]> git.proxmox.com Git - mirror_qemu.git/blob - include/qemu/host-utils.h
Merge tag 'for_upstream' of https://git.kernel.org/pub/scm/virt/kvm/mst/qemu into...
[mirror_qemu.git] / include / qemu / host-utils.h
1 /*
2 * Utility compute operations used by translated code.
3 *
4 * Copyright (c) 2007 Thiemo Seufer
5 * Copyright (c) 2007 Jocelyn Mayer
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a copy
8 * of this software and associated documentation files (the "Software"), to deal
9 * in the Software without restriction, including without limitation the rights
10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11 * copies of the Software, and to permit persons to whom the Software is
12 * furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included in
15 * all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
23 * THE SOFTWARE.
24 */
25
26 /* Portions of this work are licensed under the terms of the GNU GPL,
27 * version 2 or later. See the COPYING file in the top-level directory.
28 */
29
30 #ifndef HOST_UTILS_H
31 #define HOST_UTILS_H
32
33 #include "qemu/bswap.h"
34 #include "qemu/int128.h"
35
36 #ifdef CONFIG_INT128
37 static inline void mulu64(uint64_t *plow, uint64_t *phigh,
38 uint64_t a, uint64_t b)
39 {
40 __uint128_t r = (__uint128_t)a * b;
41 *plow = r;
42 *phigh = r >> 64;
43 }
44
45 static inline void muls64(uint64_t *plow, uint64_t *phigh,
46 int64_t a, int64_t b)
47 {
48 __int128_t r = (__int128_t)a * b;
49 *plow = r;
50 *phigh = r >> 64;
51 }
52
53 /* compute with 96 bit intermediate result: (a*b)/c */
54 static inline uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
55 {
56 return (__int128_t)a * b / c;
57 }
58
59 static inline uint64_t divu128(uint64_t *plow, uint64_t *phigh,
60 uint64_t divisor)
61 {
62 __uint128_t dividend = ((__uint128_t)*phigh << 64) | *plow;
63 __uint128_t result = dividend / divisor;
64
65 *plow = result;
66 *phigh = result >> 64;
67 return dividend % divisor;
68 }
69
70 static inline int64_t divs128(uint64_t *plow, int64_t *phigh,
71 int64_t divisor)
72 {
73 __int128_t dividend = ((__int128_t)*phigh << 64) | *plow;
74 __int128_t result = dividend / divisor;
75
76 *plow = result;
77 *phigh = result >> 64;
78 return dividend % divisor;
79 }
80 #else
81 void muls64(uint64_t *plow, uint64_t *phigh, int64_t a, int64_t b);
82 void mulu64(uint64_t *plow, uint64_t *phigh, uint64_t a, uint64_t b);
83 uint64_t divu128(uint64_t *plow, uint64_t *phigh, uint64_t divisor);
84 int64_t divs128(uint64_t *plow, int64_t *phigh, int64_t divisor);
85
86 static inline uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
87 {
88 union {
89 uint64_t ll;
90 struct {
91 #if HOST_BIG_ENDIAN
92 uint32_t high, low;
93 #else
94 uint32_t low, high;
95 #endif
96 } l;
97 } u, res;
98 uint64_t rl, rh;
99
100 u.ll = a;
101 rl = (uint64_t)u.l.low * (uint64_t)b;
102 rh = (uint64_t)u.l.high * (uint64_t)b;
103 rh += (rl >> 32);
104 res.l.high = rh / c;
105 res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
106 return res.ll;
107 }
108 #endif
109
110 /**
111 * clz8 - count leading zeros in a 8-bit value.
112 * @val: The value to search
113 *
114 * Returns 8 if the value is zero. Note that the GCC builtin is
115 * undefined if the value is zero.
116 *
117 * Note that the GCC builtin will upcast its argument to an `unsigned int`
118 * so this function subtracts off the number of prepended zeroes.
