]> git.proxmox.com Git - mirror_qemu.git/blob - include/qom/cpu.h
cpus-common: simplify locking for start_exclusive/end_exclusive
[mirror_qemu.git] / include / qom / cpu.h
1 /*
2 * QEMU CPU model
3 *
4 * Copyright (c) 2012 SUSE LINUX Products GmbH
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version 2
9 * of the License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see
18 * <http://www.gnu.org/licenses/gpl-2.0.html>
19 */
20 #ifndef QEMU_CPU_H
21 #define QEMU_CPU_H
22
23 #include "hw/qdev-core.h"
24 #include "disas/bfd.h"
25 #include "exec/hwaddr.h"
26 #include "exec/memattrs.h"
27 #include "qemu/bitmap.h"
28 #include "qemu/queue.h"
29 #include "qemu/thread.h"
30 #include "trace/generated-events.h"
31
32 typedef int (*WriteCoreDumpFunction)(const void *buf, size_t size,
33 void *opaque);
34
35 /**
36 * vaddr:
37 * Type wide enough to contain any #target_ulong virtual address.
38 */
39 typedef uint64_t vaddr;
40 #define VADDR_PRId PRId64
41 #define VADDR_PRIu PRIu64
42 #define VADDR_PRIo PRIo64
43 #define VADDR_PRIx PRIx64
44 #define VADDR_PRIX PRIX64
45 #define VADDR_MAX UINT64_MAX
46
47 /**
48 * SECTION:cpu
49 * @section_id: QEMU-cpu
50 * @title: CPU Class
51 * @short_description: Base class for all CPUs
52 */
53
54 #define TYPE_CPU "cpu"
55
56 /* Since this macro is used a lot in hot code paths and in conjunction with
57 * FooCPU *foo_env_get_cpu(), we deviate from usual QOM practice by using
58 * an unchecked cast.
59 */
60 #define CPU(obj) ((CPUState *)(obj))
61
62 #define CPU_CLASS(class) OBJECT_CLASS_CHECK(CPUClass, (class), TYPE_CPU)
63 #define CPU_GET_CLASS(obj) OBJECT_GET_CLASS(CPUClass, (obj), TYPE_CPU)
64
65 typedef enum MMUAccessType {
66 MMU_DATA_LOAD = 0,
67 MMU_DATA_STORE = 1,
68 MMU_INST_FETCH = 2
69 } MMUAccessType;
70
71 typedef struct CPUWatchpoint CPUWatchpoint;
72
73 typedef void (*CPUUnassignedAccess)(CPUState *cpu, hwaddr addr,
74 bool is_write, bool is_exec, int opaque,
75 unsigned size);
76
77 struct TranslationBlock;
78
79 /**
80 * CPUClass:
81 * @class_by_name: Callback to map -cpu command line model name to an
82 * instantiatable CPU type.
83 * @parse_features: Callback to parse command line arguments.
84 * @reset: Callback to reset the #CPUState to its initial state.
85 * @reset_dump_flags: #CPUDumpFlags to use for reset logging.
86 * @has_work: Callback for checking if there is work to do.
87 * @do_interrupt: Callback for interrupt handling.
88 * @do_unassigned_access: Callback for unassigned access handling.
89 * @do_unaligned_access: Callback for unaligned access handling, if
90 * the target defines #ALIGNED_ONLY.
91 * @virtio_is_big_endian: Callback to return %true if a CPU which supports
92 * runtime configurable endianness is currently big-endian. Non-configurable
93 * CPUs can use the default implementation of this method. This method should
94 * not be used by any callers other than the pre-1.0 virtio devices.
95 * @memory_rw_debug: Callback for GDB memory access.
96 * @dump_state: Callback for dumping state.
97 * @dump_statistics: Callback for dumping statistics.
98 * @get_arch_id: Callback for getting architecture-dependent CPU ID.
99 * @get_paging_enabled: Callback for inquiring whether paging is enabled.
100 * @get_memory_mapping: Callback for obtaining the memory mappings.
101 * @set_pc: Callback for setting the Program Counter register.
102 * @synchronize_from_tb: Callback for synchronizing state from a TCG
103 * #TranslationBlock.
104 * @handle_mmu_fault: Callback for handling an MMU fault.
105 * @get_phys_page_debug: Callback for obtaining a physical address.
106 * @get_phys_page_attrs_debug: Callback for obtaining a physical address and the
107 * associated memory transaction attributes to use for the access.
108 * CPUs which use memory transaction attributes should implement this
109 * instead of get_phys_page_debug.
110 * @asidx_from_attrs: Callback to return the CPU AddressSpace to use for
111 * a memory access with the specified memory transaction attributes.
