]> git.proxmox.com Git - mirror_qemu.git/blob - include/qemu/host-utils.h
Merge tag 'tracing-pull-request' of https://gitlab.com/stefanha/qemu into staging
[mirror_qemu.git] / include / qemu / host-utils.h
1 /*
2 * Utility compute operations used by translated code.
3 *
4 * Copyright (c) 2007 Thiemo Seufer
5 * Copyright (c) 2007 Jocelyn Mayer
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a copy
8 * of this software and associated documentation files (the "Software"), to deal
9 * in the Software without restriction, including without limitation the rights
10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11 * copies of the Software, and to permit persons to whom the Software is
12 * furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included in
15 * all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
23 * THE SOFTWARE.
24 */
25
26 /* Portions of this work are licensed under the terms of the GNU GPL,
27 * version 2 or later. See the COPYING file in the top-level directory.
28 */
29
30 #ifndef HOST_UTILS_H
31 #define HOST_UTILS_H
32
33 #include "qemu/bswap.h"
34 #include "qemu/int128.h"
35
36 #ifdef CONFIG_INT128
37 static inline void mulu64(uint64_t *plow, uint64_t *phigh,
38 uint64_t a, uint64_t b)
39 {
40 __uint128_t r = (__uint128_t)a * b;
41 *plow = r;
42 *phigh = r >> 64;
43 }
44
45 static inline void muls64(uint64_t *plow, uint64_t *phigh,
46 int64_t a, int64_t b)
47 {
48 __int128_t r = (__int128_t)a * b;
49 *plow = r;
50 *phigh = r >> 64;
51 }
52
53 /* compute with 96 bit intermediate result: (a*b)/c */
54 static inline uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
55 {
56 return (__int128_t)a * b / c;
57 }
58
59 static inline uint64_t muldiv64_round_up(uint64_t a, uint32_t b, uint32_t c)
60 {
61 return ((__int128_t)a * b + c - 1) / c;
62 }
63
64 static inline uint64_t divu128(uint64_t *plow, uint64_t *phigh,
65 uint64_t divisor)
66 {
67 __uint128_t dividend = ((__uint128_t)*phigh << 64) | *plow;
68 __uint128_t result = dividend / divisor;
69
70 *plow = result;
71 *phigh = result >> 64;
72 return dividend % divisor;
73 }
74
75 static inline int64_t divs128(uint64_t *plow, int64_t *phigh,
76 int64_t divisor)
77 {
78 __int128_t dividend = ((__int128_t)*phigh << 64) | *plow;
79 __int128_t result = dividend / divisor;
80
81 *plow = result;
82 *phigh = result >> 64;
83 return dividend % divisor;
84 }
85 #else
86 void muls64(uint64_t *plow, uint64_t *phigh, int64_t a, int64_t b);
87 void mulu64(uint64_t *plow, uint64_t *phigh, uint64_t a, uint64_t b);
88 uint64_t divu128(uint64_t *plow, uint64_t *phigh, uint64_t divisor);
89 int64_t divs128(uint64_t *plow, int64_t *phigh, int64_t divisor);
90
91 static inline uint64_t muldiv64_rounding(uint64_t a, uint32_t b, uint32_t c,
92 bool round_up)
93 {
94 union {
95 uint64_t ll;
96 struct {
97 #if HOST_BIG_ENDIAN
98 uint32_t high, low;
99 #else
100 uint32_t low, high;
101 #endif
102 } l;
103 } u, res;
104 uint64_t rl, rh;
105
106 u.ll = a;
107 rl = (uint64_t)u.l.low * (uint64_t)b;
108 if (round_up) {
109 rl += c - 1;
110 }
111 rh = (uint64_t)u.l.high * (uint64_t)b;
112 rh += (rl >> 32);
113 res.l.high = rh / c;
114 res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
115 return res.ll;
116 }
117
118 static inline uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
119 {
120 return muldiv64_rounding(a, b, c, false);
121 }
122
123 static inline uint64_t muldiv64_round_up(uint64_t a, uint32_t b, uint32_t c)
124 {
125 return muldiv64_rounding(a, b, c, true);
126 }
127 #endif
128
129 /**
130 * clz8 - count leading zeros in a 8-bit value.