119 */
120 static inline int clz8(uint8_t val)
121 {
122 return val ? __builtin_clz(val) - 24 : 8;
123 }
124
125 /**
126 * clz16 - count leading zeros in a 16-bit value.
127 * @val: The value to search
128 *
129 * Returns 16 if the value is zero. Note that the GCC builtin is
130 * undefined if the value is zero.
131 *
132 * Note that the GCC builtin will upcast its argument to an `unsigned int`
133 * so this function subtracts off the number of prepended zeroes.
134 */
135 static inline int clz16(uint16_t val)
136 {
137 return val ? __builtin_clz(val) - 16 : 16;
138 }
139
140 /**
141 * clz32 - count leading zeros in a 32-bit value.
142 * @val: The value to search
143 *
144 * Returns 32 if the value is zero. Note that the GCC builtin is
145 * undefined if the value is zero.
146 */
147 static inline int clz32(uint32_t val)
148 {
149 return val ? __builtin_clz(val) : 32;
150 }
151
152 /**
153 * clo32 - count leading ones in a 32-bit value.
154 * @val: The value to search
155 *
156 * Returns 32 if the value is -1.
157 */
158 static inline int clo32(uint32_t val)
159 {
160 return clz32(~val);
161 }
162
163 /**
164 * clz64 - count leading zeros in a 64-bit value.
165 * @val: The value to search
166 *
167 * Returns 64 if the value is zero. Note that the GCC builtin is
168 * undefined if the value is zero.
169 */
170 static inline int clz64(uint64_t val)
171 {
172 return val ? __builtin_clzll(val) : 64;
173 }
174
175 /**
176 * clo64 - count leading ones in a 64-bit value.
177 * @val: The value to search
178 *
179 * Returns 64 if the value is -1.
180 */
181 static inline int clo64(uint64_t val)
182 {
183 return clz64(~val);
184 }
185
186 /**
187 * ctz8 - count trailing zeros in a 8-bit value.
188 * @val: The value to search
189 *
190 * Returns 8 if the value is zero. Note that the GCC builtin is
191 * undefined if the value is zero.
192 */
193 static inline int ctz8(uint8_t val)
194 {
195 return val ? __builtin_ctz(val) : 8;
196 }
197
198 /**
199 * ctz16 - count trailing zeros in a 16-bit value.
200 * @val: The value to search
201 *
202 * Returns 16 if the value is zero. Note that the GCC builtin is
203 * undefined if the value is zero.
204 */
205 static inline int ctz16(uint16_t val)
206 {
207 return val ? __builtin_ctz(val) : 16;
208 }
209
210 /**
211 * ctz32 - count trailing zeros in a 32-bit value.
212 * @val: The value to search
213 *
214 * Returns 32 if the value is zero. Note that the GCC builtin is
215 * undefined if the value is zero.
216 */
217 static inline int ctz32(uint32_t val)
218 {
219 return val ? __builtin_ctz(val) : 32;
220 }
221
222 /**
223 * cto32 - count trailing ones in a 32-bit value.
224 * @val: The value to search
225 *
226 * Returns 32 if the value is -1.
227 */
228 static inline int cto32(uint32_t val)
229 {
230 return ctz32(~val);
231 }
232
233 /**
234 * ctz64 - count trailing zeros in a 64-bit value.
235 * @val: The value to search
236 *
237 * Returns 64 if the value is zero. Note that the GCC builtin is
238 * undefined if the value is zero.
239 */
240 static inline int ctz64(uint64_t val)
241 {
242 return val ? __builtin_ctzll(val) : 64;
243 }
244
245 /**
246 * cto64 - count trailing ones in a 64-bit value.
247 * @val: The value to search
248 *
249 * Returns 64 if the value is -1.
250 */
251 static inline int cto64(uint64_t val)
252 {
253 return ctz64(~val);
254 }
255
256 /**
257 * clrsb32 - count leading redundant sign bits in a 32-bit value.
258 * @val: The value to search
259 *
260 * Returns the number of bits following the sign bit that are equal to it.
