]> git.proxmox.com Git - qemu.git/blob - include/qemu/object.h
8b17776bb332aa2464a3c7df33d0c86fcab59d99
[qemu.git] / include / qemu / object.h
1 /*
2 * QEMU Object Model
3 *
4 * Copyright IBM, Corp. 2011
5 *
6 * Authors:
7 * Anthony Liguori <aliguori@us.ibm.com>
8 *
9 * This work is licensed under the terms of the GNU GPL, version 2 or later.
10 * See the COPYING file in the top-level directory.
11 *
12 */
13
14 #ifndef QEMU_OBJECT_H
15 #define QEMU_OBJECT_H
16
17 #include <glib.h>
18 #include <stdint.h>
19 #include <stdbool.h>
20 #include "qemu-queue.h"
21
22 struct Visitor;
23 struct Error;
24
25 struct TypeImpl;
26 typedef struct TypeImpl *Type;
27
28 typedef struct ObjectClass ObjectClass;
29 typedef struct Object Object;
30
31 typedef struct TypeInfo TypeInfo;
32
33 typedef struct InterfaceClass InterfaceClass;
34 typedef struct InterfaceInfo InterfaceInfo;
35
36 #define TYPE_OBJECT "object"
37
38 /**
39 * SECTION:object.h
40 * @title:Base Object Type System
41 * @short_description: interfaces for creating new types and objects
42 *
43 * The QEMU Object Model provides a framework for registering user creatable
44 * types and instantiating objects from those types. QOM provides the following
45 * features:
46 *
47 * - System for dynamically registering types
48 * - Support for single-inheritance of types
49 * - Multiple inheritance of stateless interfaces
50 *
51 * <example>
52 * <title>Creating a minimal type</title>
53 * <programlisting>
54 * #include "qdev.h"
55 *
56 * #define TYPE_MY_DEVICE "my-device"
57 *
58 * // No new virtual functions: we can reuse the typedef for the
59 * // superclass.
60 * typedef DeviceClass MyDeviceClass;
61 * typedef struct MyDevice
62 * {
63 * DeviceState parent;
64 *
65 * int reg0, reg1, reg2;
66 * } MyDevice;
67 *
68 * static TypeInfo my_device_info = {
69 * .name = TYPE_MY_DEVICE,
70 * .parent = TYPE_DEVICE,
71 * .instance_size = sizeof(MyDevice),
72 * };
73 *
74 * static void my_device_register_types(void)
75 * {
76 * type_register_static(&my_device_info);
77 * }
78 *
79 * type_init(my_device_register_types)
80 * </programlisting>
81 * </example>
82 *
83 * In the above example, we create a simple type that is described by #TypeInfo.
84 * #TypeInfo describes information about the type including what it inherits
85 * from, the instance and class size, and constructor/destructor hooks.
86 *
87 * Every type has an #ObjectClass associated with it. #ObjectClass derivatives
88 * are instantiated dynamically but there is only ever one instance for any
89 * given type. The #ObjectClass typically holds a table of function pointers
90 * for the virtual methods implemented by this type.
91 *
92 * Using object_new(), a new #Object derivative will be instantiated. You can
93 * cast an #Object to a subclass (or base-class) type using
94 * object_dynamic_cast(). You typically want to define macro wrappers around
95 * OBJECT_CHECK() and OBJECT_CLASS_CHECK() to make it easier to convert to a
96 * specific type:
97 *
98 * <example>
99 * <title>Typecasting macros</title>
100 * <programlisting>
101 * #define MY_DEVICE_GET_CLASS(obj) \
102 * OBJECT_GET_CLASS(MyDeviceClass, obj, TYPE_MY_DEVICE)
103 * #define MY_DEVICE_CLASS(klass) \
104 * OBJECT_CLASS_CHECK(MyDeviceClass, klass, TYPE_MY_DEVICE)
105 * #define MY_DEVICE(obj) \
106 * OBJECT_CHECK(MyDevice, obj, TYPE_MY_DEVICE)
107 * </programlisting>
108 * </example>
109 *
110 * # Class Initialization #
111 *
112 * Before an object is initialized, the class for the object must be
113 * initialized. There is only one class object for all instance objects
114 * that is created lazily.
