]> git.proxmox.com Git - mirror_qemu.git/blob - include/qom/object.h
Merge remote-tracking branch 'remotes/mst/tags/for_upstream' into staging
[mirror_qemu.git] / include / qom / object.h
1 /*
2 * QEMU Object Model
3 *
4 * Copyright IBM, Corp. 2011
5 *
6 * Authors:
7 * Anthony Liguori <aliguori@us.ibm.com>
8 *
9 * This work is licensed under the terms of the GNU GPL, version 2 or later.
10 * See the COPYING file in the top-level directory.
11 *
12 */
13
14 #ifndef QEMU_OBJECT_H
15 #define QEMU_OBJECT_H
16
17 #include "qapi/qapi-builtin-types.h"
18 #include "qemu/module.h"
19
20 struct TypeImpl;
21 typedef struct TypeImpl *Type;
22
23 typedef struct TypeInfo TypeInfo;
24
25 typedef struct InterfaceClass InterfaceClass;
26 typedef struct InterfaceInfo InterfaceInfo;
27
28 #define TYPE_OBJECT "object"
29
30 /**
31 * SECTION:object.h
32 * @title:Base Object Type System
33 * @short_description: interfaces for creating new types and objects
34 *
35 * The QEMU Object Model provides a framework for registering user creatable
36 * types and instantiating objects from those types. QOM provides the following
37 * features:
38 *
39 * - System for dynamically registering types
40 * - Support for single-inheritance of types
41 * - Multiple inheritance of stateless interfaces
42 *
43 * <example>
44 * <title>Creating a minimal type</title>
45 * <programlisting>
46 * #include "qdev.h"
47 *
48 * #define TYPE_MY_DEVICE "my-device"
49 *
50 * // No new virtual functions: we can reuse the typedef for the
51 * // superclass.
52 * typedef DeviceClass MyDeviceClass;
53 * typedef struct MyDevice
54 * {
55 * DeviceState parent;
56 *
57 * int reg0, reg1, reg2;
58 * } MyDevice;
59 *
60 * static const TypeInfo my_device_info = {
61 * .name = TYPE_MY_DEVICE,
62 * .parent = TYPE_DEVICE,
63 * .instance_size = sizeof(MyDevice),
64 * };
65 *
66 * static void my_device_register_types(void)
67 * {
68 * type_register_static(&my_device_info);
69 * }
70 *
71 * type_init(my_device_register_types)
72 * </programlisting>
73 * </example>
74 *
75 * In the above example, we create a simple type that is described by #TypeInfo.
76 * #TypeInfo describes information about the type including what it inherits
77 * from, the instance and class size, and constructor/destructor hooks.
78 *
79 * Alternatively several static types could be registered using helper macro
80 * DEFINE_TYPES()
81 *
82 * <example>
83 * <programlisting>
84 * static const TypeInfo device_types_info[] = {
85 * {
86 * .name = TYPE_MY_DEVICE_A,
87 * .parent = TYPE_DEVICE,
88 * .instance_size = sizeof(MyDeviceA),
89 * },
90 * {
91 * .name = TYPE_MY_DEVICE_B,
92 * .parent = TYPE_DEVICE,
93 * .instance_size = sizeof(MyDeviceB),
94 * },
95 * };
96 *
97 * DEFINE_TYPES(device_types_info)
98 * </programlisting>
99 * </example>
100 *
101 * Every type has an #ObjectClass associated with it. #ObjectClass derivatives
102 * are instantiated dynamically but there is only ever one instance for any
103 * given type. The #ObjectClass typically holds a table of function pointers
104 * for the virtual methods implemented by this type.
105 *
106 * Using object_new(), a new #Object derivative will be instantiated. You can
107 * cast an #Object to a subclass (or base-class) type using
108 * object_dynamic_cast(). You typically want to define macro wrappers around
109 * OBJECT_CHECK() and OBJECT_CLASS_CHECK() to make it easier to convert to a
110 * specific type:
111 *
112 * <example>
113 * <title>Typecasting macros</title>
114 * <programlisting>
115 * #define MY_DEVICE_GET_CLASS(obj) \
116 * OBJECT_GET_CLASS(MyDeviceClass, obj, TYPE_MY_DEVICE)
117 * #define MY_DEVICE_CLASS(klass) \
118 * OBJECT_CLASS_CHECK(MyDeviceClass, klass, TYPE_MY_DEVICE)
119 * #define MY_DEVICE(obj) \
120 * OBJECT_CHECK(MyDevice, obj, TYPE_MY_DEVICE)
121 * </programlisting>
122 * </example>
123 *
124 * # Class Initialization #
125 *
126 * Before an object is initialized, the class for the object must be
127 * initialized. There is only one class object for all instance objects
128 * that is created lazily.
129 *
130 * Classes are initialized by first initializing any parent classes (if
131 * necessary). After the parent class object has initialized, it will be
132 * copied into the current class object and any additional storage in the
133 * class object is zero filled.
134 *
135 * The effect of this is that classes automatically inherit any virtual
136 * function pointers that the parent class has already initialized. All
137 * other fields will be zero filled.
138 *
139 * Once all of the parent classes have been initialized, #TypeInfo::class_init
140 * is called to let the class being instantiated provide default initialize for
141 * its virtual functions. Here is how the above example might be modified
142 * to introduce an overridden virtual function:
143 *
144 * <example>
145 * <title>Overriding a virtual function</title>
146 * <programlisting>
147 * #include "qdev.h"
148 *
149 * void my_device_class_init(ObjectClass *klass, void *class_data)
150 * {
151 * DeviceClass *dc = DEVICE_CLASS(klass);
152 * dc->reset = my_device_reset;
153 * }
154 *
155 * static const TypeInfo my_device_info = {
156 * .name = TYPE_MY_DEVICE,
157 * .parent = TYPE_DEVICE,
158 * .instance_size = sizeof(MyDevice),
159 * .class_init = my_device_class_init,
160 * };
161 * </programlisting>
162 * </example>
163 *
164 * Introducing new virtual methods requires a class to define its own
165 * struct and to add a .class_size member to the #TypeInfo. Each method
166 * will also have a wrapper function to call it easily:
167 *
168 * <example>
169 * <title>Defining an abstract class</title>
170 * <programlisting>
171 * #include "qdev.h"
172 *
173 * typedef struct MyDeviceClass
174 * {
175 * DeviceClass parent;
176 *
177 * void (*frobnicate) (MyDevice *obj);
178 * } MyDeviceClass;
179 *
180 * static const TypeInfo my_device_info = {
181 * .name = TYPE_MY_DEVICE,
182 * .parent = TYPE_DEVICE,
183 * .instance_size = sizeof(MyDevice),
184 * .abstract = true, // or set a default in my_device_class_init
185 * .class_size = sizeof(MyDeviceClass),
186 * };
187 *
188 * void my_device_frobnicate(MyDevice *obj)
189 * {
190 * MyDeviceClass *klass = MY_DEVICE_GET_CLASS(obj);
191 *
192 * klass->frobnicate(obj);
193 * }
194 * </programlisting>
195 * </example>
196 *
197 * # Interfaces #
198 *
199 * Interfaces allow a limited form of multiple inheritance. Instances are
200 * similar to normal types except for the fact that are only defined by
201 * their classes and never carry any state. As a consequence, a pointer to
202 * an interface instance should always be of incomplete type in order to be
203 * sure it cannot be dereferenced. That is, you should define the
204 * 'typedef struct SomethingIf SomethingIf' so that you can pass around
205 * 'SomethingIf *si' arguments, but not define a 'struct SomethingIf { ... }'.
206 * The only things you can validly do with a 'SomethingIf *' are to pass it as
207 * an argument to a method on its corresponding SomethingIfClass, or to
208 * dynamically cast it to an object that implements the interface.
209 *
210 * # Methods #
211 *
212 * A <emphasis>method</emphasis> is a function within the namespace scope of
213 * a class. It usually operates on the object instance by passing it as a
214 * strongly-typed first argument.
215 * If it does not operate on an object instance, it is dubbed
216 * <emphasis>class method</emphasis>.
217 *
218 * Methods cannot be overloaded. That is, the #ObjectClass and method name
219 * uniquely identity the function to be called; the signature does not vary
220 * except for trailing varargs.
