]> git.proxmox.com Git - mirror_qemu.git/blob - include/qemu/timer.h
Merge remote-tracking branch 'remotes/bonzini/tags/for-upstream' into staging
[mirror_qemu.git] / include / qemu / timer.h
1 #ifndef QEMU_TIMER_H
2 #define QEMU_TIMER_H
3
4 #include "qemu/typedefs.h"
5 #include "qemu-common.h"
6 #include "qemu/notify.h"
7
8 /* timers */
9
10 #define SCALE_MS 1000000
11 #define SCALE_US 1000
12 #define SCALE_NS 1
13
14 /**
15 * QEMUClockType:
16 *
17 * The following clock types are available:
18 *
19 * @QEMU_CLOCK_REALTIME: Real time clock
20 *
21 * The real time clock should be used only for stuff which does not
22 * change the virtual machine state, as it is run even if the virtual
23 * machine is stopped. The real time clock has a frequency of 1000
24 * Hz.
25 *
26 * @QEMU_CLOCK_VIRTUAL: virtual clock
27 *
28 * The virtual clock is only run during the emulation. It is stopped
29 * when the virtual machine is stopped. Virtual timers use a high
30 * precision clock, usually cpu cycles (use ticks_per_sec).
31 *
32 * @QEMU_CLOCK_HOST: host clock
33 *
34 * The host clock should be use for device models that emulate accurate
35 * real time sources. It will continue to run when the virtual machine
36 * is suspended, and it will reflect system time changes the host may
37 * undergo (e.g. due to NTP). The host clock has the same precision as
38 * the virtual clock.
39 *
40 * @QEMU_CLOCK_VIRTUAL_RT: realtime clock used for icount warp
41 *
42 * Outside icount mode, this clock is the same as @QEMU_CLOCK_VIRTUAL.
43 * In icount mode, this clock counts nanoseconds while the virtual
44 * machine is running. It is used to increase @QEMU_CLOCK_VIRTUAL
45 * while the CPUs are sleeping and thus not executing instructions.
46 */
47
48 typedef enum {
49 QEMU_CLOCK_REALTIME = 0,
50 QEMU_CLOCK_VIRTUAL = 1,
51 QEMU_CLOCK_HOST = 2,
52 QEMU_CLOCK_VIRTUAL_RT = 3,
53 QEMU_CLOCK_MAX
54 } QEMUClockType;
55
56 typedef struct QEMUTimerList QEMUTimerList;
57
58 struct QEMUTimerListGroup {
59 QEMUTimerList *tl[QEMU_CLOCK_MAX];
60 };
61
62 typedef void QEMUTimerCB(void *opaque);
63 typedef void QEMUTimerListNotifyCB(void *opaque);
64
65 struct QEMUTimer {
66 int64_t expire_time; /* in nanoseconds */
67 QEMUTimerList *timer_list;
68 QEMUTimerCB *cb;
69 void *opaque;
70 QEMUTimer *next;
71 int scale;
72 };
73
74 extern QEMUTimerListGroup main_loop_tlg;
75
76 /*
77 * QEMUClockType
78 */
79
80 /*
81 * qemu_clock_get_ns;
82 * @type: the clock type
83 *
84 * Get the nanosecond value of a clock with
85 * type @type
86 *
87 * Returns: the clock value in nanoseconds
88 */
89 int64_t qemu_clock_get_ns(QEMUClockType type);
90
91 /**
92 * qemu_clock_get_ms;
93 * @type: the clock type
94 *
95 * Get the millisecond value of a clock with
96 * type @type
97 *
98 * Returns: the clock value in milliseconds
99 */
100 static inline int64_t qemu_clock_get_ms(QEMUClockType type)
101 {
102 return qemu_clock_get_ns(type) / SCALE_MS;
103 }
104
105 /**
106 * qemu_clock_get_us;
107 * @type: the clock type
108 *
109 * Get the microsecond value of a clock with
110 * type @type
111 *
112 * Returns: the clock value in microseconds
113 */
114 static inline int64_t qemu_clock_get_us(QEMUClockType type)
115 {
116 return qemu_clock_get_ns(type) / SCALE_US;
117 }
118
119 /**
120 * qemu_clock_has_timers:
121 * @type: the clock type
122 *
123 * Determines whether a clock's default timer list
124 * has timers attached
125 *
126 * Note that this function should not be used when other threads also access
127 * the timer list. The return value may be outdated by the time it is acted
128 * upon.