115 *
116 * Classes are initialized by first initializing any parent classes (if
117 * necessary). After the parent class object has initialized, it will be
118 * copied into the current class object and any additional storage in the
119 * class object is zero filled.
120 *
121 * The effect of this is that classes automatically inherit any virtual
122 * function pointers that the parent class has already initialized. All
123 * other fields will be zero filled.
124 *
125 * Once all of the parent classes have been initialized, #TypeInfo::class_init
126 * is called to let the class being instantiated provide default initialize for
127 * its virtual functions. Here is how the above example might be modified
128 * to introduce an overridden virtual function:
129 *
130 * <example>
131 * <title>Overriding a virtual function</title>
132 * <programlisting>
133 * #include "qdev.h"
134 *
135 * void my_device_class_init(ObjectClass *klass, void *class_data)
136 * {
137 * DeviceClass *dc = DEVICE_CLASS(klass);
138 * dc->reset = my_device_reset;
139 * }
140 *
141 * static TypeInfo my_device_info = {
142 * .name = TYPE_MY_DEVICE,
143 * .parent = TYPE_DEVICE,
144 * .instance_size = sizeof(MyDevice),
145 * .class_init = my_device_class_init,
146 * };
147 * </programlisting>
148 * </example>
149 *
150 * Introducing new virtual functions requires a class to define its own
151 * struct and to add a .class_size member to the TypeInfo. Each function
152 * will also have a wrapper to call it easily:
153 *
154 * <example>
155 * <title>Defining an abstract class</title>
156 * <programlisting>
157 * #include "qdev.h"
158 *
159 * typedef struct MyDeviceClass
160 * {
161 * DeviceClass parent;
162 *
163 * void (*frobnicate) (MyDevice *obj);
164 * } MyDeviceClass;
165 *
166 * static TypeInfo my_device_info = {
167 * .name = TYPE_MY_DEVICE,
168 * .parent = TYPE_DEVICE,
169 * .instance_size = sizeof(MyDevice),
170 * .abstract = true, // or set a default in my_device_class_init
171 * .class_size = sizeof(MyDeviceClass),
172 * };
173 *
174 * void my_device_frobnicate(MyDevice *obj)
175 * {
176 * MyDeviceClass *klass = MY_DEVICE_GET_CLASS(obj);
177 *
178 * klass->frobnicate(obj);
179 * }
180 * </programlisting>
181 * </example>
182 *
183 * # Interfaces #
184 *
185 * Interfaces allow a limited form of multiple inheritance. Instances are
186 * similar to normal types except for the fact that are only defined by
187 * their classes and never carry any state. You can dynamically cast an object
188 * to one of its #Interface types and vice versa.
189 */
190
191
192 /**
193 * ObjectPropertyAccessor:
194 * @obj: the object that owns the property
195 * @v: the visitor that contains the property data
196 * @opaque: the object property opaque
197 * @name: the name of the property
198 * @errp: a pointer to an Error that is filled if getting/setting fails.
199 *
200 * Called when trying to get/set a property.
201 */
202 typedef void (ObjectPropertyAccessor)(Object *obj,
203 struct Visitor *v,
204 void *opaque,
205 const char *name,
206 struct Error **errp);
207
208 /**
209 * ObjectPropertyRelease:
210 * @obj: the object that owns the property
211 * @name: the name of the property
212 * @opaque: the opaque registered with the property
213 *
214 * Called when a property is removed from a object.
215 */
216 typedef void (ObjectPropertyRelease)(Object *obj,
217 const char *name,
218 void *opaque);
219
220 typedef struct ObjectProperty
221 {
222 gchar *name;
223 gchar *type;
224 ObjectPropertyAccessor *get;
225 ObjectPropertyAccessor *set;
226 ObjectPropertyRelease *release;
227 void *opaque;
228
229 QTAILQ_ENTRY(ObjectProperty) node;
230 } ObjectProperty;
231
232 /**
233 * ObjectClass:
234 *
235 * The base for all classes. The only thing that #ObjectClass contains is an
236 * integer type handle.