112 * @gdb_read_register: Callback for letting GDB read a register.
113 * @gdb_write_register: Callback for letting GDB write a register.
114 * @debug_check_watchpoint: Callback: return true if the architectural
115 * watchpoint whose address has matched should really fire.
116 * @debug_excp_handler: Callback for handling debug exceptions.
117 * @write_elf64_note: Callback for writing a CPU-specific ELF note to a
118 * 64-bit VM coredump.
119 * @write_elf32_qemunote: Callback for writing a CPU- and QEMU-specific ELF
120 * note to a 32-bit VM coredump.
121 * @write_elf32_note: Callback for writing a CPU-specific ELF note to a
122 * 32-bit VM coredump.
123 * @write_elf32_qemunote: Callback for writing a CPU- and QEMU-specific ELF
124 * note to a 32-bit VM coredump.
125 * @vmsd: State description for migration.
126 * @gdb_num_core_regs: Number of core registers accessible to GDB.
127 * @gdb_core_xml_file: File name for core registers GDB XML description.
128 * @gdb_stop_before_watchpoint: Indicates whether GDB expects the CPU to stop
129 * before the insn which triggers a watchpoint rather than after it.
130 * @gdb_arch_name: Optional callback that returns the architecture name known
131 * to GDB. The caller must free the returned string with g_free.
132 * @cpu_exec_enter: Callback for cpu_exec preparation.
133 * @cpu_exec_exit: Callback for cpu_exec cleanup.
134 * @cpu_exec_interrupt: Callback for processing interrupts in cpu_exec.
135 * @disas_set_info: Setup architecture specific components of disassembly info
136 *
137 * Represents a CPU family or model.
138 */
139 typedef struct CPUClass {
140 /*< private >*/
141 DeviceClass parent_class;
142 /*< public >*/
143
144 ObjectClass *(*class_by_name)(const char *cpu_model);
145 void (*parse_features)(const char *typename, char *str, Error **errp);
146
147 void (*reset)(CPUState *cpu);
148 int reset_dump_flags;
149 bool (*has_work)(CPUState *cpu);
150 void (*do_interrupt)(CPUState *cpu);
151 CPUUnassignedAccess do_unassigned_access;
152 void (*do_unaligned_access)(CPUState *cpu, vaddr addr,
153 MMUAccessType access_type,
154 int mmu_idx, uintptr_t retaddr);
155 bool (*virtio_is_big_endian)(CPUState *cpu);
156 int (*memory_rw_debug)(CPUState *cpu, vaddr addr,
157 uint8_t *buf, int len, bool is_write);
158 void (*dump_state)(CPUState *cpu, FILE *f, fprintf_function cpu_fprintf,
159 int flags);
160 void (*dump_statistics)(CPUState *cpu, FILE *f,
161 fprintf_function cpu_fprintf, int flags);
162 int64_t (*get_arch_id)(CPUState *cpu);
163 bool (*get_paging_enabled)(const CPUState *cpu);
164 void (*get_memory_mapping)(CPUState *cpu, MemoryMappingList *list,
165 Error **errp);
166 void (*set_pc)(CPUState *cpu, vaddr value);
167 void (*synchronize_from_tb)(CPUState *cpu, struct TranslationBlock *tb);
168 int (*handle_mmu_fault)(CPUState *cpu, vaddr address, int rw,
169 int mmu_index);
170 hwaddr (*get_phys_page_debug)(CPUState *cpu, vaddr addr);
171 hwaddr (*get_phys_page_attrs_debug)(CPUState *cpu, vaddr addr,
172 MemTxAttrs *attrs);
173 int (*asidx_from_attrs)(CPUState *cpu, MemTxAttrs attrs);
174 int (*gdb_read_register)(CPUState *cpu, uint8_t *buf, int reg);
175 int (*gdb_write_register)(CPUState *cpu, uint8_t *buf, int reg);
176 bool (*debug_check_watchpoint)(CPUState *cpu, CPUWatchpoint *wp);
177 void (*debug_excp_handler)(CPUState *cpu);
178
179 int (*write_elf64_note)(WriteCoreDumpFunction f, CPUState *cpu,
180 int cpuid, void *opaque);
181 int (*write_elf64_qemunote)(WriteCoreDumpFunction f, CPUState *cpu,
182 void *opaque);
183 int (*write_elf32_note)(WriteCoreDumpFunction f, CPUState *cpu,
184 int cpuid, void *opaque);
185 int (*write_elf32_qemunote)(WriteCoreDumpFunction f, CPUState *cpu,
186 void *opaque);
187
188 const struct VMStateDescription *vmsd;
