]> git.proxmox.com Git - mirror_qemu.git/blob - include/qemu/timer.h
s/cpu_get_real_ticks/cpu_get_host_ticks/
[mirror_qemu.git] / include / qemu / timer.h
1 #ifndef QEMU_TIMER_H
2 #define QEMU_TIMER_H
3
4 #include "qemu/typedefs.h"
5 #include "qemu-common.h"
6 #include "qemu/notify.h"
7 #include "qemu/host-utils.h"
8
9 #define NANOSECONDS_PER_SECOND 1000000000LL
10
11 /* timers */
12
13 #define SCALE_MS 1000000
14 #define SCALE_US 1000
15 #define SCALE_NS 1
16
17 /**
18 * QEMUClockType:
19 *
20 * The following clock types are available:
21 *
22 * @QEMU_CLOCK_REALTIME: Real time clock
23 *
24 * The real time clock should be used only for stuff which does not
25 * change the virtual machine state, as it is run even if the virtual
26 * machine is stopped. The real time clock has a frequency of 1000
27 * Hz.
28 *
29 * @QEMU_CLOCK_VIRTUAL: virtual clock
30 *
31 * The virtual clock is only run during the emulation. It is stopped
32 * when the virtual machine is stopped. Virtual timers use a high
33 * precision clock, usually cpu cycles (use ticks_per_sec).
34 *
35 * @QEMU_CLOCK_HOST: host clock
36 *
37 * The host clock should be use for device models that emulate accurate
38 * real time sources. It will continue to run when the virtual machine
39 * is suspended, and it will reflect system time changes the host may
40 * undergo (e.g. due to NTP). The host clock has the same precision as
41 * the virtual clock.
42 *
43 * @QEMU_CLOCK_VIRTUAL_RT: realtime clock used for icount warp
44 *
45 * Outside icount mode, this clock is the same as @QEMU_CLOCK_VIRTUAL.
46 * In icount mode, this clock counts nanoseconds while the virtual
47 * machine is running. It is used to increase @QEMU_CLOCK_VIRTUAL
48 * while the CPUs are sleeping and thus not executing instructions.
49 */
50
51 typedef enum {
52 QEMU_CLOCK_REALTIME = 0,
53 QEMU_CLOCK_VIRTUAL = 1,
54 QEMU_CLOCK_HOST = 2,
55 QEMU_CLOCK_VIRTUAL_RT = 3,
56 QEMU_CLOCK_MAX
57 } QEMUClockType;
58
59 typedef struct QEMUTimerList QEMUTimerList;
60
61 struct QEMUTimerListGroup {
62 QEMUTimerList *tl[QEMU_CLOCK_MAX];
63 };
64
65 typedef void QEMUTimerCB(void *opaque);
66 typedef void QEMUTimerListNotifyCB(void *opaque);
67
68 struct QEMUTimer {
69 int64_t expire_time; /* in nanoseconds */
70 QEMUTimerList *timer_list;
71 QEMUTimerCB *cb;
72 void *opaque;
73 QEMUTimer *next;
74 int scale;
75 };
76
77 extern QEMUTimerListGroup main_loop_tlg;
78
79 /*
80 * QEMUClockType
81 */
82
83 /*
84 * qemu_clock_get_ns;
85 * @type: the clock type
86 *
87 * Get the nanosecond value of a clock with
88 * type @type
89 *
90 * Returns: the clock value in nanoseconds
91 */
92 int64_t qemu_clock_get_ns(QEMUClockType type);
93
94 /**
95 * qemu_clock_get_ms;
96 * @type: the clock type
97 *
98 * Get the millisecond value of a clock with
99 * type @type
100 *
101 * Returns: the clock value in milliseconds
102 */
103 static inline int64_t qemu_clock_get_ms(QEMUClockType type)
104 {
105 return qemu_clock_get_ns(type) / SCALE_MS;
106 }
107
108 /**
109 * qemu_clock_get_us;
110 * @type: the clock type
111 *
112 * Get the microsecond value of a clock with
113 * type @type
114 *
115 * Returns: the clock value in microseconds
116 */
117 static inline int64_t qemu_clock_get_us(QEMUClockType type)
118 {
119 return qemu_clock_get_ns(type) / SCALE_US;
120 }
121
122 /**
123 * qemu_clock_has_timers:
124 * @type: the clock type
125 *
126 * Determines whether a clock's default timer list
127 * has timers attached
128 *
129 * Note that this function should not be used when other threads also access
130 * the timer list. The return value may be outdated by the time it is acted
131 * upon.