131 * @val: The value to search
132 *
133 * Returns 8 if the value is zero. Note that the GCC builtin is
134 * undefined if the value is zero.
135 *
136 * Note that the GCC builtin will upcast its argument to an `unsigned int`
137 * so this function subtracts off the number of prepended zeroes.
138 */
139 static inline int clz8(uint8_t val)
140 {
141 return val ? __builtin_clz(val) - 24 : 8;
142 }
143
144 /**
145 * clz16 - count leading zeros in a 16-bit value.
146 * @val: The value to search
147 *
148 * Returns 16 if the value is zero. Note that the GCC builtin is
149 * undefined if the value is zero.
150 *
151 * Note that the GCC builtin will upcast its argument to an `unsigned int`
152 * so this function subtracts off the number of prepended zeroes.
153 */
154 static inline int clz16(uint16_t val)
155 {
156 return val ? __builtin_clz(val) - 16 : 16;
157 }
158
159 /**
160 * clz32 - count leading zeros in a 32-bit value.
161 * @val: The value to search
162 *
163 * Returns 32 if the value is zero. Note that the GCC builtin is
164 * undefined if the value is zero.
165 */
166 static inline int clz32(uint32_t val)
167 {
168 return val ? __builtin_clz(val) : 32;
169 }
170
171 /**
172 * clo32 - count leading ones in a 32-bit value.
173 * @val: The value to search
174 *
175 * Returns 32 if the value is -1.
176 */
177 static inline int clo32(uint32_t val)
178 {
179 return clz32(~val);
180 }
181
182 /**
183 * clz64 - count leading zeros in a 64-bit value.
184 * @val: The value to search
185 *
186 * Returns 64 if the value is zero. Note that the GCC builtin is
187 * undefined if the value is zero.
188 */
189 static inline int clz64(uint64_t val)
190 {
191 return val ? __builtin_clzll(val) : 64;
192 }
193
194 /**
195 * clo64 - count leading ones in a 64-bit value.
196 * @val: The value to search
197 *
198 * Returns 64 if the value is -1.
199 */
200 static inline int clo64(uint64_t val)
201 {
202 return clz64(~val);
203 }
204
205 /**
206 * ctz8 - count trailing zeros in a 8-bit value.
207 * @val: The value to search
208 *
209 * Returns 8 if the value is zero. Note that the GCC builtin is
210 * undefined if the value is zero.
211 */
212 static inline int ctz8(uint8_t val)
213 {
214 return val ? __builtin_ctz(val) : 8;
215 }
216
217 /**
218 * ctz16 - count trailing zeros in a 16-bit value.
219 * @val: The value to search
220 *
221 * Returns 16 if the value is zero. Note that the GCC builtin is
222 * undefined if the value is zero.
223 */
224 static inline int ctz16(uint16_t val)
225 {
226 return val ? __builtin_ctz(val) : 16;
227 }
228
229 /**
230 * ctz32 - count trailing zeros in a 32-bit value.
231 * @val: The value to search
232 *
233 * Returns 32 if the value is zero. Note that the GCC builtin is
234 * undefined if the value is zero.
235 */
236 static inline int ctz32(uint32_t val)
237 {
238 return val ? __builtin_ctz(val) : 32;
239 }
240
241 /**
242 * cto32 - count trailing ones in a 32-bit value.
243 * @val: The value to search
244 *
245 * Returns 32 if the value is -1.
246 */
247 static inline int cto32(uint32_t val)
248 {
249 return ctz32(~val);
250 }
251
252 /**
253 * ctz64 - count trailing zeros in a 64-bit value.
254 * @val: The value to search
255 *
256 * Returns 64 if the value is zero. Note that the GCC builtin is
257 * undefined if the value is zero.
258 */
259 static inline int ctz64(uint64_t val)
260 {
261 return val ? __builtin_ctzll(val) : 64;
262 }
263
264 /**
265 * cto64 - count trailing ones in a 64-bit value.