189 int gdb_num_core_regs;
190 const char *gdb_core_xml_file;
191 gchar * (*gdb_arch_name)(CPUState *cpu);
192 bool gdb_stop_before_watchpoint;
193
194 void (*cpu_exec_enter)(CPUState *cpu);
195 void (*cpu_exec_exit)(CPUState *cpu);
196 bool (*cpu_exec_interrupt)(CPUState *cpu, int interrupt_request);
197
198 void (*disas_set_info)(CPUState *cpu, disassemble_info *info);
199 } CPUClass;
200
201 #ifdef HOST_WORDS_BIGENDIAN
202 typedef struct icount_decr_u16 {
203 uint16_t high;
204 uint16_t low;
205 } icount_decr_u16;
206 #else
207 typedef struct icount_decr_u16 {
208 uint16_t low;
209 uint16_t high;
210 } icount_decr_u16;
211 #endif
212
213 typedef struct CPUBreakpoint {
214 vaddr pc;
215 int flags; /* BP_* */
216 QTAILQ_ENTRY(CPUBreakpoint) entry;
217 } CPUBreakpoint;
218
219 struct CPUWatchpoint {
220 vaddr vaddr;
221 vaddr len;
222 vaddr hitaddr;
223 MemTxAttrs hitattrs;
224 int flags; /* BP_* */
225 QTAILQ_ENTRY(CPUWatchpoint) entry;
226 };
227
228 struct KVMState;
229 struct kvm_run;
230
231 #define TB_JMP_CACHE_BITS 12
232 #define TB_JMP_CACHE_SIZE (1 << TB_JMP_CACHE_BITS)
233
234 /* work queue */
235 typedef void (*run_on_cpu_func)(CPUState *cpu, void *data);
236 struct qemu_work_item;
237
238 /**
239 * CPUState:
240 * @cpu_index: CPU index (informative).
241 * @nr_cores: Number of cores within this CPU package.
242 * @nr_threads: Number of threads within this CPU.
243 * @numa_node: NUMA node this CPU is belonging to.
244 * @host_tid: Host thread ID.
245 * @running: #true if CPU is currently running;
246 * valid under cpu_list_lock.
247 * @created: Indicates whether the CPU thread has been successfully created.
248 * @interrupt_request: Indicates a pending interrupt request.
249 * @halted: Nonzero if the CPU is in suspended state.
250 * @stop: Indicates a pending stop request.
251 * @stopped: Indicates the CPU has been artificially stopped.
252 * @unplug: Indicates a pending CPU unplug request.
253 * @crash_occurred: Indicates the OS reported a crash (panic) for this CPU
254 * @tcg_exit_req: Set to force TCG to stop executing linked TBs for this
255 * CPU and return to its top level loop.
256 * @tb_flushed: Indicates the translation buffer has been flushed.
257 * @singlestep_enabled: Flags for single-stepping.
258 * @icount_extra: Instructions until next timer event.
259 * @icount_decr: Number of cycles left, with interrupt flag in high bit.
260 * This allows a single read-compare-cbranch-write sequence to test
261 * for both decrementer underflow and exceptions.
262 * @can_do_io: Nonzero if memory-mapped IO is safe. Deterministic execution
263 * requires that IO only be performed on the last instruction of a TB
264 * so that interrupts take effect immediately.
265 * @cpu_ases: Pointer to array of CPUAddressSpaces (which define the
266 * AddressSpaces this CPU has)
267 * @num_ases: number of CPUAddressSpaces in @cpu_ases
268 * @as: Pointer to the first AddressSpace, for the convenience of targets which
269 * only have a single AddressSpace
270 * @env_ptr: Pointer to subclass-specific CPUArchState field.
271 * @gdb_regs: Additional GDB registers.
272 * @gdb_num_regs: Number of total registers accessible to GDB.
273 * @gdb_num_g_regs: Number of registers in GDB 'g' packets.
274 * @next_cpu: Next CPU sharing TB cache.
275 * @opaque: User data.
276 * @mem_io_pc: Host Program Counter at which the memory was accessed.
277 * @mem_io_vaddr: Target virtual address at which the memory was accessed.
278 * @kvm_fd: vCPU file descriptor for KVM.
279 * @work_mutex: Lock to prevent multiple access to queued_work_*.
280 * @queued_work_first: First asynchronous work pending.
281 * @trace_dstate: Dynamic tracing state of events for this vCPU (bitmask).
282 *
283 * State of one CPU core or thread.