129 *
130 * Returns: true if the clock's default timer list
131 * has timers attached
132 */
133 bool qemu_clock_has_timers(QEMUClockType type);
134
135 /**
136 * qemu_clock_expired:
137 * @type: the clock type
138 *
139 * Determines whether a clock's default timer list
140 * has an expired clock.
141 *
142 * Returns: true if the clock's default timer list has
143 * an expired timer
144 */
145 bool qemu_clock_expired(QEMUClockType type);
146
147 /**
148 * qemu_clock_use_for_deadline:
149 * @type: the clock type
150 *
151 * Determine whether a clock should be used for deadline
152 * calculations. Some clocks, for instance vm_clock with
153 * use_icount set, do not count in nanoseconds. Such clocks
154 * are not used for deadline calculations, and are presumed
155 * to interrupt any poll using qemu_notify/aio_notify
156 * etc.
157 *
158 * Returns: true if the clock runs in nanoseconds and
159 * should be used for a deadline.
160 */
161 bool qemu_clock_use_for_deadline(QEMUClockType type);
162
163 /**
164 * qemu_clock_deadline_ns_all:
165 * @type: the clock type
166 *
167 * Calculate the deadline across all timer lists associated
168 * with a clock (as opposed to just the default one)
169 * in nanoseconds, or -1 if no timer is set to expire.
170 *
171 * Returns: time until expiry in nanoseconds or -1
172 */
173 int64_t qemu_clock_deadline_ns_all(QEMUClockType type);
174
175 /**
176 * qemu_clock_get_main_loop_timerlist:
177 * @type: the clock type
178 *
179 * Return the default timer list assocatiated with a clock.
180 *
181 * Returns: the default timer list
182 */
183 QEMUTimerList *qemu_clock_get_main_loop_timerlist(QEMUClockType type);
184
185 /**
186 * qemu_clock_nofify:
187 * @type: the clock type
188 *
189 * Call the notifier callback connected with the default timer
190 * list linked to the clock, or qemu_notify() if none.
191 */
192 void qemu_clock_notify(QEMUClockType type);
193
194 /**
195 * qemu_clock_enable:
196 * @type: the clock type
197 * @enabled: true to enable, false to disable
198 *
199 * Enable or disable a clock
200 * Disabling the clock will wait for related timerlists to stop
201 * executing qemu_run_timers. Thus, this functions should not
202 * be used from the callback of a timer that is based on @clock.
203 * Doing so would cause a deadlock.
204 *
205 * Caller should hold BQL.
206 */
207 void qemu_clock_enable(QEMUClockType type, bool enabled);
208
209 /**
210 * qemu_clock_warp:
211 * @type: the clock type
212 *
213 * Warp a clock to a new value
214 */
215 void qemu_clock_warp(QEMUClockType type);
216
217 /**
218 * qemu_clock_register_reset_notifier:
219 * @type: the clock type
220 * @notifier: the notifier function
221 *
222 * Register a notifier function to call when the clock
223 * concerned is reset.
224 */
225 void qemu_clock_register_reset_notifier(QEMUClockType type,
226 Notifier *notifier);
227
228 /**
229 * qemu_clock_unregister_reset_notifier:
230 * @type: the clock type
231 * @notifier: the notifier function
232 *
233 * Unregister a notifier function to call when the clock
234 * concerned is reset.
235 */
236 void qemu_clock_unregister_reset_notifier(QEMUClockType type,
237 Notifier *notifier);
238
239 /**
240 * qemu_clock_run_timers:
241 * @type: clock on which to operate
242 *
243 * Run all the timers associated with the default timer list
244 * of a clock.
245 *
246 * Returns: true if any timer ran.