266 * @val: The value to search
267 *
268 * Returns 64 if the value is -1.
269 */
270 static inline int cto64(uint64_t val)
271 {
272 return ctz64(~val);
273 }
274
275 /**
276 * clrsb32 - count leading redundant sign bits in a 32-bit value.
277 * @val: The value to search
278 *
279 * Returns the number of bits following the sign bit that are equal to it.
280 * No special cases; output range is [0-31].
281 */
282 static inline int clrsb32(uint32_t val)
283 {
284 #if __has_builtin(__builtin_clrsb) || !defined(__clang__)
285 return __builtin_clrsb(val);
286 #else
287 return clz32(val ^ ((int32_t)val >> 1)) - 1;
288 #endif
289 }
290
291 /**
292 * clrsb64 - count leading redundant sign bits in a 64-bit value.
293 * @val: The value to search
294 *
295 * Returns the number of bits following the sign bit that are equal to it.
296 * No special cases; output range is [0-63].
297 */
298 static inline int clrsb64(uint64_t val)
299 {
300 #if __has_builtin(__builtin_clrsbll) || !defined(__clang__)
301 return __builtin_clrsbll(val);
302 #else
303 return clz64(val ^ ((int64_t)val >> 1)) - 1;
304 #endif
305 }
306
307 /**
308 * ctpop8 - count the population of one bits in an 8-bit value.
309 * @val: The value to search
310 */
311 static inline int ctpop8(uint8_t val)
312 {
313 return __builtin_popcount(val);
314 }
315
316 /**
317 * ctpop16 - count the population of one bits in a 16-bit value.
318 * @val: The value to search
319 */
320 static inline int ctpop16(uint16_t val)
321 {
322 return __builtin_popcount(val);
323 }
324
325 /**
326 * ctpop32 - count the population of one bits in a 32-bit value.
327 * @val: The value to search
328 */
329 static inline int ctpop32(uint32_t val)
330 {
331 return __builtin_popcount(val);
332 }
333
334 /**
335 * ctpop64 - count the population of one bits in a 64-bit value.
336 * @val: The value to search
337 */
338 static inline int ctpop64(uint64_t val)
339 {
340 return __builtin_popcountll(val);
341 }
342
343 /**
344 * revbit8 - reverse the bits in an 8-bit value.
345 * @x: The value to modify.
346 */
347 static inline uint8_t revbit8(uint8_t x)
348 {
349 #if __has_builtin(__builtin_bitreverse8)
350 return __builtin_bitreverse8(x);
351 #else
352 /* Assign the correct nibble position. */
353 x = ((x & 0xf0) >> 4)
354 | ((x & 0x0f) << 4);
355 /* Assign the correct bit position. */
356 x = ((x & 0x88) >> 3)
357 | ((x & 0x44) >> 1)
358 | ((x & 0x22) << 1)
359 | ((x & 0x11) << 3);
360 return x;
361 #endif
362 }
363
364 /**
365 * revbit16 - reverse the bits in a 16-bit value.
366 * @x: The value to modify.
367 */
368 static inline uint16_t revbit16(uint16_t x)
369 {
370 #if __has_builtin(__builtin_bitreverse16)
371 return __builtin_bitreverse16(x);
372 #else
373 /* Assign the correct byte position. */
374 x = bswap16(x);
375 /* Assign the correct nibble position. */
376 x = ((x & 0xf0f0) >> 4)
377 | ((x & 0x0f0f) << 4);
378 /* Assign the correct bit position. */
379 x = ((x & 0x8888) >> 3)
380 | ((x & 0x4444) >> 1)
381 | ((x & 0x2222) << 1)
382 | ((x & 0x1111) << 3);
383 return x;
384 #endif
385 }
386
387 /**
388 * revbit32 - reverse the bits in a 32-bit value.
389 * @x: The value to modify.