132 *
133 * Returns: true if the clock's default timer list
134 * has timers attached
135 */
136 bool qemu_clock_has_timers(QEMUClockType type);
137
138 /**
139 * qemu_clock_expired:
140 * @type: the clock type
141 *
142 * Determines whether a clock's default timer list
143 * has an expired clock.
144 *
145 * Returns: true if the clock's default timer list has
146 * an expired timer
147 */
148 bool qemu_clock_expired(QEMUClockType type);
149
150 /**
151 * qemu_clock_use_for_deadline:
152 * @type: the clock type
153 *
154 * Determine whether a clock should be used for deadline
155 * calculations. Some clocks, for instance vm_clock with
156 * use_icount set, do not count in nanoseconds. Such clocks
157 * are not used for deadline calculations, and are presumed
158 * to interrupt any poll using qemu_notify/aio_notify
159 * etc.
160 *
161 * Returns: true if the clock runs in nanoseconds and
162 * should be used for a deadline.
163 */
164 bool qemu_clock_use_for_deadline(QEMUClockType type);
165
166 /**
167 * qemu_clock_deadline_ns_all:
168 * @type: the clock type
169 *
170 * Calculate the deadline across all timer lists associated
171 * with a clock (as opposed to just the default one)
172 * in nanoseconds, or -1 if no timer is set to expire.
173 *
174 * Returns: time until expiry in nanoseconds or -1
175 */
176 int64_t qemu_clock_deadline_ns_all(QEMUClockType type);
177
178 /**
179 * qemu_clock_get_main_loop_timerlist:
180 * @type: the clock type
181 *
182 * Return the default timer list assocatiated with a clock.
183 *
184 * Returns: the default timer list
185 */
186 QEMUTimerList *qemu_clock_get_main_loop_timerlist(QEMUClockType type);
187
188 /**
189 * qemu_clock_nofify:
190 * @type: the clock type
191 *
192 * Call the notifier callback connected with the default timer
193 * list linked to the clock, or qemu_notify() if none.
194 */
195 void qemu_clock_notify(QEMUClockType type);
196
197 /**
198 * qemu_clock_enable:
199 * @type: the clock type
200 * @enabled: true to enable, false to disable
201 *
202 * Enable or disable a clock
203 * Disabling the clock will wait for related timerlists to stop
204 * executing qemu_run_timers. Thus, this functions should not
205 * be used from the callback of a timer that is based on @clock.
206 * Doing so would cause a deadlock.
207 *
208 * Caller should hold BQL.
209 */
210 void qemu_clock_enable(QEMUClockType type, bool enabled);
211
212 /**
213 * qemu_clock_warp:
214 * @type: the clock type
215 *
216 * Warp a clock to a new value
217 */
218 void qemu_clock_warp(QEMUClockType type);
219
220 /**
221 * qemu_clock_register_reset_notifier:
222 * @type: the clock type
223 * @notifier: the notifier function
224 *
225 * Register a notifier function to call when the clock
226 * concerned is reset.
227 */
228 void qemu_clock_register_reset_notifier(QEMUClockType type,
229 Notifier *notifier);
230
231 /**
232 * qemu_clock_unregister_reset_notifier:
233 * @type: the clock type
234 * @notifier: the notifier function
235 *
236 * Unregister a notifier function to call when the clock
237 * concerned is reset.
238 */
239 void qemu_clock_unregister_reset_notifier(QEMUClockType type,
240 Notifier *notifier);
241
242 /**
243 * qemu_clock_run_timers:
244 * @type: clock on which to operate
245 *
246 * Run all the timers associated with the default timer list
247 * of a clock.
248 *
249 * Returns: true if any timer ran.
