HOST_BIG_ENDIAN
88 #define be_bswap(v, size) (v)
89 #define le_bswap(v, size) glue(bswap, size)(v)
90 #define be_bswaps(v, size)
91 #define le_bswaps(p, size) do { *p = glue(bswap, size)(*p); } while(0)
92 #else
93 #define le_bswap(v, size) (v)
94 #define be_bswap(v, size) glue(bswap, size)(v)
95 #define le_bswaps(v, size)
96 #define be_bswaps(p, size) do { *p = glue(bswap, size)(*p); } while(0)
97 #endif
98
99 /**
100 * Endianness conversion functions between host cpu and specified endianness.
101 * (We list the complete set of prototypes produced by the macros below
102 * to assist people who search the headers to find their definitions.)
103 *
104 * uint16_t le16_to_cpu(uint16_t v);
105 * uint32_t le32_to_cpu(uint32_t v);
106 * uint64_t le64_to_cpu(uint64_t v);
107 * uint16_t be16_to_cpu(uint16_t v);
108 * uint32_t be32_to_cpu(uint32_t v);
109 * uint64_t be64_to_cpu(uint64_t v);
110 *
111 * Convert the value @v from the specified format to the native
112 * endianness of the host CPU by byteswapping if necessary, and
113 * return the converted value.
114 *
115 * uint16_t cpu_to_le16(uint16_t v);
116 * uint32_t cpu_to_le32(uint32_t v);
117 * uint64_t cpu_to_le64(uint64_t v);
118 * uint16_t cpu_to_be16(uint16_t v);
119 * uint32_t cpu_to_be32(uint32_t v);
120 * uint64_t cpu_to_be64(uint64_t v);
121 *
122 * Convert the value @v from the native endianness of the host CPU to
123 * the specified format by byteswapping if necessary, and return
124 * the converted value.
125 *
126 * void le16_to_cpus(uint16_t *v);
127 * void le32_to_cpus(uint32_t *v);
128 * void le64_to_cpus(uint64_t *v);
129 * void be16_to_cpus(uint16_t *v);
130 * void be32_to_cpus(uint32_t *v);
131 * void be64_to_cpus(uint64_t *v);
132 *
133 * Do an in-place conversion of the value pointed to by @v from the
134 * specified format to the native endianness of the host CPU.
135 *
136 * void cpu_to_le16s(uint16_t *v);
137 * void cpu_to_le32s(uint32_t *v);
138 * void cpu_to_le64s(uint64_t *v);
139 * void cpu_to_be16s(uint16_t *v);
140 * void cpu_to_be32s(uint32_t *v);
141 * void cpu_to_be64s(uint64_t *v);
142 *
143 * Do an in-place conversion of the value pointed to by @v from the
144 * native endianness of the host CPU to the specified format.
145 *
146 * Both X_to_cpu() and cpu_to_X() perform the same operation; you
147 * should use whichever one is better documenting of the function your
148 * code is performing.
149 *
150 * Do not use these functions for conversion of values which are in guest
151 * memory, since the data may not be sufficiently aligned for the host CPU's
152 * load and store instructions. Instead you should use the ld*_p() and
153 * st*_p() functions, which perform loads and stores of data of any
154 * required size and endianness and handle possible misalignment.
155 */
156
157 #define CPU_CONVERT(endian, size, type)\
158 static inline type endian ## size ## _to_cpu(type v)\
159 {\
160 return glue(endian, _bswap)(v, size);\
161 }\
162 \
163 static inline type cpu_to_ ## endian ## size(type v)\
164 {\
165 return glue(endian, _bswap)(v, size);\
166 }\
167 \
168 static inline void endian ## size ## _to_cpus(type *p)\
169 {\
170 glue(endian, _bswaps)(p, size);\
171 }\
172 \
173 static inline void cpu_to_ ## endian ## size ## s(type *p)\
174 {\
175 glue(endian, _bswaps)(p, size);\
176 }
177
178 CPU_CONVERT(be, 16, uint16_t)
179 CPU_CONVERT(be, 32, uint32_t)
180 CPU_CONVERT(be, 64, uint64_t)
181
182 CPU_CONVERT(le, 16, uint16_t)
183 CPU_CONVERT(le, 32, uint32_t)
184 CPU_CONVERT(le, 64, uint64_t)
185
186 /*
187 * Same as cpu_to_le{16,32}, except that gcc will figure the result is
188 * a compile-time constant if you pass in a constant. So this can be
189 * used to initialize static variables.