247 */
248 bool qemu_clock_run_timers(QEMUClockType type);
249
250 /**
251 * qemu_clock_run_all_timers:
252 *
253 * Run all the timers associated with the default timer list
254 * of every clock.
255 *
256 * Returns: true if any timer ran.
257 */
258 bool qemu_clock_run_all_timers(void);
259
260 /*
261 * QEMUTimerList
262 */
263
264 /**
265 * timerlist_new:
266 * @type: the clock type to associate with the timerlist
267 * @cb: the callback to call on notification
268 * @opaque: the opaque pointer to pass to the callback
269 *
270 * Create a new timerlist associated with the clock of
271 * type @type.
272 *
273 * Returns: a pointer to the QEMUTimerList created
274 */
275 QEMUTimerList *timerlist_new(QEMUClockType type,
276 QEMUTimerListNotifyCB *cb, void *opaque);
277
278 /**
279 * timerlist_free:
280 * @timer_list: the timer list to free
281 *
282 * Frees a timer_list. It must have no active timers.
283 */
284 void timerlist_free(QEMUTimerList *timer_list);
285
286 /**
287 * timerlist_has_timers:
288 * @timer_list: the timer list to operate on
289 *
290 * Determine whether a timer list has active timers
291 *
292 * Note that this function should not be used when other threads also access
293 * the timer list. The return value may be outdated by the time it is acted
294 * upon.
295 *
296 * Returns: true if the timer list has timers.
297 */
298 bool timerlist_has_timers(QEMUTimerList *timer_list);
299
300 /**
301 * timerlist_expired:
302 * @timer_list: the timer list to operate on
303 *
304 * Determine whether a timer list has any timers which
305 * are expired.
306 *
307 * Returns: true if the timer list has timers which
308 * have expired.
309 */
310 bool timerlist_expired(QEMUTimerList *timer_list);
311
312 /**
313 * timerlist_deadline_ns:
314 * @timer_list: the timer list to operate on
315 *
316 * Determine the deadline for a timer_list, i.e.
317 * the number of nanoseconds until the first timer
318 * expires. Return -1 if there are no timers.
319 *
320 * Returns: the number of nanoseconds until the earliest
321 * timer expires -1 if none
322 */
323 int64_t timerlist_deadline_ns(QEMUTimerList *timer_list);
324
325 /**
326 * timerlist_get_clock:
327 * @timer_list: the timer list to operate on
328 *
329 * Determine the clock type associated with a timer list.
330 *
331 * Returns: the clock type associated with the
332 * timer list.
333 */
334 QEMUClockType timerlist_get_clock(QEMUTimerList *timer_list);
335
336 /**
337 * timerlist_run_timers:
338 * @timer_list: the timer list to use
339 *
340 * Call all expired timers associated with the timer list.
341 *
342 * Returns: true if any timer expired
343 */
344 bool timerlist_run_timers(QEMUTimerList *timer_list);
345
346 /**
347 * timerlist_notify:
348 * @timer_list: the timer list to use
349 *
350 * call the notifier callback associated with the timer list.
351 */
352 void timerlist_notify(QEMUTimerList *timer_list);
353
354 /*
355 * QEMUTimerListGroup
356 */
357
358 /**
359 * timerlistgroup_init:
360 * @tlg: the timer list group
361 * @cb: the callback to call when a notify is required
362 * @opaque: the opaque pointer to be passed to the callback.
363 *
364 * Initialise a timer list group. This must already be
365 * allocated in memory and zeroed. The notifier callback is
366 * called whenever a clock in the timer list group is
367 * reenabled or whenever a timer associated with any timer
368 * list is modified. If @cb is specified as null, qemu_notify()
369 * is used instead.
370 */
371 void timerlistgroup_init(QEMUTimerListGroup *tlg,
372 QEMUTimerListNotifyCB *cb, void *opaque);
373
374 /**
375 * timerlistgroup_deinit:
376 * @tlg: the timer list group
377 *
378 * Deinitialise a timer list group. This must already be
379 * initialised. Note the memory is not freed.
380 */
381 void timerlistgroup_deinit(QEMUTimerListGroup *tlg);
382
383 /**
384 * timerlistgroup_run_timers:
385 * @tlg: the timer list group
386 *
387 * Run the timers associated with a timer list group.