250 */
251 bool qemu_clock_run_timers(QEMUClockType type);
252
253 /**
254 * qemu_clock_run_all_timers:
255 *
256 * Run all the timers associated with the default timer list
257 * of every clock.
258 *
259 * Returns: true if any timer ran.
260 */
261 bool qemu_clock_run_all_timers(void);
262
263 /*
264 * QEMUTimerList
265 */
266
267 /**
268 * timerlist_new:
269 * @type: the clock type to associate with the timerlist
270 * @cb: the callback to call on notification
271 * @opaque: the opaque pointer to pass to the callback
272 *
273 * Create a new timerlist associated with the clock of
274 * type @type.
275 *
276 * Returns: a pointer to the QEMUTimerList created
277 */
278 QEMUTimerList *timerlist_new(QEMUClockType type,
279 QEMUTimerListNotifyCB *cb, void *opaque);
280
281 /**
282 * timerlist_free:
283 * @timer_list: the timer list to free
284 *
285 * Frees a timer_list. It must have no active timers.
286 */
287 void timerlist_free(QEMUTimerList *timer_list);
288
289 /**
290 * timerlist_has_timers:
291 * @timer_list: the timer list to operate on
292 *
293 * Determine whether a timer list has active timers
294 *
295 * Note that this function should not be used when other threads also access
296 * the timer list. The return value may be outdated by the time it is acted
297 * upon.
298 *
299 * Returns: true if the timer list has timers.
300 */
301 bool timerlist_has_timers(QEMUTimerList *timer_list);
302
303 /**
304 * timerlist_expired:
305 * @timer_list: the timer list to operate on
306 *
307 * Determine whether a timer list has any timers which
308 * are expired.
309 *
310 * Returns: true if the timer list has timers which
311 * have expired.
312 */
313 bool timerlist_expired(QEMUTimerList *timer_list);
314
315 /**
316 * timerlist_deadline_ns:
317 * @timer_list: the timer list to operate on
318 *
319 * Determine the deadline for a timer_list, i.e.
320 * the number of nanoseconds until the first timer
321 * expires. Return -1 if there are no timers.
322 *
323 * Returns: the number of nanoseconds until the earliest
324 * timer expires -1 if none
325 */
326 int64_t timerlist_deadline_ns(QEMUTimerList *timer_list);
327
328 /**
329 * timerlist_get_clock:
330 * @timer_list: the timer list to operate on
331 *
332 * Determine the clock type associated with a timer list.
333 *
334 * Returns: the clock type associated with the
335 * timer list.
336 */
337 QEMUClockType timerlist_get_clock(QEMUTimerList *timer_list);
338
339 /**
340 * timerlist_run_timers:
341 * @timer_list: the timer list to use
342 *
343 * Call all expired timers associated with the timer list.
344 *
345 * Returns: true if any timer expired
346 */
347 bool timerlist_run_timers(QEMUTimerList *timer_list);
348
349 /**
350 * timerlist_notify:
351 * @timer_list: the timer list to use
352 *
353 * call the notifier callback associated with the timer list.
354 */
355 void timerlist_notify(QEMUTimerList *timer_list);
356
357 /*
358 * QEMUTimerListGroup
359 */
360
361 /**
362 * timerlistgroup_init:
363 * @tlg: the timer list group
364 * @cb: the callback to call when a notify is required
365 * @opaque: the opaque pointer to be passed to the callback.
366 *
367 * Initialise a timer list group. This must already be
368 * allocated in memory and zeroed. The notifier callback is
369 * called whenever a clock in the timer list group is
370 * reenabled or whenever a timer associated with any timer
371 * list is modified. If @cb is specified as null, qemu_notify()
372 * is used instead.
373 */
374 void timerlistgroup_init(QEMUTimerListGroup *tlg,
375 QEMUTimerListNotifyCB *cb, void *opaque);
376
377 /**
378 * timerlistgroup_deinit:
379 * @tlg: the timer list group
380 *
381 * Deinitialise a timer list group. This must already be
382 * initialised. Note the memory is not freed.
383 */
384 void timerlistgroup_deinit(QEMUTimerListGroup *tlg);
385
386 /**
387 * timerlistgroup_run_timers:
388 * @tlg: the timer list group
389 *
390 * Run the timers associated with a timer list group.
