]> git.proxmox.com Git - mirror_qemu.git/blob - include/qemu/coroutine.h
Merge tag 'tracing-pull-request' of https://gitlab.com/stefanha/qemu into staging
[mirror_qemu.git] / include / qemu / coroutine.h
1 /*
2 * QEMU coroutine implementation
3 *
4 * Copyright IBM, Corp. 2011
5 *
6 * Authors:
7 * Stefan Hajnoczi <stefanha@linux.vnet.ibm.com>
8 * Kevin Wolf <kwolf@redhat.com>
9 *
10 * This work is licensed under the terms of the GNU LGPL, version 2 or later.
11 * See the COPYING.LIB file in the top-level directory.
12 *
13 */
14
15 #ifndef QEMU_COROUTINE_H
16 #define QEMU_COROUTINE_H
17
18 #include "qemu/coroutine-core.h"
19 #include "qemu/queue.h"
20 #include "qemu/timer.h"
21
22 /**
23 * Coroutines are a mechanism for stack switching and can be used for
24 * cooperative userspace threading. These functions provide a simple but
25 * useful flavor of coroutines that is suitable for writing sequential code,
26 * rather than callbacks, for operations that need to give up control while
27 * waiting for events to complete.
28 *
29 * These functions are re-entrant and may be used outside the global mutex.
30 *
31 * Functions that execute in coroutine context cannot be called
32 * directly from normal functions. Use @coroutine_fn to mark such
33 * functions. For example:
34 *
35 * static void coroutine_fn foo(void) {
36 * ....
37 * }
38 *
39 * In the future it would be nice to have the compiler or a static
40 * checker catch misuse of such functions. This annotation might make
41 * it possible and in the meantime it serves as documentation.
42 */
43
44 /**
45 * Provides a mutex that can be used to synchronise coroutines
46 */
47 struct CoWaitRecord;
48 struct CoMutex {
49 /* Count of pending lockers; 0 for a free mutex, 1 for an
50 * uncontended mutex.
51 */
52 unsigned locked;
53
54 /* Context that is holding the lock. Useful to avoid spinning
55 * when two coroutines on the same AioContext try to get the lock. :)
56 */
57 AioContext *ctx;
58
59 /* A queue of waiters. Elements are added atomically in front of
60 * from_push. to_pop is only populated, and popped from, by whoever
61 * is in charge of the next wakeup. This can be an unlocker or,
62 * through the handoff protocol, a locker that is about to go to sleep.
63 */
64 QSLIST_HEAD(, CoWaitRecord) from_push, to_pop;
65
66 unsigned handoff, sequence;
67
68 Coroutine *holder;
69 };
70
71 /**
72 * Assert that the current coroutine holds @mutex.
73 */
74 static inline coroutine_fn void qemu_co_mutex_assert_locked(CoMutex *mutex)
75 {
76 /*
77 * mutex->holder doesn't need any synchronisation if the assertion holds
78 * true because the mutex protects it. If it doesn't hold true, we still
79 * don't mind if another thread takes or releases mutex behind our back,
80 * because the condition will be false no matter whether we read NULL or
81 * the pointer for any other coroutine.
82 */
83 assert(qatomic_read(&mutex->locked) &&
84 mutex->holder == qemu_coroutine_self());
85 }
86
87 /**
88 * CoQueues are a mechanism to queue coroutines in order to continue executing
89 * them later. They are similar to condition variables, but they need help
90 * from an external mutex in order to maintain thread-safety.
91 */
92 typedef struct CoQueue {
93 QSIMPLEQ_HEAD(, Coroutine) entries;
94 } CoQueue;
95
96 /**
97 * Initialise a CoQueue. This must be called before any other operation is used
98 * on the CoQueue.
99 */
100 void qemu_co_queue_init(CoQueue *queue);
101
102 typedef enum {
103 /*
104 * Enqueue at front instead of back. Use this to re-queue a request when
105 * its wait condition is not satisfied after being woken up.
106 */
107 CO_QUEUE_WAIT_FRONT = 0x1,
108 } CoQueueWaitFlags;
109
110 /**
111 * Adds the current coroutine to the CoQueue and transfers control to the
112 * caller of the coroutine. The mutex is unlocked during the wait and
113 * locked again afterwards.