221 *
222 * Methods are always <emphasis>virtual</emphasis>. Overriding a method in
223 * #TypeInfo.class_init of a subclass leads to any user of the class obtained
224 * via OBJECT_GET_CLASS() accessing the overridden function.
225 * The original function is not automatically invoked. It is the responsibility
226 * of the overriding class to determine whether and when to invoke the method
227 * being overridden.
228 *
229 * To invoke the method being overridden, the preferred solution is to store
230 * the original value in the overriding class before overriding the method.
231 * This corresponds to |[ {super,base}.method(...) ]| in Java and C#
232 * respectively; this frees the overriding class from hardcoding its parent
233 * class, which someone might choose to change at some point.
234 *
235 * <example>
236 * <title>Overriding a virtual method</title>
237 * <programlisting>
238 * typedef struct MyState MyState;
239 *
240 * typedef void (*MyDoSomething)(MyState *obj);
241 *
242 * typedef struct MyClass {
243 * ObjectClass parent_class;
244 *
245 * MyDoSomething do_something;
246 * } MyClass;
247 *
248 * static void my_do_something(MyState *obj)
249 * {
250 * // do something
251 * }
252 *
253 * static void my_class_init(ObjectClass *oc, void *data)
254 * {
255 * MyClass *mc = MY_CLASS(oc);
256 *
257 * mc->do_something = my_do_something;
258 * }
259 *
260 * static const TypeInfo my_type_info = {
261 * .name = TYPE_MY,
262 * .parent = TYPE_OBJECT,
263 * .instance_size = sizeof(MyState),
264 * .class_size = sizeof(MyClass),
265 * .class_init = my_class_init,
266 * };
267 *
268 * typedef struct DerivedClass {
269 * MyClass parent_class;
270 *
271 * MyDoSomething parent_do_something;
272 * } DerivedClass;
273 *
274 * static void derived_do_something(MyState *obj)
275 * {
276 * DerivedClass *dc = DERIVED_GET_CLASS(obj);
277 *
278 * // do something here
279 * dc->parent_do_something(obj);
280 * // do something else here
281 * }
282 *
283 * static void derived_class_init(ObjectClass *oc, void *data)
284 * {
285 * MyClass *mc = MY_CLASS(oc);
286 * DerivedClass *dc = DERIVED_CLASS(oc);
287 *
288 * dc->parent_do_something = mc->do_something;
289 * mc->do_something = derived_do_something;
290 * }
291 *
292 * static const TypeInfo derived_type_info = {
293 * .name = TYPE_DERIVED,
294 * .parent = TYPE_MY,
295 * .class_size = sizeof(DerivedClass),
296 * .class_init = derived_class_init,
297 * };
298 * </programlisting>
299 * </example>
300 *
301 * Alternatively, object_class_by_name() can be used to obtain the class and
302 * its non-overridden methods for a specific type. This would correspond to
303 * |[ MyClass::method(...) ]| in C++.
304 *
305 * The first example of such a QOM method was #CPUClass.reset,
306 * another example is #DeviceClass.realize.
307 */
308
309
310 typedef struct ObjectProperty ObjectProperty;
311
312 /**
313 * ObjectPropertyAccessor:
314 * @obj: the object that owns the property
315 * @v: the visitor that contains the property data
316 * @name: the name of the property
317 * @opaque: the object property opaque
318 * @errp: a pointer to an Error that is filled if getting/setting fails.
319 *
320 * Called when trying to get/set a property.
321 */
322 typedef void (ObjectPropertyAccessor)(Object *obj,
323 Visitor *v,
324 const char *name,
325 void *opaque,
326 Error **errp);
327
328 /**
329 * ObjectPropertyResolve:
330 * @obj: the object that owns the property
331 * @opaque: the opaque registered with the property
332 * @part: the name of the property
333 *
334 * Resolves the #Object corresponding to property @part.
335 *
336 * The returned object can also be used as a starting point
337 * to resolve a relative path starting with "@part".
338 *
339 * Returns: If @path is the path that led to @obj, the function
340 * returns the #Object corresponding to "@path/@part".
341 * If "@path/@part" is not a valid object path, it returns #NULL.
342 */
343 typedef Object *(ObjectPropertyResolve)(Object *obj,
344 void *opaque,
345 const char *part);
346
347 /**
348 * ObjectPropertyRelease:
349 * @obj: the object that owns the property
350 * @name: the name of the property
351 * @opaque: the opaque registered with the property
352 *
353 * Called when a property is removed from a object.
354 */
355 typedef void (ObjectPropertyRelease)(Object *obj,
356 const char *name,
357 void *opaque);
358
359 /**
360 * ObjectPropertyInit:
361 * @obj: the object that owns the property
362 * @prop: the property to set
363 *
364 * Called when a property is initialized.
365 */
366 typedef void (ObjectPropertyInit)(Object *obj, ObjectProperty *prop);
367
368 struct ObjectProperty
369 {
370 char *name;
371 char *type;
372 char *description;
373 ObjectPropertyAccessor *get;
374 ObjectPropertyAccessor *set;
375 ObjectPropertyResolve *resolve;
376 ObjectPropertyRelease *release;
377 ObjectPropertyInit *init;
378 void *opaque;
379 QObject *defval;
380 };
381
382 /**
383 * ObjectUnparent:
384 * @obj: the object that is being removed from the composition tree
385 *
386 * Called when an object is being removed from the QOM composition tree.
387 * The function should remove any backlinks from children objects to @obj.
388 */
389 typedef void (ObjectUnparent)(Object *obj);
390
391 /**
392 * ObjectFree:
393 * @obj: the object being freed
394 *
395 * Called when an object's last reference is removed.
396 */
397 typedef void (ObjectFree)(void *obj);
398
399 #define OBJECT_CLASS_CAST_CACHE 4
400
401 /**
402 * ObjectClass:
403 *
404 * The base for all classes. The only thing that #ObjectClass contains is an
405 * integer type handle.
406 */
407 struct ObjectClass
408 {
409 /*< private >*/
410 Type type;
411 GSList *interfaces;
412
413 const char *object_cast_cache[OBJECT_CLASS_CAST_CACHE];
414 const char *class_cast_cache[OBJECT_CLASS_CAST_CACHE];
415
416 ObjectUnparent *unparent;
417
418 GHashTable *properties;
419 };
420
421 /**
422 * Object:
423 *
424 * The base for all objects. The first member of this object is a pointer to
425 * a #ObjectClass. Since C guarantees that the first member of a structure
426 * always begins at byte 0 of that structure, as long as any sub-object places
427 * its parent as the first member, we can cast directly to a #Object.
428 *
429 * As a result, #Object contains a reference to the objects type as its
430 * first member. This allows identification of the real type of the object at
431 * run time.
432 */
433 struct Object
434 {
435 /*< private >*/
436 ObjectClass *class;
437 ObjectFree *free;
438 GHashTable *properties;
439 uint32_t ref;
440 Object *parent;
441 };
442
443 /**
444 * TypeInfo:
445 * @name: The name of the type.
446 * @parent: The name of the parent type.
447 * @instance_size: The size of the object (derivative of #Object). If
448 * @instance_size is 0, then the size of the object will be the size of the
449 * parent object.
450 * @instance_init: This function is called to initialize an object. The parent
451 * class will have already been initialized so the type is only responsible
452 * for initializing its own members.
453 * @instance_post_init: This function is called to finish initialization of
454 * an object, after all @instance_init functions were called.
455 * @instance_finalize: This function is called during object destruction. This
456 * is called before the parent @instance_finalize function has been called.
457 * An object should only free the members that are unique to its type in this
458 * function.
459 * @abstract: If this field is true, then the class is considered abstract and
460 * cannot be directly instantiated.
461 * @class_size: The size of the class object (derivative of #ObjectClass)
462 * for this object. If @class_size is 0, then the size of the class will be
463 * assumed to be the size of the parent class. This allows a type to avoid
464 * implementing an explicit class type if they are not adding additional
465 * virtual functions.
466 * @class_init: This function is called after all parent class initialization
467 * has occurred to allow a class to set its default virtual method pointers.
468 * This is also the function to use to override virtual methods from a parent
469 * class.
470 * @class_base_init: This function is called for all base classes after all
471 * parent class initialization has occurred, but before the class itself
472 * is initialized. This is the function to use to undo the effects of
473 * memcpy from the parent class to the descendants.
474 * @class_data: Data to pass to the @class_init,
475 * @class_base_init. This can be useful when building dynamic
476 * classes.