391 * This will run timers on multiple clocks.
392 *
393 * Returns: true if any timer callback ran
394 */
395 bool timerlistgroup_run_timers(QEMUTimerListGroup *tlg);
396
397 /**
398 * timerlistgroup_deadline_ns:
399 * @tlg: the timer list group
400 *
401 * Determine the deadline of the soonest timer to
402 * expire associated with any timer list linked to
403 * the timer list group. Only clocks suitable for
404 * deadline calculation are included.
405 *
406 * Returns: the deadline in nanoseconds or -1 if no
407 * timers are to expire.
408 */
409 int64_t timerlistgroup_deadline_ns(QEMUTimerListGroup *tlg);
410
411 /*
412 * QEMUTimer
413 */
414
415 /**
416 * timer_init_tl:
417 * @ts: the timer to be initialised
418 * @timer_list: the timer list to attach the timer to
419 * @scale: the scale value for the timer
420 * @cb: the callback to be called when the timer expires
421 * @opaque: the opaque pointer to be passed to the callback
422 *
423 * Initialise a new timer and associate it with @timer_list.
424 * The caller is responsible for allocating the memory.
425 *
426 * You need not call an explicit deinit call. Simply make
427 * sure it is not on a list with timer_del.
428 */
429 void timer_init_tl(QEMUTimer *ts,
430 QEMUTimerList *timer_list, int scale,
431 QEMUTimerCB *cb, void *opaque);
432
433 /**
434 * timer_init:
435 * @type: the clock to associate with the timer
436 * @scale: the scale value for the timer
437 * @cb: the callback to call when the timer expires
438 * @opaque: the opaque pointer to pass to the callback
439 *
440 * Initialize a timer with the given scale on the default timer list
441 * associated with the clock.
442 *
443 * You need not call an explicit deinit call. Simply make
444 * sure it is not on a list with timer_del.
445 */
446 static inline void timer_init(QEMUTimer *ts, QEMUClockType type, int scale,
447 QEMUTimerCB *cb, void *opaque)
448 {
449 timer_init_tl(ts, main_loop_tlg.tl[type], scale, cb, opaque);
450 }
451
452 /**
453 * timer_init_ns:
454 * @type: the clock to associate with the timer
455 * @cb: the callback to call when the timer expires
456 * @opaque: the opaque pointer to pass to the callback
457 *
458 * Initialize a timer with nanosecond scale on the default timer list
459 * associated with the clock.
460 *
461 * You need not call an explicit deinit call. Simply make
462 * sure it is not on a list with timer_del.
463 */
464 static inline void timer_init_ns(QEMUTimer *ts, QEMUClockType type,
465 QEMUTimerCB *cb, void *opaque)
466 {
467 timer_init(ts, type, SCALE_NS, cb, opaque);
468 }
469
470 /**
471 * timer_init_us:
472 * @type: the clock to associate with the timer
473 * @cb: the callback to call when the timer expires
474 * @opaque: the opaque pointer to pass to the callback
475 *
476 * Initialize a timer with microsecond scale on the default timer list
477 * associated with the clock.
478 *
479 * You need not call an explicit deinit call. Simply make
480 * sure it is not on a list with timer_del.
481 */
482 static inline void timer_init_us(QEMUTimer *ts, QEMUClockType type,
483 QEMUTimerCB *cb, void *opaque)
484 {
485 timer_init(ts, type, SCALE_US, cb, opaque);
486 }
487
488 /**
489 * timer_init_ms:
490 * @type: the clock to associate with the timer
491 * @cb: the callback to call when the timer expires
492 * @opaque: the opaque pointer to pass to the callback
493 *
494 * Initialize a timer with millisecond scale on the default timer list
495 * associated with the clock.
496 *
497 * You need not call an explicit deinit call. Simply make
498 * sure it is not on a list with timer_del.