388 * This will run timers on multiple clocks.
389 *
390 * Returns: true if any timer callback ran
391 */
392 bool timerlistgroup_run_timers(QEMUTimerListGroup *tlg);
393
394 /**
395 * timerlistgroup_deadline_ns:
396 * @tlg: the timer list group
397 *
398 * Determine the deadline of the soonest timer to
399 * expire associated with any timer list linked to
400 * the timer list group. Only clocks suitable for
401 * deadline calculation are included.
402 *
403 * Returns: the deadline in nanoseconds or -1 if no
404 * timers are to expire.
405 */
406 int64_t timerlistgroup_deadline_ns(QEMUTimerListGroup *tlg);
407
408 /*
409 * QEMUTimer
410 */
411
412 /**
413 * timer_init_tl:
414 * @ts: the timer to be initialised
415 * @timer_list: the timer list to attach the timer to
416 * @scale: the scale value for the timer
417 * @cb: the callback to be called when the timer expires
418 * @opaque: the opaque pointer to be passed to the callback
419 *
420 * Initialise a new timer and associate it with @timer_list.
421 * The caller is responsible for allocating the memory.
422 *
423 * You need not call an explicit deinit call. Simply make
424 * sure it is not on a list with timer_del.
425 */
426 void timer_init_tl(QEMUTimer *ts,
427 QEMUTimerList *timer_list, int scale,
428 QEMUTimerCB *cb, void *opaque);
429
430 /**
431 * timer_init:
432 * @type: the clock to associate with the timer
433 * @scale: the scale value for the timer
434 * @cb: the callback to call when the timer expires
435 * @opaque: the opaque pointer to pass to the callback
436 *
437 * Initialize a timer with the given scale on the default timer list
438 * associated with the clock.
439 *
440 * You need not call an explicit deinit call. Simply make
441 * sure it is not on a list with timer_del.
442 */
443 static inline void timer_init(QEMUTimer *ts, QEMUClockType type, int scale,
444 QEMUTimerCB *cb, void *opaque)
445 {
446 timer_init_tl(ts, main_loop_tlg.tl[type], scale, cb, opaque);
447 }
448
449 /**
450 * timer_init_ns:
451 * @type: the clock to associate with the timer
452 * @cb: the callback to call when the timer expires
453 * @opaque: the opaque pointer to pass to the callback
454 *
455 * Initialize a timer with nanosecond scale on the default timer list
456 * associated with the clock.
457 *
458 * You need not call an explicit deinit call. Simply make
459 * sure it is not on a list with timer_del.
460 */
461 static inline void timer_init_ns(QEMUTimer *ts, QEMUClockType type,
462 QEMUTimerCB *cb, void *opaque)
463 {
464 timer_init(ts, type, SCALE_NS, cb, opaque);
465 }
466
467 /**
468 * timer_init_us:
469 * @type: the clock to associate with the timer
470 * @cb: the callback to call when the timer expires
471 * @opaque: the opaque pointer to pass to the callback
472 *
473 * Initialize a timer with microsecond scale on the default timer list
474 * associated with the clock.
475 *
476 * You need not call an explicit deinit call. Simply make
477 * sure it is not on a list with timer_del.
478 */
479 static inline void timer_init_us(QEMUTimer *ts, QEMUClockType type,
480 QEMUTimerCB *cb, void *opaque)
481 {
482 timer_init(ts, type, SCALE_US, cb, opaque);
483 }
484
485 /**
486 * timer_init_ms:
487 * @type: the clock to associate with the timer
488 * @cb: the callback to call when the timer expires
489 * @opaque: the opaque pointer to pass to the callback
490 *
491 * Initialize a timer with millisecond scale on the default timer list
492 * associated with the clock.
493 *
494 * You need not call an explicit deinit call. Simply make
495 * sure it is not on a list with timer_del.