237 */
238 struct ObjectClass
239 {
240 /*< private >*/
241 Type type;
242 };
243
244 /**
245 * Object:
246 *
247 * The base for all objects. The first member of this object is a pointer to
248 * a #ObjectClass. Since C guarantees that the first member of a structure
249 * always begins at byte 0 of that structure, as long as any sub-object places
250 * its parent as the first member, we can cast directly to a #Object.
251 *
252 * As a result, #Object contains a reference to the objects type as its
253 * first member. This allows identification of the real type of the object at
254 * run time.
255 *
256 * #Object also contains a list of #Interfaces that this object
257 * implements.
258 */
259 struct Object
260 {
261 /*< private >*/
262 ObjectClass *class;
263 GSList *interfaces;
264 QTAILQ_HEAD(, ObjectProperty) properties;
265 uint32_t ref;
266 Object *parent;
267 };
268
269 /**
270 * TypeInfo:
271 * @name: The name of the type.
272 * @parent: The name of the parent type.
273 * @instance_size: The size of the object (derivative of #Object). If
274 * @instance_size is 0, then the size of the object will be the size of the
275 * parent object.
276 * @instance_init: This function is called to initialize an object. The parent
277 * class will have already been initialized so the type is only responsible
278 * for initializing its own members.
279 * @instance_finalize: This function is called during object destruction. This
280 * is called before the parent @instance_finalize function has been called.
281 * An object should only free the members that are unique to its type in this
282 * function.
283 * @abstract: If this field is true, then the class is considered abstract and
284 * cannot be directly instantiated.
285 * @class_size: The size of the class object (derivative of #ObjectClass)
286 * for this object. If @class_size is 0, then the size of the class will be
287 * assumed to be the size of the parent class. This allows a type to avoid
288 * implementing an explicit class type if they are not adding additional
289 * virtual functions.
290 * @class_init: This function is called after all parent class initialization
291 * has occurred to allow a class to set its default virtual method pointers.
292 * This is also the function to use to override virtual methods from a parent
293 * class.
294 * @class_base_init: This function is called for all base classes after all
295 * parent class initialization has occurred, but before the class itself
296 * is initialized. This is the function to use to undo the effects of
297 * memcpy from the parent class to the descendents.
298 * @class_finalize: This function is called during class destruction and is
299 * meant to release and dynamic parameters allocated by @class_init.
300 * @class_data: Data to pass to the @class_init, @class_base_init and
301 * @class_finalize functions. This can be useful when building dynamic
302 * classes.
303 * @interfaces: The list of interfaces associated with this type. This
304 * should point to a static array that's terminated with a zero filled
305 * element.
306 */
307 struct TypeInfo
308 {
309 const char *name;
310 const char *parent;
311
312 size_t instance_size;
313 void (*instance_init)(Object *obj);
314 void (*instance_finalize)(Object *obj);
315
316 bool abstract;
317 size_t class_size;
318
319 void (*class_init)(ObjectClass *klass, void *data);
320 void (*class_base_init)(ObjectClass *klass, void *data);
321 void (*class_finalize)(ObjectClass *klass, void *data);
322 void *class_data;
323
324 InterfaceInfo *interfaces;
325 };
326
327 /**
328 * OBJECT:
329 * @obj: A derivative of #Object
330 *
331 * Converts an object to a #Object. Since all objects are #Objects,
332 * this function will always succeed.
333 */
334 #define OBJECT(obj) \
335 ((Object *)(obj))
336
337 /**
338 * OBJECT_CLASS:
339 * @class: A derivative of #ObjectClass.
340 *
341 * Converts a class to an #ObjectClass. Since all objects are #Objects,
342 * this function will always succeed.