499 */
500 static inline void timer_init_ms(QEMUTimer *ts, QEMUClockType type,
501 QEMUTimerCB *cb, void *opaque)
502 {
503 timer_init(ts, type, SCALE_MS, cb, opaque);
504 }
505
506 /**
507 * timer_new_tl:
508 * @timer_list: the timer list to attach the timer to
509 * @scale: the scale value for the timer
510 * @cb: the callback to be called when the timer expires
511 * @opaque: the opaque pointer to be passed to the callback
512 *
513 * Creeate a new timer and associate it with @timer_list.
514 * The memory is allocated by the function.
515 *
516 * This is not the preferred interface unless you know you
517 * are going to call timer_free. Use timer_init instead.
518 *
519 * Returns: a pointer to the timer
520 */
521 static inline QEMUTimer *timer_new_tl(QEMUTimerList *timer_list,
522 int scale,
523 QEMUTimerCB *cb,
524 void *opaque)
525 {
526 QEMUTimer *ts = g_malloc0(sizeof(QEMUTimer));
527 timer_init_tl(ts, timer_list, scale, cb, opaque);
528 return ts;
529 }
530
531 /**
532 * timer_new:
533 * @type: the clock type to use
534 * @scale: the scale value for the timer
535 * @cb: the callback to be called when the timer expires
536 * @opaque: the opaque pointer to be passed to the callback
537 *
538 * Creeate a new timer and associate it with the default
539 * timer list for the clock type @type.
540 *
541 * Returns: a pointer to the timer
542 */
543 static inline QEMUTimer *timer_new(QEMUClockType type, int scale,
544 QEMUTimerCB *cb, void *opaque)
545 {
546 return timer_new_tl(main_loop_tlg.tl[type], scale, cb, opaque);
547 }
548
549 /**
550 * timer_new_ns:
551 * @clock: the clock to associate with the timer
552 * @callback: the callback to call when the timer expires
553 * @opaque: the opaque pointer to pass to the callback
554 *
555 * Create a new timer with nanosecond scale on the default timer list
556 * associated with the clock.
557 *
558 * Returns: a pointer to the newly created timer
559 */
560 static inline QEMUTimer *timer_new_ns(QEMUClockType type, QEMUTimerCB *cb,
561 void *opaque)
562 {
563 return timer_new(type, SCALE_NS, cb, opaque);
564 }
565
566 /**
567 * timer_new_us:
568 * @clock: the clock to associate with the timer
569 * @callback: the callback to call when the timer expires
570 * @opaque: the opaque pointer to pass to the callback
571 *
572 * Create a new timer with microsecond scale on the default timer list
573 * associated with the clock.
574 *
575 * Returns: a pointer to the newly created timer
576 */
577 static inline QEMUTimer *timer_new_us(QEMUClockType type, QEMUTimerCB *cb,
578 void *opaque)
579 {
580 return timer_new(type, SCALE_US, cb, opaque);
581 }
582
583 /**
584 * timer_new_ms:
585 * @clock: the clock to associate with the timer
586 * @callback: the callback to call when the timer expires
587 * @opaque: the opaque pointer to pass to the callback
588 *
589 * Create a new timer with millisecond scale on the default timer list
590 * associated with the clock.
591 *
592 * Returns: a pointer to the newly created timer
593 */
594 static inline QEMUTimer *timer_new_ms(QEMUClockType type, QEMUTimerCB *cb,
595 void *opaque)
596 {
597 return timer_new(type, SCALE_MS, cb, opaque);
598 }
599
600 /**
601 * timer_deinit:
602 * @ts: the timer to be de-initialised
603 *
604 * Deassociate the timer from any timerlist. You should
605 * call timer_del before. After this call, any further
606 * timer_del call cannot cause dangling pointer accesses
607 * even if the previously used timerlist is freed.
608 */
609 void timer_deinit(QEMUTimer *ts);
610
611 /**
612 * timer_free:
613 * @ts: the timer
614 *
615 * Free a timer (it must not be on the active list)
616 */
617 void timer_free(QEMUTimer *ts);
618
619 /**
620 * timer_del:
621 * @ts: the timer
622 *
623 * Delete a timer from the active list.
624 *
625 * This function is thread-safe but the timer and its timer list must not be
626 * freed while this function is running.