114 */
115 #define qemu_co_queue_wait(queue, lock) \
116 qemu_co_queue_wait_impl(queue, QEMU_MAKE_LOCKABLE(lock), 0)
117 #define qemu_co_queue_wait_flags(queue, lock, flags) \
118 qemu_co_queue_wait_impl(queue, QEMU_MAKE_LOCKABLE(lock), (flags))
119 void coroutine_fn qemu_co_queue_wait_impl(CoQueue *queue, QemuLockable *lock,
120 CoQueueWaitFlags flags);
121
122 /**
123 * Removes the next coroutine from the CoQueue, and queue it to run after
124 * the currently-running coroutine yields.
125 * Returns true if a coroutine was removed, false if the queue is empty.
126 * Used from coroutine context, use qemu_co_enter_next outside.
127 */
128 bool coroutine_fn qemu_co_queue_next(CoQueue *queue);
129
130 /**
131 * Empties the CoQueue and queues the coroutine to run after
132 * the currently-running coroutine yields.
133 * Used from coroutine context, use qemu_co_enter_all outside.
134 */
135 void coroutine_fn qemu_co_queue_restart_all(CoQueue *queue);
136
137 /**
138 * Removes the next coroutine from the CoQueue, and wake it up. Unlike
139 * qemu_co_queue_next, this function releases the lock during aio_co_wake
140 * because it is meant to be used outside coroutine context; in that case, the
141 * coroutine is entered immediately, before qemu_co_enter_next returns.
142 *
143 * If used in coroutine context, qemu_co_enter_next is equivalent to
144 * qemu_co_queue_next.
145 */
146 #define qemu_co_enter_next(queue, lock) \
147 qemu_co_enter_next_impl(queue, QEMU_MAKE_LOCKABLE(lock))
148 bool qemu_co_enter_next_impl(CoQueue *queue, QemuLockable *lock);
149
150 /**
151 * Empties the CoQueue, waking the waiting coroutine one at a time. Unlike
152 * qemu_co_queue_all, this function releases the lock during aio_co_wake
153 * because it is meant to be used outside coroutine context; in that case, the
154 * coroutine is entered immediately, before qemu_co_enter_all returns.
155 *
156 * If used in coroutine context, qemu_co_enter_all is equivalent to
157 * qemu_co_queue_all.
158 */
159 #define qemu_co_enter_all(queue, lock) \
160 qemu_co_enter_all_impl(queue, QEMU_MAKE_LOCKABLE(lock))
161 void qemu_co_enter_all_impl(CoQueue *queue, QemuLockable *lock);
162
163 /**
164 * Checks if the CoQueue is empty.
165 */
166 bool qemu_co_queue_empty(CoQueue *queue);
167
168
169 typedef struct CoRwTicket CoRwTicket;
170 typedef struct CoRwlock {
171 CoMutex mutex;
172
173 /* Number of readers, or -1 if owned for writing. */
174 int owners;
175
176 /* Waiting coroutines. */
177 QSIMPLEQ_HEAD(, CoRwTicket) tickets;
178 } CoRwlock;
179
180 /**
181 * Initialises a CoRwlock. This must be called before any other operation
182 * is used on the CoRwlock
183 */
184 void qemu_co_rwlock_init(CoRwlock *lock);
185
186 /**
187 * Read locks the CoRwlock. If the lock cannot be taken immediately because
188 * of a parallel writer, control is transferred to the caller of the current
189 * coroutine.
190 */
191 void coroutine_fn qemu_co_rwlock_rdlock(CoRwlock *lock);
192
193 /**
194 * Write Locks the CoRwlock from a reader. This is a bit more efficient than
195 * @qemu_co_rwlock_unlock followed by a separate @qemu_co_rwlock_wrlock.
196 * Note that if the lock cannot be upgraded immediately, control is transferred
197 * to the caller of the current coroutine; another writer might run while
198 * @qemu_co_rwlock_upgrade blocks.
199 */
200 void coroutine_fn qemu_co_rwlock_upgrade(CoRwlock *lock);
201
202 /**
203 * Downgrades a write-side critical section to a reader. Downgrading with
204 * @qemu_co_rwlock_downgrade never blocks, unlike @qemu_co_rwlock_unlock
205 * followed by @qemu_co_rwlock_rdlock. This makes it more efficient, but
206 * may also sometimes be necessary for correctness.
207 */
208 void coroutine_fn qemu_co_rwlock_downgrade(CoRwlock *lock);
209
210 /**
211 * Write Locks the mutex. If the lock cannot be taken immediately because
212 * of a parallel reader, control is transferred to the caller of the current
213 * coroutine.