343 */
344 #define OBJECT_CLASS(class) \
345 ((ObjectClass *)(class))
346
347 /**
348 * OBJECT_CHECK:
349 * @type: The C type to use for the return value.
350 * @obj: A derivative of @type to cast.
351 * @name: The QOM typename of @type
352 *
353 * A type safe version of @object_dynamic_cast_assert. Typically each class
354 * will define a macro based on this type to perform type safe dynamic_casts to
355 * this object type.
356 *
357 * If an invalid object is passed to this function, a run time assert will be
358 * generated.
359 */
360 #define OBJECT_CHECK(type, obj, name) \
361 ((type *)object_dynamic_cast_assert(OBJECT(obj), (name)))
362
363 /**
364 * OBJECT_CLASS_CHECK:
365 * @class: The C type to use for the return value.
366 * @obj: A derivative of @type to cast.
367 * @name: the QOM typename of @class.
368 *
369 * A type safe version of @object_class_dynamic_cast_assert. This macro is
370 * typically wrapped by each type to perform type safe casts of a class to a
371 * specific class type.
372 */
373 #define OBJECT_CLASS_CHECK(class, obj, name) \
374 ((class *)object_class_dynamic_cast_assert(OBJECT_CLASS(obj), (name)))
375
376 /**
377 * OBJECT_GET_CLASS:
378 * @class: The C type to use for the return value.
379 * @obj: The object to obtain the class for.
380 * @name: The QOM typename of @obj.
381 *
382 * This function will return a specific class for a given object. Its generally
383 * used by each type to provide a type safe macro to get a specific class type
384 * from an object.
385 */
386 #define OBJECT_GET_CLASS(class, obj, name) \
387 OBJECT_CLASS_CHECK(class, object_get_class(OBJECT(obj)), name)
388
389 /**
390 * InterfaceClass:
391 * @parent_class: the base class
392 *
393 * The class for all interfaces. Subclasses of this class should only add
394 * virtual methods.
395 */
396 struct InterfaceClass
397 {
398 ObjectClass parent_class;
399 };
400
401 /**
402 * InterfaceInfo:
403 * @type: The name of the interface.
404 * @interface_initfn: This method is called during class initialization and is
405 * used to initialize an interface associated with a class. This function
406 * should initialize any default virtual functions for a class and/or override
407 * virtual functions in a parent class.
408 *
409 * The information associated with an interface.
410 */
411 struct InterfaceInfo
412 {
413 const char *type;
414
415 void (*interface_initfn)(ObjectClass *class, void *data);
416 };
417
418 #define TYPE_INTERFACE "interface"
419
420 /**
421 * object_new:
422 * @typename: The name of the type of the object to instantiate.
423 *
424 * This function will initialize a new object using heap allocated memory. This
425 * function should be paired with object_delete() to free the resources
426 * associated with the object.
427 *
428 * Returns: The newly allocated and instantiated object.
429 */
430 Object *object_new(const char *typename);
431
432 /**
433 * object_new_with_type:
434 * @type: The type of the object to instantiate.
435 *
436 * This function will initialize a new object using heap allocated memory. This
437 * function should be paired with object_delete() to free the resources
438 * associated with the object.
439 *
440 * Returns: The newly allocated and instantiated object.
441 */
442 Object *object_new_with_type(Type type);
443
444 /**
445 * object_delete:
446 * @obj: The object to free.
447 *
448 * Finalize an object and then free the memory associated with it. This should
449 * be paired with object_new() to free the resources associated with an object.
450 */
451 void object_delete(Object *obj);
452
453 /**
454 * object_initialize_with_type:
455 * @obj: A pointer to the memory to be used for the object.
456 * @type: The type of the object to instantiate.
457 *
458 * This function will initialize an object. The memory for the object should
459 * have already been allocated.
460 */
461 void object_initialize_with_type(void *data, Type type);
462
463 /**
464 * object_initialize:
465 * @obj: A pointer to the memory to be used for the object.
466 * @typename: The name of the type of the object to instantiate.
467 *
468 * This function will initialize an object. The memory for the object should
469 * have already been allocated.