627 */
628 void timer_del(QEMUTimer *ts);
629
630 /**
631 * timer_mod_ns:
632 * @ts: the timer
633 * @expire_time: the expiry time in nanoseconds
634 *
635 * Modify a timer to expire at @expire_time
636 *
637 * This function is thread-safe but the timer and its timer list must not be
638 * freed while this function is running.
639 */
640 void timer_mod_ns(QEMUTimer *ts, int64_t expire_time);
641
642 /**
643 * timer_mod_anticipate_ns:
644 * @ts: the timer
645 * @expire_time: the expiry time in nanoseconds
646 *
647 * Modify a timer to expire at @expire_time or the current time,
648 * whichever comes earlier.
649 *
650 * This function is thread-safe but the timer and its timer list must not be
651 * freed while this function is running.
652 */
653 void timer_mod_anticipate_ns(QEMUTimer *ts, int64_t expire_time);
654
655 /**
656 * timer_mod:
657 * @ts: the timer
658 * @expire_time: the expire time in the units associated with the timer
659 *
660 * Modify a timer to expiry at @expire_time, taking into
661 * account the scale associated with the timer.
662 *
663 * This function is thread-safe but the timer and its timer list must not be
664 * freed while this function is running.
665 */
666 void timer_mod(QEMUTimer *ts, int64_t expire_timer);
667
668 /**
669 * timer_mod_anticipate:
670 * @ts: the timer
671 * @expire_time: the expiry time in nanoseconds
672 *
673 * Modify a timer to expire at @expire_time or the current time, whichever
674 * comes earlier, taking into account the scale associated with the timer.
675 *
676 * This function is thread-safe but the timer and its timer list must not be
677 * freed while this function is running.
678 */
679 void timer_mod_anticipate(QEMUTimer *ts, int64_t expire_time);
680
681 /**
682 * timer_pending:
683 * @ts: the timer
684 *
685 * Determines whether a timer is pending (i.e. is on the
686 * active list of timers, whether or not it has not yet expired).
687 *
688 * Returns: true if the timer is pending
689 */
690 bool timer_pending(QEMUTimer *ts);
691
692 /**
693 * timer_expired:
694 * @ts: the timer
695 *
696 * Determines whether a timer has expired.
697 *
698 * Returns: true if the timer has expired
699 */
700 bool timer_expired(QEMUTimer *timer_head, int64_t current_time);
701
702 /**
703 * timer_expire_time_ns:
704 * @ts: the timer
705 *
706 * Determine the expiry time of a timer
707 *
708 * Returns: the expiry time in nanoseconds
709 */
710 uint64_t timer_expire_time_ns(QEMUTimer *ts);
711
712 /**
713 * timer_get:
714 * @f: the file
715 * @ts: the timer
716 *
717 * Read a timer @ts from a file @f
718 */
719 void timer_get(QEMUFile *f, QEMUTimer *ts);
720
721 /**
722 * timer_put:
723 * @f: the file
724 * @ts: the timer
725 */
726 void timer_put(QEMUFile *f, QEMUTimer *ts);
727
728 /*
729 * General utility functions
730 */
731
732 /**
733 * qemu_timeout_ns_to_ms:
734 * @ns: nanosecond timeout value
735 *
736 * Convert a nanosecond timeout value (or -1) to
737 * a millisecond value (or -1), always rounding up.
738 *
739 * Returns: millisecond timeout value
740 */
741 int qemu_timeout_ns_to_ms(int64_t ns);
742
743 /**
744 * qemu_poll_ns:
745 * @fds: Array of file descriptors
746 * @nfds: number of file descriptors
747 * @timeout: timeout in nanoseconds
748 *
749 * Perform a poll like g_poll but with a timeout in nanoseconds.
750 * See g_poll documentation for further details.
751 *
752 * Returns: number of fds ready
753 */
754 int qemu_poll_ns(GPollFD *fds, guint nfds, int64_t timeout);
755
756 /**
757 * qemu_soonest_timeout:
758 * @timeout1: first timeout in nanoseconds (or -1 for infinite)
759 * @timeout2: second timeout in nanoseconds (or -1 for infinite)
760 *
761 * Calculates the soonest of two timeout values. -1 means infinite, which
762 * is later than any other value.