496 */
497 static inline void timer_init_ms(QEMUTimer *ts, QEMUClockType type,
498 QEMUTimerCB *cb, void *opaque)
499 {
500 timer_init(ts, type, SCALE_MS, cb, opaque);
501 }
502
503 /**
504 * timer_new_tl:
505 * @timer_list: the timer list to attach the timer to
506 * @scale: the scale value for the timer
507 * @cb: the callback to be called when the timer expires
508 * @opaque: the opaque pointer to be passed to the callback
509 *
510 * Creeate a new timer and associate it with @timer_list.
511 * The memory is allocated by the function.
512 *
513 * This is not the preferred interface unless you know you
514 * are going to call timer_free. Use timer_init instead.
515 *
516 * Returns: a pointer to the timer
517 */
518 static inline QEMUTimer *timer_new_tl(QEMUTimerList *timer_list,
519 int scale,
520 QEMUTimerCB *cb,
521 void *opaque)
522 {
523 QEMUTimer *ts = g_malloc0(sizeof(QEMUTimer));
524 timer_init_tl(ts, timer_list, scale, cb, opaque);
525 return ts;
526 }
527
528 /**
529 * timer_new:
530 * @type: the clock type to use
531 * @scale: the scale value for the timer
532 * @cb: the callback to be called when the timer expires
533 * @opaque: the opaque pointer to be passed to the callback
534 *
535 * Creeate a new timer and associate it with the default
536 * timer list for the clock type @type.
537 *
538 * Returns: a pointer to the timer
539 */
540 static inline QEMUTimer *timer_new(QEMUClockType type, int scale,
541 QEMUTimerCB *cb, void *opaque)
542 {
543 return timer_new_tl(main_loop_tlg.tl[type], scale, cb, opaque);
544 }
545
546 /**
547 * timer_new_ns:
548 * @clock: the clock to associate with the timer
549 * @callback: the callback to call when the timer expires
550 * @opaque: the opaque pointer to pass to the callback
551 *
552 * Create a new timer with nanosecond scale on the default timer list
553 * associated with the clock.
554 *
555 * Returns: a pointer to the newly created timer
556 */
557 static inline QEMUTimer *timer_new_ns(QEMUClockType type, QEMUTimerCB *cb,
558 void *opaque)
559 {
560 return timer_new(type, SCALE_NS, cb, opaque);
561 }
562
563 /**
564 * timer_new_us:
565 * @clock: the clock to associate with the timer
566 * @callback: the callback to call when the timer expires
567 * @opaque: the opaque pointer to pass to the callback
568 *
569 * Create a new timer with microsecond scale on the default timer list
570 * associated with the clock.
571 *
572 * Returns: a pointer to the newly created timer
573 */
574 static inline QEMUTimer *timer_new_us(QEMUClockType type, QEMUTimerCB *cb,
575 void *opaque)
576 {
577 return timer_new(type, SCALE_US, cb, opaque);
578 }
579
580 /**
581 * timer_new_ms:
582 * @clock: the clock to associate with the timer
583 * @callback: the callback to call when the timer expires
584 * @opaque: the opaque pointer to pass to the callback
585 *
586 * Create a new timer with millisecond scale on the default timer list
587 * associated with the clock.
588 *
589 * Returns: a pointer to the newly created timer
590 */
591 static inline QEMUTimer *timer_new_ms(QEMUClockType type, QEMUTimerCB *cb,
592 void *opaque)
593 {
594 return timer_new(type, SCALE_MS, cb, opaque);
595 }
596
597 /**
598 * timer_deinit:
599 * @ts: the timer to be de-initialised
600 *
601 * Deassociate the timer from any timerlist. You should
602 * call timer_del before. After this call, any further
603 * timer_del call cannot cause dangling pointer accesses
604 * even if the previously used timerlist is freed.
605 */
606 void timer_deinit(QEMUTimer *ts);
607
608 /**
609 * timer_free:
610 * @ts: the timer
611 *
612 * Free a timer (it must not be on the active list)
613 */
614 void timer_free(QEMUTimer *ts);
615
616 /**
617 * timer_del:
618 * @ts: the timer
619 *
620 * Delete a timer from the active list.
621 *
622 * This function is thread-safe but the timer and its timer list must not be
623 * freed while this function is running.