477 * @interfaces: The list of interfaces associated with this type. This
478 * should point to a static array that's terminated with a zero filled
479 * element.
480 */
481 struct TypeInfo
482 {
483 const char *name;
484 const char *parent;
485
486 size_t instance_size;
487 void (*instance_init)(Object *obj);
488 void (*instance_post_init)(Object *obj);
489 void (*instance_finalize)(Object *obj);
490
491 bool abstract;
492 size_t class_size;
493
494 void (*class_init)(ObjectClass *klass, void *data);
495 void (*class_base_init)(ObjectClass *klass, void *data);
496 void *class_data;
497
498 InterfaceInfo *interfaces;
499 };
500
501 /**
502 * OBJECT:
503 * @obj: A derivative of #Object
504 *
505 * Converts an object to a #Object. Since all objects are #Objects,
506 * this function will always succeed.
507 */
508 #define OBJECT(obj) \
509 ((Object *)(obj))
510
511 /**
512 * OBJECT_CLASS:
513 * @class: A derivative of #ObjectClass.
514 *
515 * Converts a class to an #ObjectClass. Since all objects are #Objects,
516 * this function will always succeed.
517 */
518 #define OBJECT_CLASS(class) \
519 ((ObjectClass *)(class))
520
521 /**
522 * OBJECT_CHECK:
523 * @type: The C type to use for the return value.
524 * @obj: A derivative of @type to cast.
525 * @name: The QOM typename of @type
526 *
527 * A type safe version of @object_dynamic_cast_assert. Typically each class
528 * will define a macro based on this type to perform type safe dynamic_casts to
529 * this object type.
530 *
531 * If an invalid object is passed to this function, a run time assert will be
532 * generated.
533 */
534 #define OBJECT_CHECK(type, obj, name) \
535 ((type *)object_dynamic_cast_assert(OBJECT(obj), (name), \
536 __FILE__, __LINE__, __func__))
537
538 /**
539 * OBJECT_CLASS_CHECK:
540 * @class_type: The C type to use for the return value.
541 * @class: A derivative class of @class_type to cast.
542 * @name: the QOM typename of @class_type.
543 *
544 * A type safe version of @object_class_dynamic_cast_assert. This macro is
545 * typically wrapped by each type to perform type safe casts of a class to a
546 * specific class type.
547 */
548 #define OBJECT_CLASS_CHECK(class_type, class, name) \
549 ((class_type *)object_class_dynamic_cast_assert(OBJECT_CLASS(class), (name), \
550 __FILE__, __LINE__, __func__))
551
552 /**
553 * OBJECT_GET_CLASS:
554 * @class: The C type to use for the return value.
555 * @obj: The object to obtain the class for.
556 * @name: The QOM typename of @obj.
557 *
558 * This function will return a specific class for a given object. Its generally
559 * used by each type to provide a type safe macro to get a specific class type
560 * from an object.
561 */
562 #define OBJECT_GET_CLASS(class, obj, name) \
563 OBJECT_CLASS_CHECK(class, object_get_class(OBJECT(obj)), name)
564
565 /**
566 * InterfaceInfo:
567 * @type: The name of the interface.
568 *
569 * The information associated with an interface.
570 */
571 struct InterfaceInfo {
572 const char *type;
573 };
574
575 /**
576 * InterfaceClass:
577 * @parent_class: the base class
578 *
579 * The class for all interfaces. Subclasses of this class should only add
580 * virtual methods.
581 */
582 struct InterfaceClass
583 {
584 ObjectClass parent_class;
585 /*< private >*/
586 ObjectClass *concrete_class;
587 Type interface_type;
588 };
589
590 #define TYPE_INTERFACE "interface"
591
592 /**
593 * INTERFACE_CLASS:
594 * @klass: class to cast from
595 * Returns: An #InterfaceClass or raise an error if cast is invalid
596 */
597 #define INTERFACE_CLASS(klass) \
598 OBJECT_CLASS_CHECK(InterfaceClass, klass, TYPE_INTERFACE)
599
600 /**
601 * INTERFACE_CHECK:
602 * @interface: the type to return
603 * @obj: the object to convert to an interface
604 * @name: the interface type name
605 *
606 * Returns: @obj casted to @interface if cast is valid, otherwise raise error.
607 */
608 #define INTERFACE_CHECK(interface, obj, name) \
609 ((interface *)object_dynamic_cast_assert(OBJECT((obj)), (name), \
610 __FILE__, __LINE__, __func__))
611
612 /**
613 * object_new_with_class:
614 * @klass: The class to instantiate.
615 *
616 * This function will initialize a new object using heap allocated memory.
617 * The returned object has a reference count of 1, and will be freed when
618 * the last reference is dropped.
619 *
620 * Returns: The newly allocated and instantiated object.
621 */
622 Object *object_new_with_class(ObjectClass *klass);
623
624 /**
625 * object_new:
626 * @typename: The name of the type of the object to instantiate.
627 *
628 * This function will initialize a new object using heap allocated memory.
629 * The returned object has a reference count of 1, and will be freed when
630 * the last reference is dropped.
631 *
632 * Returns: The newly allocated and instantiated object.
633 */
634 Object *object_new(const char *typename);
635
636 /**
637 * object_new_with_props:
638 * @typename: The name of the type of the object to instantiate.
639 * @parent: the parent object
640 * @id: The unique ID of the object
641 * @errp: pointer to error object
642 * @...: list of property names and values
643 *
644 * This function will initialize a new object using heap allocated memory.
645 * The returned object has a reference count of 1, and will be freed when
646 * the last reference is dropped.
647 *
648 * The @id parameter will be used when registering the object as a
649 * child of @parent in the composition tree.
650 *
651 * The variadic parameters are a list of pairs of (propname, propvalue)
652 * strings. The propname of %NULL indicates the end of the property
653 * list. If the object implements the user creatable interface, the
654 * object will be marked complete once all the properties have been
655 * processed.
656 *
657 * <example>
658 * <title>Creating an object with properties</title>
659 * <programlisting>
660 * Error *err = NULL;
661 * Object *obj;
662 *
663 * obj = object_new_with_props(TYPE_MEMORY_BACKEND_FILE,
664 * object_get_objects_root(),
665 * "hostmem0",
666 * &err,
667 * "share", "yes",
668 * "mem-path", "/dev/shm/somefile",
669 * "prealloc", "yes",
670 * "size", "1048576",
671 * NULL);
672 *
673 * if (!obj) {
674 * error_reportf_err(err, "Cannot create memory backend: ");
675 * }
676 * </programlisting>
677 * </example>
678 *
679 * The returned object will have one stable reference maintained
680 * for as long as it is present in the object hierarchy.
681 *
682 * Returns: The newly allocated, instantiated & initialized object.
683 */
684 Object *object_new_with_props(const char *typename,
685 Object *parent,
686 const char *id,
687 Error **errp,
688 ...) QEMU_SENTINEL;
689
690 /**
691 * object_new_with_propv:
692 * @typename: The name of the type of the object to instantiate.
693 * @parent: the parent object
694 * @id: The unique ID of the object
695 * @errp: pointer to error object
696 * @vargs: list of property names and values
697 *
698 * See object_new_with_props() for documentation.
699 */
700 Object *object_new_with_propv(const char *typename,
701 Object *parent,
702 const char *id,
703 Error **errp,
704 va_list vargs);
705
706 bool object_apply_global_props(Object *obj, const GPtrArray *props,
707 Error **errp);
708 void object_set_machine_compat_props(GPtrArray *compat_props);
709 void object_set_accelerator_compat_props(GPtrArray *compat_props);
710 void object_register_sugar_prop(const char *driver, const char *prop, const char *value);
711 void object_apply_compat_props(Object *obj);
712
713 /**
714 * object_set_props:
715 * @obj: the object instance to set properties on
716 * @errp: pointer to error object
717 * @...: list of property names and values
718 *
719 * This function will set a list of properties on an existing object
720 * instance.
721 *
722 * The variadic parameters are a list of pairs of (propname, propvalue)
723 * strings. The propname of %NULL indicates the end of the property
724 * list.