763 *
764 * Returns: soonest timeout value in nanoseconds (or -1 for infinite)
765 */
766 static inline int64_t qemu_soonest_timeout(int64_t timeout1, int64_t timeout2)
767 {
768 /* we can abuse the fact that -1 (which means infinite) is a maximal
769 * value when cast to unsigned. As this is disgusting, it's kept in
770 * one inline function.
771 */
772 return ((uint64_t) timeout1 < (uint64_t) timeout2) ? timeout1 : timeout2;
773 }
774
775 /**
776 * initclocks:
777 *
778 * Initialise the clock & timer infrastructure
779 */
780 void init_clocks(void);
781
782 int64_t cpu_get_ticks(void);
783 /* Caller must hold BQL */
784 void cpu_enable_ticks(void);
785 /* Caller must hold BQL */
786 void cpu_disable_ticks(void);
787
788 static inline int64_t get_ticks_per_sec(void)
789 {
790 return 1000000000LL;
791 }
792
793 static inline int64_t get_max_clock_jump(void)
794 {
795 /* This should be small enough to prevent excessive interrupts from being
796 * generated by the RTC on clock jumps, but large enough to avoid frequent
797 * unnecessary resets in idle VMs.
798 */
799 return 60 * get_ticks_per_sec();
800 }
801
802 /*
803 * Low level clock functions
804 */
805
806 /* real time host monotonic timer */
807 static inline int64_t get_clock_realtime(void)
808 {
809 struct timeval tv;
810
811 gettimeofday(&tv, NULL);
812 return tv.tv_sec * 1000000000LL + (tv.tv_usec * 1000);
813 }
814
815 /* Warning: don't insert tracepoints into these functions, they are
816 also used by simpletrace backend and tracepoints would cause
817 an infinite recursion! */
818 #ifdef _WIN32
819 extern int64_t clock_freq;
820
821 static inline int64_t get_clock(void)
822 {
823 LARGE_INTEGER ti;
824 QueryPerformanceCounter(&ti);
825 return muldiv64(ti.QuadPart, get_ticks_per_sec(), clock_freq);
826 }
827
828 #else
829
830 extern int use_rt_clock;
831
832 static inline int64_t get_clock(void)
833 {
834 #ifdef CLOCK_MONOTONIC
835 if (use_rt_clock) {
836 struct timespec ts;
837 clock_gettime(CLOCK_MONOTONIC, &ts);
838 return ts.tv_sec * 1000000000LL + ts.tv_nsec;
839 } else
840 #endif
841 {
842 /* XXX: using gettimeofday leads to problems if the date
843 changes, so it should be avoided. */
844 return get_clock_realtime();
845 }
846 }
847 #endif
848
849 /* icount */
850 int64_t cpu_get_icount_raw(void);
851 int64_t cpu_get_icount(void);
852 int64_t cpu_get_clock(void);
853 int64_t cpu_icount_to_ns(int64_t icount);
854
855 /*******************************************/
856 /* host CPU ticks (if available) */
857
858 #if defined(_ARCH_PPC)
859
860 static inline int64_t cpu_get_host_ticks(void)
861 {
862 int64_t retval;
863 #ifdef _ARCH_PPC64
864 /* This reads timebase in one 64bit go and includes Cell workaround from:
865 http://ozlabs.org/pipermail/linuxppc-dev/2006-October/027052.html
866 */
867 __asm__ __volatile__ ("mftb %0\n\t"
868 "cmpwi %0,0\n\t"
869 "beq- $-8"
870 : "=r" (retval));
871 #else
872 /* http://ozlabs.org/pipermail/linuxppc-dev/1999-October/003889.html */
873 unsigned long junk;
874 __asm__ __volatile__ ("mfspr %1,269\n\t" /* mftbu */
875 "mfspr %L0,268\n\t" /* mftb */
876 "mfspr %0,269\n\t" /* mftbu */
877 "cmpw %0,%1\n\t"
878 "bne $-16"
879 : "=r" (retval), "=r" (junk));