470 */
471 void object_initialize(void *obj, const char *typename);
472
473 /**
474 * object_finalize:
475 * @obj: The object to finalize.
476 *
477 * This function destroys and object without freeing the memory associated with
478 * it.
479 */
480 void object_finalize(void *obj);
481
482 /**
483 * object_dynamic_cast:
484 * @obj: The object to cast.
485 * @typename: The @typename to cast to.
486 *
487 * This function will determine if @obj is-a @typename. @obj can refer to an
488 * object or an interface associated with an object.
489 *
490 * Returns: This function returns @obj on success or #NULL on failure.
491 */
492 Object *object_dynamic_cast(Object *obj, const char *typename);
493
494 /**
495 * object_dynamic_cast_assert:
496 *
497 * See object_dynamic_cast() for a description of the parameters of this
498 * function. The only difference in behavior is that this function asserts
499 * instead of returning #NULL on failure.
500 */
501 Object *object_dynamic_cast_assert(Object *obj, const char *typename);
502
503 /**
504 * object_get_class:
505 * @obj: A derivative of #Object
506 *
507 * Returns: The #ObjectClass of the type associated with @obj.
508 */
509 ObjectClass *object_get_class(Object *obj);
510
511 /**
512 * object_get_typename:
513 * @obj: A derivative of #Object.
514 *
515 * Returns: The QOM typename of @obj.
516 */
517 const char *object_get_typename(Object *obj);
518
519 /**
520 * type_register_static:
521 * @info: The #TypeInfo of the new type.
522 *
523 * @info and all of the strings it points to should exist for the life time
524 * that the type is registered.
525 *
526 * Returns: 0 on failure, the new #Type on success.
527 */
528 Type type_register_static(const TypeInfo *info);
529
530 /**
531 * type_register:
532 * @info: The #TypeInfo of the new type
533 *
534 * Unlike type_register_static(), this call does not require @info or its
535 * string members to continue to exist after the call returns.
536 *
537 * Returns: 0 on failure, the new #Type on success.
538 */
539 Type type_register(const TypeInfo *info);
540
541 /**
542 * object_class_dynamic_cast_assert:
543 * @klass: The #ObjectClass to attempt to cast.
544 * @typename: The QOM typename of the class to cast to.
545 *
546 * Returns: This function always returns @klass and asserts on failure.
547 */
548 ObjectClass *object_class_dynamic_cast_assert(ObjectClass *klass,
549 const char *typename);
550
551 ObjectClass *object_class_dynamic_cast(ObjectClass *klass,
552 const char *typename);
553
554 /**
555 * object_class_get_parent:
556 * @klass: The class to obtain the parent for.
557 *
558 * Returns: The parent for @klass or %NULL if none.
559 */
560 ObjectClass *object_class_get_parent(ObjectClass *klass);
561
562 /**
563 * object_class_get_name:
564 * @klass: The class to obtain the QOM typename for.
565 *
566 * Returns: The QOM typename for @klass.
567 */
568 const char *object_class_get_name(ObjectClass *klass);
569
570 /**
571 * object_class_by_name:
572 * @typename: The QOM typename to obtain the class for.
573 *
574 * Returns: The class for @typename or %NULL if not found.
575 */
576 ObjectClass *object_class_by_name(const char *typename);
577
578 void object_class_foreach(void (*fn)(ObjectClass *klass, void *opaque),
579 const char *implements_type, bool include_abstract,
580 void *opaque);
581
582 /**
583 * object_class_get_list:
584 * @implements_type: The type to filter for, including its derivatives.
585 * @include_abstract: Whether to include abstract classes.
586 *
587 * Returns: A singly-linked list of the classes in reverse hashtable order.
588 */
589 GSList *object_class_get_list(const char *implements_type,
590 bool include_abstract);
591
592 /**
593 * object_ref:
594 * @obj: the object
595 *
596 * Increase the reference count of a object. A object cannot be freed as long
597 * as its reference count is greater than zero.