261 * No special cases; output range is [0-31].
262 */
263 static inline int clrsb32(uint32_t val)
264 {
265 #if __has_builtin(__builtin_clrsb) || !defined(__clang__)
266 return __builtin_clrsb(val);
267 #else
268 return clz32(val ^ ((int32_t)val >> 1)) - 1;
269 #endif
270 }
271
272 /**
273 * clrsb64 - count leading redundant sign bits in a 64-bit value.
274 * @val: The value to search
275 *
276 * Returns the number of bits following the sign bit that are equal to it.
277 * No special cases; output range is [0-63].
278 */
279 static inline int clrsb64(uint64_t val)
280 {
281 #if __has_builtin(__builtin_clrsbll) || !defined(__clang__)
282 return __builtin_clrsbll(val);
283 #else
284 return clz64(val ^ ((int64_t)val >> 1)) - 1;
285 #endif
286 }
287
288 /**
289 * ctpop8 - count the population of one bits in an 8-bit value.
290 * @val: The value to search
291 */
292 static inline int ctpop8(uint8_t val)
293 {
294 return __builtin_popcount(val);
295 }
296
297 /**
298 * ctpop16 - count the population of one bits in a 16-bit value.
299 * @val: The value to search
300 */
301 static inline int ctpop16(uint16_t val)
302 {
303 return __builtin_popcount(val);
304 }
305
306 /**
307 * ctpop32 - count the population of one bits in a 32-bit value.
308 * @val: The value to search
309 */
310 static inline int ctpop32(uint32_t val)
311 {
312 return __builtin_popcount(val);
313 }
314
315 /**
316 * ctpop64 - count the population of one bits in a 64-bit value.
317 * @val: The value to search
318 */
319 static inline int ctpop64(uint64_t val)
320 {
321 return __builtin_popcountll(val);
322 }
323
324 /**
325 * revbit8 - reverse the bits in an 8-bit value.
326 * @x: The value to modify.
327 */
328 static inline uint8_t revbit8(uint8_t x)
329 {
330 #if __has_builtin(__builtin_bitreverse8)
331 return __builtin_bitreverse8(x);
332 #else
333 /* Assign the correct nibble position. */
334 x = ((x & 0xf0) >> 4)
335 | ((x & 0x0f) << 4);
336 /* Assign the correct bit position. */
337 x = ((x & 0x88) >> 3)
338 | ((x & 0x44) >> 1)
339 | ((x & 0x22) << 1)
340 | ((x & 0x11) << 3);
341 return x;
342 #endif
343 }
344
345 /**
346 * revbit16 - reverse the bits in a 16-bit value.
347 * @x: The value to modify.
348 */
349 static inline uint16_t revbit16(uint16_t x)
350 {
351 #if __has_builtin(__builtin_bitreverse16)
352 return __builtin_bitreverse16(x);
353 #else
354 /* Assign the correct byte position. */
355 x = bswap16(x);
356 /* Assign the correct nibble position. */
357 x = ((x & 0xf0f0) >> 4)
358 | ((x & 0x0f0f) << 4);
359 /* Assign the correct bit position. */
360 x = ((x & 0x8888) >> 3)
361 | ((x & 0x4444) >> 1)
362 | ((x & 0x2222) << 1)
363 | ((x & 0x1111) << 3);
364 return x;
365 #endif
366 }
367
368 /**
369 * revbit32 - reverse the bits in a 32-bit value.
370 * @x: The value to modify.
371 */
372 static inline uint32_t revbit32(uint32_t x)
373 {
374 #if __has_builtin(__builtin_bitreverse32)
375 return __builtin_bitreverse32(x);
376 #else
377 /* Assign the correct byte position. */
378 x = bswap32(x);
379 /* Assign the correct nibble position. */
380 x = ((x & 0xf0f0f0f0u) >> 4)
381 | ((x & 0x0f0f0f0fu) << 4);
382 /* Assign the correct bit position. */
383 x = ((x & 0x88888888u) >> 3)
384 | ((x & 0x44444444u) >> 1)
385 | ((x & 0x22222222u) << 1)
386 | ((x & 0x11111111u) << 3);
387 return x;
388 #endif
389 }
390
391 /**
392 * revbit64 - reverse the bits in a 64-bit value.