624 */
625 void timer_del(QEMUTimer *ts);
626
627 /**
628 * timer_mod_ns:
629 * @ts: the timer
630 * @expire_time: the expiry time in nanoseconds
631 *
632 * Modify a timer to expire at @expire_time
633 *
634 * This function is thread-safe but the timer and its timer list must not be
635 * freed while this function is running.
636 */
637 void timer_mod_ns(QEMUTimer *ts, int64_t expire_time);
638
639 /**
640 * timer_mod_anticipate_ns:
641 * @ts: the timer
642 * @expire_time: the expiry time in nanoseconds
643 *
644 * Modify a timer to expire at @expire_time or the current time,
645 * whichever comes earlier.
646 *
647 * This function is thread-safe but the timer and its timer list must not be
648 * freed while this function is running.
649 */
650 void timer_mod_anticipate_ns(QEMUTimer *ts, int64_t expire_time);
651
652 /**
653 * timer_mod:
654 * @ts: the timer
655 * @expire_time: the expire time in the units associated with the timer
656 *
657 * Modify a timer to expiry at @expire_time, taking into
658 * account the scale associated with the timer.
659 *
660 * This function is thread-safe but the timer and its timer list must not be
661 * freed while this function is running.
662 */
663 void timer_mod(QEMUTimer *ts, int64_t expire_timer);
664
665 /**
666 * timer_mod_anticipate:
667 * @ts: the timer
668 * @expire_time: the expiry time in nanoseconds
669 *
670 * Modify a timer to expire at @expire_time or the current time, whichever
671 * comes earlier, taking into account the scale associated with the timer.
672 *
673 * This function is thread-safe but the timer and its timer list must not be
674 * freed while this function is running.
675 */
676 void timer_mod_anticipate(QEMUTimer *ts, int64_t expire_time);
677
678 /**
679 * timer_pending:
680 * @ts: the timer
681 *
682 * Determines whether a timer is pending (i.e. is on the
683 * active list of timers, whether or not it has not yet expired).
684 *
685 * Returns: true if the timer is pending
686 */
687 bool timer_pending(QEMUTimer *ts);
688
689 /**
690 * timer_expired:
691 * @ts: the timer
692 *
693 * Determines whether a timer has expired.
694 *
695 * Returns: true if the timer has expired
696 */
697 bool timer_expired(QEMUTimer *timer_head, int64_t current_time);
698
699 /**
700 * timer_expire_time_ns:
701 * @ts: the timer
702 *
703 * Determine the expiry time of a timer
704 *
705 * Returns: the expiry time in nanoseconds
706 */
707 uint64_t timer_expire_time_ns(QEMUTimer *ts);
708
709 /**
710 * timer_get:
711 * @f: the file
712 * @ts: the timer
713 *
714 * Read a timer @ts from a file @f
715 */
716 void timer_get(QEMUFile *f, QEMUTimer *ts);
717
718 /**
719 * timer_put:
720 * @f: the file
721 * @ts: the timer
722 */
723 void timer_put(QEMUFile *f, QEMUTimer *ts);
724
725 /*
726 * General utility functions
727 */
728
729 /**
730 * qemu_timeout_ns_to_ms:
731 * @ns: nanosecond timeout value
732 *
733 * Convert a nanosecond timeout value (or -1) to
734 * a millisecond value (or -1), always rounding up.
735 *
736 * Returns: millisecond timeout value
737 */
738 int qemu_timeout_ns_to_ms(int64_t ns);
739
740 /**
741 * qemu_poll_ns:
742 * @fds: Array of file descriptors
743 * @nfds: number of file descriptors
744 * @timeout: timeout in nanoseconds
745 *
746 * Perform a poll like g_poll but with a timeout in nanoseconds.
747 * See g_poll documentation for further details.
748 *
749 * Returns: number of fds ready
750 */
751 int qemu_poll_ns(GPollFD *fds, guint nfds, int64_t timeout);
752
753 /**
754 * qemu_soonest_timeout:
755 * @timeout1: first timeout in nanoseconds (or -1 for infinite)
756 * @timeout2: second timeout in nanoseconds (or -1 for infinite)
757 *
758 * Calculates the soonest of two timeout values. -1 means infinite, which
759 * is later than any other value.