725 *
726 * <example>
727 * <title>Update an object's properties</title>
728 * <programlisting>
729 * Error *err = NULL;
730 * Object *obj = ...get / create object...;
731 *
732 * if (!object_set_props(obj,
733 * &err,
734 * "share", "yes",
735 * "mem-path", "/dev/shm/somefile",
736 * "prealloc", "yes",
737 * "size", "1048576",
738 * NULL)) {
739 * error_reportf_err(err, "Cannot set properties: ");
740 * }
741 * </programlisting>
742 * </example>
743 *
744 * The returned object will have one stable reference maintained
745 * for as long as it is present in the object hierarchy.
746 *
747 * Returns: %true on success, %false on error.
748 */
749 bool object_set_props(Object *obj, Error **errp, ...) QEMU_SENTINEL;
750
751 /**
752 * object_set_propv:
753 * @obj: the object instance to set properties on
754 * @errp: pointer to error object
755 * @vargs: list of property names and values
756 *
757 * See object_set_props() for documentation.
758 *
759 * Returns: %true on success, %false on error.
760 */
761 bool object_set_propv(Object *obj, Error **errp, va_list vargs);
762
763 /**
764 * object_initialize:
765 * @obj: A pointer to the memory to be used for the object.
766 * @size: The maximum size available at @obj for the object.
767 * @typename: The name of the type of the object to instantiate.
768 *
769 * This function will initialize an object. The memory for the object should
770 * have already been allocated. The returned object has a reference count of 1,
771 * and will be finalized when the last reference is dropped.
772 */
773 void object_initialize(void *obj, size_t size, const char *typename);
774
775 /**
776 * object_initialize_child_with_props:
777 * @parentobj: The parent object to add a property to
778 * @propname: The name of the property
779 * @childobj: A pointer to the memory to be used for the object.
780 * @size: The maximum size available at @childobj for the object.
781 * @type: The name of the type of the object to instantiate.
782 * @errp: If an error occurs, a pointer to an area to store the error
783 * @...: list of property names and values
784 *
785 * This function will initialize an object. The memory for the object should
786 * have already been allocated. The object will then be added as child property
787 * to a parent with object_property_add_child() function. The returned object
788 * has a reference count of 1 (for the "child<...>" property from the parent),
789 * so the object will be finalized automatically when the parent gets removed.
790 *
791 * The variadic parameters are a list of pairs of (propname, propvalue)
792 * strings. The propname of %NULL indicates the end of the property list.
793 * If the object implements the user creatable interface, the object will
794 * be marked complete once all the properties have been processed.
795 *
796 * Returns: %true on success, %false on failure.
797 */
798 bool object_initialize_child_with_props(Object *parentobj,
799 const char *propname,
800 void *childobj, size_t size, const char *type,
801 Error **errp, ...) QEMU_SENTINEL;
802
803 /**
804 * object_initialize_child_with_propsv:
805 * @parentobj: The parent object to add a property to
806 * @propname: The name of the property
807 * @childobj: A pointer to the memory to be used for the object.
808 * @size: The maximum size available at @childobj for the object.
809 * @type: The name of the type of the object to instantiate.
810 * @errp: If an error occurs, a pointer to an area to store the error
811 * @vargs: list of property names and values
812 *
813 * See object_initialize_child() for documentation.
814 *
815 * Returns: %true on success, %false on failure.
816 */
817 bool object_initialize_child_with_propsv(Object *parentobj,
818 const char *propname,
819 void *childobj, size_t size, const char *type,
820 Error **errp, va_list vargs);
821
822 /**
823 * object_initialize_child:
824 * @parent: The parent object to add a property to
825 * @propname: The name of the property
826 * @child: A precisely typed pointer to the memory to be used for the
827 * object.
828 * @type: The name of the type of the object to instantiate.
829 *
830 * This is like
831 * object_initialize_child_with_props(parent, propname,
832 * child, sizeof(*child), type,
833 * &error_abort, NULL)
834 */
835 #define object_initialize_child(parent, propname, child, type) \
836 object_initialize_child_internal((parent), (propname), \
837 (child), sizeof(*(child)), (type))
838 void object_initialize_child_internal(Object *parent, const char *propname,
839 void *child, size_t size,
840 const char *type);
841
842 /**
843 * object_dynamic_cast:
844 * @obj: The object to cast.
845 * @typename: The @typename to cast to.
846 *
847 * This function will determine if @obj is-a @typename. @obj can refer to an
848 * object or an interface associated with an object.
849 *
850 * Returns: This function returns @obj on success or #NULL on failure.
851 */
852 Object *object_dynamic_cast(Object *obj, const char *typename);
853
854 /**
855 * object_dynamic_cast_assert:
856 *
857 * See object_dynamic_cast() for a description of the parameters of this
858 * function. The only difference in behavior is that this function asserts
859 * instead of returning #NULL on failure if QOM cast debugging is enabled.
860 * This function is not meant to be called directly, but only through
861 * the wrapper macro OBJECT_CHECK.
862 */
863 Object *object_dynamic_cast_assert(Object *obj, const char *typename,
864 const char *file, int line, const char *func);
865
866 /**
867 * object_get_class:
868 * @obj: A derivative of #Object
869 *
870 * Returns: The #ObjectClass of the type associated with @obj.
871 */
872 ObjectClass *object_get_class(Object *obj);
873
874 /**
875 * object_get_typename:
876 * @obj: A derivative of #Object.
877 *
878 * Returns: The QOM typename of @obj.
879 */
880 const char *object_get_typename(const Object *obj);
881
882 /**
883 * type_register_static:
884 * @info: The #TypeInfo of the new type.
885 *
886 * @info and all of the strings it points to should exist for the life time
887 * that the type is registered.
888 *
889 * Returns: the new #Type.
890 */
891 Type type_register_static(const TypeInfo *info);
892
893 /**
894 * type_register:
895 * @info: The #TypeInfo of the new type
896 *
897 * Unlike type_register_static(), this call does not require @info or its
898 * string members to continue to exist after the call returns.
899 *
900 * Returns: the new #Type.
901 */
902 Type type_register(const TypeInfo *info);
903
904 /**
905 * type_register_static_array:
906 * @infos: The array of the new type #TypeInfo structures.
907 * @nr_infos: number of entries in @infos
908 *
909 * @infos and all of the strings it points to should exist for the life time
910 * that the type is registered.
911 */
912 void type_register_static_array(const TypeInfo *infos, int nr_infos);
913
914 /**
915 * DEFINE_TYPES:
916 * @type_array: The array containing #TypeInfo structures to register
917 *
918 * @type_array should be static constant that exists for the life time
919 * that the type is registered.
920 */
921 #define DEFINE_TYPES(type_array) \
922 static void do_qemu_init_ ## type_array(void) \
923 { \
924 type_register_static_array(type_array, ARRAY_SIZE(type_array)); \
925 } \
926 type_init(do_qemu_init_ ## type_array)
927
928 /**
929 * object_class_dynamic_cast_assert:
930 * @klass: The #ObjectClass to attempt to cast.
931 * @typename: The QOM typename of the class to cast to.
932 *
933 * See object_class_dynamic_cast() for a description of the parameters
934 * of this function. The only difference in behavior is that this function
935 * asserts instead of returning #NULL on failure if QOM cast debugging is
936 * enabled. This function is not meant to be called directly, but only through
937 * the wrapper macros OBJECT_CLASS_CHECK and INTERFACE_CHECK.
938 */
939 ObjectClass *object_class_dynamic_cast_assert(ObjectClass *klass,
940 const char *typename,
941 const char *file, int line,
942 const char *func);
943
944 /**
945 * object_class_dynamic_cast:
946 * @klass: The #ObjectClass to attempt to cast.
947 * @typename: The QOM typename of the class to cast to.
948 *
949 * Returns: If @typename is a class, this function returns @klass if
950 * @typename is a subtype of @klass, else returns #NULL.
951 *
952 * If @typename is an interface, this function returns the interface
953 * definition for @klass if @klass implements it unambiguously; #NULL
954 * is returned if @klass does not implement the interface or if multiple
955 * classes or interfaces on the hierarchy leading to @klass implement
956 * it. (FIXME: perhaps this can be detected at type definition time?)
957 */
958 ObjectClass *object_class_dynamic_cast(ObjectClass *klass,
959 const char *typename);
960
961 /**
962 * object_class_get_parent:
963 * @klass: The class to obtain the parent for.
964 *
965 * Returns: The parent for @klass or %NULL if none.
966 */
967 ObjectClass *object_class_get_parent(ObjectClass *klass);
968
969 /**
970 * object_class_get_name:
971 * @klass: The class to obtain the QOM typename for.