390 */
391 static inline uint32_t revbit32(uint32_t x)
392 {
393 #if __has_builtin(__builtin_bitreverse32)
394 return __builtin_bitreverse32(x);
395 #else
396 /* Assign the correct byte position. */
397 x = bswap32(x);
398 /* Assign the correct nibble position. */
399 x = ((x & 0xf0f0f0f0u) >> 4)
400 | ((x & 0x0f0f0f0fu) << 4);
401 /* Assign the correct bit position. */
402 x = ((x & 0x88888888u) >> 3)
403 | ((x & 0x44444444u) >> 1)
404 | ((x & 0x22222222u) << 1)
405 | ((x & 0x11111111u) << 3);
406 return x;
407 #endif
408 }
409
410 /**
411 * revbit64 - reverse the bits in a 64-bit value.
412 * @x: The value to modify.
413 */
414 static inline uint64_t revbit64(uint64_t x)
415 {
416 #if __has_builtin(__builtin_bitreverse64)
417 return __builtin_bitreverse64(x);
418 #else
419 /* Assign the correct byte position. */
420 x = bswap64(x);
421 /* Assign the correct nibble position. */
422 x = ((x & 0xf0f0f0f0f0f0f0f0ull) >> 4)
423 | ((x & 0x0f0f0f0f0f0f0f0full) << 4);
424 /* Assign the correct bit position. */
425 x = ((x & 0x8888888888888888ull) >> 3)
426 | ((x & 0x4444444444444444ull) >> 1)
427 | ((x & 0x2222222222222222ull) << 1)
428 | ((x & 0x1111111111111111ull) << 3);
429 return x;
430 #endif
431 }
432
433 /**
434 * Return the absolute value of a 64-bit integer as an unsigned 64-bit value
435 */
436 static inline uint64_t uabs64(int64_t v)
437 {
438 return v < 0 ? -v : v;
439 }
440
441 /**
442 * sadd32_overflow - addition with overflow indication
443 * @x, @y: addends
444 * @ret: Output for sum
445 *
446 * Computes *@ret = @x + @y, and returns true if and only if that
447 * value has been truncated.
448 */
449 static inline bool sadd32_overflow(int32_t x, int32_t y, int32_t *ret)
450 {
451 return __builtin_add_overflow(x, y, ret);
452 }
453
454 /**
455 * sadd64_overflow - addition with overflow indication
456 * @x, @y: addends
457 * @ret: Output for sum
458 *
459 * Computes *@ret = @x + @y, and returns true if and only if that
460 * value has been truncated.
461 */
462 static inline bool sadd64_overflow(int64_t x, int64_t y, int64_t *ret)
463 {
464 return __builtin_add_overflow(x, y, ret);
465 }
466
467 /**
468 * uadd32_overflow - addition with overflow indication
469 * @x, @y: addends
470 * @ret: Output for sum
471 *
472 * Computes *@ret = @x + @y, and returns true if and only if that
473 * value has been truncated.
474 */
475 static inline bool uadd32_overflow(uint32_t x, uint32_t y, uint32_t *ret)
476 {
477 return __builtin_add_overflow(x, y, ret);
478 }
479
480 /**
481 * uadd64_overflow - addition with overflow indication
482 * @x, @y: addends
483 * @ret: Output for sum
484 *
485 * Computes *@ret = @x + @y, and returns true if and only if that
486 * value has been truncated.
487 */
488 static inline bool uadd64_overflow(uint64_t x, uint64_t y, uint64_t *ret)
489 {
490 return __builtin_add_overflow(x, y, ret);
491 }
492
493 /**
494 * ssub32_overflow - subtraction with overflow indication
495 * @x: Minuend
496 * @y: Subtrahend
497 * @ret: Output for difference
498 *
499 * Computes *@ret = @x - @y, and returns true if and only if that
500 * value has been truncated.
501 */
502 static inline bool ssub32_overflow(int32_t x, int32_t y, int32_t *ret)
503 {
504 return __builtin_sub_overflow(x, y, ret);
505 }
506
507 /**
508 * ssub64_overflow - subtraction with overflow indication
509 * @x: Minuend
510 * @y: Subtrahend
511 * @ret: Output for sum
512 *
513 * Computes *@ret = @x - @y, and returns true if and only if that
514 * value has been truncated.