190 */
191 #if HOST_BIG_ENDIAN
192 # define const_le32(_x) \
193 ((((_x) & 0x000000ffU) << 24) | \
194 (((_x) & 0x0000ff00U) << 8) | \
195 (((_x) & 0x00ff0000U) >> 8) | \
196 (((_x) & 0xff000000U) >> 24))
197 # define const_le16(_x) \
198 ((((_x) & 0x00ff) << 8) | \
199 (((_x) & 0xff00) >> 8))
200 #else
201 # define const_le32(_x) (_x)
202 # define const_le16(_x) (_x)
203 #endif
204
205 /* Unions for reinterpreting between floats and integers. */
206
207 typedef union {
208 float32 f;
209 uint32_t l;
210 } CPU_FloatU;
211
212 typedef union {
213 float64 d;
214 #if HOST_BIG_ENDIAN
215 struct {
216 uint32_t upper;
217 uint32_t lower;
218 } l;
219 #else
220 struct {
221 uint32_t lower;
222 uint32_t upper;
223 } l;
224 #endif
225 uint64_t ll;
226 } CPU_DoubleU;
227
228 typedef union {
229 floatx80 d;
230 struct {
231 uint64_t lower;
232 uint16_t upper;
233 } l;
234 } CPU_LDoubleU;
235
236 typedef union {
237 float128 q;
238 #if HOST_BIG_ENDIAN
239 struct {
240 uint32_t upmost;
241 uint32_t upper;
242 uint32_t lower;
243 uint32_t lowest;
244 } l;
245 struct {
246 uint64_t upper;
247 uint64_t lower;
248 } ll;
249 #else
250 struct {
251 uint32_t lowest;
252 uint32_t lower;
253 uint32_t upper;
254 uint32_t upmost;
255 } l;
256 struct {
257 uint64_t lower;
258 uint64_t upper;
259 } ll;
260 #endif
261 } CPU_QuadU;
262
263 /* unaligned/endian-independent pointer access */
264
265 /*
266 * the generic syntax is:
267 *
268 * load: ld{type}{sign}{size}_{endian}_p(ptr)
269 *
270 * store: st{type}{size}_{endian}_p(ptr, val)
271 *
272 * Note there are small differences with the softmmu access API!
273 *
274 * type is:
275 * (empty): integer access
276 * f : float access
277 *
278 * sign is:
279 * (empty): for 32 or 64 bit sizes (including floats and doubles)
280 * u : unsigned
281 * s : signed
282 *
283 * size is:
284 * b: 8 bits
285 * w: 16 bits
286 * l: 32 bits
287 * q: 64 bits
288 *
289 * endian is:
290 * he : host endian
291 * be : big endian
292 * le : little endian
293 * te : target endian
294 * (except for byte accesses, which have no endian infix).
295 *
296 * The target endian accessors are obviously only available to source
297 * files which are built per-target; they are defined in cpu-all.h.
298 *
299 * In all cases these functions take a host pointer.
300 * For accessors that take a guest address rather than a
301 * host address, see the cpu_{ld,st}_* accessors defined in
302 * cpu_ldst.h.
303 *
304 * For cases where the size to be used is not fixed at compile time,
305 * there are
306 * stn_{endian}_p(ptr, sz, val)
307 * which stores @val to @ptr as an @endian-order number @sz bytes in size
308 * and
309 * ldn_{endian}_p(ptr, sz)
310 * which loads @sz bytes from @ptr as an unsigned @endian-order number
311 * and returns it in a uint64_t.
312 */
313
314 static inline int ldub_p(const void *ptr)
315 {
316 return *(uint8_t *)ptr;
317 }
318
319 static inline int ldsb_p(const void *ptr)
320 {
321 return *(int8_t *)ptr;
322 }
323
324 static inline void stb_p(void *ptr, uint8_t v)
325 {
326 *(uint8_t *)ptr = v;
327 }
328
329 /*
330 * Any compiler worth its salt will turn these memcpy into native unaligned
331 * operations. Thus we don't need to play games with packed attributes, or
332 * inline byte-by-byte stores.
333 * Some compilation environments (eg some fortify-source implementations)
334 * may intercept memcpy() in a way that defeats the compiler optimization,
335 * though, so we use __builtin_memcpy() to give ourselves the best chance
336 * of good performance.