972 *
973 * Returns: The QOM typename for @klass.
974 */
975 const char *object_class_get_name(ObjectClass *klass);
976
977 /**
978 * object_class_is_abstract:
979 * @klass: The class to obtain the abstractness for.
980 *
981 * Returns: %true if @klass is abstract, %false otherwise.
982 */
983 bool object_class_is_abstract(ObjectClass *klass);
984
985 /**
986 * object_class_by_name:
987 * @typename: The QOM typename to obtain the class for.
988 *
989 * Returns: The class for @typename or %NULL if not found.
990 */
991 ObjectClass *object_class_by_name(const char *typename);
992
993 /**
994 * module_object_class_by_name:
995 * @typename: The QOM typename to obtain the class for.
996 *
997 * For objects which might be provided by a module. Behaves like
998 * object_class_by_name, but additionally tries to load the module
999 * needed in case the class is not available.
1000 *
1001 * Returns: The class for @typename or %NULL if not found.
1002 */
1003 ObjectClass *module_object_class_by_name(const char *typename);
1004
1005 void object_class_foreach(void (*fn)(ObjectClass *klass, void *opaque),
1006 const char *implements_type, bool include_abstract,
1007 void *opaque);
1008
1009 /**
1010 * object_class_get_list:
1011 * @implements_type: The type to filter for, including its derivatives.
1012 * @include_abstract: Whether to include abstract classes.
1013 *
1014 * Returns: A singly-linked list of the classes in reverse hashtable order.
1015 */
1016 GSList *object_class_get_list(const char *implements_type,
1017 bool include_abstract);
1018
1019 /**
1020 * object_class_get_list_sorted:
1021 * @implements_type: The type to filter for, including its derivatives.
1022 * @include_abstract: Whether to include abstract classes.
1023 *
1024 * Returns: A singly-linked list of the classes in alphabetical
1025 * case-insensitive order.
1026 */
1027 GSList *object_class_get_list_sorted(const char *implements_type,
1028 bool include_abstract);
1029
1030 /**
1031 * object_ref:
1032 * @obj: the object
1033 *
1034 * Increase the reference count of a object. A object cannot be freed as long
1035 * as its reference count is greater than zero.
1036 * Returns: @obj
1037 */
1038 Object *object_ref(Object *obj);
1039
1040 /**
1041 * object_unref:
1042 * @obj: the object
1043 *
1044 * Decrease the reference count of a object. A object cannot be freed as long
1045 * as its reference count is greater than zero.
1046 */
1047 void object_unref(Object *obj);
1048
1049 /**
1050 * object_property_add:
1051 * @obj: the object to add a property to
1052 * @name: the name of the property. This can contain any character except for
1053 * a forward slash. In general, you should use hyphens '-' instead of
1054 * underscores '_' when naming properties.
1055 * @type: the type name of the property. This namespace is pretty loosely
1056 * defined. Sub namespaces are constructed by using a prefix and then
1057 * to angle brackets. For instance, the type 'virtio-net-pci' in the
1058 * 'link' namespace would be 'link<virtio-net-pci>'.
1059 * @get: The getter to be called to read a property. If this is NULL, then
1060 * the property cannot be read.
1061 * @set: the setter to be called to write a property. If this is NULL,
1062 * then the property cannot be written.
1063 * @release: called when the property is removed from the object. This is
1064 * meant to allow a property to free its opaque upon object
1065 * destruction. This may be NULL.
1066 * @opaque: an opaque pointer to pass to the callbacks for the property
1067 *
1068 * Returns: The #ObjectProperty; this can be used to set the @resolve
1069 * callback for child and link properties.
1070 */
1071 ObjectProperty *object_property_add(Object *obj, const char *name,
1072 const char *type,
1073 ObjectPropertyAccessor *get,
1074 ObjectPropertyAccessor *set,
1075 ObjectPropertyRelease *release,
1076 void *opaque);
1077
1078 void object_property_del(Object *obj, const char *name);
1079
1080 ObjectProperty *object_class_property_add(ObjectClass *klass, const char *name,
1081 const char *type,
1082 ObjectPropertyAccessor *get,
1083 ObjectPropertyAccessor *set,
1084 ObjectPropertyRelease *release,
1085 void *opaque);
1086
1087 /**
1088 * object_property_set_default_bool:
1089 * @prop: the property to set
1090 * @value: the value to be written to the property
1091 *
1092 * Set the property default value.
1093 */
1094 void object_property_set_default_bool(ObjectProperty *prop, bool value);
1095
1096 /**
1097 * object_property_set_default_str:
1098 * @prop: the property to set
1099 * @value: the value to be written to the property
1100 *
1101 * Set the property default value.
1102 */
1103 void object_property_set_default_str(ObjectProperty *prop, const char *value);
1104
1105 /**
1106 * object_property_set_default_int:
1107 * @prop: the property to set
1108 * @value: the value to be written to the property
1109 *
1110 * Set the property default value.
1111 */
1112 void object_property_set_default_int(ObjectProperty *prop, int64_t value);
1113
1114 /**
1115 * object_property_set_default_uint:
1116 * @prop: the property to set
1117 * @value: the value to be written to the property
1118 *
1119 * Set the property default value.
1120 */
1121 void object_property_set_default_uint(ObjectProperty *prop, uint64_t value);
1122
1123 /**
1124 * object_property_find:
1125 * @obj: the object
1126 * @name: the name of the property
1127 * @errp: returns an error if this function fails
1128 *
1129 * Look up a property for an object and return its #ObjectProperty if found.
1130 */
1131 ObjectProperty *object_property_find(Object *obj, const char *name,
1132 Error **errp);
1133 ObjectProperty *object_class_property_find(ObjectClass *klass, const char *name,
1134 Error **errp);
1135
1136 typedef struct ObjectPropertyIterator {
1137 ObjectClass *nextclass;
1138 GHashTableIter iter;
1139 } ObjectPropertyIterator;
1140
1141 /**
1142 * object_property_iter_init:
1143 * @obj: the object
1144 *
1145 * Initializes an iterator for traversing all properties
1146 * registered against an object instance, its class and all parent classes.
1147 *
1148 * It is forbidden to modify the property list while iterating,
1149 * whether removing or adding properties.
1150 *
1151 * Typical usage pattern would be
1152 *
1153 * <example>
1154 * <title>Using object property iterators</title>
1155 * <programlisting>
1156 * ObjectProperty *prop;
1157 * ObjectPropertyIterator iter;
1158 *
1159 * object_property_iter_init(&iter, obj);
1160 * while ((prop = object_property_iter_next(&iter))) {
1161 * ... do something with prop ...
1162 * }
1163 * </programlisting>
1164 * </example>
1165 */
1166 void object_property_iter_init(ObjectPropertyIterator *iter,
1167 Object *obj);
1168
1169 /**
1170 * object_class_property_iter_init:
1171 * @klass: the class
1172 *
1173 * Initializes an iterator for traversing all properties
1174 * registered against an object class and all parent classes.
1175 *
1176 * It is forbidden to modify the property list while iterating,
1177 * whether removing or adding properties.
1178 *
1179 * This can be used on abstract classes as it does not create a temporary
1180 * instance.
1181 */
1182 void object_class_property_iter_init(ObjectPropertyIterator *iter,
1183 ObjectClass *klass);
1184
1185 /**
1186 * object_property_iter_next:
1187 * @iter: the iterator instance
1188 *
1189 * Return the next available property. If no further properties
1190 * are available, a %NULL value will be returned and the @iter
1191 * pointer should not be used again after this point without
1192 * re-initializing it.
1193 *
1194 * Returns: the next property, or %NULL when all properties
1195 * have been traversed.
1196 */
1197 ObjectProperty *object_property_iter_next(ObjectPropertyIterator *iter);
1198
1199 void object_unparent(Object *obj);
1200
1201 /**
1202 * object_property_get:
1203 * @obj: the object
1204 * @name: the name of the property
1205 * @v: the visitor that will receive the property value. This should be an
1206 * Output visitor and the data will be written with @name as the name.
1207 * @errp: returns an error if this function fails
1208 *
1209 * Reads a property from a object.
1210 *
1211 * Returns: %true on success, %false on failure.