515 */
516 static inline bool ssub64_overflow(int64_t x, int64_t y, int64_t *ret)
517 {
518 return __builtin_sub_overflow(x, y, ret);
519 }
520
521 /**
522 * usub32_overflow - subtraction with overflow indication
523 * @x: Minuend
524 * @y: Subtrahend
525 * @ret: Output for sum
526 *
527 * Computes *@ret = @x - @y, and returns true if and only if that
528 * value has been truncated.
529 */
530 static inline bool usub32_overflow(uint32_t x, uint32_t y, uint32_t *ret)
531 {
532 return __builtin_sub_overflow(x, y, ret);
533 }
534
535 /**
536 * usub64_overflow - subtraction with overflow indication
537 * @x: Minuend
538 * @y: Subtrahend
539 * @ret: Output for sum
540 *
541 * Computes *@ret = @x - @y, and returns true if and only if that
542 * value has been truncated.
543 */
544 static inline bool usub64_overflow(uint64_t x, uint64_t y, uint64_t *ret)
545 {
546 return __builtin_sub_overflow(x, y, ret);
547 }
548
549 /**
550 * smul32_overflow - multiplication with overflow indication
551 * @x, @y: Input multipliers
552 * @ret: Output for product
553 *
554 * Computes *@ret = @x * @y, and returns true if and only if that
555 * value has been truncated.
556 */
557 static inline bool smul32_overflow(int32_t x, int32_t y, int32_t *ret)
558 {
559 return __builtin_mul_overflow(x, y, ret);
560 }
561
562 /**
563 * smul64_overflow - multiplication with overflow indication
564 * @x, @y: Input multipliers
565 * @ret: Output for product
566 *
567 * Computes *@ret = @x * @y, and returns true if and only if that
568 * value has been truncated.
569 */
570 static inline bool smul64_overflow(int64_t x, int64_t y, int64_t *ret)
571 {
572 return __builtin_mul_overflow(x, y, ret);
573 }
574
575 /**
576 * umul32_overflow - multiplication with overflow indication
577 * @x, @y: Input multipliers
578 * @ret: Output for product
579 *
580 * Computes *@ret = @x * @y, and returns true if and only if that
581 * value has been truncated.
582 */
583 static inline bool umul32_overflow(uint32_t x, uint32_t y, uint32_t *ret)
584 {
585 return __builtin_mul_overflow(x, y, ret);
586 }
587
588 /**
589 * umul64_overflow - multiplication with overflow indication
590 * @x, @y: Input multipliers
591 * @ret: Output for product
592 *
593 * Computes *@ret = @x * @y, and returns true if and only if that
594 * value has been truncated.
595 */
596 static inline bool umul64_overflow(uint64_t x, uint64_t y, uint64_t *ret)
597 {
598 return __builtin_mul_overflow(x, y, ret);
599 }
600
601 /*
602 * Unsigned 128x64 multiplication.
603 * Returns true if the result got truncated to 128 bits.
604 * Otherwise, returns false and the multiplication result via plow and phigh.
605 */
606 static inline bool mulu128(uint64_t *plow, uint64_t *phigh, uint64_t factor)
607 {
608 #if defined(CONFIG_INT128)
609 bool res;
610 __uint128_t r;
611 __uint128_t f = ((__uint128_t)*phigh << 64) | *plow;
612 res = __builtin_mul_overflow(f, factor, &r);
613
614 *plow = r;
615 *phigh = r >> 64;
616
617 return res;
618 #else
619 uint64_t dhi = *phigh;
620 uint64_t dlo = *plow;
621 uint64_t ahi;
622 uint64_t blo, bhi;
623
624 if (dhi == 0) {
625 mulu64(plow, phigh, dlo, factor);
626 return false;
627 }
628
629 mulu64(plow, &ahi, dlo, factor);
630 mulu64(&blo, &bhi, dhi, factor);
631
632 return uadd64_overflow(ahi, blo, phigh) || bhi != 0;
633 #endif
634 }
635
636 /**
637 * uadd64_carry - addition with carry-in and carry-out
638 * @x, @y: addends
639 * @pcarry: in-out carry value
640 *
641 * Computes @x + @y + *@pcarry, placing the carry-out back
642 * into *@pcarry and returning the 64-bit sum.