760 *
761 * Returns: soonest timeout value in nanoseconds (or -1 for infinite)
762 */
763 static inline int64_t qemu_soonest_timeout(int64_t timeout1, int64_t timeout2)
764 {
765 /* we can abuse the fact that -1 (which means infinite) is a maximal
766 * value when cast to unsigned. As this is disgusting, it's kept in
767 * one inline function.
768 */
769 return ((uint64_t) timeout1 < (uint64_t) timeout2) ? timeout1 : timeout2;
770 }
771
772 /**
773 * initclocks:
774 *
775 * Initialise the clock & timer infrastructure
776 */
777 void init_clocks(void);
778
779 int64_t cpu_get_ticks(void);
780 /* Caller must hold BQL */
781 void cpu_enable_ticks(void);
782 /* Caller must hold BQL */
783 void cpu_disable_ticks(void);
784
785 static inline int64_t get_ticks_per_sec(void)
786 {
787 return 1000000000LL;
788 }
789
790 /*
791 * Low level clock functions
792 */
793
794 /* real time host monotonic timer */
795 static inline int64_t get_clock_realtime(void)
796 {
797 struct timeval tv;
798
799 gettimeofday(&tv, NULL);
800 return tv.tv_sec * 1000000000LL + (tv.tv_usec * 1000);
801 }
802
803 /* Warning: don't insert tracepoints into these functions, they are
804 also used by simpletrace backend and tracepoints would cause
805 an infinite recursion! */
806 #ifdef _WIN32
807 extern int64_t clock_freq;
808
809 static inline int64_t get_clock(void)
810 {
811 LARGE_INTEGER ti;
812 QueryPerformanceCounter(&ti);
813 return muldiv64(ti.QuadPart, get_ticks_per_sec(), clock_freq);
814 }
815
816 #else
817
818 extern int use_rt_clock;
819
820 static inline int64_t get_clock(void)
821 {
822 #ifdef CLOCK_MONOTONIC
823 if (use_rt_clock) {
824 struct timespec ts;
825 clock_gettime(CLOCK_MONOTONIC, &ts);
826 return ts.tv_sec * 1000000000LL + ts.tv_nsec;
827 } else
828 #endif
829 {
830 /* XXX: using gettimeofday leads to problems if the date
831 changes, so it should be avoided. */
832 return get_clock_realtime();
833 }
834 }
835 #endif
836
837 /* icount */
838 int64_t cpu_get_icount_raw(void);
839 int64_t cpu_get_icount(void);
840 int64_t cpu_get_clock(void);
841 int64_t cpu_get_clock_offset(void);
842 int64_t cpu_icount_to_ns(int64_t icount);
843
844 /*******************************************/
845 /* host CPU ticks (if available) */
846
847 #if defined(_ARCH_PPC)
848
849 static inline int64_t cpu_get_real_ticks(void)
850 {
851 int64_t retval;
852 #ifdef _ARCH_PPC64
853 /* This reads timebase in one 64bit go and includes Cell workaround from:
854 http://ozlabs.org/pipermail/linuxppc-dev/2006-October/027052.html
855 */
856 __asm__ __volatile__ ("mftb %0\n\t"
857 "cmpwi %0,0\n\t"
858 "beq- $-8"
859 : "=r" (retval));
860 #else
861 /* http://ozlabs.org/pipermail/linuxppc-dev/1999-October/003889.html */
862 unsigned long junk;
863 __asm__ __volatile__ ("mfspr %1,269\n\t" /* mftbu */
864 "mfspr %L0,268\n\t" /* mftb */
865 "mfspr %0,269\n\t" /* mftbu */
866 "cmpw %0,%1\n\t"
867 "bne $-16"
868 : "=r" (retval), "=r" (junk));
869 #endif
870 return retval;
871 }
872
873 #elif defined(__i386__)
874
875 static inline int64_t cpu_get_real_ticks(void)
876 {
877 int64_t val;