598 */
599 void object_ref(Object *obj);
600
601 /**
602 * qdef_unref:
603 * @obj: the object
604 *
605 * Decrease the reference count of a object. A object cannot be freed as long
606 * as its reference count is greater than zero.
607 */
608 void object_unref(Object *obj);
609
610 /**
611 * object_property_add:
612 * @obj: the object to add a property to
613 * @name: the name of the property. This can contain any character except for
614 * a forward slash. In general, you should use hyphens '-' instead of
615 * underscores '_' when naming properties.
616 * @type: the type name of the property. This namespace is pretty loosely
617 * defined. Sub namespaces are constructed by using a prefix and then
618 * to angle brackets. For instance, the type 'virtio-net-pci' in the
619 * 'link' namespace would be 'link<virtio-net-pci>'.
620 * @get: The getter to be called to read a property. If this is NULL, then
621 * the property cannot be read.
622 * @set: the setter to be called to write a property. If this is NULL,
623 * then the property cannot be written.
624 * @release: called when the property is removed from the object. This is
625 * meant to allow a property to free its opaque upon object
626 * destruction. This may be NULL.
627 * @opaque: an opaque pointer to pass to the callbacks for the property
628 * @errp: returns an error if this function fails
629 */
630 void object_property_add(Object *obj, const char *name, const char *type,
631 ObjectPropertyAccessor *get,
632 ObjectPropertyAccessor *set,
633 ObjectPropertyRelease *release,
634 void *opaque, struct Error **errp);
635
636 void object_property_del(Object *obj, const char *name, struct Error **errp);
637
638 /**
639 * object_property_find:
640 * @obj: the object
641 * @name: the name of the property
642 * @errp: returns an error if this function fails
643 *
644 * Look up a property for an object and return its #ObjectProperty if found.
645 */
646 ObjectProperty *object_property_find(Object *obj, const char *name,
647 struct Error **errp);
648
649 void object_unparent(Object *obj);
650
651 /**
652 * object_property_get:
653 * @obj: the object
654 * @v: the visitor that will receive the property value. This should be an
655 * Output visitor and the data will be written with @name as the name.
656 * @name: the name of the property
657 * @errp: returns an error if this function fails
658 *
659 * Reads a property from a object.
660 */
661 void object_property_get(Object *obj, struct Visitor *v, const char *name,
662 struct Error **errp);
663
664 /**
665 * object_property_set_str:
666 * @value: the value to be written to the property
667 * @name: the name of the property
668 * @errp: returns an error if this function fails
669 *
670 * Writes a string value to a property.
671 */
672 void object_property_set_str(Object *obj, const char *value,
673 const char *name, struct Error **errp);
674
675 /**
676 * object_property_get_str:
677 * @obj: the object
678 * @name: the name of the property
679 * @errp: returns an error if this function fails
680 *
681 * Returns: the value of the property, converted to a C string, or NULL if
682 * an error occurs (including when the property value is not a string).
683 * The caller should free the string.
684 */
685 char *object_property_get_str(Object *obj, const char *name,
686 struct Error **errp);
687
688 /**
689 * object_property_set_link:
690 * @value: the value to be written to the property
691 * @name: the name of the property
692 * @errp: returns an error if this function fails
693 *
694 * Writes an object's canonical path to a property.
695 */
696 void object_property_set_link(Object *obj, Object *value,
697 const char *name, struct Error **errp);
698
699 /**
700 * object_property_get_link:
701 * @obj: the object
702 * @name: the name of the property
703 * @errp: returns an error if this function fails
704 *
705 * Returns: the value of the property, resolved from a path to an Object,
706 * or NULL if an error occurs (including when the property value is not a
707 * string or not a valid object path).
708 */
709 Object *object_property_get_link(Object *obj, const char *name,
710 struct Error **errp);
711
712 /**
713 * object_property_set_bool:
714 * @value: the value to be written to the property
715 * @name: the name of the property
716 * @errp: returns an error if this function fails
717 *
718 * Writes a bool value to a property.