643 */
644 static inline uint64_t uadd64_carry(uint64_t x, uint64_t y, bool *pcarry)
645 {
646 #if __has_builtin(__builtin_addcll)
647 unsigned long long c = *pcarry;
648 x = __builtin_addcll(x, y, c, &c);
649 *pcarry = c & 1;
650 return x;
651 #else
652 bool c = *pcarry;
653 /* This is clang's internal expansion of __builtin_addc. */
654 c = uadd64_overflow(x, c, &x);
655 c |= uadd64_overflow(x, y, &x);
656 *pcarry = c;
657 return x;
658 #endif
659 }
660
661 /**
662 * usub64_borrow - subtraction with borrow-in and borrow-out
663 * @x, @y: addends
664 * @pborrow: in-out borrow value
665 *
666 * Computes @x - @y - *@pborrow, placing the borrow-out back
667 * into *@pborrow and returning the 64-bit sum.
668 */
669 static inline uint64_t usub64_borrow(uint64_t x, uint64_t y, bool *pborrow)
670 {
671 #if __has_builtin(__builtin_subcll) && !defined(BUILTIN_SUBCLL_BROKEN)
672 unsigned long long b = *pborrow;
673 x = __builtin_subcll(x, y, b, &b);
674 *pborrow = b & 1;
675 return x;
676 #else
677 bool b = *pborrow;
678 b = usub64_overflow(x, b, &x);
679 b |= usub64_overflow(x, y, &x);
680 *pborrow = b;
681 return x;
682 #endif
683 }
684
685 /* Host type specific sizes of these routines. */
686
687 #if ULONG_MAX == UINT32_MAX
688 # define clzl clz32
689 # define ctzl ctz32
690 # define clol clo32
691 # define ctol cto32
692 # define ctpopl ctpop32
693 # define revbitl revbit32
694 #elif ULONG_MAX == UINT64_MAX
695 # define clzl clz64
696 # define ctzl ctz64
697 # define clol clo64
698 # define ctol cto64
699 # define ctpopl ctpop64
700 # define revbitl revbit64
701 #else
702 # error Unknown sizeof long
703 #endif
704
705 static inline bool is_power_of_2(uint64_t value)
706 {
707 if (!value) {
708 return false;
709 }
710
711 return !(value & (value - 1));
712 }
713
714 /**
715 * Return @value rounded down to the nearest power of two or zero.
716 */
717 static inline uint64_t pow2floor(uint64_t value)
718 {
719 if (!value) {
720 /* Avoid undefined shift by 64 */
721 return 0;
722 }
723 return 0x8000000000000000ull >> clz64(value);
724 }
725
726 /*
727 * Return @value rounded up to the nearest power of two modulo 2^64.
728 * This is *zero* for @value > 2^63, so be careful.
729 */
730 static inline uint64_t pow2ceil(uint64_t value)
731 {
732 int n = clz64(value - 1);
733
734 if (!n) {
735 /*
736 * @value - 1 has no leading zeroes, thus @value - 1 >= 2^63
737 * Therefore, either @value == 0 or @value > 2^63.
738 * If it's 0, return 1, else return 0.
739 */
740 return !value;
741 }
742 return 0x8000000000000000ull >> (n - 1);
743 }
744
745 static inline uint32_t pow2roundup32(uint32_t x)
746 {
747 x |= (x >> 1);
748 x |= (x >> 2);
749 x |= (x >> 4);
750 x |= (x >> 8);
751 x |= (x >> 16);
752 return x + 1;
753 }
754
755 /**
756 * urshift - 128-bit Unsigned Right Shift.
757 * @plow: in/out - lower 64-bit integer.
758 * @phigh: in/out - higher 64-bit integer.