337 */
338
339 static inline int lduw_he_p(const void *ptr)
340 {
341 uint16_t r;
342 __builtin_memcpy(&r, ptr, sizeof(r));
343 return r;
344 }
345
346 static inline int ldsw_he_p(const void *ptr)
347 {
348 int16_t r;
349 __builtin_memcpy(&r, ptr, sizeof(r));
350 return r;
351 }
352
353 static inline void stw_he_p(void *ptr, uint16_t v)
354 {
355 __builtin_memcpy(ptr, &v, sizeof(v));
356 }
357
358 static inline int ldl_he_p(const void *ptr)
359 {
360 int32_t r;
361 __builtin_memcpy(&r, ptr, sizeof(r));
362 return r;
363 }
364
365 static inline void stl_he_p(void *ptr, uint32_t v)
366 {
367 __builtin_memcpy(ptr, &v, sizeof(v));
368 }
369
370 static inline uint64_t ldq_he_p(const void *ptr)
371 {
372 uint64_t r;
373 __builtin_memcpy(&r, ptr, sizeof(r));
374 return r;
375 }
376
377 static inline void stq_he_p(void *ptr, uint64_t v)
378 {
379 __builtin_memcpy(ptr, &v, sizeof(v));
380 }
381
382 static inline int lduw_le_p(const void *ptr)
383 {
384 return (uint16_t)le_bswap(lduw_he_p(ptr), 16);
385 }
386
387 static inline int ldsw_le_p(const void *ptr)
388 {
389 return (int16_t)le_bswap(lduw_he_p(ptr), 16);
390 }
391
392 static inline int ldl_le_p(const void *ptr)
393 {
394 return le_bswap(ldl_he_p(ptr), 32);
395 }
396
397 static inline uint64_t ldq_le_p(const void *ptr)
398 {
399 return le_bswap(ldq_he_p(ptr), 64);
400 }
401
402 static inline void stw_le_p(void *ptr, uint16_t v)
403 {
404 stw_he_p(ptr, le_bswap(v, 16));
405 }
406
407 static inline void stl_le_p(void *ptr, uint32_t v)
408 {
409 stl_he_p(ptr, le_bswap(v, 32));
410 }
411
412 static inline void stq_le_p(void *ptr, uint64_t v)
413 {
414 stq_he_p(ptr, le_bswap(v, 64));
415 }
416
417 static inline int lduw_be_p(const void *ptr)
418 {
419 return (uint16_t)be_bswap(lduw_he_p(ptr), 16);
420 }
421
422 static inline int ldsw_be_p(const void *ptr)
423 {
424 return (int16_t)be_bswap(lduw_he_p(ptr), 16);
425 }
426
427 static inline int ldl_be_p(const void *ptr)
428 {
429 return be_bswap(ldl_he_p(ptr), 32);
430 }
431
432 static inline uint64_t ldq_be_p(const void *ptr)
433 {
434 return be_bswap(ldq_he_p(ptr), 64);
435 }
436
437 static inline void stw_be_p(void *ptr, uint16_t v)
438 {
439 stw_he_p(ptr, be_bswap(v, 16));
440 }
441
442 static inline void stl_be_p(void *ptr, uint32_t v)
443 {
444 stl_he_p(ptr, be_bswap(v, 32));
445 }
446
447 static inline void stq_be_p(void *ptr, uint64_t v)
448 {
449 stq_he_p(ptr, be_bswap(v, 64));
450 }
451
452 static inline unsigned long leul_to_cpu(unsigned long v)
453 {
454 #if HOST_LONG_BITS == 32
455 return le_bswap(v, 32);
456 #elif HOST_LONG_BITS == 64
457 return le_bswap(v, 64);
458 #else
459 # error Unknown sizeof long
460 #endif
461 }
462
463 /* Store v to p as a sz byte value in host order */
464 #define DO_STN_LDN_P(END) \
465 static inline void stn_## END ## _p(void *ptr, int sz, uint64_t v) \
466 { \
467 switch (sz) { \
468 case 1: \
469 stb_p(ptr, v); \
470 break; \
471 case 2: \
472 stw_ ## END ## _p(ptr, v); \
473 break; \
474 case 4: \
475 stl_ ## END ## _p(ptr, v); \
476 break; \
477 case 8: \
478 stq_ ## END ## _p(ptr, v); \
479 break; \
480 default: \
481 g_assert_not_reached(); \
482 } \
483 } \
484 static inline uint64_t ldn_## END ## _p(const void *ptr, int sz) \
485 { \
486 switch (sz) { \
487 case 1: \
488 return ldub_p(ptr); \
489 case 2: \
490 return lduw_ ## END ## _p(ptr); \
491 case 4: \
492 return (uint32_t)ldl_ ## END ## _p(ptr); \
493 case 8: \
494 return ldq_ ## END ## _p(ptr); \
495 default: \
496 g_assert_not_reached(); \
497 } \
498 }
499
500 DO_STN_LDN_P(he)
501 DO_STN_LDN_P(le)
502 DO_STN_LDN_P(be)
503
504 #undef DO_STN_LDN_P
505
506 #undef le_bswap
507 #undef be_bswap
508 #undef le_bswaps
509 #undef be_bswaps
510
511 #ifdef __cplusplus
512 }
513 #endif
514
515 #endif /* BSWAP_H */