719 */
720 void object_property_set_bool(Object *obj, bool value,
721 const char *name, struct Error **errp);
722
723 /**
724 * object_property_get_bool:
725 * @obj: the object
726 * @name: the name of the property
727 * @errp: returns an error if this function fails
728 *
729 * Returns: the value of the property, converted to a boolean, or NULL if
730 * an error occurs (including when the property value is not a bool).
731 */
732 bool object_property_get_bool(Object *obj, const char *name,
733 struct Error **errp);
734
735 /**
736 * object_property_set_int:
737 * @value: the value to be written to the property
738 * @name: the name of the property
739 * @errp: returns an error if this function fails
740 *
741 * Writes an integer value to a property.
742 */
743 void object_property_set_int(Object *obj, int64_t value,
744 const char *name, struct Error **errp);
745
746 /**
747 * object_property_get_int:
748 * @obj: the object
749 * @name: the name of the property
750 * @errp: returns an error if this function fails
751 *
752 * Returns: the value of the property, converted to an integer, or NULL if
753 * an error occurs (including when the property value is not an integer).
754 */
755 int64_t object_property_get_int(Object *obj, const char *name,
756 struct Error **errp);
757
758 /**
759 * object_property_set:
760 * @obj: the object
761 * @v: the visitor that will be used to write the property value. This should
762 * be an Input visitor and the data will be first read with @name as the
763 * name and then written as the property value.
764 * @name: the name of the property
765 * @errp: returns an error if this function fails
766 *
767 * Writes a property to a object.
768 */
769 void object_property_set(Object *obj, struct Visitor *v, const char *name,
770 struct Error **errp);
771
772 /**
773 * object_property_parse:
774 * @obj: the object
775 * @string: the string that will be used to parse the property value.
776 * @name: the name of the property
777 * @errp: returns an error if this function fails
778 *
779 * Parses a string and writes the result into a property of an object.
780 */
781 void object_property_parse(Object *obj, const char *string,
782 const char *name, struct Error **errp);
783
784 /**
785 * object_property_print:
786 * @obj: the object
787 * @name: the name of the property
788 * @errp: returns an error if this function fails
789 *
790 * Returns a string representation of the value of the property. The
791 * caller shall free the string.
792 */
793 char *object_property_print(Object *obj, const char *name,
794 struct Error **errp);
795
796 /**
797 * object_property_get_type:
798 * @obj: the object
799 * @name: the name of the property
800 * @errp: returns an error if this function fails
801 *
802 * Returns: The type name of the property.
803 */
804 const char *object_property_get_type(Object *obj, const char *name,
805 struct Error **errp);
806
807 /**
808 * object_get_root:
809 *
810 * Returns: the root object of the composition tree
811 */
812 Object *object_get_root(void);
813
814 /**
815 * object_get_canonical_path:
816 *
817 * Returns: The canonical path for a object. This is the path within the
818 * composition tree starting from the root.
819 */
820 gchar *object_get_canonical_path(Object *obj);
821
822 /**
823 * object_resolve_path:
824 * @path: the path to resolve
825 * @ambiguous: returns true if the path resolution failed because of an
826 * ambiguous match
827 *
828 * There are two types of supported paths--absolute paths and partial paths.
829 *
830 * Absolute paths are derived from the root object and can follow child<> or
831 * link<> properties. Since they can follow link<> properties, they can be
832 * arbitrarily long. Absolute paths look like absolute filenames and are
833 * prefixed with a leading slash.
834 *
835 * Partial paths look like relative filenames. They do not begin with a
836 * prefix. The matching rules for partial paths are subtle but designed to make
837 * specifying objects easy. At each level of the composition tree, the partial
838 * path is matched as an absolute path. The first match is not returned. At
839 * least two matches are searched for. A successful result is only returned if
840 * only one match is found. If more than one match is found, a flag is
841 * returned to indicate that the match was ambiguous.
842 *
843 * Returns: The matched object or NULL on path lookup failure.