759 * @shift: in - bytes to shift, between 0 and 127.
760 *
761 * Result is zero-extended and stored in plow/phigh, which are
762 * input/output variables. Shift values outside the range will
763 * be mod to 128. In other words, the caller is responsible to
764 * verify/assert both the shift range and plow/phigh pointers.
765 */
766 void urshift(uint64_t *plow, uint64_t *phigh, int32_t shift);
767
768 /**
769 * ulshift - 128-bit Unsigned Left Shift.
770 * @plow: in/out - lower 64-bit integer.
771 * @phigh: in/out - higher 64-bit integer.
772 * @shift: in - bytes to shift, between 0 and 127.
773 * @overflow: out - true if any 1-bit is shifted out.
774 *
775 * Result is zero-extended and stored in plow/phigh, which are
776 * input/output variables. Shift values outside the range will
777 * be mod to 128. In other words, the caller is responsible to
778 * verify/assert both the shift range and plow/phigh pointers.
779 */
780 void ulshift(uint64_t *plow, uint64_t *phigh, int32_t shift, bool *overflow);
781
782 /* From the GNU Multi Precision Library - longlong.h __udiv_qrnnd
783 * (https://gmplib.org/repo/gmp/file/tip/longlong.h)
784 *
785 * Licensed under the GPLv2/LGPLv3
786 */
787 static inline uint64_t udiv_qrnnd(uint64_t *r, uint64_t n1,
788 uint64_t n0, uint64_t d)
789 {
790 #if defined(__x86_64__)
791 uint64_t q;
792 asm("divq %4" : "=a"(q), "=d"(*r) : "0"(n0), "1"(n1), "rm"(d));
793 return q;
794 #elif defined(__s390x__) && !defined(__clang__)
795 /* Need to use a TImode type to get an even register pair for DLGR. */
796 unsigned __int128 n = (unsigned __int128)n1 << 64 | n0;
797 asm("dlgr %0, %1" : "+r"(n) : "r"(d));
798 *r = n >> 64;
799 return n;
800 #elif defined(_ARCH_PPC64) && defined(_ARCH_PWR7)
801 /* From Power ISA 2.06, programming note for divdeu. */
802 uint64_t q1, q2, Q, r1, r2, R;
803 asm("divdeu %0,%2,%4; divdu %1,%3,%4"
804 : "=&r"(q1), "=r"(q2)
805 : "r"(n1), "r"(n0), "r"(d));
806 r1 = -(q1 * d); /* low part of (n1<<64) - (q1 * d) */
807 r2 = n0 - (q2 * d);
808 Q = q1 + q2;
809 R = r1 + r2;
810 if (R >= d || R < r2) { /* overflow implies R > d */
811 Q += 1;
812 R -= d;
813 }
814 *r = R;
815 return Q;
816 #else
817 uint64_t d0, d1, q0, q1, r1, r0, m;
818
819 d0 = (uint32_t)d;
820 d1 = d >> 32;
821
822 r1 = n1 % d1;
823 q1 = n1 / d1;
824 m = q1 * d0;
825 r1 = (r1 << 32) | (n0 >> 32);
826 if (r1 < m) {
827 q1 -= 1;
828 r1 += d;
829 if (r1 >= d) {
830 if (r1 < m) {
831 q1 -= 1;
832 r1 += d;
833 }
834 }
835 }
836 r1 -= m;
837
838 r0 = r1 % d1;
839 q0 = r1 / d1;
840 m = q0 * d0;
841 r0 = (r0 << 32) | (uint32_t)n0;
842 if (r0 < m) {
843 q0 -= 1;
844 r0 += d;
845 if (r0 >= d) {
846 if (r0 < m) {
847 q0 -= 1;
848 r0 += d;
849 }
850 }
851 }
852 r0 -= m;
853
854 *r = r0;
855 return (q1 << 32) | q0;
856 #endif
857 }
858
859 Int128 divu256(Int128 *plow, Int128 *phigh, Int128 divisor);
860 Int128 divs256(Int128 *plow, Int128 *phigh, Int128 divisor);
861 #endif