393 * @x: The value to modify.
394 */
395 static inline uint64_t revbit64(uint64_t x)
396 {
397 #if __has_builtin(__builtin_bitreverse64)
398 return __builtin_bitreverse64(x);
399 #else
400 /* Assign the correct byte position. */
401 x = bswap64(x);
402 /* Assign the correct nibble position. */
403 x = ((x & 0xf0f0f0f0f0f0f0f0ull) >> 4)
404 | ((x & 0x0f0f0f0f0f0f0f0full) << 4);
405 /* Assign the correct bit position. */
406 x = ((x & 0x8888888888888888ull) >> 3)
407 | ((x & 0x4444444444444444ull) >> 1)
408 | ((x & 0x2222222222222222ull) << 1)
409 | ((x & 0x1111111111111111ull) << 3);
410 return x;
411 #endif
412 }
413
414 /**
415 * Return the absolute value of a 64-bit integer as an unsigned 64-bit value
416 */
417 static inline uint64_t uabs64(int64_t v)
418 {
419 return v < 0 ? -v : v;
420 }
421
422 /**
423 * sadd32_overflow - addition with overflow indication
424 * @x, @y: addends
425 * @ret: Output for sum
426 *
427 * Computes *@ret = @x + @y, and returns true if and only if that
428 * value has been truncated.
429 */
430 static inline bool sadd32_overflow(int32_t x, int32_t y, int32_t *ret)
431 {
432 return __builtin_add_overflow(x, y, ret);
433 }
434
435 /**
436 * sadd64_overflow - addition with overflow indication
437 * @x, @y: addends
438 * @ret: Output for sum
439 *
440 * Computes *@ret = @x + @y, and returns true if and only if that
441 * value has been truncated.
442 */
443 static inline bool sadd64_overflow(int64_t x, int64_t y, int64_t *ret)
444 {
445 return __builtin_add_overflow(x, y, ret);
446 }
447
448 /**
449 * uadd32_overflow - addition with overflow indication
450 * @x, @y: addends
451 * @ret: Output for sum
452 *
453 * Computes *@ret = @x + @y, and returns true if and only if that
454 * value has been truncated.
455 */
456 static inline bool uadd32_overflow(uint32_t x, uint32_t y, uint32_t *ret)
457 {
458 return __builtin_add_overflow(x, y, ret);
459 }
460
461 /**
462 * uadd64_overflow - addition with overflow indication
463 * @x, @y: addends
464 * @ret: Output for sum
465 *
466 * Computes *@ret = @x + @y, and returns true if and only if that
467 * value has been truncated.
468 */
469 static inline bool uadd64_overflow(uint64_t x, uint64_t y, uint64_t *ret)
470 {
471 return __builtin_add_overflow(x, y, ret);
472 }
473
474 /**
475 * ssub32_overflow - subtraction with overflow indication
476 * @x: Minuend
477 * @y: Subtrahend
478 * @ret: Output for difference
479 *
480 * Computes *@ret = @x - @y, and returns true if and only if that
481 * value has been truncated.
482 */
483 static inline bool ssub32_overflow(int32_t x, int32_t y, int32_t *ret)
484 {
485 return __builtin_sub_overflow(x, y, ret);
486 }
487
488 /**
489 * ssub64_overflow - subtraction with overflow indication
490 * @x: Minuend
491 * @y: Subtrahend
492 * @ret: Output for sum
493 *
494 * Computes *@ret = @x - @y, and returns true if and only if that
495 * value has been truncated.