284 */
285 struct CPUState {
286 /*< private >*/
287 DeviceState parent_obj;
288 /*< public >*/
289
290 int nr_cores;
291 int nr_threads;
292 int numa_node;
293
294 struct QemuThread *thread;
295 #ifdef _WIN32
296 HANDLE hThread;
297 #endif
298 int thread_id;
299 uint32_t host_tid;
300 bool running;
301 struct QemuCond *halt_cond;
302 bool thread_kicked;
303 bool created;
304 bool stop;
305 bool stopped;
306 bool unplug;
307 bool crash_occurred;
308 bool exit_request;
309 bool tb_flushed;
310 uint32_t interrupt_request;
311 int singlestep_enabled;
312 int64_t icount_extra;
313 sigjmp_buf jmp_env;
314
315 QemuMutex work_mutex;
316 struct qemu_work_item *queued_work_first, *queued_work_last;
317
318 CPUAddressSpace *cpu_ases;
319 int num_ases;
320 AddressSpace *as;
321 MemoryRegion *memory;
322
323 void *env_ptr; /* CPUArchState */
324 struct TranslationBlock *tb_jmp_cache[TB_JMP_CACHE_SIZE];
325 struct GDBRegisterState *gdb_regs;
326 int gdb_num_regs;
327 int gdb_num_g_regs;
328 QTAILQ_ENTRY(CPUState) node;
329
330 /* ice debug support */
331 QTAILQ_HEAD(breakpoints_head, CPUBreakpoint) breakpoints;
332
333 QTAILQ_HEAD(watchpoints_head, CPUWatchpoint) watchpoints;
334 CPUWatchpoint *watchpoint_hit;
335
336 void *opaque;
337
338 /* In order to avoid passing too many arguments to the MMIO helpers,
339 * we store some rarely used information in the CPU context.
340 */
341 uintptr_t mem_io_pc;
342 vaddr mem_io_vaddr;
343
344 int kvm_fd;
345 bool kvm_vcpu_dirty;
346 struct KVMState *kvm_state;
347 struct kvm_run *kvm_run;
348
349 /* Used for events with 'vcpu' and *without* the 'disabled' properties */
350 DECLARE_BITMAP(trace_dstate, TRACE_VCPU_EVENT_COUNT);
351
352 /* TODO Move common fields from CPUArchState here. */
353 int cpu_index; /* used by alpha TCG */
354 uint32_t halted; /* used by alpha, cris, ppc TCG */
355 union {
356 uint32_t u32;
357 icount_decr_u16 u16;
358 } icount_decr;
359 uint32_t can_do_io;
360 int32_t exception_index; /* used by m68k TCG */
361
362 /* Used to keep track of an outstanding cpu throttle thread for migration
363 * autoconverge
364 */
365 bool throttle_thread_scheduled;
366
367 /* Note that this is accessed at the start of every TB via a negative
368 offset from AREG0. Leave this field at the end so as to make the
369 (absolute value) offset as small as possible. This reduces code
370 size, especially for hosts without large memory offsets. */
371 uint32_t tcg_exit_req;
372 };
373
374 QTAILQ_HEAD(CPUTailQ, CPUState);
375 extern struct CPUTailQ cpus;
376 #define CPU_NEXT(cpu) QTAILQ_NEXT(cpu, node)
377 #define CPU_FOREACH(cpu) QTAILQ_FOREACH(cpu, &cpus, node)
378 #define CPU_FOREACH_SAFE(cpu, next_cpu) \
379 QTAILQ_FOREACH_SAFE(cpu, &cpus, node, next_cpu)
380 #define CPU_FOREACH_REVERSE(cpu) \
381 QTAILQ_FOREACH_REVERSE(cpu, &cpus, CPUTailQ, node)
382 #define first_cpu QTAILQ_FIRST(&cpus)
383
384 extern __thread CPUState *current_cpu;
385
386 /**
387 * cpu_paging_enabled:
388 * @cpu: The CPU whose state is to be inspected.
389 *
390 * Returns: %true if paging is enabled, %false otherwise.
391 */
392 bool cpu_paging_enabled(const CPUState *cpu);
393
394 /**
395 * cpu_get_memory_mapping:
396 * @cpu: The CPU whose memory mappings are to be obtained.
397 * @list: Where to write the memory mappings to.
398 * @errp: Pointer for reporting an #Error.