844 */
845 Object *object_resolve_path(const char *path, bool *ambiguous);
846
847 /**
848 * object_resolve_path_type:
849 * @path: the path to resolve
850 * @typename: the type to look for.
851 * @ambiguous: returns true if the path resolution failed because of an
852 * ambiguous match
853 *
854 * This is similar to object_resolve_path. However, when looking for a
855 * partial path only matches that implement the given type are considered.
856 * This restricts the search and avoids spuriously flagging matches as
857 * ambiguous.
858 *
859 * For both partial and absolute paths, the return value goes through
860 * a dynamic cast to @typename. This is important if either the link,
861 * or the typename itself are of interface types.
862 *
863 * Returns: The matched object or NULL on path lookup failure.
864 */
865 Object *object_resolve_path_type(const char *path, const char *typename,
866 bool *ambiguous);
867
868 /**
869 * object_resolve_path_component:
870 * @parent: the object in which to resolve the path
871 * @part: the component to resolve.
872 *
873 * This is similar to object_resolve_path with an absolute path, but it
874 * only resolves one element (@part) and takes the others from @parent.
875 *
876 * Returns: The resolved object or NULL on path lookup failure.
877 */
878 Object *object_resolve_path_component(Object *parent, gchar *part);
879
880 /**
881 * object_property_add_child:
882 * @obj: the object to add a property to
883 * @name: the name of the property
884 * @child: the child object
885 * @errp: if an error occurs, a pointer to an area to store the area
886 *
887 * Child properties form the composition tree. All objects need to be a child
888 * of another object. Objects can only be a child of one object.
889 *
890 * There is no way for a child to determine what its parent is. It is not
891 * a bidirectional relationship. This is by design.
892 *
893 * The value of a child property as a C string will be the child object's
894 * canonical path. It can be retrieved using object_property_get_str().
895 * The child object itself can be retrieved using object_property_get_link().
896 */
897 void object_property_add_child(Object *obj, const char *name,
898 Object *child, struct Error **errp);
899
900 /**
901 * object_property_add_link:
902 * @obj: the object to add a property to
903 * @name: the name of the property
904 * @type: the qobj type of the link
905 * @child: a pointer to where the link object reference is stored
906 * @errp: if an error occurs, a pointer to an area to store the area
907 *
908 * Links establish relationships between objects. Links are unidirectional
909 * although two links can be combined to form a bidirectional relationship
910 * between objects.
911 *
912 * Links form the graph in the object model.
913 */
914 void object_property_add_link(Object *obj, const char *name,
915 const char *type, Object **child,
916 struct Error **errp);
917
918 /**
919 * object_property_add_str:
920 * @obj: the object to add a property to
921 * @name: the name of the property
922 * @get: the getter or NULL if the property is write-only. This function must
923 * return a string to be freed by g_free().
924 * @set: the setter or NULL if the property is read-only
925 * @errp: if an error occurs, a pointer to an area to store the error
926 *
927 * Add a string property using getters/setters. This function will add a
928 * property of type 'string'.
929 */
930 void object_property_add_str(Object *obj, const char *name,
931 char *(*get)(Object *, struct Error **),
932 void (*set)(Object *, const char *, struct Error **),
933 struct Error **errp);
934
935 /**
936 * object_child_foreach:
937 * @obj: the object whose children will be navigated
938 * @fn: the iterator function to be called
939 * @opaque: an opaque value that will be passed to the iterator
940 *
941 * Call @fn passing each child of @obj and @opaque to it, until @fn returns
942 * non-zero.
943 *
944 * Returns: The last value returned by @fn, or 0 if there is no child.
945 */
946 int object_child_foreach(Object *obj, int (*fn)(Object *child, void *opaque),
947 void *opaque);
948
949 /**
950 * container_get:
951 * @root: root of the #path, e.g., object_get_root()
952 * @path: path to the container
953 *
954 * Return a container object whose path is @path. Create more containers
955 * along the path if necessary.
956 *
957 * Returns: the container object.
958 */
959 Object *container_get(Object *root, const char *path);
960
961
962 #endif