496 */
497 static inline bool ssub64_overflow(int64_t x, int64_t y, int64_t *ret)
498 {
499 return __builtin_sub_overflow(x, y, ret);
500 }
501
502 /**
503 * usub32_overflow - subtraction with overflow indication
504 * @x: Minuend
505 * @y: Subtrahend
506 * @ret: Output for sum
507 *
508 * Computes *@ret = @x - @y, and returns true if and only if that
509 * value has been truncated.
510 */
511 static inline bool usub32_overflow(uint32_t x, uint32_t y, uint32_t *ret)
512 {
513 return __builtin_sub_overflow(x, y, ret);
514 }
515
516 /**
517 * usub64_overflow - subtraction with overflow indication
518 * @x: Minuend
519 * @y: Subtrahend
520 * @ret: Output for sum
521 *
522 * Computes *@ret = @x - @y, and returns true if and only if that
523 * value has been truncated.
524 */
525 static inline bool usub64_overflow(uint64_t x, uint64_t y, uint64_t *ret)
526 {
527 return __builtin_sub_overflow(x, y, ret);
528 }
529
530 /**
531 * smul32_overflow - multiplication with overflow indication
532 * @x, @y: Input multipliers
533 * @ret: Output for product
534 *
535 * Computes *@ret = @x * @y, and returns true if and only if that
536 * value has been truncated.
537 */
538 static inline bool smul32_overflow(int32_t x, int32_t y, int32_t *ret)
539 {
540 return __builtin_mul_overflow(x, y, ret);
541 }
542
543 /**
544 * smul64_overflow - multiplication with overflow indication
545 * @x, @y: Input multipliers
546 * @ret: Output for product
547 *
548 * Computes *@ret = @x * @y, and returns true if and only if that
549 * value has been truncated.
550 */
551 static inline bool smul64_overflow(int64_t x, int64_t y, int64_t *ret)
552 {
553 return __builtin_mul_overflow(x, y, ret);
554 }
555
556 /**
557 * umul32_overflow - multiplication with overflow indication
558 * @x, @y: Input multipliers
559 * @ret: Output for product
560 *
561 * Computes *@ret = @x * @y, and returns true if and only if that
562 * value has been truncated.
563 */
564 static inline bool umul32_overflow(uint32_t x, uint32_t y, uint32_t *ret)
565 {
566 return __builtin_mul_overflow(x, y, ret);
567 }
568
569 /**
570 * umul64_overflow - multiplication with overflow indication
571 * @x, @y: Input multipliers
572 * @ret: Output for product
573 *
574 * Computes *@ret = @x * @y, and returns true if and only if that
575 * value has been truncated.
576 */
577 static inline bool umul64_overflow(uint64_t x, uint64_t y, uint64_t *ret)
578 {
579 return __builtin_mul_overflow(x, y, ret);
580 }
581
582 /*
583 * Unsigned 128x64 multiplication.
584 * Returns true if the result got truncated to 128 bits.
585 * Otherwise, returns false and the multiplication result via plow and phigh.
586 */
587 static inline bool mulu128(uint64_t *plow, uint64_t *phigh, uint64_t factor)
588 {
589 #if defined(CONFIG_INT128)
590 bool res;
591 __uint128_t r;
592 __uint128_t f = ((__uint128_t)*phigh << 64) | *plow;
593 res = __builtin_mul_overflow(f, factor, &r);
594
595 *plow = r;
596 *phigh = r >> 64;
597
598 return res;
599 #else
600 uint64_t dhi = *phigh;
601 uint64_t dlo = *plow;
602 uint64_t ahi;
603 uint64_t blo, bhi;
604
605 if (dhi == 0) {
606 mulu64(plow, phigh, dlo, factor);
607 return false;
608 }
609
610 mulu64(plow, &ahi, dlo, factor);
611 mulu64(&blo, &bhi, dhi, factor);
612
613 return uadd64_overflow(ahi, blo, phigh) || bhi != 0;
614 #endif
615 }
616
617 /**
618 * uadd64_carry - addition with carry-in and carry-out
619 * @x, @y: addends
620 * @pcarry: in-out carry value
621 *
622 * Computes @x + @y + *@pcarry, placing the carry-out back
623 * into *@pcarry and returning the 64-bit sum.