399 */
400 void cpu_get_memory_mapping(CPUState *cpu, MemoryMappingList *list,
401 Error **errp);
402
403 /**
404 * cpu_write_elf64_note:
405 * @f: pointer to a function that writes memory to a file
406 * @cpu: The CPU whose memory is to be dumped
407 * @cpuid: ID number of the CPU
408 * @opaque: pointer to the CPUState struct
409 */
410 int cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cpu,
411 int cpuid, void *opaque);
412
413 /**
414 * cpu_write_elf64_qemunote:
415 * @f: pointer to a function that writes memory to a file
416 * @cpu: The CPU whose memory is to be dumped
417 * @cpuid: ID number of the CPU
418 * @opaque: pointer to the CPUState struct
419 */
420 int cpu_write_elf64_qemunote(WriteCoreDumpFunction f, CPUState *cpu,
421 void *opaque);
422
423 /**
424 * cpu_write_elf32_note:
425 * @f: pointer to a function that writes memory to a file
426 * @cpu: The CPU whose memory is to be dumped
427 * @cpuid: ID number of the CPU
428 * @opaque: pointer to the CPUState struct
429 */
430 int cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cpu,
431 int cpuid, void *opaque);
432
433 /**
434 * cpu_write_elf32_qemunote:
435 * @f: pointer to a function that writes memory to a file
436 * @cpu: The CPU whose memory is to be dumped
437 * @cpuid: ID number of the CPU
438 * @opaque: pointer to the CPUState struct
439 */
440 int cpu_write_elf32_qemunote(WriteCoreDumpFunction f, CPUState *cpu,
441 void *opaque);
442
443 /**
444 * CPUDumpFlags:
445 * @CPU_DUMP_CODE:
446 * @CPU_DUMP_FPU: dump FPU register state, not just integer
447 * @CPU_DUMP_CCOP: dump info about TCG QEMU's condition code optimization state
448 */
449 enum CPUDumpFlags {
450 CPU_DUMP_CODE = 0x00010000,
451 CPU_DUMP_FPU = 0x00020000,
452 CPU_DUMP_CCOP = 0x00040000,
453 };
454
455 /**
456 * cpu_dump_state:
457 * @cpu: The CPU whose state is to be dumped.
458 * @f: File to dump to.
459 * @cpu_fprintf: Function to dump with.
460 * @flags: Flags what to dump.
461 *
462 * Dumps CPU state.
463 */
464 void cpu_dump_state(CPUState *cpu, FILE *f, fprintf_function cpu_fprintf,
465 int flags);
466
467 /**
468 * cpu_dump_statistics:
469 * @cpu: The CPU whose state is to be dumped.
470 * @f: File to dump to.
471 * @cpu_fprintf: Function to dump with.
472 * @flags: Flags what to dump.
473 *
474 * Dumps CPU statistics.
475 */
476 void cpu_dump_statistics(CPUState *cpu, FILE *f, fprintf_function cpu_fprintf,
477 int flags);
478
479 #ifndef CONFIG_USER_ONLY
480 /**
481 * cpu_get_phys_page_attrs_debug:
482 * @cpu: The CPU to obtain the physical page address for.
483 * @addr: The virtual address.
484 * @attrs: Updated on return with the memory transaction attributes to use
485 * for this access.
486 *
487 * Obtains the physical page corresponding to a virtual one, together
488 * with the corresponding memory transaction attributes to use for the access.
489 * Use it only for debugging because no protection checks are done.
490 *
491 * Returns: Corresponding physical page address or -1 if no page found.
492 */
493 static inline hwaddr cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
494 MemTxAttrs *attrs)
495 {
496 CPUClass *cc = CPU_GET_CLASS(cpu);
497
498 if (cc->get_phys_page_attrs_debug) {
499 return cc->get_phys_page_attrs_debug(cpu, addr, attrs);
500 }
501 /* Fallback for CPUs which don't implement the _attrs_ hook */
502 *attrs = MEMTXATTRS_UNSPECIFIED;
503 return cc->get_phys_page_debug(cpu, addr);
504 }
505
506 /**
507 * cpu_get_phys_page_debug:
508 * @cpu: The CPU to obtain the physical page address for.
509 * @addr: The virtual address.
510 *
511 * Obtains the physical page corresponding to a virtual one.
512 * Use it only for debugging because no protection checks are done.
513 *
514 * Returns: Corresponding physical page address or -1 if no page found.
515 */
516 static inline hwaddr cpu_get_phys_page_debug(CPUState *cpu, vaddr addr)
517 {
518 MemTxAttrs attrs = {};
519
520 return cpu_get_phys_page_attrs_debug(cpu, addr, &attrs);
521 }
522
523 /** cpu_asidx_from_attrs:
524 * @cpu: CPU
525 * @attrs: memory transaction attributes
526 *
527 * Returns the address space index specifying the CPU AddressSpace
528 * to use for a memory access with the given transaction attributes.