878 asm volatile ("rdtsc" : "=A" (val));
879 return val;
880 }
881
882 #elif defined(__x86_64__)
883
884 static inline int64_t cpu_get_real_ticks(void)
885 {
886 uint32_t low,high;
887 int64_t val;
888 asm volatile("rdtsc" : "=a" (low), "=d" (high));
889 val = high;
890 val <<= 32;
891 val |= low;
892 return val;
893 }
894
895 #elif defined(__hppa__)
896
897 static inline int64_t cpu_get_real_ticks(void)
898 {
899 int val;
900 asm volatile ("mfctl %%cr16, %0" : "=r"(val));
901 return val;
902 }
903
904 #elif defined(__ia64)
905
906 static inline int64_t cpu_get_real_ticks(void)
907 {
908 int64_t val;
909 asm volatile ("mov %0 = ar.itc" : "=r"(val) :: "memory");
910 return val;
911 }
912
913 #elif defined(__s390__)
914
915 static inline int64_t cpu_get_real_ticks(void)
916 {
917 int64_t val;
918 asm volatile("stck 0(%1)" : "=m" (val) : "a" (&val) : "cc");
919 return val;
920 }
921
922 #elif defined(__sparc__)
923
924 static inline int64_t cpu_get_real_ticks (void)
925 {
926 #if defined(_LP64)
927 uint64_t rval;
928 asm volatile("rd %%tick,%0" : "=r"(rval));
929 return rval;
930 #else
931 /* We need an %o or %g register for this. For recent enough gcc
932 there is an "h" constraint for that. Don't bother with that. */
933 union {
934 uint64_t i64;
935 struct {
936 uint32_t high;
937 uint32_t low;
938 } i32;
939 } rval;
940 asm volatile("rd %%tick,%%g1; srlx %%g1,32,%0; mov %%g1,%1"
941 : "=r"(rval.i32.high), "=r"(rval.i32.low) : : "g1");
942 return rval.i64;
943 #endif
944 }
945
946 #elif defined(__mips__) && \
947 ((defined(__mips_isa_rev) && __mips_isa_rev >= 2) || defined(__linux__))
948 /*
949 * binutils wants to use rdhwr only on mips32r2
950 * but as linux kernel emulate it, it's fine
951 * to use it.
952 *
953 */
954 #define MIPS_RDHWR(rd, value) { \
955 __asm__ __volatile__ (".set push\n\t" \
956 ".set mips32r2\n\t" \
957 "rdhwr %0, "rd"\n\t" \
958 ".set pop" \
959 : "=r" (value)); \
960 }
961
962 static inline int64_t cpu_get_real_ticks(void)
963 {
964 /* On kernels >= 2.6.25 rdhwr <reg>, $2 and $3 are emulated */
965 uint32_t count;
966 static uint32_t cyc_per_count = 0;
967
968 if (!cyc_per_count) {
969 MIPS_RDHWR("$3", cyc_per_count);
970 }
971
972 MIPS_RDHWR("$2", count);
973 return (int64_t)(count * cyc_per_count);
974 }
975
976 #elif defined(__alpha__)
977
978 static inline int64_t cpu_get_real_ticks(void)
979 {
980 uint64_t cc;
981 uint32_t cur, ofs;
982
983 asm volatile("rpcc %0" : "=r"(cc));
984 cur = cc;
985 ofs = cc >> 32;
986 return cur - ofs;
987 }
988
989 #else
990 /* The host CPU doesn't have an easily accessible cycle counter.
991 Just return a monotonically increasing value. This will be
992 totally wrong, but hopefully better than nothing. */
993 static inline int64_t cpu_get_real_ticks (void)
994 {
995 static int64_t ticks = 0;
996 return ticks++;
997 }
998 #endif
999
1000 #ifdef CONFIG_PROFILER
1001 static inline int64_t profile_getclock(void)
1002 {
1003 return cpu_get_real_ticks();
1004 }
1005
1006 extern int64_t qemu_time, qemu_time_start;
1007 extern int64_t tlb_flush_time;
1008 extern int64_t dev_time;
1009 #endif
1010
1011 #endif