624 */
625 static inline uint64_t uadd64_carry(uint64_t x, uint64_t y, bool *pcarry)
626 {
627 #if __has_builtin(__builtin_addcll)
628 unsigned long long c = *pcarry;
629 x = __builtin_addcll(x, y, c, &c);
630 *pcarry = c & 1;
631 return x;
632 #else
633 bool c = *pcarry;
634 /* This is clang's internal expansion of __builtin_addc. */
635 c = uadd64_overflow(x, c, &x);
636 c |= uadd64_overflow(x, y, &x);
637 *pcarry = c;
638 return x;
639 #endif
640 }
641
642 /**
643 * usub64_borrow - subtraction with borrow-in and borrow-out
644 * @x, @y: addends
645 * @pborrow: in-out borrow value
646 *
647 * Computes @x - @y - *@pborrow, placing the borrow-out back
648 * into *@pborrow and returning the 64-bit sum.
649 */
650 static inline uint64_t usub64_borrow(uint64_t x, uint64_t y, bool *pborrow)
651 {
652 #if __has_builtin(__builtin_subcll) && !defined(BUILTIN_SUBCLL_BROKEN)
653 unsigned long long b = *pborrow;
654 x = __builtin_subcll(x, y, b, &b);
655 *pborrow = b & 1;
656 return x;
657 #else
658 bool b = *pborrow;
659 b = usub64_overflow(x, b, &x);
660 b |= usub64_overflow(x, y, &x);
661 *pborrow = b;
662 return x;
663 #endif
664 }
665
666 /* Host type specific sizes of these routines. */
667
668 #if ULONG_MAX == UINT32_MAX
669 # define clzl clz32
670 # define ctzl ctz32
671 # define clol clo32
672 # define ctol cto32
673 # define ctpopl ctpop32
674 # define revbitl revbit32
675 #elif ULONG_MAX == UINT64_MAX
676 # define clzl clz64
677 # define ctzl ctz64
678 # define clol clo64
679 # define ctol cto64
680 # define ctpopl ctpop64
681 # define revbitl revbit64
682 #else
683 # error Unknown sizeof long
684 #endif
685
686 static inline bool is_power_of_2(uint64_t value)
687 {
688 if (!value) {
689 return false;
690 }
691
692 return !(value & (value - 1));
693 }
694
695 /**
696 * Return @value rounded down to the nearest power of two or zero.
697 */
698 static inline uint64_t pow2floor(uint64_t value)
699 {
700 if (!value) {
701 /* Avoid undefined shift by 64 */
702 return 0;
703 }
704 return 0x8000000000000000ull >> clz64(value);
705 }
706
707 /*
708 * Return @value rounded up to the nearest power of two modulo 2^64.
709 * This is *zero* for @value > 2^63, so be careful.
710 */
711 static inline uint64_t pow2ceil(uint64_t value)
712 {
713 int n = clz64(value - 1);
714
715 if (!n) {
716 /*
717 * @value - 1 has no leading zeroes, thus @value - 1 >= 2^63
718 * Therefore, either @value == 0 or @value > 2^63.
719 * If it's 0, return 1, else return 0.
720 */
721 return !value;
722 }
723 return 0x8000000000000000ull >> (n - 1);
724 }
725
726 static inline uint32_t pow2roundup32(uint32_t x)
727 {
728 x |= (x >> 1);
729 x |= (x >> 2);
730 x |= (x >> 4);
731 x |= (x >> 8);
732 x |= (x >> 16);
733 return x + 1;
734 }
735
736 /**
737 * urshift - 128-bit Unsigned Right Shift.
738 * @plow: in/out - lower 64-bit integer.
739 * @phigh: in/out - higher 64-bit integer.
740 * @shift: in - bytes to shift, between 0 and 127.