529 */
530 static inline int cpu_asidx_from_attrs(CPUState *cpu, MemTxAttrs attrs)
531 {
532 CPUClass *cc = CPU_GET_CLASS(cpu);
533
534 if (cc->asidx_from_attrs) {
535 return cc->asidx_from_attrs(cpu, attrs);
536 }
537 return 0;
538 }
539 #endif
540
541 /**
542 * cpu_list_add:
543 * @cpu: The CPU to be added to the list of CPUs.
544 */
545 void cpu_list_add(CPUState *cpu);
546
547 /**
548 * cpu_list_remove:
549 * @cpu: The CPU to be removed from the list of CPUs.
550 */
551 void cpu_list_remove(CPUState *cpu);
552
553 /**
554 * cpu_reset:
555 * @cpu: The CPU whose state is to be reset.
556 */
557 void cpu_reset(CPUState *cpu);
558
559 /**
560 * cpu_class_by_name:
561 * @typename: The CPU base type.
562 * @cpu_model: The model string without any parameters.
563 *
564 * Looks up a CPU #ObjectClass matching name @cpu_model.
565 *
566 * Returns: A #CPUClass or %NULL if not matching class is found.
567 */
568 ObjectClass *cpu_class_by_name(const char *typename, const char *cpu_model);
569
570 /**
571 * cpu_generic_init:
572 * @typename: The CPU base type.
573 * @cpu_model: The model string including optional parameters.
574 *
575 * Instantiates a CPU, processes optional parameters and realizes the CPU.
576 *
577 * Returns: A #CPUState or %NULL if an error occurred.
578 */
579 CPUState *cpu_generic_init(const char *typename, const char *cpu_model);
580
581 /**
582 * cpu_has_work:
583 * @cpu: The vCPU to check.
584 *
585 * Checks whether the CPU has work to do.
586 *
587 * Returns: %true if the CPU has work, %false otherwise.
588 */
589 static inline bool cpu_has_work(CPUState *cpu)
590 {
591 CPUClass *cc = CPU_GET_CLASS(cpu);
592
593 g_assert(cc->has_work);
594 return cc->has_work(cpu);
595 }
596
597 /**
598 * qemu_cpu_is_self:
599 * @cpu: The vCPU to check against.
600 *
601 * Checks whether the caller is executing on the vCPU thread.
602 *
603 * Returns: %true if called from @cpu's thread, %false otherwise.
604 */
605 bool qemu_cpu_is_self(CPUState *cpu);
606
607 /**
608 * qemu_cpu_kick:
609 * @cpu: The vCPU to kick.
610 *
611 * Kicks @cpu's thread.
612 */
613 void qemu_cpu_kick(CPUState *cpu);
614
615 /**
616 * cpu_is_stopped:
617 * @cpu: The CPU to check.
618 *
619 * Checks whether the CPU is stopped.
620 *
621 * Returns: %true if run state is not running or if artificially stopped;
622 * %false otherwise.
623 */
624 bool cpu_is_stopped(CPUState *cpu);
625
626 /**
627 * do_run_on_cpu:
628 * @cpu: The vCPU to run on.
629 * @func: The function to be executed.
630 * @data: Data to pass to the function.
631 * @mutex: Mutex to release while waiting for @func to run.
632 *
633 * Used internally in the implementation of run_on_cpu.
634 */
635 void do_run_on_cpu(CPUState *cpu, run_on_cpu_func func, void *data,
636 QemuMutex *mutex);
637
638 /**
639 * run_on_cpu:
640 * @cpu: The vCPU to run on.
641 * @func: The function to be executed.
642 * @data: Data to pass to the function.
643 *
644 * Schedules the function @func for execution on the vCPU @cpu.
645 */
646 void run_on_cpu(CPUState *cpu, run_on_cpu_func func, void *data);
647
648 /**
649 * async_run_on_cpu:
650 * @cpu: The vCPU to run on.
651 * @func: The function to be executed.
652 * @data: Data to pass to the function.
653 *
654 * Schedules the function @func for execution on the vCPU @cpu asynchronously.
655 */
656 void async_run_on_cpu(CPUState *cpu, run_on_cpu_func func, void *data);
657
658 /**
659 * qemu_get_cpu:
660 * @index: The CPUState@cpu_index value of the CPU to obtain.
661 *
662 * Gets a CPU matching @index.
663 *
664 * Returns: The CPU or %NULL if there is no matching CPU.
665 */
666 CPUState *qemu_get_cpu(int index);
667
668 /**
669 * cpu_exists:
670 * @id: Guest-exposed CPU ID to lookup.
671 *
672 * Search for CPU with specified ID.
673 *
674 * Returns: %true - CPU is found, %false - CPU isn't found.