214 */
215 void coroutine_fn qemu_co_rwlock_wrlock(CoRwlock *lock);
216
217 /**
218 * Unlocks the read/write lock and schedules the next coroutine that was
219 * waiting for this lock to be run.
220 */
221 void coroutine_fn qemu_co_rwlock_unlock(CoRwlock *lock);
222
223 typedef struct QemuCoSleep {
224 Coroutine *to_wake;
225 } QemuCoSleep;
226
227 /**
228 * Yield the coroutine for a given duration. Initializes @w so that,
229 * during this yield, it can be passed to qemu_co_sleep_wake() to
230 * terminate the sleep.
231 */
232 void coroutine_fn qemu_co_sleep_ns_wakeable(QemuCoSleep *w,
233 QEMUClockType type, int64_t ns);
234
235 /**
236 * Yield the coroutine until the next call to qemu_co_sleep_wake.
237 */
238 void coroutine_fn qemu_co_sleep(QemuCoSleep *w);
239
240 static inline void coroutine_fn qemu_co_sleep_ns(QEMUClockType type, int64_t ns)
241 {
242 QemuCoSleep w = { 0 };
243 qemu_co_sleep_ns_wakeable(&w, type, ns);
244 }
245
246 typedef void CleanupFunc(void *opaque);
247 /**
248 * Run entry in a coroutine and start timer. Wait for entry to finish or for
249 * timer to elapse, what happen first. If entry finished, return 0, if timer
250 * elapsed earlier, return -ETIMEDOUT.
251 *
252 * Be careful, entry execution is not canceled, user should handle it somehow.
253 * If @clean is provided, it's called after coroutine finish if timeout
254 * happened.
255 */
256 int coroutine_fn qemu_co_timeout(CoroutineEntry *entry, void *opaque,
257 uint64_t timeout_ns, CleanupFunc clean);
258
259 /**
260 * Wake a coroutine if it is sleeping in qemu_co_sleep_ns. The timer will be
261 * deleted. @sleep_state must be the variable whose address was given to
262 * qemu_co_sleep_ns() and should be checked to be non-NULL before calling
263 * qemu_co_sleep_wake().
264 */
265 void qemu_co_sleep_wake(QemuCoSleep *w);
266
267 /**
268 * Yield until a file descriptor becomes readable
269 *
270 * Note that this function clobbers the handlers for the file descriptor.
271 */
272 void coroutine_fn yield_until_fd_readable(int fd);
273
274 /**
275 * Increase coroutine pool size
276 */
277 void qemu_coroutine_inc_pool_size(unsigned int additional_pool_size);
278
279 /**
280 * Decrease coroutine pool size
281 */
282 void qemu_coroutine_dec_pool_size(unsigned int additional_pool_size);
283
284 #include "qemu/lockable.h"
285
286 /**
287 * Sends a (part of) iovec down a socket, yielding when the socket is full, or
288 * Receives data into a (part of) iovec from a socket,
289 * yielding when there is no data in the socket.
290 * The same interface as qemu_sendv_recvv(), with added yielding.
291 * XXX should mark these as coroutine_fn
292 */
293 ssize_t coroutine_fn qemu_co_sendv_recvv(int sockfd, struct iovec *iov,
294 unsigned iov_cnt, size_t offset,
295 size_t bytes, bool do_send);
296 #define qemu_co_recvv(sockfd, iov, iov_cnt, offset, bytes) \
297 qemu_co_sendv_recvv(sockfd, iov, iov_cnt, offset, bytes, false)
298 #define qemu_co_sendv(sockfd, iov, iov_cnt, offset, bytes) \
299 qemu_co_sendv_recvv(sockfd, iov, iov_cnt, offset, bytes, true)
300
301 /**
302 * The same as above, but with just a single buffer
303 */
304 ssize_t coroutine_fn qemu_co_send_recv(int sockfd, void *buf, size_t bytes,
305 bool do_send);
306 #define qemu_co_recv(sockfd, buf, bytes) \
307 qemu_co_send_recv(sockfd, buf, bytes, false)
308 #define qemu_co_send(sockfd, buf, bytes) \
309 qemu_co_send_recv(sockfd, buf, bytes, true)
310
311 #endif /* QEMU_COROUTINE_H */