1212 */
1213 bool object_property_get(Object *obj, const char *name, Visitor *v,
1214 Error **errp);
1215
1216 /**
1217 * object_property_set_str:
1218 * @name: the name of the property
1219 * @value: the value to be written to the property
1220 * @errp: returns an error if this function fails
1221 *
1222 * Writes a string value to a property.
1223 *
1224 * Returns: %true on success, %false on failure.
1225 */
1226 bool object_property_set_str(Object *obj, const char *name,
1227 const char *value, Error **errp);
1228
1229 /**
1230 * object_property_get_str:
1231 * @obj: the object
1232 * @name: the name of the property
1233 * @errp: returns an error if this function fails
1234 *
1235 * Returns: the value of the property, converted to a C string, or NULL if
1236 * an error occurs (including when the property value is not a string).
1237 * The caller should free the string.
1238 */
1239 char *object_property_get_str(Object *obj, const char *name,
1240 Error **errp);
1241
1242 /**
1243 * object_property_set_link:
1244 * @name: the name of the property
1245 * @value: the value to be written to the property
1246 * @errp: returns an error if this function fails
1247 *
1248 * Writes an object's canonical path to a property.
1249 *
1250 * If the link property was created with
1251 * <code>OBJ_PROP_LINK_STRONG</code> bit, the old target object is
1252 * unreferenced, and a reference is added to the new target object.
1253 *
1254 * Returns: %true on success, %false on failure.
1255 */
1256 bool object_property_set_link(Object *obj, const char *name,
1257 Object *value, Error **errp);
1258
1259 /**
1260 * object_property_get_link:
1261 * @obj: the object
1262 * @name: the name of the property
1263 * @errp: returns an error if this function fails
1264 *
1265 * Returns: the value of the property, resolved from a path to an Object,
1266 * or NULL if an error occurs (including when the property value is not a
1267 * string or not a valid object path).
1268 */
1269 Object *object_property_get_link(Object *obj, const char *name,
1270 Error **errp);
1271
1272 /**
1273 * object_property_set_bool:
1274 * @name: the name of the property
1275 * @value: the value to be written to the property
1276 * @errp: returns an error if this function fails
1277 *
1278 * Writes a bool value to a property.
1279 *
1280 * Returns: %true on success, %false on failure.
1281 */
1282 bool object_property_set_bool(Object *obj, const char *name,
1283 bool value, Error **errp);
1284
1285 /**
1286 * object_property_get_bool:
1287 * @obj: the object
1288 * @name: the name of the property
1289 * @errp: returns an error if this function fails
1290 *
1291 * Returns: the value of the property, converted to a boolean, or NULL if
1292 * an error occurs (including when the property value is not a bool).
1293 */
1294 bool object_property_get_bool(Object *obj, const char *name,
1295 Error **errp);
1296
1297 /**
1298 * object_property_set_int:
1299 * @name: the name of the property
1300 * @value: the value to be written to the property
1301 * @errp: returns an error if this function fails
1302 *
1303 * Writes an integer value to a property.
1304 *
1305 * Returns: %true on success, %false on failure.
1306 */
1307 bool object_property_set_int(Object *obj, const char *name,
1308 int64_t value, Error **errp);
1309
1310 /**
1311 * object_property_get_int:
1312 * @obj: the object
1313 * @name: the name of the property
1314 * @errp: returns an error if this function fails
1315 *
1316 * Returns: the value of the property, converted to an integer, or negative if
1317 * an error occurs (including when the property value is not an integer).
1318 */
1319 int64_t object_property_get_int(Object *obj, const char *name,
1320 Error **errp);
1321
1322 /**
1323 * object_property_set_uint:
1324 * @name: the name of the property
1325 * @value: the value to be written to the property
1326 * @errp: returns an error if this function fails
1327 *
1328 * Writes an unsigned integer value to a property.
1329 *
1330 * Returns: %true on success, %false on failure.
1331 */
1332 bool object_property_set_uint(Object *obj, const char *name,
1333 uint64_t value, Error **errp);
1334
1335 /**
1336 * object_property_get_uint:
1337 * @obj: the object
1338 * @name: the name of the property
1339 * @errp: returns an error if this function fails
1340 *
1341 * Returns: the value of the property, converted to an unsigned integer, or 0
1342 * an error occurs (including when the property value is not an integer).
1343 */
1344 uint64_t object_property_get_uint(Object *obj, const char *name,
1345 Error **errp);
1346
1347 /**
1348 * object_property_get_enum:
1349 * @obj: the object
1350 * @name: the name of the property
1351 * @typename: the name of the enum data type
1352 * @errp: returns an error if this function fails
1353 *
1354 * Returns: the value of the property, converted to an integer, or
1355 * undefined if an error occurs (including when the property value is not
1356 * an enum).
1357 */
1358 int object_property_get_enum(Object *obj, const char *name,
1359 const char *typename, Error **errp);
1360
1361 /**
1362 * object_property_set:
1363 * @obj: the object
1364 * @name: the name of the property
1365 * @v: the visitor that will be used to write the property value. This should
1366 * be an Input visitor and the data will be first read with @name as the
1367 * name and then written as the property value.
1368 * @errp: returns an error if this function fails
1369 *
1370 * Writes a property to a object.
1371 *
1372 * Returns: %true on success, %false on failure.
1373 */
1374 bool object_property_set(Object *obj, const char *name, Visitor *v,
1375 Error **errp);
1376
1377 /**
1378 * object_property_parse:
1379 * @obj: the object
1380 * @name: the name of the property
1381 * @string: the string that will be used to parse the property value.
1382 * @errp: returns an error if this function fails
1383 *
1384 * Parses a string and writes the result into a property of an object.
1385 *
1386 * Returns: %true on success, %false on failure.
1387 */
1388 bool object_property_parse(Object *obj, const char *name,
1389 const char *string, Error **errp);
1390
1391 /**
1392 * object_property_print:
1393 * @obj: the object
1394 * @name: the name of the property
1395 * @human: if true, print for human consumption
1396 * @errp: returns an error if this function fails
1397 *
1398 * Returns a string representation of the value of the property. The
1399 * caller shall free the string.
1400 */
1401 char *object_property_print(Object *obj, const char *name, bool human,
1402 Error **errp);
1403
1404 /**
1405 * object_property_get_type:
1406 * @obj: the object
1407 * @name: the name of the property
1408 * @errp: returns an error if this function fails
1409 *
1410 * Returns: The type name of the property.
1411 */
1412 const char *object_property_get_type(Object *obj, const char *name,
1413 Error **errp);
1414
1415 /**
1416 * object_get_root:
1417 *
1418 * Returns: the root object of the composition tree
1419 */
1420 Object *object_get_root(void);
1421
1422
1423 /**
1424 * object_get_objects_root:
1425 *
1426 * Get the container object that holds user created
1427 * object instances. This is the object at path
1428 * "/objects"
1429 *
1430 * Returns: the user object container
1431 */
1432 Object *object_get_objects_root(void);
1433
1434 /**
1435 * object_get_internal_root:
1436 *
1437 * Get the container object that holds internally used object
1438 * instances. Any object which is put into this container must not be
1439 * user visible, and it will not be exposed in the QOM tree.
1440 *
1441 * Returns: the internal object container
1442 */
1443 Object *object_get_internal_root(void);
1444
1445 /**
1446 * object_get_canonical_path_component:
1447 *
1448 * Returns: The final component in the object's canonical path. The canonical
1449 * path is the path within the composition tree starting from the root.
1450 * %NULL if the object doesn't have a parent (and thus a canonical path).
1451 */
1452 char *object_get_canonical_path_component(const Object *obj);
1453
1454 /**
1455 * object_get_canonical_path:
1456 *
1457 * Returns: The canonical path for a object. This is the path within the
1458 * composition tree starting from the root.
1459 */
1460 char *object_get_canonical_path(const Object *obj);
1461
1462 /**
1463 * object_resolve_path:
1464 * @path: the path to resolve
1465 * @ambiguous: returns true if the path resolution failed because of an
1466 * ambiguous match
1467 *
1468 * There are two types of supported paths--absolute paths and partial paths.
1469 *
1470 * Absolute paths are derived from the root object and can follow child<> or
1471 * link<> properties. Since they can follow link<> properties, they can be
1472 * arbitrarily long. Absolute paths look like absolute filenames and are
1473 * prefixed with a leading slash.