675 */
676 bool cpu_exists(int64_t id);
677
678 /**
679 * cpu_throttle_set:
680 * @new_throttle_pct: Percent of sleep time. Valid range is 1 to 99.
681 *
682 * Throttles all vcpus by forcing them to sleep for the given percentage of
683 * time. A throttle_percentage of 25 corresponds to a 75% duty cycle roughly.
684 * (example: 10ms sleep for every 30ms awake).
685 *
686 * cpu_throttle_set can be called as needed to adjust new_throttle_pct.
687 * Once the throttling starts, it will remain in effect until cpu_throttle_stop
688 * is called.
689 */
690 void cpu_throttle_set(int new_throttle_pct);
691
692 /**
693 * cpu_throttle_stop:
694 *
695 * Stops the vcpu throttling started by cpu_throttle_set.
696 */
697 void cpu_throttle_stop(void);
698
699 /**
700 * cpu_throttle_active:
701 *
702 * Returns: %true if the vcpus are currently being throttled, %false otherwise.
703 */
704 bool cpu_throttle_active(void);
705
706 /**
707 * cpu_throttle_get_percentage:
708 *
709 * Returns the vcpu throttle percentage. See cpu_throttle_set for details.
710 *
711 * Returns: The throttle percentage in range 1 to 99.
712 */
713 int cpu_throttle_get_percentage(void);
714
715 #ifndef CONFIG_USER_ONLY
716
717 typedef void (*CPUInterruptHandler)(CPUState *, int);
718
719 extern CPUInterruptHandler cpu_interrupt_handler;
720
721 /**
722 * cpu_interrupt:
723 * @cpu: The CPU to set an interrupt on.
724 * @mask: The interupts to set.
725 *
726 * Invokes the interrupt handler.
727 */
728 static inline void cpu_interrupt(CPUState *cpu, int mask)
729 {
730 cpu_interrupt_handler(cpu, mask);
731 }
732
733 #else /* USER_ONLY */
734
735 void cpu_interrupt(CPUState *cpu, int mask);
736
737 #endif /* USER_ONLY */
738
739 #ifdef CONFIG_SOFTMMU
740 static inline void cpu_unassigned_access(CPUState *cpu, hwaddr addr,
741 bool is_write, bool is_exec,
742 int opaque, unsigned size)
743 {
744 CPUClass *cc = CPU_GET_CLASS(cpu);
745
746 if (cc->do_unassigned_access) {
747 cc->do_unassigned_access(cpu, addr, is_write, is_exec, opaque, size);
748 }
749 }
750
751 static inline void cpu_unaligned_access(CPUState *cpu, vaddr addr,
752 MMUAccessType access_type,
753 int mmu_idx, uintptr_t retaddr)
754 {
755 CPUClass *cc = CPU_GET_CLASS(cpu);
756
757 cc->do_unaligned_access(cpu, addr, access_type, mmu_idx, retaddr);
758 }
759 #endif
760
761 /**
762 * cpu_set_pc:
763 * @cpu: The CPU to set the program counter for.
764 * @addr: Program counter value.
765 *
766 * Sets the program counter for a CPU.
767 */
768 static inline void cpu_set_pc(CPUState *cpu, vaddr addr)
769 {
770 CPUClass *cc = CPU_GET_CLASS(cpu);
771
772 cc->set_pc(cpu, addr);
773 }
774
775 /**
776 * cpu_reset_interrupt:
777 * @cpu: The CPU to clear the interrupt on.
778 * @mask: The interrupt mask to clear.
779 *
780 * Resets interrupts on the vCPU @cpu.
781 */
782 void cpu_reset_interrupt(CPUState *cpu, int mask);
783
784 /**
785 * cpu_exit:
786 * @cpu: The CPU to exit.
787 *
788 * Requests the CPU @cpu to exit execution.
789 */
790 void cpu_exit(CPUState *cpu);
791
792 /**
793 * cpu_resume:
794 * @cpu: The CPU to resume.
795 *
796 * Resumes CPU, i.e. puts CPU into runnable state.
797 */
798 void cpu_resume(CPUState *cpu);
799
800 /**
801 * cpu_remove:
802 * @cpu: The CPU to remove.
803 *
804 * Requests the CPU to be removed.
805 */
806 void cpu_remove(CPUState *cpu);
807
808 /**
809 * cpu_remove_sync:
810 * @cpu: The CPU to remove.
811 *
812 * Requests the CPU to be removed and waits till it is removed.
813 */
814 void cpu_remove_sync(CPUState *cpu);
815
816 /**
817 * process_queued_cpu_work() - process all items on CPU work queue
818 * @cpu: The CPU which work queue to process.