741 *
742 * Result is zero-extended and stored in plow/phigh, which are
743 * input/output variables. Shift values outside the range will
744 * be mod to 128. In other words, the caller is responsible to
745 * verify/assert both the shift range and plow/phigh pointers.
746 */
747 void urshift(uint64_t *plow, uint64_t *phigh, int32_t shift);
748
749 /**
750 * ulshift - 128-bit Unsigned Left Shift.
751 * @plow: in/out - lower 64-bit integer.
752 * @phigh: in/out - higher 64-bit integer.
753 * @shift: in - bytes to shift, between 0 and 127.
754 * @overflow: out - true if any 1-bit is shifted out.
755 *
756 * Result is zero-extended and stored in plow/phigh, which are
757 * input/output variables. Shift values outside the range will
758 * be mod to 128. In other words, the caller is responsible to
759 * verify/assert both the shift range and plow/phigh pointers.
760 */
761 void ulshift(uint64_t *plow, uint64_t *phigh, int32_t shift, bool *overflow);
762
763 /* From the GNU Multi Precision Library - longlong.h __udiv_qrnnd
764 * (https://gmplib.org/repo/gmp/file/tip/longlong.h)
765 *
766 * Licensed under the GPLv2/LGPLv3
767 */
768 static inline uint64_t udiv_qrnnd(uint64_t *r, uint64_t n1,
769 uint64_t n0, uint64_t d)
770 {
771 #if defined(__x86_64__)
772 uint64_t q;
773 asm("divq %4" : "=a"(q), "=d"(*r) : "0"(n0), "1"(n1), "rm"(d));
774 return q;
775 #elif defined(__s390x__) && !defined(__clang__)
776 /* Need to use a TImode type to get an even register pair for DLGR. */
777 unsigned __int128 n = (unsigned __int128)n1 << 64 | n0;
778 asm("dlgr %0, %1" : "+r"(n) : "r"(d));
779 *r = n >> 64;
780 return n;
781 #elif defined(_ARCH_PPC64) && defined(_ARCH_PWR7)
782 /* From Power ISA 2.06, programming note for divdeu. */
783 uint64_t q1, q2, Q, r1, r2, R;
784 asm("divdeu %0,%2,%4; divdu %1,%3,%4"
785 : "=&r"(q1), "=r"(q2)
786 : "r"(n1), "r"(n0), "r"(d));
787 r1 = -(q1 * d); /* low part of (n1<<64) - (q1 * d) */
788 r2 = n0 - (q2 * d);
789 Q = q1 + q2;
790 R = r1 + r2;
791 if (R >= d || R < r2) { /* overflow implies R > d */
792 Q += 1;
793 R -= d;
794 }
795 *r = R;
796 return Q;
797 #else
798 uint64_t d0, d1, q0, q1, r1, r0, m;
799
800 d0 = (uint32_t)d;
801 d1 = d >> 32;
802
803 r1 = n1 % d1;
804 q1 = n1 / d1;
805 m = q1 * d0;
806 r1 = (r1 << 32) | (n0 >> 32);
807 if (r1 < m) {
808 q1 -= 1;
809 r1 += d;
810 if (r1 >= d) {
811 if (r1 < m) {
812 q1 -= 1;
813 r1 += d;
814 }
815 }
816 }
817 r1 -= m;
818
819 r0 = r1 % d1;
820 q0 = r1 / d1;
821 m = q0 * d0;
822 r0 = (r0 << 32) | (uint32_t)n0;
823 if (r0 < m) {
824 q0 -= 1;
825 r0 += d;
826 if (r0 >= d) {
827 if (r0 < m) {
828 q0 -= 1;
829 r0 += d;
830 }
831 }
832 }
833 r0 -= m;
834
835 *r = r0;
836 return (q1 << 32) | q0;
837 #endif
838 }
839
840 Int128 divu256(Int128 *plow, Int128 *phigh, Int128 divisor);
841 Int128 divs256(Int128 *plow, Int128 *phigh, Int128 divisor);
842 #endif