880 #endif
881 return retval;
882 }
883
884 #elif defined(__i386__)
885
886 static inline int64_t cpu_get_host_ticks(void)
887 {
888 int64_t val;
889 asm volatile ("rdtsc" : "=A" (val));
890 return val;
891 }
892
893 #elif defined(__x86_64__)
894
895 static inline int64_t cpu_get_host_ticks(void)
896 {
897 uint32_t low,high;
898 int64_t val;
899 asm volatile("rdtsc" : "=a" (low), "=d" (high));
900 val = high;
901 val <<= 32;
902 val |= low;
903 return val;
904 }
905
906 #elif defined(__hppa__)
907
908 static inline int64_t cpu_get_host_ticks(void)
909 {
910 int val;
911 asm volatile ("mfctl %%cr16, %0" : "=r"(val));
912 return val;
913 }
914
915 #elif defined(__ia64)
916
917 static inline int64_t cpu_get_host_ticks(void)
918 {
919 int64_t val;
920 asm volatile ("mov %0 = ar.itc" : "=r"(val) :: "memory");
921 return val;
922 }
923
924 #elif defined(__s390__)
925
926 static inline int64_t cpu_get_host_ticks(void)
927 {
928 int64_t val;
929 asm volatile("stck 0(%1)" : "=m" (val) : "a" (&val) : "cc");
930 return val;
931 }
932
933 #elif defined(__sparc__)
934
935 static inline int64_t cpu_get_host_ticks (void)
936 {
937 #if defined(_LP64)
938 uint64_t rval;
939 asm volatile("rd %%tick,%0" : "=r"(rval));
940 return rval;
941 #else
942 /* We need an %o or %g register for this. For recent enough gcc
943 there is an "h" constraint for that. Don't bother with that. */
944 union {
945 uint64_t i64;
946 struct {
947 uint32_t high;
948 uint32_t low;
949 } i32;
950 } rval;
951 asm volatile("rd %%tick,%%g1; srlx %%g1,32,%0; mov %%g1,%1"
952 : "=r"(rval.i32.high), "=r"(rval.i32.low) : : "g1");
953 return rval.i64;
954 #endif
955 }
956
957 #elif defined(__mips__) && \
958 ((defined(__mips_isa_rev) && __mips_isa_rev >= 2) || defined(__linux__))
959 /*
960 * binutils wants to use rdhwr only on mips32r2
961 * but as linux kernel emulate it, it's fine
962 * to use it.
963 *
964 */
965 #define MIPS_RDHWR(rd, value) { \
966 __asm__ __volatile__ (".set push\n\t" \
967 ".set mips32r2\n\t" \
968 "rdhwr %0, "rd"\n\t" \
969 ".set pop" \
970 : "=r" (value)); \
971 }
972
973 static inline int64_t cpu_get_host_ticks(void)
974 {
975 /* On kernels >= 2.6.25 rdhwr <reg>, $2 and $3 are emulated */
976 uint32_t count;
977 static uint32_t cyc_per_count = 0;
978
979 if (!cyc_per_count) {
980 MIPS_RDHWR("$3", cyc_per_count);
981 }
982
983 MIPS_RDHWR("$2", count);
984 return (int64_t)(count * cyc_per_count);
985 }
986
987 #elif defined(__alpha__)
988
989 static inline int64_t cpu_get_host_ticks(void)
990 {
991 uint64_t cc;
992 uint32_t cur, ofs;
993
994 asm volatile("rpcc %0" : "=r"(cc));
995 cur = cc;
996 ofs = cc >> 32;
997 return cur - ofs;
998 }
999
1000 #else
1001 /* The host CPU doesn't have an easily accessible cycle counter.
1002 Just return a monotonically increasing value. This will be
1003 totally wrong, but hopefully better than nothing. */
1004 static inline int64_t cpu_get_host_ticks (void)
1005 {
1006 static int64_t ticks = 0;
1007 return ticks++;
1008 }
1009 #endif
1010
1011 #ifdef CONFIG_PROFILER
1012 static inline int64_t profile_getclock(void)
1013 {
1014 return get_clock();
1015 }
1016
1017 extern int64_t tcg_time;
1018 extern int64_t dev_time;
1019 #endif
1020
1021 #endif