1474 *
1475 * Partial paths look like relative filenames. They do not begin with a
1476 * prefix. The matching rules for partial paths are subtle but designed to make
1477 * specifying objects easy. At each level of the composition tree, the partial
1478 * path is matched as an absolute path. The first match is not returned. At
1479 * least two matches are searched for. A successful result is only returned if
1480 * only one match is found. If more than one match is found, a flag is
1481 * returned to indicate that the match was ambiguous.
1482 *
1483 * Returns: The matched object or NULL on path lookup failure.
1484 */
1485 Object *object_resolve_path(const char *path, bool *ambiguous);
1486
1487 /**
1488 * object_resolve_path_type:
1489 * @path: the path to resolve
1490 * @typename: the type to look for.
1491 * @ambiguous: returns true if the path resolution failed because of an
1492 * ambiguous match
1493 *
1494 * This is similar to object_resolve_path. However, when looking for a
1495 * partial path only matches that implement the given type are considered.
1496 * This restricts the search and avoids spuriously flagging matches as
1497 * ambiguous.
1498 *
1499 * For both partial and absolute paths, the return value goes through
1500 * a dynamic cast to @typename. This is important if either the link,
1501 * or the typename itself are of interface types.
1502 *
1503 * Returns: The matched object or NULL on path lookup failure.
1504 */
1505 Object *object_resolve_path_type(const char *path, const char *typename,
1506 bool *ambiguous);
1507
1508 /**
1509 * object_resolve_path_component:
1510 * @parent: the object in which to resolve the path
1511 * @part: the component to resolve.
1512 *
1513 * This is similar to object_resolve_path with an absolute path, but it
1514 * only resolves one element (@part) and takes the others from @parent.
1515 *
1516 * Returns: The resolved object or NULL on path lookup failure.
1517 */
1518 Object *object_resolve_path_component(Object *parent, const char *part);
1519
1520 /**
1521 * object_property_add_child:
1522 * @obj: the object to add a property to
1523 * @name: the name of the property
1524 * @child: the child object
1525 *
1526 * Child properties form the composition tree. All objects need to be a child
1527 * of another object. Objects can only be a child of one object.
1528 *
1529 * There is no way for a child to determine what its parent is. It is not
1530 * a bidirectional relationship. This is by design.
1531 *
1532 * The value of a child property as a C string will be the child object's
1533 * canonical path. It can be retrieved using object_property_get_str().
1534 * The child object itself can be retrieved using object_property_get_link().
1535 *
1536 * Returns: The newly added property on success, or %NULL on failure.
1537 */
1538 ObjectProperty *object_property_add_child(Object *obj, const char *name,
1539 Object *child);
1540
1541 typedef enum {
1542 /* Unref the link pointer when the property is deleted */
1543 OBJ_PROP_LINK_STRONG = 0x1,
1544
1545 /* private */
1546 OBJ_PROP_LINK_DIRECT = 0x2,
1547 OBJ_PROP_LINK_CLASS = 0x4,
1548 } ObjectPropertyLinkFlags;
1549
1550 /**
1551 * object_property_allow_set_link:
1552 *
1553 * The default implementation of the object_property_add_link() check()
1554 * callback function. It allows the link property to be set and never returns
1555 * an error.
1556 */
1557 void object_property_allow_set_link(const Object *, const char *,
1558 Object *, Error **);
1559
1560 /**
1561 * object_property_add_link:
1562 * @obj: the object to add a property to
1563 * @name: the name of the property
1564 * @type: the qobj type of the link
1565 * @targetp: a pointer to where the link object reference is stored
1566 * @check: callback to veto setting or NULL if the property is read-only
1567 * @flags: additional options for the link
1568 *
1569 * Links establish relationships between objects. Links are unidirectional
1570 * although two links can be combined to form a bidirectional relationship
1571 * between objects.
1572 *
1573 * Links form the graph in the object model.
1574 *
1575 * The <code>@check()</code> callback is invoked when
1576 * object_property_set_link() is called and can raise an error to prevent the
1577 * link being set. If <code>@check</code> is NULL, the property is read-only
1578 * and cannot be set.
1579 *
1580 * Ownership of the pointer that @child points to is transferred to the
1581 * link property. The reference count for <code>*@child</code> is
1582 * managed by the property from after the function returns till the
1583 * property is deleted with object_property_del(). If the
1584 * <code>@flags</code> <code>OBJ_PROP_LINK_STRONG</code> bit is set,
1585 * the reference count is decremented when the property is deleted or
1586 * modified.
1587 *
1588 * Returns: The newly added property on success, or %NULL on failure.
1589 */
1590 ObjectProperty *object_property_add_link(Object *obj, const char *name,
1591 const char *type, Object **targetp,
1592 void (*check)(const Object *obj, const char *name,
1593 Object *val, Error **errp),
1594 ObjectPropertyLinkFlags flags);
1595
1596 ObjectProperty *object_class_property_add_link(ObjectClass *oc,
1597 const char *name,
1598 const char *type, ptrdiff_t offset,
1599 void (*check)(const Object *obj, const char *name,
1600 Object *val, Error **errp),
1601 ObjectPropertyLinkFlags flags);
1602
1603 /**
1604 * object_property_add_str:
1605 * @obj: the object to add a property to
1606 * @name: the name of the property
1607 * @get: the getter or NULL if the property is write-only. This function must
1608 * return a string to be freed by g_free().
1609 * @set: the setter or NULL if the property is read-only
1610 *
1611 * Add a string property using getters/setters. This function will add a
1612 * property of type 'string'.
1613 *
1614 * Returns: The newly added property on success, or %NULL on failure.
1615 */
1616 ObjectProperty *object_property_add_str(Object *obj, const char *name,
1617 char *(*get)(Object *, Error **),
1618 void (*set)(Object *, const char *, Error **));
1619
1620 ObjectProperty *object_class_property_add_str(ObjectClass *klass,
1621 const char *name,
1622 char *(*get)(Object *, Error **),
1623 void (*set)(Object *, const char *,
1624 Error **));
1625
1626 /**
1627 * object_property_add_bool:
1628 * @obj: the object to add a property to
1629 * @name: the name of the property
1630 * @get: the getter or NULL if the property is write-only.
1631 * @set: the setter or NULL if the property is read-only
1632 *
1633 * Add a bool property using getters/setters. This function will add a
1634 * property of type 'bool'.
1635 *
1636 * Returns: The newly added property on success, or %NULL on failure.
1637 */
1638 ObjectProperty *object_property_add_bool(Object *obj, const char *name,
1639 bool (*get)(Object *, Error **),
1640 void (*set)(Object *, bool, Error **));
1641
1642 ObjectProperty *object_class_property_add_bool(ObjectClass *klass,
1643 const char *name,
1644 bool (*get)(Object *, Error **),
1645 void (*set)(Object *, bool, Error **));
1646
1647 /**
1648 * object_property_add_enum:
1649 * @obj: the object to add a property to
1650 * @name: the name of the property
1651 * @typename: the name of the enum data type
1652 * @get: the getter or %NULL if the property is write-only.
1653 * @set: the setter or %NULL if the property is read-only
1654 *
1655 * Add an enum property using getters/setters. This function will add a
1656 * property of type '@typename'.
1657 *
1658 * Returns: The newly added property on success, or %NULL on failure.
1659 */
1660 ObjectProperty *object_property_add_enum(Object *obj, const char *name,
1661 const char *typename,
1662 const QEnumLookup *lookup,
1663 int (*get)(Object *, Error **),
1664 void (*set)(Object *, int, Error **));
1665
1666 ObjectProperty *object_class_property_add_enum(ObjectClass *klass,
1667 const char *name,
1668 const char *typename,
1669 const QEnumLookup *lookup,
1670 int (*get)(Object *, Error **),
1671 void (*set)(Object *, int, Error **));
1672
1673 /**
1674 * object_property_add_tm:
1675 * @obj: the object to add a property to
1676 * @name: the name of the property
1677 * @get: the getter or NULL if the property is write-only.
1678 *
1679 * Add a read-only struct tm valued property using a getter function.
1680 * This function will add a property of type 'struct tm'.
1681 *
1682 * Returns: The newly added property on success, or %NULL on failure.