819 */
820 void process_queued_cpu_work(CPUState *cpu);
821
822 /**
823 * cpu_exec_start:
824 * @cpu: The CPU for the current thread.
825 *
826 * Record that a CPU has started execution and can be interrupted with
827 * cpu_exit.
828 */
829 void cpu_exec_start(CPUState *cpu);
830
831 /**
832 * cpu_exec_end:
833 * @cpu: The CPU for the current thread.
834 *
835 * Record that a CPU has stopped execution and exclusive sections
836 * can be executed without interrupting it.
837 */
838 void cpu_exec_end(CPUState *cpu);
839
840 /**
841 * start_exclusive:
842 *
843 * Wait for a concurrent exclusive section to end, and then start
844 * a section of work that is run while other CPUs are not running
845 * between cpu_exec_start and cpu_exec_end. CPUs that are running
846 * cpu_exec are exited immediately. CPUs that call cpu_exec_start
847 * during the exclusive section go to sleep until this CPU calls
848 * end_exclusive.
849 */
850 void start_exclusive(void);
851
852 /**
853 * end_exclusive:
854 *
855 * Concludes an exclusive execution section started by start_exclusive.
856 */
857 void end_exclusive(void);
858
859 /**
860 * qemu_init_vcpu:
861 * @cpu: The vCPU to initialize.
862 *
863 * Initializes a vCPU.
864 */
865 void qemu_init_vcpu(CPUState *cpu);
866
867 #define SSTEP_ENABLE 0x1 /* Enable simulated HW single stepping */
868 #define SSTEP_NOIRQ 0x2 /* Do not use IRQ while single stepping */
869 #define SSTEP_NOTIMER 0x4 /* Do not Timers while single stepping */
870
871 /**
872 * cpu_single_step:
873 * @cpu: CPU to the flags for.
874 * @enabled: Flags to enable.
875 *
876 * Enables or disables single-stepping for @cpu.
877 */
878 void cpu_single_step(CPUState *cpu, int enabled);
879
880 /* Breakpoint/watchpoint flags */
881 #define BP_MEM_READ 0x01
882 #define BP_MEM_WRITE 0x02
883 #define BP_MEM_ACCESS (BP_MEM_READ | BP_MEM_WRITE)
884 #define BP_STOP_BEFORE_ACCESS 0x04
885 /* 0x08 currently unused */
886 #define BP_GDB 0x10
887 #define BP_CPU 0x20
888 #define BP_ANY (BP_GDB | BP_CPU)
889 #define BP_WATCHPOINT_HIT_READ 0x40
890 #define BP_WATCHPOINT_HIT_WRITE 0x80
891 #define BP_WATCHPOINT_HIT (BP_WATCHPOINT_HIT_READ | BP_WATCHPOINT_HIT_WRITE)
892
893 int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
894 CPUBreakpoint **breakpoint);
895 int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags);
896 void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint);
897 void cpu_breakpoint_remove_all(CPUState *cpu, int mask);
898
899 /* Return true if PC matches an installed breakpoint. */
900 static inline bool cpu_breakpoint_test(CPUState *cpu, vaddr pc, int mask)
901 {
902 CPUBreakpoint *bp;
903
904 if (unlikely(!QTAILQ_EMPTY(&cpu->breakpoints))) {
905 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
906 if (bp->pc == pc && (bp->flags & mask)) {
907 return true;
908 }
909 }
910 }
911 return false;
912 }
913
914 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
915 int flags, CPUWatchpoint **watchpoint);
916 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr,
917 vaddr len, int flags);
918 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint);
919 void cpu_watchpoint_remove_all(CPUState *cpu, int mask);
920
921 /**
922 * cpu_get_address_space:
923 * @cpu: CPU to get address space from
924 * @asidx: index identifying which address space to get
925 *
926 * Return the requested address space of this CPU. @asidx
927 * specifies which address space to read.
928 */
929 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx);
930
931 void QEMU_NORETURN cpu_abort(CPUState *cpu, const char *fmt, ...)
932 GCC_FMT_ATTR(2, 3);
933 void cpu_exec_exit(CPUState *cpu);
934
935 #ifdef CONFIG_SOFTMMU
936 extern const struct VMStateDescription vmstate_cpu_common;
937 #else
938 #define vmstate_cpu_common vmstate_dummy
939 #endif
940
941 #define VMSTATE_CPU() { \
942 .name = "parent_obj", \
943 .size = sizeof(CPUState), \
944 .vmsd = &vmstate_cpu_common, \
945 .flags = VMS_STRUCT, \
946 .offset = 0, \
947 }
948
949 #define UNASSIGNED_CPU_INDEX -1
950
951 #endif