1683 */
1684 ObjectProperty *object_property_add_tm(Object *obj, const char *name,
1685 void (*get)(Object *, struct tm *, Error **));
1686
1687 ObjectProperty *object_class_property_add_tm(ObjectClass *klass,
1688 const char *name,
1689 void (*get)(Object *, struct tm *, Error **));
1690
1691 typedef enum {
1692 /* Automatically add a getter to the property */
1693 OBJ_PROP_FLAG_READ = 1 << 0,
1694 /* Automatically add a setter to the property */
1695 OBJ_PROP_FLAG_WRITE = 1 << 1,
1696 /* Automatically add a getter and a setter to the property */
1697 OBJ_PROP_FLAG_READWRITE = (OBJ_PROP_FLAG_READ | OBJ_PROP_FLAG_WRITE),
1698 } ObjectPropertyFlags;
1699
1700 /**
1701 * object_property_add_uint8_ptr:
1702 * @obj: the object to add a property to
1703 * @name: the name of the property
1704 * @v: pointer to value
1705 * @flags: bitwise-or'd ObjectPropertyFlags
1706 *
1707 * Add an integer property in memory. This function will add a
1708 * property of type 'uint8'.
1709 *
1710 * Returns: The newly added property on success, or %NULL on failure.
1711 */
1712 ObjectProperty *object_property_add_uint8_ptr(Object *obj, const char *name,
1713 const uint8_t *v,
1714 ObjectPropertyFlags flags);
1715
1716 ObjectProperty *object_class_property_add_uint8_ptr(ObjectClass *klass,
1717 const char *name,
1718 const uint8_t *v,
1719 ObjectPropertyFlags flags);
1720
1721 /**
1722 * object_property_add_uint16_ptr:
1723 * @obj: the object to add a property to
1724 * @name: the name of the property
1725 * @v: pointer to value
1726 * @flags: bitwise-or'd ObjectPropertyFlags
1727 *
1728 * Add an integer property in memory. This function will add a
1729 * property of type 'uint16'.
1730 *
1731 * Returns: The newly added property on success, or %NULL on failure.
1732 */
1733 ObjectProperty *object_property_add_uint16_ptr(Object *obj, const char *name,
1734 const uint16_t *v,
1735 ObjectPropertyFlags flags);
1736
1737 ObjectProperty *object_class_property_add_uint16_ptr(ObjectClass *klass,
1738 const char *name,
1739 const uint16_t *v,
1740 ObjectPropertyFlags flags);
1741
1742 /**
1743 * object_property_add_uint32_ptr:
1744 * @obj: the object to add a property to
1745 * @name: the name of the property
1746 * @v: pointer to value
1747 * @flags: bitwise-or'd ObjectPropertyFlags
1748 *
1749 * Add an integer property in memory. This function will add a
1750 * property of type 'uint32'.
1751 *
1752 * Returns: The newly added property on success, or %NULL on failure.
1753 */
1754 ObjectProperty *object_property_add_uint32_ptr(Object *obj, const char *name,
1755 const uint32_t *v,
1756 ObjectPropertyFlags flags);
1757
1758 ObjectProperty *object_class_property_add_uint32_ptr(ObjectClass *klass,
1759 const char *name,
1760 const uint32_t *v,
1761 ObjectPropertyFlags flags);
1762
1763 /**
1764 * object_property_add_uint64_ptr:
1765 * @obj: the object to add a property to
1766 * @name: the name of the property
1767 * @v: pointer to value
1768 * @flags: bitwise-or'd ObjectPropertyFlags
1769 *
1770 * Add an integer property in memory. This function will add a
1771 * property of type 'uint64'.
1772 *
1773 * Returns: The newly added property on success, or %NULL on failure.
1774 */
1775 ObjectProperty *object_property_add_uint64_ptr(Object *obj, const char *name,
1776 const uint64_t *v,
1777 ObjectPropertyFlags flags);
1778
1779 ObjectProperty *object_class_property_add_uint64_ptr(ObjectClass *klass,
1780 const char *name,
1781 const uint64_t *v,
1782 ObjectPropertyFlags flags);
1783
1784 /**
1785 * object_property_add_alias:
1786 * @obj: the object to add a property to
1787 * @name: the name of the property
1788 * @target_obj: the object to forward property access to
1789 * @target_name: the name of the property on the forwarded object
1790 *
1791 * Add an alias for a property on an object. This function will add a property
1792 * of the same type as the forwarded property.
1793 *
1794 * The caller must ensure that <code>@target_obj</code> stays alive as long as
1795 * this property exists. In the case of a child object or an alias on the same
1796 * object this will be the case. For aliases to other objects the caller is
1797 * responsible for taking a reference.
1798 *
1799 * Returns: The newly added property on success, or %NULL on failure.
1800 */
1801 ObjectProperty *object_property_add_alias(Object *obj, const char *name,
1802 Object *target_obj, const char *target_name);
1803
1804 /**
1805 * object_property_add_const_link:
1806 * @obj: the object to add a property to
1807 * @name: the name of the property
1808 * @target: the object to be referred by the link
1809 *
1810 * Add an unmodifiable link for a property on an object. This function will
1811 * add a property of type link<TYPE> where TYPE is the type of @target.
1812 *
1813 * The caller must ensure that @target stays alive as long as
1814 * this property exists. In the case @target is a child of @obj,
1815 * this will be the case. Otherwise, the caller is responsible for
1816 * taking a reference.
1817 *
1818 * Returns: The newly added property on success, or %NULL on failure.
1819 */
1820 ObjectProperty *object_property_add_const_link(Object *obj, const char *name,
1821 Object *target);
1822
1823 /**
1824 * object_property_set_description:
1825 * @obj: the object owning the property
1826 * @name: the name of the property
1827 * @description: the description of the property on the object
1828 *
1829 * Set an object property's description.
1830 *
1831 * Returns: %true on success, %false on failure.
1832 */
1833 void object_property_set_description(Object *obj, const char *name,
1834 const char *description);
1835 void object_class_property_set_description(ObjectClass *klass, const char *name,
1836 const char *description);
1837
1838 /**
1839 * object_child_foreach:
1840 * @obj: the object whose children will be navigated
1841 * @fn: the iterator function to be called
1842 * @opaque: an opaque value that will be passed to the iterator
1843 *
1844 * Call @fn passing each child of @obj and @opaque to it, until @fn returns
1845 * non-zero.
1846 *
1847 * It is forbidden to add or remove children from @obj from the @fn
1848 * callback.
1849 *
1850 * Returns: The last value returned by @fn, or 0 if there is no child.
1851 */
1852 int object_child_foreach(Object *obj, int (*fn)(Object *child, void *opaque),
1853 void *opaque);
1854
1855 /**
1856 * object_child_foreach_recursive:
1857 * @obj: the object whose children will be navigated
1858 * @fn: the iterator function to be called
1859 * @opaque: an opaque value that will be passed to the iterator
1860 *
1861 * Call @fn passing each child of @obj and @opaque to it, until @fn returns
1862 * non-zero. Calls recursively, all child nodes of @obj will also be passed
1863 * all the way down to the leaf nodes of the tree. Depth first ordering.
1864 *
1865 * It is forbidden to add or remove children from @obj (or its
1866 * child nodes) from the @fn callback.
1867 *
1868 * Returns: The last value returned by @fn, or 0 if there is no child.
1869 */
1870 int object_child_foreach_recursive(Object *obj,
1871 int (*fn)(Object *child, void *opaque),
1872 void *opaque);
1873 /**
1874 * container_get:
1875 * @root: root of the #path, e.g., object_get_root()
1876 * @path: path to the container
1877 *
1878 * Return a container object whose path is @path. Create more containers
1879 * along the path if necessary.
1880 *
1881 * Returns: the container object.
1882 */
1883 Object *container_get(Object *root, const char *path);
1884
1885 /**
1886 * object_type_get_instance_size:
1887 * @typename: Name of the Type whose instance_size is required
1888 *
1889 * Returns the instance_size of the given @typename.
1890 */
1891 size_t object_type_get_instance_size(const char *typename);
1892
1893 /**
1894 * object_property_help:
1895 * @name: the name of the property
1896 * @type: the type of the property
1897 * @defval: the default value
1898 * @description: description of the property
1899 *
1900 * Returns: a user-friendly formatted string describing the property
1901 * for help purposes.
1902 */
1903 char *object_property_help(const char *name, const char *type,
1904 QObject *defval, const char *description);
1905
1906 G_DEFINE_AUTOPTR_CLEANUP_FUNC(Object, object_unref)
1907
1908 #endif